Selt-Organizing Switchbox Routing on an Adaptive Resistor Grid

Allen L. Barker
Technical Report CS-97-28
University of Virginia
Computer Science Department

Dec. 13, 1997

Abstract

The switchbox routing problem arises in the fabri-
cation of computer chips, and is representative of
a general class of routing problems. We describe
a self-organizing algorithm for solving certain in-
stances of the switchbox routing problem. The
method is based on path formation via a positive
feedback process, with competitive interactions.
We define such a process on a grid of adaptive,
variable resistors and simulate its dynamics. The
method is applied to several problem instances.

1 Introduction

In this paper we present a self-organizing algorithm
for solving certain instances of the switchbox routing
problem. A global solution to the switchbox routing
problem is computed by sets of nodes operating lo-
cally with fairly simple, but well-tuned, rules. The
solution is an emergent property of these local inter-
actions.

The method is based on path formation via a pos-
itive feedback process. Consider an analogy to soil
erosion. The height of the soil at a particular location
decreases as the the flow of water over it increases,
i.e., as the water carries away soil particles. At the
same time, the flow of water at a point tends to in-
crease as the level of the soil decreases there. That
is, water tends to flow toward lower points, and the
more water that flows at a point the more that point
is lowered by erosion. The positive feedback interac-

tion between these properties tends to cause channels
to be cut into the soil, resulting in the erosion pat-
terns of rivers, ravines, canyons, etc. Another anal-
ogy one can make is to the formation of deer paths.
As more deer follow a particular path, it tends to be-
come packed down and freer of vegetation than the
surrounding woods. As the path becomes easier to
traverse, more deer tend to follow it, and so forth.

These general sorts of processes occur in many sit-
uations, and can be fairly robust with regard to the
exact properties of the interacting processes. We have
implemented such a feedback process on a (simu-
lated) resistor grid with current flowing through it.
As more current flows through a resistor, its resis-
tance value decreases. One reason for choosing this
electrical analogy is that it facilitates an intuitive un-
derstanding of what is going on. It also allows us to
apply the well-known current and voltage laws and
to make use of properties such as the conservation
of current through a network. It might also allow
for efficient, partially analog implementations using
special hardware.

2 The Switchbox
Problem

Routing

The switchbox routing problem arises in the fabri-
cation of computer chips, where certain components
need to be connected to other components. That
is, the connections between input and output pins of
electronic components are specified by a circuit de-



sign. The switchbox routing problem arises as part
of an automated system to fabricate these connec-
tions onto two (or possibly more) conductive layers.
The two layers are chip layers onto which conductive
paths are etched. The problem is representative of a
more general class of routing problems which occur
in widely varied applications.

In the basic switchbox routing problem, one is
given an n X m box, with terminals specified along
the outside edges of the box. In this paper we assume
the box has two layers. The terminals are numbered
(or lettered) from 1 to some maximum number of ter-
minal types. All terminals of the same type, i.e., with
the same number, are said to belong to the same net.
Looking ahead to Figure 3 gives an idea of the type
of box structure (and graph topology) we are talking
about, though the terminals around the edges are not
all shown.

For a more formal description we refer the reader
to, e.g., [CHS88]. A simple example should make the
idea clear. Consider Figure 1. This is a representa-
tion of a very simple instance of the switchbox routing
problem. The pairs of letters around the outside of
the box indicate the terminal types, or nets. (The
plus signs are points around the edge with no termi-
nals.) The points labeled 1 inside the box represent
all the nodes on the first layer. Similarly, the points
labeled 2 represent all the nodes on the second layer.
A node on layer 1 is connected to all the points to its
north, south, east, and west. It is also connected to
the point on layer two that is directly “above” it, and
this type of connection is called a via. The nodes on
layer 2 are similarly connected. Again, looking ahead
to Figure 3 shows the type of graph structure we are
dealing with.

