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List of Symbols

Memory system parameters:
w word size

p page size

T page-hit read cycle time
T

-
T
T

p/r

o/ page-hit write cycle time

p/m page-miss overhead

oy uniform-accessread cycletime

ww Uniform-access write cycletime
Stream parameters:

v stream start address (vector accessed)
stride of access

d datasize
m mode of access
o number of dataitems referenced per functional iteration

M AP notation:

access to the next element of stream t;

a“ k™ accessfrom t; for agiven access sequence iteration
S set of all streamsin agiven MAP

N number of streamsin S

\% number of different vectors referenced by streamsin S
b depth of loop unrolling

Performance measures:

Tag @averagetime per access

BW  processor-memory bandwidth



General propertiesof stream t;:

€ number of accesses per loop iteration

ei intermix factor

Properties of stream t; for a multicopy architecture:

o, number of modules referenced

Ei module stride

Modeling functions:

y(s d)

@(s, d)
n(sd,c, V)
hp(s, d, )

w(s, d, €)

average number of data items per word

average number of data items per page

average per iteration page miss count

average per iteration page miss count for intermixed write stream

average per iteration page miss count for wrap-around adjacent read stream

imix(s, d, c, h, V) effect of intermixing on average page miss count of write stream

wadj(s, d, c, V) effect of wrap-around adjacency on page miss count of read stream



1 Introduction

SuperscaIaTrpipeIined processors are well suited for meeting the demands of scientific
computing, singly and as components of parallel machines. Hovetweies demonstrate
that for such applications, performance is limited by the processorory bandwidth
[Lee90, Moye9l].

For vector computers, parallel memory modules are employed to incresagetand-

width through concurrent processing of memory requests. Research into parallel memory
systems is generally directed towards developing storage schemes, i.e. mappings of
addresses to memory locations, that reduce module conflict and hence increase concur-
rency Proposed storage schemes include the use of a prime number of modut&2[LaV
skewed storage [BuKu71, HaJu87], and dynamic address transformations [Harp89,
Rau91]. Note that these techniques are dependent on a relatively long sequence of refer-

ences to a single vector

Scalar processors executing scientific codes generate an interleaved sequence of refer-
ences to a set of vector operands. Thus, simply applying a given storage scheme is
unlikely to produce maximum concurrency in a parallel memory system. Furthermore, the
performance of individual modules of modern DRAM components is sensitive to the

sequence of requests; this issue is not addressed in previous parallel memory studies.

A multicopy memory is proposed here as a parallel memory system consistmaaod-

ules of replicated data such that (M,, a) represents the contents of addi@as module

M, then* (M, a) = ... = *(M,,_4, 8. A multicopy memory system increases the
potential for access concurrenag maximum concurrency is achievable for all strides of
reference. Furthermore, for systems of page-mode DRAMSs, page overhead can be more

effectively amortized by directing stream accesses to a smaller number of modules.

Access ordering algorithms [Moye92c] are developed that exploit a multicopy memory

Access ordering is a loop optimization that reorders non-caching accesses to better utilize

t. Both superscalar and VLIW architectures are suited for scientific applications and place similar demands
on the memory system.



memory system resources. For a given computation, memory architecture, and memory
device type, an access ordering algorithm determines a well-defined interleaving of vector

references that maximizededtive bandwidth.

In general purpose scalar computing, the addition of cache memory is ofténiarguf
solution to the memory latency and bandwidth problems given the spatial and temporal
locality of reference exhibited by most codes. For scientific computations, vectors are nor-
mally too lage to cache. Iteration space tiling [CaKe8%I{88] can partition problems

into cache-size blocks, however tiling often creates cache conflict§f@aRand the
technique is dffcult to automate. Furthermore, only a subset of the vectors accessed will
generally be reused and hence benefit from caching. Fioatiing may actually reduce
effective memory bandwidth by fetching extraneous data for non-unit strides. Thus, as
noted by Lanet al [LaRW91], ‘while data caches have been demonstrated tddutieé

for general-purpose applications..., thefeefiveness for numerical code has not been

established'.

1.1 Background

This work builds on previous analytic results derived for a single module memory system
[Moye92a]. © make this document self-contained, the necessary analysis from that report
is repeated here. Readers familiar with previous work may skip immediately to the analy-
sis of a multicopy architecture presented in section 5; note: there is an important addition

to the MAP access sequence definition presented in 3.1.

1.2 General System Model

Access ordering algorithms presume a dedicated memory system driven by a single scalar
processaras depicted in Figure The memory system is dedicated in that only one pro-
cessor is serviced, implying that memory state is dependent on a single reference
sequence. This general system model is representative of uniprocessors and single-proces-

sor nodes of distributed memory parallel machines.



Address Source

Memory System

Data Sink

Figurel General System Model

The processor is presumed to implement a non-caching load instruction, asa86@|’

[Inte89], allowing the sequence of requests observed by the memory system to be con-
trolled via software. For access ordering, all memory references are assumed to be non-
caching. Combining caching and non-caching accesses is discussed with other implemen-

tation issues in section 6.

1.3 Access Ordering Observation
Access ordering formalizes the notion of reordering non-caching accesses to exploit mem-

ory system resourceso Tllustrate this concept, a simple example is presented below

Consider a single module page-mode DRAMs. Page-mode DRAMs operate as if imple-
mented with a single on-chip cache line, referred tomgé. An access that does not fall
within the address range of the current DRAM page forces a new page to be accessed,
requiring significantly more time to service than an access that ‘hits’ the cached page.
Thus, the dective bandwidth is sensitive to the sequence of requests. Nearly all DRAMs

currently manufactured implement a form of page-mode operation [Quin91].

t. Note that a DRAM page should not be confused with a virtual memory page; this is an unfortunate over-
loading of terms.



Figure2(a) illustrates the ‘natural’ reference sequence for a straight-forward translation of

the vaxpy, vector axpycomputation

Oi Y < aX +Y,

For modest size vectors, elemeatsx;, andy; are likely to reside in di¢érent pages, so
that alternating accesses to each incurs the page miss overhead; memory references likely

to page miss are highlighted in Fige

In the loop of Figur(a), 3 page misses occur for every 4 referencesfeaadif ordering

can result in every reference generating a page miss. By unrolling the loop and grouping
accesses to the same vects demonstrated in Figu2éb), page miss cost is amortized

over a number of accesses; in this case 3 misses occur for every 8 references. In reducing

page miss count, processuemory bandwidth is increased significantly

| oop: | oop:

| oad a | oad a

| oad x load a

| oad vy | oad x

stor vy | oad x

junp | oop | oad vy
| oad vy
stor y
stor y
junp | oop

(a) (b)

Figure2 Vaxpy Code

1.4 Computation Domain

The problem domain to which access ordering is applicable is the ckissutoriented
computations. A stream-oriented computation interleaves references to some number of
streams, where a stream is defined as a linear sequence of accesses to a given vector of

fixed sized elements, beginning at a known address, and proceeding at a constant stride.



Stream access results in a predictable reference pattern that can be exploited. Processor
instructions and scalar constants are assumed to be cached or held in registers, as appropri-

ate.

For example, a scalar processor performing the well kreoywoperation:

O Y, « ax; +y;

is assumed to generate three distinguishable access streams, one load stream to each of the

vectorsy andx, and one store stream back to the vegtor

In this report, the computation domain for which access ordering algorithms are developed
is further restricted to the class of vectorizable loops. Since vectorizable loops contain no
loop-carried dependencies, excepting ignorable input dependence and self-antidependence
cycles [VIf89], reordering accesses within an unrolled loop is simplified. Note that recur-
rence relations can often be eliminated through streaming optimizations [BeDa91], so that

algorithms developed here are actually applicable to a superset of the vectorizable loops.

1.5 Memory Device Types

For stream-oriented computations, access ordering reorders references within an unrolled
loop to exploit features of the underlying memory system. Thusfeaeatt access order-

ing algorithm must be derived for eachgeirmemory architecture and device type. Order-

ing algorithms are derived here for each of the two major memory component types:

uniform-access and page-mode.

Uniform-access components are insensitive to the reference sequence, so that the time to
service a given access is not dependent on previous requests; SRAMs are the common
example of this device type. The performance of uniform-access components is parame-

terized by

T,/ the read cycle time, and

s Ty the write cycle time.



Page-mode components operate as if implemented with asingle on-chip cacheline, asdis-
cussed in section 1.3; static-column and fast page-mode DRAM s are the common exam-

ples of this device type. The performance of page-mode components is parameterized by

* p,thepagesize,
. Tp,r, the page-hit read cycle time,
* Tow the page-hit write cycle time, and

* Toim the additional page access overhead incurred by a page miss; thus, the page-miss

read and write cycletimesare T, + T, and T, + T, ,, respectively.

p/m?
The system word size is defined by w. For systems constructed from page-mode compo-
nents, page size isamultiple of word size; i.e. w | p. Note that for all system parameters,

Sizes are in bytes and times are in nanoseconds.

1.6 Performance Modeling
For a given computation, access ordering results in code that generates a well-defined
sequence of vector references. Consequently, for each ordering algorithm, an analytic

model of effective memory bandwidth can be derived.