The goal is to label all the nodes of the graph
with at most one terminal type. This labeling should
be such that each terminal is connected by a path
through the grid, labeled with its own type, to all
other terminals of its same type. That is, all ter-
minals of a common net are connected through the
switchbox.

Figure 2 shows a solution to the switchbox prob-
lem of Figure 1. Nodes which are not used are still
labeled 1 or 2, and the others are labeled with termi-
nal letters. Notice that each terminal on one of the

aa ++ bb ++ cc
++ 12 12 12 12 12
++ 12 12 12 12 12
++ 12 12 12 12 12
++ 12 12 12 12 12
bb cc ++ ++

++
bb
++
++
aa

Figure 1:
lem.

An instance of a switchbox routing prob-

aa ++ bb ++ cc
++ l1la 12 1b 12 c2
++ 1la 12 1b 1b cb
++ la aa ab
++ 1b cb cb
bb cc ++

++
bb
++
++

aa c2
ca c2

aa ++

Figure 2: A solution to the switchbox routing prob-
lem above.

the outside edges has a path, through the grid, to all
other external terminals of its same type (connect-
ing to either of the pair of edge terminals is sufficient
here). For example, terminal a on the north of the
switchbox first gets routed three nodes south on layer
2. Tt is then routed one node east on layer 2. At this
point it is routed down to layer 1, then two nodes
east on layer 1, back up to layer 2, and finally two
nodes south to connect up with the a terminals on
the southern edge of the switchbox.

A solution does not necessarily exist for a given
instance of the switchbox routing problem. When
multiple solutions exist there are a variety of criteria,
such as total path length and the number of vias,
for preference-ordering the solutions. Our method is
based on “paths of least resistance,” and so should
perform well relative to total path length. Vias can
also be given additional resistive weighting, if desired.
In this paper we focus on finding valid solutions.

See [CHS88] for more information and references on
traditional switchbox routing algorithms. See, e.g.,
[VM90] for work on switchbox routing using specially
constructed hardware. See [SCF91] and [SF91] for
neural network approaches to routing problems. An
approach to module placement based on a resistive
network analogy is described in [CK84].



3 Adaptive Resistor Grids

(Slabs)

The basic building block of our self-organizing router
is a grid of resistors, which we call a slab. An exam-
ple is shown in Figure 3. A fixed amount of current,
I, is pumped into the slab at a current source, and
the same amount of current is drawn out of the slab in
equal portions from every current sink. The resistor
grid has the same n x m x 2 structure as the par-
ticular problem instance. The current sources and
current sinks correspond to the terminals of a net.
For example, the slab of Figure 3 corresponds to the
net labeled b in the example of Figure 1. This will
be described in more detail in the next section.

The points of the grid where three or more wires
meet are called nodes. All the resistors grouped
around a node in the grid are associated with a com-
mon resistance value, though resistance values in cer-
tain directions may be weighted differently. The com-
mon resistance value at a node is assumed to be mod-
ifiable.

An effective heuristic for switchbox routing in two
layers is to route most north-south connections on
layer 1, and most east-west connections on layer 2.
To implement a variant of this heuristic, we weight
all east-west resistances on layer 1, and north-south
resistances on layer 2, by an extra factor of 8. For
example, a node on layer 1 with a node resistance
value of 3 would have resistors of resistance 3 in the
north, south, and up (via) directions, and resistors of
resistance 24 in the east and west directions.

To simulate the current flow and voltages in a resis-
tor grid we iteratively update Kirchoff’s current law
at all the nodes until a given accuracy is obtained.
In our simulations we set the current to I = 1. We
repeatedly iterate the nodal current laws over all the
nodes of a slab until the largest change in the summed
current into some node, on an iteration, is less than
0.01. These updates consume by far the bulk of the
computation time in our simulations. Sparse matrix
techniques could be applied, but since the weights
will be modified only slightly between solutions re-
laxation methods may be preferable. More efficient
relaxation techniques could be employed.

The basic intuitive notion of a slab is that a fixed
amount of current is pumped in, and that current
must flow out in equal parts from each current sink.
The current will be maximum along some path, and
the highest current paths will have their resistance
values decreased more than others. When resistance
is defined to decrease as current increases through
a node, path formation results. A slab operating in
isolation according to these rules (to be detailed later)
will tend to converge to a state where a single path
(tree) connects all its terminals.

4 Combining Slabs
Switchbox Router

Into a

We now describe how slabs are combined to form a
complete router. The main constraint we need to
incorporate is that, in a valid solution, only one net
can occupy any node of the grid.

In Figure 4 we show how slabs are assigned to ter-
minals. Each terminal has a slab associated with it,
and these slabs are grouped according to the partic-
ular net the terminal belongs to. The illustration of
Figure 4 is for the example switchbox of Figure 1.

This stacking of the slabs is significant because
nodes of each slab will compete with other nodes oc-
cupying the same position in other slabs of the stack.
This “vertical” collection of nodes will be called a
column. For example, all the nodes on layer 2 and
in the northeast corner of some slab (ignoring sources
and sinks) form a column.

In order to incorporate the constraints, we imple-
ment a winner-take-all competition between the nets
in each column. That is, the slabs of at most one net
can “control” the column in a valid solution. To do
this we need to a single value for each net within a
column. These values will be called weight values.
Note that there is a weight value associated with each
net, in each column.

The weight values are fundamental to our algo-
rithm in several ways. First, they define how we pro-
duce a trial solution from a given configuration. To
produce a trial solution from a set of slabs we assign
each grid node of the trial solution to the net with



W~

% z
-
N

r
K

="

="

r
K

="

="

r
K

p!
<y

i

e

A

e

i



Slabsfor net a

Slabsfor net b

Slabsfor net ¢

AN N N N NN NN NN

Figure 4: A stack of slabs for the example switchbox.

the highest corresponding weight value.

Secondly, weight values at a node are directly re-
lated to resistance values at a node according to

rij = —log(1 —wi;),

(1)

where w;; is the weight value for net ¢ at node j
in the grid, and 7;; is the corresponding resistance
value. All resistance values at nodes in column j
corresponding to net i are assigned this same value,
r;j. The curve is shown in Figure 5. Thus when
the weight value approaches 1, the resistance value
approaches 0, and when the weight value approaches
0, the resistance value approaches infinity.

Finally, the weight values are made to compete
against each other to incorporate the problem con-
straints. There are many possible ways to set up this
weight competition. In the following paragraphs we
first describe how the weight values are calculated
and dynamically updated. We then describe the par-
ticular winner-take-all formulation we use.

20 T T
1.0/(-log(1-w)) —

10

resistance

0.4 0.6

weight

Figure 5: The function converting weight values to
resistance values.



4.1 Calculating and Updating the

Weight Values

The weight calculations and updates are based on
computing the sum of the absolute current values into
each node. These values are then summed over all
nodes of the same net in a column. This value will
be called A;;, where i specifies a net whose slabs are
being summed over and j specifies a particular node
position in the slabs (column) that is being summed
over.

Figure 6 illustrates the summation process for com-
puting A values and how it works for paths which
have converged into single paths. The idea is to allow
nets with different numbers of terminals to compete
fairly against each other — especially near conver-
gence. We always take the current I into each slab’s
source to be set to 1, and draw equal amounts of cur-
rent from each sink.! To see how this tends to allow
nets with different numbers of terminals to compete
fairly against each other, consider the cases for two
terminals, four terminals, etc. The sums tend to be
4 on converged trees (recall that the absolute sum of
all current into and out of a node is being calculated,
so a node on a path carrying a current of 1 gets a
score of 2 for current both into and out of the node).
Any values above 4 are then set to 4 (to deal with
any special cases that do not follow the rule) and the
values are divided by 4 to yield a A value between 0
and 1.