Models of memory system performance have traditionally been based on the assumption
that individual modules are insensitive to the sequence of access requests. For modern
page-mode DRAM components, this assumption is not correct. Furthermore, memory per-
formance models generally assume a stochastic sequence of references. For stream-ori-

ented computations, thisis not the case.

Developing an access ordering algorithm for a given memory architecture and device type
provides a unique opportunity to derive a precise analytic model of memory system per-
formance for alarge and important class of computations. In developing such models, it is
assumed that the processor is sufficiently fast so that performance is limited by the mem-

ory system. Thus performance models represent maximum effective bandwidth.



2 Previous Work

Access ordering spans a number of interrelated topics from compiler optimizations to per-
formance modeling. The following sections provide the minimal level of context neces-
sary to characterize the contributions of this work; a more complete survey of all relevant

topics can be found in [Moye92c].

2.1 Stream Detection

Access ordering algorithms derived in this report presuppose the existence of compiler
techniques to detect stream-oriented computations. Benitez and Davidson [BeDa91]
describe a technique for detecting streaming opportunities, including those in recurrence
relations. Callahan et al [CaCK90] present atechnique called scalar replacement that
detects redundant accesses to subscripted variablesin aloop, often transforming a more
complex sequence of referencesto avector into a single access stream. Finally, as stream-
oriented computations reference vector operands, well known vectorization techniques are
applicable, such as those described by Wolfe [Wolf89].

2.2 Access Scheduling Techniques

Access ordering is a compilation technique for maximizing effective memory bandwidth.
Previous work has focused on reducing load/store interlock delay by overlapping compu-
tation with memory latency, referred to here as access scheduling. Essentially, access
scheduling techniques attempt to separate the execution of aload/store instruction from
the execution of the instruction which consumes/produces its operand, reducing the time

the processor spends delayed on memory requests.

Bernstein and Rodeh [BeR091] present an algorithm for scheduling intra-loop instructions
on superscalar architectures that accommodates |load delay. Lam [Lam88] presents a tech-
nique referred to as software pipelining that structures code such that agiven loop iteration
loads the data for alater iteration, stores results from a previous iteration, and performs
computation for the current iteration. Weiss and Smith [WeSm90] present a comprehen-

sive study in which they classify and evaluate software pipelining techniques imple-



mented in conjunction with loop unrolling. Klaiber and Levy [KILe91] and Callahan et al
[CaKP91] propose the use of fetch instructions to preload data into cache; compiler tech-

niques are developed for inserting fetch instructions into the normal instruction stream.

Access ordering and access scheduling are fundamentally different. Access scheduling
techniques alow load/store architectures to better tolerate memory latency; however, the
effective memory bandwidth is not considered. Note that access ordering and access
scheduling are complementary. Access ordering can first be applied to a computational
kernel to obtain an ordering of load/store instructions that maximizes effective bandwidth.
Access scheduling can then be applied to reduce interlock delay while maintaining the

specified load/store instruction order.

3 Modd Access Pattern

For deriving access ordering algorithms and performance models, it is useful to define a
notation for expressing sequences of requests generated by stream-oriented computations.
The Model Access Pattern notation used to denote specific reference sequencesis defined
below, along with a set of general definitions and assumptions applicable to all computa-
tions. Access ordering in the presence of wide words is also discussed. Finaly, arestric-

tion is placed on stream interaction to simplify optimality results.

3.1 MAP Notation
Two characteristics define the Model Access Pattern (MAP) for a stream-oriented compu-
tation: a set of access streamsto individual vectors, and an interleaving of stream refer-

ences into a merged access sequence.



An access stream is defined by the tuple = (v, s, d, m) :c where

v =vector to be accessed = stream starting address
s =stride of access

d =data type size

m =access mode, readlor write(w)

O =number of data items accessed in a single functional iteration

An access sequence describes the interleaving of stream accesses within a loop and is

defined recursively as follows:

let a; denote access to the ‘next’ element of the strgathen
1. {a} is an access sequence.

2. {A, ..., A} isanaccess sequence whate..., A are access sequences; ..., A,
are performed left to right with all accessesl\jrinitiated prior to the initiation of

accesses ity | ;.

3. {A:c} is an access sequence whiigs an access sequence ansla positive integer;
Ais repeated consecutive times.

4. [Ay ..., Al oy, ..., a ] is anaccess sequence whage..., A are access sequences
anda,, ..., o _are positive integerg\,, ..., A, are performed left to right in a modified
round-robin fashion, witln, accesses fromA; until all accesses iA,, ..., A, have
been initiated. If fewer thaa, accesses remain iy, then only these accesses are
issued. When all accesses specified.imave been initiated, is dropped from the
pattern.

A dtrict round-robin selection of accesses from each of the sequekges, A, is
achieved whem, = ... = a_ = 1, and is denoted simply s\, ..., A] .

In discussing a particular MAP

 stream parameters are referred to by dot notationt; esgs stride, and

« arefers to the&™ access front, for a given access sequence iteration.
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For visual clarity { a;} :c= {a,:c} and extraneous brackets are omitted when the mean-
ing is unambiguous. When the access mode is known, an access is denotedhasgor

t.m = rort.m = w, respectively
To illustrate, the MAP notation is applied to the axpy operation
O Y, « ax; +vy,
Three access streams are generated defined by thettupleéx, s, d,, r) :1,
tyr = (y, S, dy, r):1, andtyw = (y, Sy dy, w) :1. The ‘natural’ access sequence imple-

menting the axpy computation i§r, Fy o Wy } . specifying one read from eachtgfand

ty followed by one write fron’ny , per loop iteration.

The above notation fafrds convenient specification of accesses to parallel memory mod-
ules. For example, given a parallel memory system, if sequgnegresents requests to
moduleM;, then [A,, ..., A,_,] specifies an access sequence that references each mod-

ule with perioornJr and provides for concurrency among accesses frderalit streams.

3.2 Definitions and Assumptions

The following definitions complement the MAP notation:

« S={t; | t; defines an access stream for a given computation§ isethe set of all
access streams for a given MAP

* N=13, i.e. for a given MAP the total number of access streaidsaad

* V=number of uniqu¢.v such that; 0 S, i.e. for a given MAP the number of vectors
accessed 19.

For the set of strean®of a given MAPRIt is assumed that for all ] S

* t.d|w, ie. for all streams i®word size is a multiple of the data size,

* access stream begins at an address divisible bhyd, i.e. data is aligned, and

t. Module reference sequence has parididall modules service the same number of accesses per iteration.
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* stride of access t;. s is positive; the stream interaction restriction defined below allows

this assumption without loss of generality.

3.3 WideWord Restrictions

For completeness, it is desirable to accommodate wide word access in ordering algorithms
and performance models; atypical example being a 32-bit value referenced from a 64-bit
word. To fully utilize wide words, and simplify modeling, several minor restrictions are
placed on stream parameters and code generation for a computation. Prior to presenting

these restrictions, the following definition is made:

For accessstream t; with s = t;.sand d = t;.d, the average number of dataitems per

word is

01 when Wt
(s d) E .
Y (S =
Dﬂ when W 1
Dsd sd

Then for the set of streams Sof agiven MAR, it is assumed that for all t, I S

* access stream t; begins at an address divisible by w, i.e. streams are word aligned, and

 the average number of dataitems per word y (s, d) isan integer, implying that each
word accessed contains exactly the same number of dataitems.

Access ordering employs loop unrolling to increase the number of stream accesses within
aloop that can be reordered, as discussed in section 1.3; b is defined to be the depth of
unrolling. To maximize wide word utilization, an access ordering algorithm must insure
that for a given computation, the depth of loop unrolling is such that the number of data
items referenced from each stream per iteration is a multiple of the number of dataitems
per word; i.e. for stream t; with ¢ = t;.0, y(s, d) | bo. Notethat in the most common

case of one dataitem per word per stream, b can be any positive integer.
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Given the above restrictions, each access to stream t; references exactly y (s, d) data

items, with the number of accesses per |oop iteration defined by

bo

%7 V(s d)

Wide word access is accommodated in a natural, intuitive, and optimal fashion. Each
stream access is guaranteed to reference a different word, and the number of dataitems per

word is constant.

3.4 Stream Interaction Restriction

Recall that for amemory module constructed from page-mode components, the time to
complete a given access depends on whether or not the page referenced is the same as that
of the immediately preceding access. If two consecutive accesses are from different
streams, the impact of the first on the one that follows is difficult to capture analytically as
they may or may not reference the same page. To smplify analysis, the following restric-

tion is placed on the streams of a given computation:

* streaminteraction restriction - for any two accessstreams t;, t; U S, t;. v # t;.v implies
that the streams have non-intersecting address spaces; in particular, streams reference
no pagesin common. When t,.v = tj.v stream parameters are identical except in
mode, where by definition t;. m# ;. m.