The delta values are thus computed as

power

1
Ay = 1 Z Z abs(wire current) ,

nodes of
net i in
column j

wires
into
node

(2)
where we have not explicitly notated the “floor” at
4. In this paper we have used power = 1, but it is
included for generality.

The weight values are updated as
Wi = (]. — 6) Wij + € A”

3)

I1f a single sink can draw all the current then disconnected
nets can result. For example with four terminals we might get
1 — 2 and 3 — 4 without 1 being connected to 3.

Note that if a A;; value is constant then the exponen-
tial averaging will gradually cause w;; to approach
A;;j. The rate of the convergence is specified by a
value € between 0 and 1. After each weight update
the weights are normalized.

4.2 Normalizing the Weight Values

There are many different types of winner-take-all net-
works and methods, and different ones are appropri-
ate in different contexts. The winner-take-all normal-
ization we use is performed as

Wij
(ZZ w?j)l/a

That is, the Minkowski norm is fixed to 1 across col-
umn weight values for different nets.? (For exam-
ple, choosing a = 2 fixes the Euclidean norm, and
a = 1 fixes the L1 norm since all weights are pos-
itive.) Weight values are initially all set to 0.5 and
then normalized. They are renormalized after each
weight update.

The weight values of all nodes in a column belong-
ing to a common net are identical by definition. Thus,
for example, in Figure 4, all of the slabs for net a have
identical weight values. While the weight values, and
hence the resistances, are identical, the currents and
voltages are not.

An exception to the weight normalization occurs
for sources and sinks. In this case, the normalization
occurs only within a slab. The weights on layer 1 and
layer 2 are normalized for each pair of source or sink
weights. (The Minkowski norm for sources and sinks
is fixed at 3 x 108 rather than 1 because this seems
to improve the performance of the simple iterative
update algorithm on slab currents and voltages.)

(4)

Wiy =

4.3 Selecting Parameters

We now need to select a set of parameters. We chose
parameters that would work on the difficult switch-
box example, to be discussed later. Here we give a

2 Another variant is to renormalize if the norm is greater
than 1, but leave it alone otherwise. This strengthens the
tendency to form individual paths, since more current must be
committed to “capture” a node.



2
1 ——
1
-
Pinl
1
2 -
1
-
Pin3

1
1 ——
2
.
Pin2
4
4
4
Sum

Figure 6: Current on three slabs after path formation, and their sums.

brief description of the subjective effects of the differ-
ent parameters, and the values we have used in this
paper. (These descriptions should be clearer after
reading the Examples section.)

The power a in the Minkowski norm is set to
0.5. The idea here is to discourage routing paths
for different nets from sharing nodes. For exam-
ple, with & = 0.5, the vectors (0.25,0.25) and (0, 1)
both have Minkowski norm of 1. Thus, unlike in
the L1 norm and Euclidean norm, the total amount
of weight available decreases when the weight is
“shared” across vector components. Intuitively, this
tends to cause the current associated with a net to
spread out and “search” for paths where nodes need
not be shared. When set too low, though, there is a
tendency for firm paths not to coalesce.

The power parameter in the A computation influ-
ences the tendency to path formation. Values greater
than 1 tend to increase path formation by increasing
the advantage given to the nets with the highest cur-
rent values. Setting this parameter too high, though,
can cause too rapid a “crystallization” into an invalid
solution. We have used a value power = 1.

As previously described, we weight the resistances

in non-preferred directions by a factor of 8. De-
creasing this value tends to weaken the tendency to
path formation. Increasing it tends to straighten out
paths, but may interfere in cases where this is not the
required behavior.

5 Examples

In this section we present some examples of running
the routing algorithm on some standard instances of
the switchbox routing problem. The basic simulation
cycle is to calculate the currents and voltages for all
slabs, update and normalize the weights, and then
compute the new resistance values from these weight
values. The examples are all taken from [CH88], and
that paper cites their original appearance in the lit-
erature.