The stream interaction restriction results in stream accesses that interact with memory
architecture featuresin awell defined manner. To illustrate, when two streams have differ-
ent start addresses, i.e. t;.v # t;. v, the stream interaction restriction states that the streams
reference no pagesin common. Thusit isknown that an access from stream t; preceded by
an access from stream t will cause a page miss. When two streams have the same start
address, i.e. t;.v = t;.v, the stream interaction restriction states that the stream parameters
areidentical except in access mode, accommodating read-modify-write operations. Thus,
within a given loop iteration, the k' accesses from each of t; and t; reference the same

data item and hence the same page.
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Strict adherence to the stream interaction restriction limits the applicability of access
ordering algorithms. Howevgthis limited problem domain is still ige¢ and encompasses
many interesting computations. Furthermore, under the stream interaction restriction, opti-
mality results are obtained for single module access and concurrency is more easily man-
aged in parallel memory systems. Relaxation of this restriction for applying ordering

algorithms to the set of vectorizable loops is discussed in section 6.

3.5 MAP Dependence Relations

Access ordering alters the sequence of instructions that access mearperforming this
reordering, dependence relations must be maintained. As discussedtbelstream
interaction restriction limits the types of dependencies that can exist between accesses
from different streams. Rules are derived for maintaining dependencies during access

ordering.

Briefly, output andinput dependence results when two write or two read accesses, respec-
tively, reference the same data itedntidependence occurs when a read from a data item
must precede a write to that datum. Finalfta dependence occurs when a write to a data
item must precede a read from the same. A dependence relation between two accesses
from the same instance of a loop iteration is said todgeindependent, while a depen-
dence between accesses fronfietiént instances is said to lwep-carried. A detailed

treatment of dependence analysis can be found atf$@].

3.5.1 Output and Input Dependence
Output and input dependence can not exist as a result of the stream interaction restriction;
two streams of the same mode have a non-intersecting address space. Therefore, depen-

dence relations of this type need not be considered.

3.5.2 Antidependence
The stream interaction restriction states that two streams referencing the same vector do so

with stream parameters thatfdifonly in access mode. Thus, antidependence is limited to
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loop-independent antidependence between corresponding components of a reat stream
and write streant, implementing a read-modify-write. Sotjfv = g.v, thenw}‘ is anti-
dependent on; notationallyr¥ & WJ!‘.

Simply specifyingt; andtj such that;.v = t.v is assumed to imply antidependence; the
only alternative, a loop-independent data dependence, is redundant and the read stream

unnecessaryCompilation is assumed to remove extraneous access streams.

3.5.3 Data Dependence

Data dependence does not exist between access streams in the usual sense that a memory
location is written and later read during the execution of a loop. Loop-independent data
dependence implies an extraneous read stream, as discussed above. Loop-carried data

dependence can not exist as a result of the stream interaction restriction.

Though data dependence does not exist in the usual context, it is present in the data flow
sense; that is, as right-hand-side values required in performing a computation. A write
operation represents the assignment of a computation result and as such usually requires
that some set of read operations precede it. In this sense, a write opa}‘aﬁm‘ata

dependent on a read operatidrif r defines a value used in the computation of the result

assigned byv; notationally r{' & w.

3.5.4 Dependence Rules

Summarizing the above, dependence between accesses belongifegeatdifreams is

limited to two types under the stream interaction restriction: loop-independent antidepen-
dence between a read and write streams that access the sameardalata dependence

in the data flow sense. This observation leads to the following two rules necessary for

maintaining data dependence in access ordering algorithms.
For read streart) and write streant;, an access sequence maintains all dependencies if

1. r precedesv whenr{ & w, i.e. a read precedes its corresponding write in a read-
modify-write operation, and
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2.r] precedesrv}‘ whenrd & wk, i.e. a read operation that defines a value used in the
computation of a result precedes the write of that result.

Dependence information is derived from context. As discussed in section 2.1, it is
assumed that stream information has been provided for the access ordering algorithm; it is

assumed that dependence information is provided as well.

3.5.5 Other Dependencies

The above discussion completely characterizes the dependence that can exist between
accesses belonging tofeifent streams under the stream interaction restriction. However
two other types of dependence may exist: loop-carried input dependence within a single

read stream, and control dependence.

Loop-carried input dependence can result from the transformation of a more complex
sequence of read accesses to a single read stream. Consider thefé@ngeceifapproxi-

mation to the first derivative

(Vie1=Vi-1)
i dv. = ————
! 2h
Analysis techniques [BeDa91, CaCK90] can transform the ‘natural’ pattern of access to
vectorv to a simple stream requiring one access per iteration; two valwesrefpre-
loaded prior to entering the loop, and each successive value accessed is carried in a regis-
ter for two iterations. The loop-carried input dependence created in the transformation has

no afect on the ordering of memory access instructions.

Control dependence results from branch statements within a loop. When control depen-
dence is present, access ordering can still be applied by considering each path through the
loop body independentlyDrdering and code generation is performed for each path, with

the code segment to be executed on each iteration determined dynafaraihe

remainder of this discussion, loops are assumed free of control dependence.
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4 Single Module Analysis

Prior to examining a multicopy system, techniques arefirst presented for minimizing page
overhead at a single module of page-mode DRAMs. Complete ordering algorithms for a
single module system are not derived; only the tools necessary for analyzing a multicopy

system of page-mode components are devel oped.

4.1 Minimizing Page Over head
Given a stream not involved in aread-modify-write, minimizing page overhead istrivial.
For streams implementing this operation, page overhead is minimized viaintermixing and

wrap-around adjacency.

Given stream t; [J S such that t; does not participatein aread-modify-write, i.e. t;.v# t;.v
for all t 0 S, minimum page overhead is achieved by performing a sequence of accesses

a; without an intervening access to a second vector ;. This follows from the observation

that a!‘ *1 only resultsin apage missif it does not reference the same page as af; an inter-
vening access 3 is guaranteed to generate a page miss by the stream interaction restric-

tion.

The average page miss count for accesses grouped by stream is derived as follows. For

accessstream t; with s = t;.sand d = t;.d, the average number of dataitems per pageis

01 when P<1

0 sd
o(sd) = O

E& when B >1

(sd sd

Then arranging accessesfrom t, as { ..., a;:¢, ...} , the average per iteration page miss

countis
SRASL when V=1
| (p(S,d)
n(sdcV) = g
O, (CoDysd) ey,

@(s d)



17

That is, when the number of vectors referenced isone, i.e. V = 1, the average page miss
count for ¢ consecutive accessesto t; isthe number of dataitems referenced divided by
the number of dataitems per page. For V= 2, ai1 is guaranteed to page miss, so that the
average page miss count is one plus the remaining dataitemsto access, (c—1)y(s,d),

divided by the number of dataitems per page.

Note that the average page miss count per access, n(s, d, ¢, V)/c, is either constant or
inversely proportional to c. In the later case, separating the ¢ accesses must increase the
per reference page overhead. Consequently, minimum page overhead is achieved when

accesses are grouped by stream.

Theorem 1: Given stream t; I S such that t; does not participate in a read-modify-write,
e t.v# tj.v for all t0s, minimum average page overhead is achieved by the access

sequence { ..., &€, ...} .

4.1.1 Intermixing
For read stream t; and write stream t; that implement a read-modify-write, i.e. tj, t; 'S
and t,.v = t.v, it is often possible to reduce the average page miss count of the write

stream below that achieved by the access sequence { ..., r;:g;, ..., w; g, I

Consider the general intermix sequence

{..., {ri:c,wj:c} h, ...}

that generates the string of references

S R A AV R Y

c+1

Since r{ and WJ-C refer to the same location, r; ™ = will only page miss when referencing a

page different from that referenced by rf. Thus, the average page miss count for the read

(k-1)c+1

stream is unchanged. However, the sequence of accesses w. through wke,

j
(k-1)c+1

1< k< h, suffers apage miss only when r, and rikC reference a different page.
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For write stream g with s = tj.s andd = tj.d, the average page miss count in perform-
ing each set of ¢ write accessesin the intermix sequence { ..., {r;:c, wj:c} ‘h, ...} is

derived in Appendix A.1 as

12(c-1)y(s,d)sd

B when (c-1)y(s,d)ysd+d<p
p(sdc) = O P

O -1)y(s d

1 + (c (p()s,Vd()S ) when (c-1y(sd)sd+d>p

Thus, the total average page miss count in performing all ch write operations for agiven
iterationis hp (s, d, c) . The general intermix sequence { ..., {r;:c, WjZC} 'h, ...} is

optimal, as demonstrated in Appendix A.2.

Based on the preceding analysis, for acomputation that references two or more vectorsthe
intermix sequence { ..., {r;:c, wj:c} :h, ...} resultsin alower page overhead for write
operations than the sequence { ..., r;:ch, ...,WjZCh, ...} ifhp(s,d,c) <n(sd,ch,V).
Similarly, for acomputation that references exactly one vector the intermix sequence

{ {r;:c,w;:c} :h} resultsin alower page overhead for write operations than the
sequence {r;:ch, WjZCh} if hp(s,d,c) <p(s, d,ch). Thenfor write stream &, the

affect of intermixing on average per iteration page miss count is computed as

0P (s d,ch) —hp(s,d,c) when V=1
imix(s,d,c,h, V) = o
On (s, d,ch,v) —hp(s,d,c) when V=2

It can be shown algebraically that imix(s, d, ¢, h, V) >0, i.e. intermixing reduces write
access pagemisscount, if ¢ = 1 or ((c—2)h+1)y(s, d)sd<p. Therefore, when
imix(s, d, c, h, V) > 0 the average page miss count in performing each set of c write
accesses, p (s, d, ¢), isdirectly proportional to c. Thus, choosing ¢ as small as possible

minimizes write page overhead.
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4.1.1.1 Intermix Factor

For the general intermix sequence, the values of the intermix parameters ¢ and h that min-
imize page overhead for the write stream are a function of both the stream parameters and
data dependence information. Intuitively, the intermix parameter c is chosen to be the min-
imum value that preserves data dependence while efficiently utilizing wide word access,
when applicable. If write stream t is not data dependent on read stream t;, implying the
computation is not a strict read-modify-write, then ¢ = 1. Otherwise, ¢ isthe minimum
number of accesses required to reference all dataitems for a number of computation itera-
tions such that al dataitemsin the words accessed are consumed; this minimal value of ¢

isreferred to as the intermix factor.

For write stream tj with s = tj.s, d= tj.d and o = tj.o, the intermix factor is com-

puted as
O 1 when t; isnot data dependent on t;
[
6. =
I~ Hem(o, v(s ) .
otherwise
0 vsd

From the derivation of g in section 3.3, it can be seen that the number of accessesto
stream t; per loop iteration is amultiple of the intermix factor ej; i.e ej | g Thus, inter-
mix parameters ¢ = ej and h = aj/ej minimize page overhead if imix(s, d, c, h, V) > 0;

otherwise, intermixing increases page overhead and is therefore not employed.

Theorem 2: For read stream t; and write stream t that specify aread-modify-write, i.e.
t, 4 O Sandt.v = t.v, minimum average page overhead for write stream t isachieved
by the general intermix sequence { ..., {r;:c, WjZC} h, ...} withc = Gj and h = sj/ej
if imix(s, d, c, h, V) > 0. Page overhead for read stream t; is unaffected by intermixing and
equivalent to that achieved by the access sequence { ..., r;:€;, ...} .

Though intermixing minimizes page overhead, the resulting sequence may not be amena-

ble for execution on pipelined processors; thisissue is discussed further in section 6.
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4.1.2 Wrap-around Adjacency

Given read stream t; and write stream t that specify aread-modify-write, i.e. t, 0 S
and t;.v = t.v, it is often possible to reduce the average page miss count of the read
stream viawrap-around adjacency. Streams t; and tj are wrap-around adjacent if accesses

to each occur at the beginning and end of an access sequence, respectively; i.e.

Note that in the special case where t; and t are the only streams in a computation, the

intermix sequence { {r;:c, wj:c} -h} aso resultsin wrap-around adjacency.

Since rfi and wf" reference the same location, then for a given iteration ri1 will only page
miss when referencing a page different from that referenced by rf‘ on the previous itera-
tion. In terms of page overhead the read stream proceeds asif no other vector is accessed,

so that page miss count is computed by n (s, d, ¢, V) whereV = 1.

Then, for awrap-around adjacent read stream t; with s = t,.sand d = t;.d, the average

per iteration page miss count is

cy(s, d)
@ (s, d)

w(s d,c) =

The affect of wrap-around adjacency on per iteration page miss count for read stream t; is

computed as

wadj (s,d,c,V) =n(sd,c V) —wsd,c)

For a given read stream wrap-around adjacency results in minimum possible page over-

head, as the read stream proceeds without page thrashing.

Theorem 3: For read stream t; and write stream t; that specify aread-modify-write, i.e.
ti, ;0 Sand t;.v = t;.v, minimum average page overhead for read stream t; is achieved

viawrap-around adjacency.
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5 Multicopy Architecture Analysis

Access ordering algorithms and performance predictors are now derived for a multicopy
memory system as depicted in Figure 3. A multicopy memory is a proposed paralel mem-
ory architecture consisting of mmodules of replicated data such that if * (M,, a) repre-

sents the contents of address a at module M, , then * (M, a) = ... = *(M_,_,, a).

Address Source

S B | \

Figure 3 Multicopy Architecture

Data Sink

The multicopy architecture is defined to function as follows. Read accesses specify the
module to which the request is to be directed. If input buffer space is available then the
request is queued at the appropriate module, otherwise the memory system blocks until a
buffer slot is freed. Write accesses are broadcast to all modules to maintain consistency
among copies. If the input buffer isfull at one or more modules, the memory system
blocks until the appropriate buffer slots are freed; all writes are queued simultaneously.
Access requests are serviced at amodule in the order queued, with data from read requests

placed in the modul€'s output buffer.

Note that in aparallel memory system, accesses may not complete in the order of request.
Read accesses are assumed tagged so that data may be returned in the requested order. The
details of such atagging scheme are not important to the analysis presented here, and as
such are not defined. It is sufficient to assume that results can be returned at the rate satis-
fied. Recall that in modeling maximum effective bandwidth, the request rate is assumed
sufficient such that performance is limited by the memory. These are common assump-

tionsin the study of parallel memory systems.
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A multicopy memory system increases the potential for read access concurrency, as maxi-
mum concurrency is achievable for all strides of reference. Furthermore, for systems of
page-mode components, read stream page overhead can be more effectively amortized by
directing stream accesses to a smaller number of modules. However write operations must
be broadcast to maintain coherence, serializing an otherwise parallel operation. Thusitis
intuitive that the relative performance of a multicopy system is dependent on a high read

to write ratio; simulation results verify thisto be the case.

The following sections discuss the problem space for efficient utilization of a multicopy
memory and notation is developed for expressing the mapping of read accesses to mod-
ules. Access ordering algorithms and performance predictors are derived for a multicopy
system of uniform-access and page-mode components, respectively. The effectiveness of a
multicopy architecture and accuracy of performance predictors are demonstrated via simu-

lation.

5.1 Problem Dimensions

Three features of current parallel memory systems can be exploited to increase processor-
memory bandwidth: module concurrency, page-mode operation (if applicable), and wide-
word access. Note that wide-word access is managed optimally via conditions specified in

section 3.3.

For amulticopy memory, ordering reads to maximize concurrency is a matter of distribut-
ing accesses uniformly across modules. Write accesses are broadcast to all modules so that

concurrency is not an issue.

Techniques for minimizing page overhead come directly from analytic results derived in
section 4 for a single memory module. Page overhead for a given stream is minimized if
elements of that stream are referenced consecutively from a single module on each itera-
tion. For two streams that implement a read-modify-write, page overhead may further be

reduced viaintermixing and wrap-around adjacency.
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Optimal effective memory bandwidth results from an access sequence that minimizes
completion time for all accessesin aloop. Such a sequence usually requires a trade-off

between minimizing page overhead and maximizing concurrency.

To illustrate, consider mapping onto a 2 modul e system accesses from the three read
streams t,, t, and t,. Assume all streams are stride 1 with 4 accesses per stream per itera-
tion. Figure 4 demonstrates the time to complete atypical loop iteration for three different
mappings of accesses to modules given that an access to the current page requires 1 time
unit (Tp,r) and a page missincurs a 3 time unit penalty (Tp, m) - Figure 4(a) depictsa
mapping that results in the minimum page overhead, with all accesses from agiven stream
serviced by a single module. Figure 4(b) depicts a mapping that maximizes concurrency
for agiven stream by distributing accesses evenly across all modules. Finaly, Figure 4(c)
depicts an optimal solution that balances minimizing page overhead and maximizing con-

currency.

5.2 Module Access Notation

To facilitate the specification of a MAP access sequence that maps read accesses to spe-
cific modules, notation developed in section 3.1 is augmented as follows. For individual
read accesses, r (; ) denotes access to the next element of stream t; from module M,.
This notation augments the previous definition of r; with the specification of the module

to which the accessis directed.

5.3 Multicopy Storage and Unifor m-access Components

Deriving an optimal access ordering algorithm for a multicopy system of uniform-access
componentsistrivial. Concurrency is maximized and dependence maintained by distribut-
ing read accesses uniformly across all modules and initiating all reads prior to the first

write.
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For streams S let t, through t, beread streamsand ty; , ; through t, be write streams.

Let R be the total number of read accesses, so that

T 2R

t.m=r

Then msequences A, ..., A,,,_; are defined such that the R accesses are evenly distrib-
uted among the sequences. That is, m— (R mod m) of the sequences contain [ R/ m|
reads, with the remaining (R mod m) sequences containing | R/m] + 1 read accesses.

Furthermore, accesses in sequence A, are tagged for service amodule M, .
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Then an optimal access sequenceis

{[Ay v Ap_il W +17EN 41 s Wi ENS

The above sequence maximizes concurrency among read accesses while maintaining
dependencies. Note that module buffering is not required to achieve optimal bandwidth, as
read access times are uniform and read requests are initiated across modulesin a strict

round-robin sequence.

5.3.1 Performance Predictor
For aMAP consisting of streams Sand an access sequence defined as above, a perfor-

mance predictor is derived for the average time per access Tavg and processor-memory
bandwidth BW.