The sample switchbox is shown in Figure 7. It
is a 7 x 8 switchbox with 6 nets. The trial solution
after 40 resistance update cycles is shown in Figure 8.
Recall that a trial solution is produced by assigning
each node to the net with the largest corresponding
weight value. After 40 cycles the trial solution is



++ ++ ++ cc ff ee cc
aa 12 12 12 12 12 12 12 ++
++ 12 12 12 12 12 12 12 ++
++ 12 12 12 12 12 12 12 dd
dd 12 12 12 12 12 12 12 ++
++ 12 12 12 12 12 12 12 ++
++ 12 12 12 12 12 12 12 bb
++ 12 12 12 12 12 12 12 aa

++ bb cc ff ++ ee ++

Figure 7: The sample switchbox problem instance.

++ ++ cc ff ee cc ++
aa aa aa cc fc ec cc ee ++
++ aa aa cc fc ec cc ad ++
++ ad ad cd fd ed ed dd dd
dd dd ad cd fd ed ed ad ++
++ ad bb cb fb eb eb ab ++
++ aa bb cb fb eb eb ab bb
++ aa bb cb fb ea ea aa aa

++ bb cc ff ++ ee ++

Figure 8: The sample switchbox after 40 update cy-
cles.

not yet valid. In Figure 9 we show the weight values
(multiplied by 100) for the a-net slabs after 40 cycles.
The indented rows are weight values on layer 2, and
the unindented rows are the weight values on layer
1. This figure illustrates how various different paths
are being explored on a “subconscious” level, though
they are not all reflected in the trial solution.

A valid solution to the sample switchbox is found
by 80 cycles. In Figure 10 we show the solution found
after 200 cycles, and in Figure 11 we show the corre-
sponding weight values for the a-slabs. In Figure 12
those same weight values are shown after 800 cycles,
and can be seen to be converging to distinct paths.

The difficult switchbox is shown in Figure 13,
along with the invalid trial solution found after 2000
cycles. Notice that nets d and g are not yet routed
correctly. A valid solution, found after 4200 cycles,
is shown in Figure 14.

The more difficult switchbox is identical to the
difficult switchbox, but with the rightmost column
removed. The self-organizing switchbox router with
the current parameter settings fails to converge to a

31 18 09 03 02 01 01 02
09 10 05 01 01 01 00 02
03 03 03 02 02 01 02
07 04 01 01 01 01 02
02 02 02 02 01 01 oO1
05 03 01 01 01 01 02
01 02 02 02 02 02 02
04 03 01 01 01 01 03
02 02 02 02 02 02 02
03 02 01 01 02 02 05
02 02 02 02 01 01 oO1
02 01 01 01 02 02 06
02 02 02 03 04 07 15 31
02 01 01 01 02 02 08 09

Figure 9: Weight values for net a after 40 update
cycles.

++ ++ cc ff ee cc ++
aa aa aa cc fc ec cc aa ++
++ aa aa cc fc ec cc aa ++
++ ad ad cd fd ed ed ad dd
dd ad ad cd fd ed ed ad ++
++ aa aa ca fa ea ea aa ++
++ aa bb cb fb eb eb ab bb
++ aa ba ca fa ea ea aa aa

++ bb cc ff ++ ee ++

Figure 10: The solution after 200 update cycles.

656 56 29 05 04 03 02 07
01 37 19 01 00 00 00 06
09 11 06 06 05 04 09
29 18 01 01 01 01 12
03 04 03 02 02 01 01
19 14 01 01 01 Ot 10
01 03 03 03 03 03 04
17 13 01 01 02 O1 12
o8 11 10 10 08 07 10
21 11 01 01 03 02 21
07 03 02 02 02 01 O1
15 02 01 01 04 02 24
13 10 11 13 14 19 42 65
1201 01 01 05 02 28 01

Figure 11: Weight values for net a after 200 update
cycles.