Let T, be thetime required to complete all read accesses. Then T, isthe time to complete

accesses at the module servicing the greatest number of requests, that is

LRJTW when Rmodm =0

(UQJ+1)TU,Ir when  Rmod m>1

Similarly, let T, be the time to complete all write accesses. By definition every write

request generates amemory access that is serviced at all modules, so that
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Then the average time per access Tavg isthetimeto complete all accessesin agivenitera-

tion divided by the number of data items referenced, i.e.

o T +T,
e by ho
tTs

And the effective memory bandwidth BW is the number of bytes of relevant data trans-

ferred per iteration divided by the time to compl ete all accesses, so that

103b% [ (t.d) (t.0)]
BW= _ 4°S

T.+T,

All times are in nanoseconds and sizes in bytes with bandwidth measured in megabytes

per second.

5.4 Multicopy Storage and Page-mode Components

For amulticopy system of page-mode components, optimal performance results from a
sequence that balances maximizing concurrency with minimizing page overhead to
achieve minimum compl etion time. Determining such a sequence is NP-complete with a
time complexity exponential in the number of accesses; this result is obtained by restric-
tion to multiprocessor scheduling [GaJo79]. As an optimal solutionisintractable, aheuris-

tic solution is presented bel ow.

In the sections that follow, a base access sequence and module reference model are devel-
oped. Intermixing and wrap-around adjacency are then discussed for computations imple-
menting a read-modify-write. A heuristic is developed that determines the order and

mapping for read operations. Finally, a general ordering algorithm is presented and a per-

formance predictor derived.
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5.4.1 A Base Access Sequence
For streams S let t, through t, beread streamsand ty , ; through t be write streams.

Then the base access sequence employed is
{[AO,...,Am_l],riJrl:eNrﬂ,...,WN:eN} (1)

In the above, the sequences A,,, ..., A, _; specify read operations for streams t, through
ty, Where accessesin Ay are directed to module M, .. The read sequences Ay, ..., Ay, _;
are defined by a mapping heuristic that attempts to minimize completion time. Write
accesses are grouped by stream to minimize page overhead; recall that writes are broad-
cast so that concurrency is not an issue. Write accesses follow reads, maintaining depen-
dence relations. Intermixing and wrap-around adjacency are employed at the boundary of

read and write accesses in a greedy fashion.

5.4.1.1 Request Buffering

For amulticopy system, modules may be buffered as depicted in Figure 3. Ordering
accesses as above results in a sequence that references each module at most once per
round robin selection of accesses [A,, ..., A,,_;] - Sinceindividual accesstimesvary, the
sequence [A,, ..., A, _4] provides maximum bandwidth only if buffering is sufficient to
eliminate access gaps that result in increased completion time for all accessesin aloop.
An access gap is defined as a period of time during which amoduleisidle due to the
memory system blocking on abusy module. For this analysis, buffering is assumed suffi-

cientsothat [A,, ..., A, _;] resultsin maximum performance for that sequence.

5.4.2 A Module Reference M odel

For A, ..., A,,_, defined in the base access sequence (1), assume that references from
each read stream t; [J S are distributed uniformly among some number of sequences, and
hence modules, {1;. Furthermore assume all accesses from t; in asequence A, are
arranged consecutively. Such a sequence arises from the mapping heuristic derived in sec-

tion 5.4.4.
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M apping accesses as above minimizes page overhead for references serviced at a given
module. However, the absol ute page overhead is dependent on the overall pattern of refer-

ence.

Toillustrate, 4 accesses from astream t, and 2 from astream t,, are mapped to a2 module
system asdepicted in Figure 5. For the references of Figure 5(a), elements of stream t, are
accessed alternately from each module so that the observed stride at agiven moduleis

2 (t,.s) . Such amapping results from sequence [{r(a, O):2} , {r(a, )12, 1):2} ].

Alternatively, references depicted in Figure 5(b) access consecutive elements of t, at each

module so that the observed strideis t,,. s. Such a mapping results from the sequence
[{r(a,O):z} , {r(b,l):Z, r(a,l)zz}] )

For accesses from the same stream, page overhead at a given module is a function of the
distance between individual references. As demonstrated above, this distance is dependent
on the overall pattern of reference and as such can not be expressed as a closed form equa-

tion.

For the remainder of this discussion, distance between consecutive accesses from aread
stream t; serviced at agiven moduleis modeled as the product of the stream stride and the

number of modules referenced; i.e.
& =1 (4.9

The module stride éi isthe stride that results if elements of t; are accessed alternately
from each of the (1, modules referenced. Thus performance models devel oped represent

estimated performance rather than bounds.

5.4.3 Greedy Intermixing and Wrap-around Adjacency
For streams Simplementing a read-modify-write, intermixing and wrap-around adjacency
may reduce page overhead in each phase of the base sequence (1), potentially reducing

completion time for all accesses. Note that in this context, intermixing refers to read
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Figure5 Dependence of Module Stride on Reference Pattern

accesses immediately preceding corresponding write accesses at a given module; read and

write operations are not interleaved.

Because the base sequence separates accesses by mode and because write accesses are
broadcast, at most two pairs of streams may benefit from intermixing and wrap-around
adjacency. Furthermore, intermixing generally reduces the time for writes to complete

only if corresponding read accesses reference all modules.

Intermixing and wrap-around adjacency are employed in a greedy fashion by choosing
prior to access mapping the two pair of streams most likely to benefit from these relation-

ships. From streams S t and t are apair of read and write streams, respec-

r-wadj w-wadj

tively, designated to be mapped for wrap-around adjacency. Similarly, t._; . and t, . ..
are designated to be mapped for intermixing. All else being equal, streams with the small-
est stride have the lowest average page miss count per access and hence the most to gain;

tr-wadj (T, Wadj) and t__; . (t,.imix) @echosen accordingly. For Sconsisting of fewer
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than two read-modify-write operations, t and t are chosen in that order, with

r-wadj r-imix

one or both remaining undefined.

Thenin the base sequence (1), thefirst write sequence {wy , 1:€ , ,} Specifiesaccesses
if

to stream t w-wadj !

w-imix and the last write sequence { wy:€,} specifies accessesto t
defined. Similarly, in defining A, ..., A, _ the read mapping heuristic insures that
accessesto t

occur at the beginning of a sequence and accessesto t occur at

r-wadj r-imix

the end, as appropriate.

5.4.4 Read Mapping Heuristic

For read sequences A, ..., A, _ of the base sequence (1), an optimal mapping of read
accesses to modules usually requires atrade-off between minimum page overhead and
maximum concurrency as discussed in section 5.1. Minimizing completion time resultsin
abalanced load of accesses such that if T (A,) isthetime to complete accessesin the

sequence A, , then

T(A) ~T(A)[ STy, + Ty,  for0O<klsm-1

p/r

That is, for any pair of modules the time required to complete all read accesses differs by

no more than the maximum read access time.

The Read Mapping Heuristic (RMH) derived bel ow approximates an optimal solution as
follows. For aread stream t;, accesses are mapped uniformly to a number of modules |J;
proportional to the ratio of the minimum time to complete accessesto t; at asingle module
and the minimum time to complete all read accesses at a single module. Essentially, each
stream is assigned resources proportional to the amount of work to be completed; over-
allocation limits the amortization of page overhead while under-allocation limits concur-
rency. Load balancing is performed in agreedy fashion by mapping accesses from t; to the
1; modules with the minimum load. Page overhead is minimized at each module as refer-

encesto t; areinitiated consecutively.
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To compute 1; and perform load balancing in mapping, amodel isrequired for thetime to
complete accesses to t; at asingle module. From the performance models derived in sec-

tion 4, the time to complete ¢ consecutive accessesto t; at agiven module is the sum of ¢
multiplied by the page-hit read cycle time Torr and the average page overhead multiplied

by the page misstime T so that

p/m?

(s, t.d, )Ty when t, =t
M(sc) =cly, +0
h(s t,.d,c, V)Tp/m otherwise

(wrap-around adj.)

r-wadj

Thefunction I" (s, c) is parameterized for stride s so that completion time can be com-
puted both for all accessesto asingle modulewhere s = t;.s, aswhen computing fraction
of total work load to determine |1;, and for accesses to one of |1, moduleswhere s = éi ,
as when computing module load for balancing. Note that in the page overhead modeling
function n(s, d, ¢, V) the number of vectorsV isthe number referenced by all streamsin S.
For amulticopy system, not all modules necessarily service accesses referencing V vec-
tors; however, for load balancing the number to be referenced is not known until mapping
is complete. Thus the computed values of module load for balancing may be an over-esti-

mate under certain conditions.

From the preceding analysis, the minimum time to complete one iteration of accessesto

al read streamsin Sat asinglemoduleis

A = F(t.s e
2T

t.m=r
Then accesses from read stream t; are mapped to a number of modules (i, computed as

A

rt.se)

i, = min(g,, max(Z, m+0.5]))
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Note that the number of modules servicing t; isrounded to the nearest integer with alower
bound of 1, as determined by the max function, and an upper bound of the total number of

accesses to t;, as determined by the min function.