++
++
00
nn
11
aa
bb
3
cc
rr

aq
ee

kk
dd

++
++
00
nn
11
aa
bb
3
cc
rr

aQq
ee

kk
dd

pp
9%

19%
00

cn
11
aa
ab
aj

ac
ar

aq
ae
ak
ad
aa

pp
pp

pp
co

cn
11
aa
ab
aj

ac
ar

aq
ae
ak
ad
aa

++
cp
cc
co
cn
cl
ca
cb
c]

cc
rr
rm
rq
re
rk
rd
rr

++
cp
cc
co
cn
cl
ca
cb
c]

cc
rr
rm
rq
re
rk
rd
rr

cc
cp
cc
co
cn
cl
ca
cb
cj

cc
mm
mm

qq
qe
qk
qd
qq

Figure 13: An invalid solution to the

cc
cp
cc
co
cn
cl
ca
cb
cj
cc

qq
qe
qk
qd
qq

ee
ep
ec
eo
en
el
ea
eb
e

ec
em
em
ed
ee
ek
ed
ee

ee
ep
ec
eo
en
el
ea
eb
e]

ec
em
em
ed
ee
ek
ed
ee

Figure 14:

mm
mp
mc
mo
mn
ml
ma
mb
mj
mc
mm
mm
hh
hd
hk
hd
hh

mm
mp
mc
mo
mn
ml
ma
mb
mj
mh
mm
hm
hh
hd
hk
hd
hh

hh
hp
hc
ho
hn
hl
ha
hb
hj
hc
hg
hm
hh
gd
gk
gd
gg

hh
hp
hc
ho
hn
hl
ha
hb
hj
hh
hg
hm
gh
gg
gk
gd
gg

gg
gp
gc
go
gn
gl
ga
gb
gJ
gc
gc
gm
gf
ff
fk
fd
ff

gg
gp
gc
go
gn
gl
ga
gb
gJ
gc
gg
gm
gf
ff
fk
fd
ff

i
jp
jc
jo
jn
jl
ja
jb
i3
jc
jc
jm
jf
jd
jk
jd
i3

i3
jp
jc
jo
jn
jl
ja
jb
i3
jc
jf
jm
jf
jf
jk
jd
i3

ff
fp
fc
fo
fn
f1l
fa
fb
£]
fc
fc
fm
ff
id
ik
id
ii

ff
fp
fc
fo
fn
fl
fa
fb
£
fc
ff
fm
ff
if
ik
id
ii

ii
ip
ic
io
in
il
ia
ib
ij
ic
ic
im
id
id
ik
dd
++

ii
ip
ic
io
in
il
ia
ib
ij
ij
ic
im
ii
id
ik
dd
++

nn
np
nc
no
nn
11
la
1b
jJ
i
jc
jm
jd
jd
jk
jd
i3

nn
np
nc
no
nn
11
la
1b
i3
i3
jc
jm
jd
jd
jk
jd
i3

PP
pp
pPc
po
PP
11
la
1b
11
11
pc
mm
md
md
mk
md
mm

PP
pp
pPc
po
PP
11
la
1b
11
11
pc
mm
md
md
mk
md
mm

[o]e]
op
ocC
[o]e]

| 9%
pa
pa
pb
pl
pl
pc
pd
pd
pd
Pk
ppP
ppP

[o]e]
op
ocC
oo

| 9%
pa
pa
pb
pl
pl
pc
pd
pd
pp
Pk
pd
PP

| 9%
PP
pPc
pc
aa
aa
aa
ab
al
al
ac
ad
ad
ad
ak
ap
aa

++

pp
pPc
pc
pa
pa
pa
pb
pl
rl
pc
pd
pd
pd
pk
ppP
ppP

vV
vp
vc
vc
va
va
va
vb
vl
vl
vV
cd
cd
cc
kk
kd
kk

uu
up
uc
uc
ua
ua
uu
ub
ul
vl
\'A
dd
xd
XC
XX
xd
XX

bb
bp
bb
bc
ba
ba
bu
bb
bl
bl
bv
bd
bx
bc
bx
bd
bb

cc
cp
cb
cc
ca
cu
cu
cu
cu
cl
cv
cd
cx
cc
XX
dd
++

tt
tp
tb
tt
da
dd
du
du
du
dl
dv
dd
XX
XC
XX
dd
++

difficult switchbox after

| 9%
PP
pPc
pPc
aa
aa
aa
ab
al
al
ac
ad
ad
ap
ak
ad
aa

++

pp
pc
pc
pa
pa
pa
pb
pl
pl
pc
pd
pd
pp
pk
pd
ppP

vV
vp
vc
vc
va
va
va
vb
vl
vl
vV
cd
cd
cc
kk
kd
kk

uu
up
uc
uc
ua
ua
uu
ub
uu
vl
vV
dd
XX
XC
XX
xd
XX

bb
bp
bb
bc
ba
ba
bu
bb
bu
bl
bv
bd
bx
bc
bx
bd
bb

cc
cp
cb
cc
ca
ca
cu
cu
cu
cl
cv
cd
cx
cc
dx
dd
++

tt
tp
tb
tt
da
dd
du
du
du
dl
dv
dd
dx
dc
dx
dd
++

bb
bp
bb
dt
da
dd
du
du
du
dl
dv
dd
XX
XcC
WW
WW
WW

2000 cycles.

bb
bp
bb
bt
ba
dd
du
du
du
dl
dv
dd
XX
XC
WW
WW
WW

ss
Sp
sd
st
sa
sd
su
ss
su
sl
sV
ss
sX
sc
sW
ss
ss

ss
Sp
sd
st
sa
sd
su
ss
su
sl
sV
ss
sX
sc
sSW
ss
ss

++
sp
dd
dt
da
dd
uu
us
uu
sl
sV
ss
sX
sc
sSW
ss
++

++
sp
dd
dt
da
dd
uu
us
uu
sl
sV
ss
sX
sc
sSW
ss
++

A valid solution to the difficult switchbox after 4200 cycles.

pp
dd

tt
aa
++
uu
ss
uu
11
vv
ss
XX
cc
wW
ss

pp
dd

tt
aa
++
uu
Ss
uu
11
vv
ss
XX
cc
wW
ss



97 96 67 01 01 01 01 16
00 8 58 00 00 00 00 15
24 3 11 12 10 10 32
79 58 00 00 00 OO0 38
01 01 01 01 00 00 00
59 42 00 00 00 01 22
00 01 01 01 01 02 03
58 42 00 00 00 00 23
28 49 45 46 36 36 51
7t 46 00 00 01 00 65
18 00 00 00 00 00 0O
67 00 00 00 02 00 67
67 49 52 57 50 54 84 97
656 00 00 00 05 00 70 00

Figure 12: Weight values for net a after 800 update
cycles.

valid solution for this problem instance. The trial
solution after 6000 cycles is shown in Figure 15. No-
tice that the problem is with the b and d nets in the
northeast corner. This is a difficult instance of the
switchbox routing problem. By analyzing such cases
one can look for ways to modify the basic dynamics
so that these final states no longer constitute fixed
points — though the accuracy of the simulation of
the current flow, and other such factors, must also be
considered.

6 Conclusions

We have presented a method for solving the switch-
box routing problem on a grid of adaptive resistors.
While the basic switchbox problem maps naturally
into a grid, our basic method is applicable to a wide
variety of graph topologies. The method can easily be
extended to switchboxes with more than two layers
or with arbitrary obstacles.

The method illustrates how local, adaptive pro-
cesses can provide solutions to problems usually asso-
ciated with search algorithms — or at least provides
an alternative style of search algorithm. This may
allow for the creation of fast, special-purpose hard-
ware, or may help in improving traditional routing
algorithms. It can also provide insight into natu-
ral phenomena, such as the ability of neural tissue

10

to adaptively form routing connections across lay-
ers of locally acting neurons. The “winner-take-all”
structure across local positive-feedback path forma-
tion slabs may bear some resemblance to the colum-
nar formations found in the brain [Koh84].