For each module of the multicopy system, the load A, at module M, is the time to com-
plete read accesses in the sequence A, . As state previously, load balancing is performed in
agreedy fashion by mapping accesses from t; to the |1, modules with the minimum load.
Thusthe €, accessesto t; are distributed uniformly by placing Lai/ﬁij + 1 referencesr;
inthe (g; mod [i;) sequenceswith the minimum moduleloads, and | &,/ |1, | referencesr,
in each of the remaining (1, — (¢, mod [1;) sequences. For a sequence A, to which t; is

mapped, the load at module M, is recomputed as

A = NH T ©)
where ¢ = | g/ | or ¢ = | g/{i;| + 1, asappropriate.
Figure 6 presents the complete read mapping heuristic (RMH). To summarize, for each
read stream t; 1 S

« the number of modules to reference |i; is computed, and

» access are distributed uniformly to the 1; sequences referencing modules with the min-
imum loads.

5.4.4.1 RMH Performance
Table 1 compares results of the RMH with an optimal mapping of read accesses as deter-

mined via exhaustive search. The general form of the problem mapped is

Oi  y(@i) = (), ..., (i) @

Due to the time complexity of optimal assignment, problem sizes are small. The number
of modules mis 2 or 4, the number of read streamsis between 2 and 4 and the depth of
loop unrolling b is between 1 and 3, inclusive; variables are chosen from a uniform ran-

dom distribution.
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Figure6 Read Mapping Heuristic (RMH)
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Tablel contains ratios of RMH to optimal performance, where performance is defined as
the average time to compledk read operations for a given iteration. Only read accesses
are considered to avoid skewing results in favor of the RMH, as write accesses in the gen-

eral problem (2) take the same time regardless of mapping.

Tablel RMH / Optimal Performance Ratios

Percentage of tests for whif*hBMH performance <
‘Optimal performance
Category
=10 <11 <12 <13
S1 90 100 100 100
SIS E 77 81 89 93
SRND 71 81 91 97

Results from 300 tests are presented, with 100 from each déBedif categories. Cate-
gory Sl presents results for streams of stride one access. Cagighrpresents results

from streams with a mixture of stride one and stridgdgamwhere lage is defined as 1

data item per page. FinallgategorySRND presents results for a mixture of strides chosen
from a uniform random distribution between 1 drfel(p/w) , wherep is page size and

is word size. Overall, the RMH achieved optimal performance in 79% of the trials and was

within 20% of optimal for 93% of the trials.

5.4.5 AccessOrdering Algorithm
Recall that for streant3 with read streamt throught,, and write streams, , ;

throughty,, the base access sequence employed is
{[Ay s Ayl W, +1° 8y 4 1 s Wi ENS

The complete access ordering algorithm consists of the following steps:
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1. From the pairs of streamsin Simplementing a read-modify-write, if extant, choose a
and t
define write accesses in the base sequence accordingly.

pair to map for wrap-around adjacency, t and apair to map for inter-

r-wadj w-wadj

miXing’ tr-imix and tw-imix;

2. Apply the RMH to determine the read sequences A, ..., A, _; for the base sequence;
b wadj and t,_; i, are mapped first and last, respectively.

The ordering algorithm is efficient, with atime complexity of O(er (logN,)) for N, read
streamsin S, this complexity represents sorting required for load balancing in the RMH.

5.4.6 Example Problem
For a2 module multicopy system, an access sequence is generated for the canonical axpy

operation to illustrate the ordering algorithm derived above. Recall that axpy is defined as

and generates the three streams defined by t, = (X, s,, d,, r):l,ty = (Y, Sy dy, r):1,
and tyw = (y, Sy dy, w):1.

For each vector assume that data size equalsword size, i.e. d, = d, = w, and stride of

accessis 1. The depth of loop unrollingis2 so that €, = g, =¢& = 2.

Theinitial step identifies streamsfor intermixing and wrap-around adjacency, as discussed
and t

in 5.4.3. For the axpy computation, t, =t t

are undefined.

r-wadj and tyw = tw-wadj; r-imix W- 1 mi X

The RMH isthen employed to define the read sequences A, and A, of the base access
sequence. First, the number of modules to service each stream is computed. For the given
stream parameters, the average times to complete accesses to ty and t, at asingle module

are

M (12) = 2Ty + (LW, DTy = 2Ty,

p/m

M(L2) =27, +n(L w2, 2Tyn=2T,, + Ty,

p/m
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Approximations for ry (1, 2) and I (1, 2) derived above are used to simplify expressions

in the remaining computations.

Then the time to complete all read accesses A is
A=T (1,2)+T(12) = 4Ty + Ty

Finally, the number of modules servicing each of t, and t, is

r,@2

ﬁyr = min(2, max(1, di A 2+ 0.5‘)) =1
r(1 2

i, = min(2, max(1, 2+ O.SJ)) =1

The RMH load balancing criteriainsures that accesses from streams t, and t, are placed

in sequences A, and A, respectively. As ty = twag accesses from t, are mapped first,

though in this example the order isirrelevant.

Thus application of the access ordering algorithm to the axpy computation defined above

results in the access sequence

T Mg 72 T oomy 2D {wy -2}
representing the linear sequence of references
LN AR VAL VATLECVARRLVRRLS,

Figure 7 depicts atypical iteration of the above sequence, assuming an access to the cur-

rent page requires 1 time unit (T, T,;,,) and apage missincursan additional 2 time

p/r

unit penalty (Tp, m) -
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Time (units)

1 2 1 2

Mo | ry | Ty, . .,
1 2 1 2

M 1 r X r X Wym Wym

Figure 7 Multicopy Example

5.4.7 Performance Predictor

For aMAP consisting of a set of streams Sand an access sequence defined as above, a per-
formance predictor is derived for the average time per access Tavg and the processor-
memory bandwidth BW. Recall that as aresult of the module reference model developed

in section 5.4.2, performance models represent estimated performance rather than bounds.

Functions modeling page overhead derived in section 4 for a single module system are
applicable to accesses at individual modules of a multicopy system. Recall that in general,
average page overhead is modeled by the function n(s, d, c, V). For stream accesses that
are wrap-around adjacent or intermixed, average page overhead is modeled by the func-
tions w(s, d, ¢) and p(s, d, ¢) respectively. In employing these functions for a multicopy

system, stride sis module stride.

Let P, define the sequence of reads serviced by module M, for an iteration of the base
access sequence (1). Each P, is composed of a number of component sequences P (i K)
where thefirst subscript i is defined to be that of the stream referenced. Thus P ; |, repre-
sents the read access set {r; \y:¢} , wherec = | &/H;| orc =&/l +1asappro-

priate. Similarly, Q, is the sequence of write accesses serviced at My and Q ;



38

represents the write access set {w;:¢;} ; recall that writes are broadcast so that each mod-

ule services al g accesses from write stream t;..

Thetimerequired to complete all accessesin the sequence P ; , isthe sum of the number
of accesses ¢ multiplied by the page-hit read cycle time Tosr and the average page over-

head multiplied by the page misstime T, i.e.

EPJk(éi,ti.d, A)To/m when P ,, iswrap-around adj.
T(P(i,k)) = CTp/r+ 0 . . ’
0n, (& t;-d, c, V) otherwise

Note that in modeling page overhead, conditions that determine appropriate use of model-
ing functions must be applied in the context of the modul e accessed. P (i, K) iswrap-around
adjacent if thereexistsa Q ; |, such that read stream t; and write stream t; implement a
read-modify-write, P ; | isthefirst accesssetin Py and Q ; | isthelast access setin
Q,; then wk(éi, t..d, c) models page overhead. Otherwise, r]k(ii, t..d, c, V) isthe applica-
ble model where the number of vectorsV isthe number accessed at module M, . For clar-
ity, functions modeling page overhead are subscripted with the module number to denote
context. Note that for a wrap-around adjacent access set, the page overhead ook(éi, t.d, c)
is an upper-bound representative of the overhead at the module servicing the ﬁfh access

from read stream t;; this effect is a consequence of distributed reads and broadcast writes.

Similarly, the time required to complete all accessesin the sequence Q (i, K) is the sum of
the number of accesses €, multiplied by the page-hit write cycle time Tp/w and the aver-

age page overhead multiplied by the page misstime T so that

p/m:

P (-s t.d, g)T
T(Qu ) = &Tyw* O _
M, (-, t.d, &, V)T, otherwise

o/m when Q ; \ isintermixed
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Inthis context Q ; \ isintermixed if thereexistsa P |, suchthat read stream t, and
write stream t; implement aread-modify-write, P, \, isthelast accessset in Py and
Qi K isthefirst accesssetin Q. Note that for an intermixed access set, the page over-
head p,(t;.s, t;.d, &) is an upper-bound representative of the overhead at the module ser-
vicing the last reference from the corresponding read access set reg; againthisisa

consequence of distributed reads and broadcast writes.

From the preceding analysis, the time to complete all read operationsin the sequence P, is

the sum of the time to complete all accessesin each component sequence; i.e.