Future research should analyze more rigorously the
interaction of parameters and their effects in different
routing situations. A global “energy function” formu-
lation would also be desirable. The method might be
extended to problems other than switchbox routing,
for example to other types of routing problems or to
Steiner tree approximation problems.

The feedback signals we have used are fairly low-
level, though higher-level feedback can also be incor-
porated. For example, the current into a slab might
be dynamically increased over time if that slab’s net
were found, by a higher-level routine, to not be get-
ting routed properly. Certain parameters might be
adjusted according to the number of incompletely
routed nets. One might also consider the effects of
injecting random noise into the system to eliminate
unstable fixed points, or the dynamics of fluids with
momentum.

References

James P. Cohoon and Patrick L. Heck.
Beaver: A computational-geometry-based
tool for switchbox routing. IEEE Transac-
tions on Computer-Aided Design, 7(6):684—
697, June 1988.

[CHSS]

Chung-Kuan Cheng and FErnest S. Kuh.
Module placement based on resistive net-
work optimization. IEEFE Transactions on
Computer Aided Design, 3(3):218-225, July
1984.

[CK84]

[Koh84] Teuvo Kohonen. Self-Organization and As-

sociative Memory. Springer-Verlag, 1984.

[SCF91] P-H Shih, K-E Chang, and W-S Feng. Neu-
ral computation network for global rout-
ing. Computer-Aided Design, 23(8):539-

547, October 1991.



pp ++ cc ee mm hh gg jj ff ii nn pp oo pp ++ vv uu bb cc tt bb ss
++ pp cp cp ep mp hp gp jp fp ip np pp op pp pp Vp up bp cp tp bp sp pp
++ pp cc cc ec mc hc gc jc fc ic nc pc oc pc pc vc uc bb cb tb bd sd dd
00 co co co eo mo ho go jo fo io no po oo pc pc vc uc bc cc tt dt st tt
nn cn cn cn en mn hn gn jn fn in nn pp pp aa pa va ua ba ca da da sa aa
11 11 cl1 cl el ml hl gl jl £f1 il 11 11 pa aa pa va ua bb cb db db sd ++
aa aa ca ca ea ma ha ga ja fa ia la la pa aa pa va uu bu cu du du su uu
bb ab cb cb eb mb hb gb jb fb ib 1b 1b pb ab pb vb ub bb cu du du ss ss
jj aj cj ¢j ejmj hj gj jj £ ij jj 11 pl al pl vl uu bu cu du du su uu
cc ac cc cc ec mc hc gc jc fc ic jj 11 pl al pl vl vl bl cl d1 41 s1 11
rr ar rr mm em mm hh gg jc fc ic jc dc pc ac pc vv vv bv cv dv dv sv vv
mm am rm mm em hm hm gm jm fm im jm mm pc ac pc cc dc bc cc dd dd ss ss
qq aq rq qq ed hh gh gg jf ff ii jd md pd ad pd cd xx bx cx dx cx sx xx
ee ae re gqe ee hh gg ff jf if ii jd md pp ap pp cc xc bc cc dc cc sc cc
kk ak rk gk ek hk gk fk jk ik ik jk mk pk ak pk kk xx bx dx dd ww sw ww
dd ad rd qd ed hd gd fd jd id id jd md pd ad pd kd xd bd dd dd ww ss ss

aa rr qq ee hh gg ff jj ii ++ jj mm pp aa pp kk xx bb ++ ++ ww ss

Figure 15: An invalid solution to the more difficult switchbox after 6000 cycles.

[SF91] P-H Shih and W-S Feng. An application
of neural networks on channel routing prob-
lem. Parallel Computing, 17:229-240, 1991.

[VM90] R. Venkateswaran and Pinaki Mazumder.
A hexagonal array machine for multilayer
wire routing. IEEE Transactions on Com-
puter Aided Design, 9(10):1096-1112, Octo-
ber 1990.

11