T(PY = 5 T(Pgw)
P 0P

Then the time to complete all read accesses in an iteration of the base sequence (1) isthe
maximum time to complete read operations at any module, so that
T, = max(T(Py), ..., T(Py,_1))

Note the tacit assumption in computing T, isthat buffering is sufficient so that read
accesses proceed without access gaps that result in increased completion, as discussed in

section 5.4.1.1.

Similarly, the time to complete all write operationsin the sequence Q, isthe sum of the

time to complete all accesses in each component sequence; i.e.

T(Q) = > T(Q(i,k))

Qi Uk

And the time to complete all write operationsin an iteration of the base sequenceis

T, = max(T(Qp), ..., T(Qn,_1))
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Then an estimate of the time to complete all accesses in a given iteration is the sum of the

time to complete all read and write accesses so that

Tt = T+ Ty
From the above, the average time per acifg\ﬁgsis computed as the time to complete all
accesses in a given iteration divided by the number of data items referenced, resulting in

Ttot

T = P
ti%sti.o

avg

The efective memory bandwidtBW, in megabytes per second, is the number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

1O3b% [ (t.d) (t.0)]
BW = — 4S

Ttot

5.5 Simulation Results

For a multicopy memory system there is no ‘natural’ mapping of accesses to modules.
Thus the quality of the access ordering algorithm is best captured by comparison with an
optimal reference sequence; such a comparison is presented in section 5.4.4.1. For refer-
ence sequences generated by the ordering algorithm, simulation results are presented to

validate the accuracy of the performance models.

To assess the viability of a multicopy system two factors must be considered: performance
and cost. Performance is evaluated relative to a sequentially interleaved presmorgr-
leaving is the most common parallel memory storage scheme. Cost is evaluated in terms

of both hardware complexity and data space.
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5.5.1 Performance Predictors
Results arefirst presented to validate performance predictors. A non-buffered 2 module
multicopy system of both uniform-access and page-mode components is considered; mod-

ule parameters for both component types are defined in Table 2.

Table2 Module Parameters (Both)

Uniform-access Page-mode
Parameter Value Parameter Value
w 8|l w 8
p 4096
ur 40 Tp It 40
uww 40 Tp ‘w 40
Tp /m 120

Table 3 compares performance of ordered accesses as calculated analytically and mea-
sured viasimulation for arange of scientific kernels. For all computation the depth of loop

unrolling is 4 and data is double-precision.

The daxpy and dvaxpy computations are double-precision versions of the axpy and vaxpy
computations, respectively, discussed earlier. The remaining computations are selections
from the Livermore Loops [Mcma90]. This set of scientific kernels serves as the bench-

mark suite for all subsequent simulations.

For the computations and conditions modeled, analytic and simulation results differ by
less than 1%. Two exceptions are highlighted. Recall from section 5.4.1.1 that in modeling
performance for read operations, buffering is assumed sufficient so that accesses proceed
at the maximum rate. For both cases noted, a non-buffered system results in access gaps
that reduce performance; for a buffer size of 1, smulated performance achieves the pre-
dicted bandwidth.
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Table 3 Analytic vs Simulation Results (Both)

Uniform-access Page-mode
Computation Analysis Simulation Analysis Simulation
BW BW BW BW
daxpy 240.0 240.0 171.0 170.9
dvaxpy 256.0 256.0 177.2 159.2
LL-1 240.0 240.0 171.0 170.6
LL-3 320.0 320.0 397.7 394.6
LL-4 320.0 320.0 388.6 386.4
LL-5 240.0 240.0 171.0 170.6
LL-7 256.0 256.0 152.0 152.0
LL-11 213.3 213.3 133.0 1331
LL-12 213.3 213.3 133.0 1331
LL-20 261.8 261.8 171.0 1711
LL-21 240.0 240.0 161.3 156.7
LL-22 228.6 228.6 1425 142.3
LL-24 320.0 320.0 3954 393.1

5.5.2 Evaluation of Multicopy Performance

A multicopy system offers a number of advantages over a sequentialy interleaved mem-
ory. For read streams, maximum concurrency is achievable regardless of stride and page
overhead can be more effectively amortized by directing accesses from agiven streamto a
smaller number of modules. However, because read accesses must be tagged to reference
a specific module, to fully utilize concurrency the number of read accesses in aloop must
equal or exceed the number of memory modules. Furthermore, write operations are broad-
cast to all modules to maintain coherence and thus represent the serialization of an other-

wise parallel operation.
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For amulticopy system to deliver greater bandwidth than an equivalent interleaved mem-
ory, increases in parallelism and/or reduction in page overhead for read accesses must
dominate the loss of parallelism for writes; in this context an equivalent system is onewith
the same number of modules, equal buffer depth, and constructed from identical memory
components. Note that in all but extreme circumstances, a multicopy system of uniform-
access components is not competitive as page overhead is not a concern. Thus only sys-

tems of page mode components are considered here.

Table 4 Multicopy vsInterleaved (4:1)

4:1
Computation Interleaved | Multicopy %I ncrease
BW BW
daxpy 266.7 199.2 (25.3)
dvaxpy 246.2 199.3 (19.0)
LL-1 200.0 199.2 (0.9)
LL-3 200.0 786.2 203.1
LL-4 200.0 751.6 275.8
LL-5 200.0 199.2 (0.9)
LL-7 200.0 227.8 13.9
LL-11 200.0 145.2 (27.4)
LL-12 200.0 145.2 (27.4)
LL-20 200.0 256.5 28.3
LL-21 266.7 188.4 (29.4)
LL-22 200.0 190.1 (4.5)
LL-24 781.7 772.8 (1.2)




Table 4 presents simulation results comparing bandwidth delivered by a4 module multi-
copy system with buffer depth 1 to an equivalent interleaved system for the set of bench-
mark kernels; the depth of loop unrolling is4 for all computations. Module parameters are
those of Table 2 with a page miss versus hit cycle time ratio of 4:1, typical of current
DRAMSs. For the interleaved system, access ordering is performed assuming known align-

ment [Moye92b] to achieve maximum bandwidth.

For the computations measured, vector strides are such that all m modules in a sequen-
tially interleaved system are referenced by each stream for any m = 2". Thus the multi-
copy system can reduce page overhead for read accesses but achieves no greater
parallelism. Performance results are mixed: 4 computations achieve greater bandwidth, 5
computations experience a reduction in bandwidth, and 4 computations achieve approxi-
mately the same bandwidth. Note that LL-3 and LL-4 represent dot products and do not

generate write streams, thus the substantial increase in performance.

For next generation DRAMSs the page miss-hit cycle time ratio will increase dramatically.
This situation benefits a multicopy architecture as reduction in page overhead becomes

even more critical to obtaining good performance, asillustrated below.

Table5 Module Parameter s (Page)

Parameter Value
w 8
p 4096
Tp It 10
Tp w 10
Tp /m 90

Assume a4 module multicopy system with buffer depth 1 and an equivalent interleaved

system. Module parameters are defined in Table 5 with a page miss-hit cycle time ratio of
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10:1. Table 6 presents simulation results comparing bandwidth achieved for the set of

benchmark computations; depth of loop unrolling is4 in al cases.

Relative performance of the multicopy architecture isimproved: 8 computations achieve
greater bandwidth than the sequentially interleaved system, 4 computations experience
modest degradation of less than 15%, and only 1 computation experiences a substantial
reduction in bandwidth of 21%. Note that for LL-3 and LL4, which generate no write
streams, the multicopy architecture achieves nearly an order of magnitude more band-

width than the equivalent interleaved system.

Table 6 Multicopy vsInterleaved (10:1)

10:1
Computation Interleaved | Multicopy %I ncrease
BW BW
daxpy 457.1 398.8 (12.8)
dvaxpy 412.9 454.3 10.0
LL-1 320.0 397.7 24.3
LL-3 320.0 3039.7 849.9
LL-4 320.0 2681.5 738.8
LL-5 320.0 398.8 24.6
LL-7 320.0 489.6 53.0
LL-11 320.0 278.3 (13.0)
LL-12 320.0 2774 (13.3)
LL-20 320.0 550.9 72.2
LL-21 457.1 360.3 (21.2)
LL-22 320.0 408.1 27.5
LL-24 3091.3 2894.7 (6.4)
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A multicopy architecture can substantially improve performance over an equivalent inter-
leaved memory for computations with a high read to write ratio, as demonstrated above.

Many computations exhibit this characteristic naturally; for others, intelligent use of cache
memory and strip-mining or tiling techniques can increase the read-write ratio by holding

modified vector elementsin cache.

5.5.3 Evaluation of Multicopy Cost
A multicopy architecture can provide increased bandwidth over an equivalent interleaved
memory. However, additional cost isincurred in terms of both hardware complexity and

data space. Each of these issuesis considered below.

The additional hardware complexity for a multicopy system isminimal. A sequentially
interleaved memory distributes accesses to modules based on low-order address bits. For
read accesses, a multicopy architecture distributes references to modules based on high-
order address bits; these bits can be set at compile time as a result of mapping as per-
formed by the RMH. Write accesses require additional hardware for broadcast to al mod-

ules.

A strict multicopy system providesonly (1/m) ™" the address space of an equivalent
interleaved architecture as datais replicated at all m modules. Note however that the hard-
ware requirements for the two systems are very similar. It is easy to imagine a memory
controller capable of implementing both schemes. In fact, given proper hardware support,
multicopy and interleaved memory can be implemented concurrently by designating a

portion of the interleaved address space for multicopy access.

Thus the cost of a multicopy architecture is considerably less than the functional descrip-
tion might imply. Building multicopy support into an interleaved architecture can provide

alow cost means for increasing effective memory bandwidth for amenable computations.



47

5.6 Summary
Access ordering algorithms are derived for a proposed multicopy architecture. Perfor-
mance predictors are developed for the effective memory bandwidth achieved by ordered

accesses.

For amulticopy system of uniform-access components, the ordering algorithm divides
accesses into two phases: aread phase and awrite phase. Read accesses are distributed
uniformly across modules, optimizing concurrency; write accesses are broadcast and
hence proceed sequentially. Ordering istrivial and a performance predictor isderived in a
straight-forward fashion. Simulation demonstrates the performance model to be accurate.
Except in extreme cases of poor data placement, a multicopy system of uniform-access
components does not represent a viable alternative to an equivalent sequentially inter-

leaved architecture.

For amulticopy system of page-mode components ordering is analogous to the uniform-
access case. However, mapping read accesses to modulesis performed via a heuristic.
Intermixing and wrap-around adjacency are employed in a greedy fashion at the bound-
aries of the read and write phases. The ordering algorithm has atime complexity of
O(Nr2 (logN,)) for N, read streamsthat is representative of load balancing in the RMH.

Simulation demonstrates performance models for ordered accesses to be accurate.

Performance results indicate that a multicopy system of page-mode components can pro-

vide increased bandwidth over an equivalent interleaved memory for computations with a
high read to write access ratio. Furthermore, multicopy access can be implemented with a
minimal increase in hardware complexity as part of a heterogenous interleaved/multicopy

memory architecture.

6 Implementation I ssues
Addressing all the implementation issues associated with access ordering for a multicopy
memory is beyond the scope of this report. However, several important topics are briefly

discussed below; a more compl ete treatment of these issues can be found in [Moye92c].
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Access ordering employs loop unrolling which creates register pressure and has tradition-
aly been limited by register resources. Lee [Lee91] presents atechnique that employs
cache memory to mimic a set of vectors registers, effectively increasing register file size
for vector computations. Essentially, storage is defined for a set of pseudo vector registers
and placed in cache via a standard (caching) load instruction. Vector operands are |oaded
into the pseudo registers, arithmetic operations are performed, and pseudo register results
are stored back to the appropriate vector elements in memory. Vector registers are loaded
by first loading each vector element into a processor register viaanon-caching access, and

then storing the value to the appropriate vector register location in cache.

Access ordering employs non-caching memory instructions to control the sequence of
requests observed by the memory system. Though the effectiveness of cache memory for
numeric codesis still the topic of much research, many codes do benefit from caching with
careful application of iteration space tiling. Thus caching and access ordering should be
used together as complementary techniques, caching multiply accessed blocks of data and

ordering non-caching accesses to single-visit dataitems.

Finally, to ssimplify analysis and obtain optimality results, ordering algorithms derived
presume access streams adhere to the stream interaction restriction. Minor relaxation of
this restriction to accommodate self-antidependence cycles and read streams with inter-
secting address spaces allows algorithms to be applied to the set of vectorizable loops.
Self-antidependence cycles are accommodated by ordering accesses from each stream
independently and insuring that all reads are initiated prior to the first write. Read streams
with intersecting address spaces are accommodated by simply ordering streams indepen-

dently, as input dependence can be ignored for non-volatile memory locations.

7 Conclusions

A multicopy memory is proposed here as a parallel memory system consisting of m mod-
ules of replicated data such that if * (M,, @) represents the contents of address a at module
M,,then *(My, a) = ... = *(M

m- 1 @ - A multicopy memory system increases the
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potential for access concurrency, as maximum concurrency is achievable for al strides of
reference. Furthermore, for systems of page-mode DRAMS, page overhead can be more

effectively amortized by directing stream accesses to a smaller number of modules.

Access ordering algorithms are devel oped that exploit a multicopy memory. Access order-
ing is aloop optimization that reorders non-caching accesses to better utilize memory sys-
tem resources. For a multicopy memory architecture, the access ordering algorithms
developed here determine a well-defined interleaving of vector references that maximizes
effective bandwidth for a given computation and memory device type. Consequently, ana-
lytic models of performance can also be derived. Access ordering algorithms devel oped
are applicable to a superset of the class of vectorizable loops, an arguably large and inter-

esting problem domain.

Simulation resultsindicate that a multicopy system of page-mode components can provide
increased bandwidth over an equivalent interleaved memory for computations with ahigh
read to write access ratio; nearly an order of magnitude better performance is achieved in
some benchmarks. Furthermore, multicopy access can be implemented with a minimal
increase in hardware complexity as part of a heterogeneous interleaved-multicopy mem-

ory architecture.
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Appendix A
I nter mix Sequences

A.1 Derivation of p(s, d, ¢

The function p(s, d, ¢) isthe average page miss count in performing each set of c write
accesses in the intermix sequence { ..., {r;:c, wj:c} :h, ...} ,wheret, and t; specify a

read-modify-write operation; i.e. t,.v = fj.v.
Case: y(s, d) = 1 (the number of dataitems per word is exactly one)

In deriving p(s, d, ¢), the following observation is made: in accessing ¢ dataitems the

address space spanned, in bytes, is (c—1) sd +d.

Assume (c—1) sd +d < p, then the address space spanned touches at most two pages. If
p, isthe probability that ¢ accesses touch one page, and p,, is the probability that two
pages are touched, then

p(s.d,c) = py(0) +p,(2) = 2p,

That is, for the access sequence { ..., {r;:c, wj:c} ‘h, ...} , the write operations

wlk-De+1

through WK, 1<k < h, suffer apage miss only when rkTDC* L gng rke rgf
J i i

erence a different page.

The number of d-aligned starting positions in a given page for the ¢ read accessesis

_ P
S_d

The number of starting positions resulting in the ¢ read accesses touching exactly one page
is

s, = p- ((c—dl)sd+d) 1
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Then the probability that a set of ¢ read accesses touch exactly one pageis

S, (c-1)sd
pl §:]_—T

and the probability that two pages are touched is

c-1)sd
p2 = ]_—pl = (p)

Thus, when (c—1) sd + d < p, the average page miss count in performing each set of ¢
write accesses is

2(c-1)sd

p(s,d,c) = 2p, = 5

When (c-1) sd +d > p, the address space spanned touches at least two pages, implying
that each sequence of ¢ write accesses must begin with a page miss and page overhead is
modeled as

c-1
1% o d)

which is one plus the remaining data items to access, ¢ — 1, divided by the number of data

items per page.

Combining the results derived above

(2(c-1
(c-1)sd when (c-1)sd+d<p

p(sdc) =g P
Uq+ c-1 when (c-1)sd+d>p

U™ s, d)
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Case: y(s, d) > 1 (the number of dataitems per word is greater than one)

Deriving p(s, d, ) for this case is completely analogous to the previous case, with the
address space spanned being cw = cy(s, d)sd and all accesses being word-aligned, so

that

12 (c—1) y(s, d)sd

0 when cy(s, d)sd<p
p(sdo =g P
Bl + (C(p(g"é()s') when cy(s, d)sd>p

The two cases derived above may be combined into the single modeling function

[12(c—-1) y(s, d)sd

when (c-1)y(s,d)ysd+d<p

0
p(sdc) =0 P
SlJr(C_(p(lg’\é()s’d) when (c-1)y(s,d)sd+d>p

A.2 Proof of Optimal Intermix Pattern

Given: read stream t; and write stream t specifying aread-modify-write, i.e. t,.v = tj.v.
Prove: theintermix sequence { ..., {r;:c, WjZC} :h, ...} istheoptimal interleave pattern.

Proof: Consider the general interleave case
{.oritdg witky, oo 1 dg, Witk

where, by definition, r!‘ must proceed W}‘ and

n n
29 = 2K
=1 =1



53

Then let
A

A
YazS ad  Yk=§

| =1 =1

Itiseasily seenthat for A <n, S, 2,S,. If thereexistsa g, # k; then there must exist at

least one u such that qSu > kSu, in which case

letuy = ,§, and u, =, §,, then

» the page miss count in performing the read sequence { ..., r,:q, .4, ...} canbegreater

than in the case where qSu =S, since WJ-uk may access a sequentially earlier page than

u
q.
r™

o similarly, thepagemisscountinperformingthewritesequence{...,Wj:k ...} can

u+l

be greater than in the case where qSu =S, 8 wj““ ! may access a sequentially earlier
page than riuq+ '

Thus, the minimum page miss count is achieved when qSu =S, forusn;i.e when

q =k forl<l<n.
o{....,{rc, WJ-ZC} 'h, ...} istheoptimal intermix pattern.

QED
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