
Access Ordering Algorithms for a Multicopy Memory

Steven A. Moyer

IPC-TR-92-013

December 18, 1992

Access Ordering Algorithms for a Multicopy Memory

Steven A. Moyer

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, Virginia 22903

(sam2y@virginia.edu)

Superscalar processors are well suited for meeting the demands of scientific computing, given suf-
ficient memory bandwidth. Employing parallel memory modules increases the bandwidth available; how-
ever, storage schemes devised to reduce module conflict for vector computers are not suitable for scalar
computation. Amulticopy memory is proposed here as a parallel memory system consisting of replicated
data that increases the potential for access concurrency and reduced page overhead for systems of page-
mode DRAMs. Simulation results indicate that a multicopy system can provide increased bandwidth over an
equivalent interleaved memory for computations with a high read to write access ratio; nearly an order of
magnitude better performance is achieved in some benchmarks. Furthermore, multicopy access can be
implemented with a minimal increase in hardware complexity as part of a heterogeneous interleaved-multi-
copy memory architecture.

The author wishes to gratefully acknowledge the work of the WM Architecture Group at
the University of Virginia, the UVA Academic Enhancement Program, NASA grant NAG-
1-242, and NSF grants MIP-9114110 and CDA-8922545-01.

i

Table of Contents

1 Introduction..1
1.1 Background..2

1.2 General System Model...2

1.3 Access Ordering Observation ..3

1.4 Computation Domain...4

1.5 Memory Device Types...5

1.6 Performance Modeling ..6

2 Previous Work..7
2.1 Stream Detection..7

2.2 Access Scheduling Techniques ..7

3 Model Access Pattern ..8
3.1 MAP Notation..8

3.2 Definitions and Assumptions ...10

3.3 Wide Word Restrictions ...11

3.4 Stream Interaction Restriction ...12

3.5 MAP Dependence Relations..13
3.5.1 Output and Input Dependence ...13
3.5.2 Antidependence ...13
3.5.3 Data Dependence...14
3.5.4 Dependence Rules ...14
3.5.5 Other Dependencies...15

4 Single Module Analysis...16
4.1 Minimizing Page Overhead ...16

4.1.1 Intermixing ..17
4.1.1.1 Intermix Factor..19

4.1.2 Wrap-around Adjacency..20

5 Multicopy Architecture Analysis...21
5.1 Problem Dimensions..22

5.2 Module Access Notation..23

5.3 Multicopy Storage and Uniform-access Components ...23
5.3.1 Performance Predictor ...25

5.4 Multicopy Storage and Page-mode Components...26
5.4.1 A Base Access Sequence...27

5.4.1.1 Request Buffering ...27
5.4.2 A Module Reference Model ..27
5.4.3 Greedy Intermixing and Wrap-around Adjacency ..28
5.4.4 Read Mapping Heuristic..30

5.4.4.1 RMH Performance ..32
5.4.5 Access Ordering Algorithm...34
5.4.6 Example Problem ..35
5.4.7 Performance Predictor ...37

5.5 Simulation Results ...40
5.5.1 Performance Predictors ...41

ii

5.5.2 Evaluation of Multicopy Performance ..42
5.5.3 Evaluation of Multicopy Cost ...46

5.6 Summary..47

6 Implementation Issues ...47

7 Conclusions..48

Appendix A..50

Bibliography ..54

iii

List of Symbols

Memory system parameters:

word size

page size

page-hit read cycle time

page-hit write cycle time

page-miss overhead

uniform-access read cycle time

uniform-access write cycle time

Stream parameters:

stream start address (vector accessed)

stride of access

data size

mode of access

number of data items referenced per functional iteration

MAP notation:

access to the next element of stream

 access from for a given access sequence iteration

set of all streams in a given MAP

number of streams in

number of different vectors referenced by streams in

depth of loop unrolling

Performance measures:

average time per access

processor-memory bandwidth

w

p

Tp/ r

Tp/ w

Tp/ m

Tu/ r

Tu/ w

v

s

d

m

σ

ai ti

ai
k kth ti

S

N S

V S

b

Tavg

BW

iv

General properties of stream :

number of accesses per loop iteration

intermix factor

Properties of stream for a multicopy architecture:

number of modules referenced

module stride

Modeling functions:

average number of data items per word

average number of data items per page

average per iteration page miss count

average per iteration page miss count for intermixed write stream

average per iteration page miss count for wrap-around adjacent read stream

effect of intermixing on average page miss count of write stream

effect of wrap-around adjacency on page miss count of read stream

ti

εi

θi

ti

µ̂i

ξ̂i

γ s d,()

φ s d,()

η s d c V, , ,()

hρ s d c, ,()

ω s d c, ,()

imix s d c h V, , , ,()

wadj s d c V, , ,()

1

1 Introduction
Superscalar† pipelined processors are well suited for meeting the demands of scientific

computing, singly and as components of parallel machines. However, studies demonstrate

that for such applications, performance is limited by the processor-memory bandwidth

[Lee90, Moye91].

For vector computers, parallel memory modules are employed to increase effective band-

width through concurrent processing of memory requests. Research into parallel memory

systems is generally directed towards developing storage schemes, i.e. mappings of

addresses to memory locations, that reduce module conflict and hence increase concur-

rency. Proposed storage schemes include the use of a prime number of modules [LaVo82],

skewed storage [BuKu71, HaJu87], and dynamic address transformations [Harp89,

Rau91]. Note that these techniques are dependent on a relatively long sequence of refer-

ences to a single vector.

Scalar processors executing scientific codes generate an interleaved sequence of refer-

ences to a set of vector operands. Thus, simply applying a given storage scheme is

unlikely to produce maximum concurrency in a parallel memory system. Furthermore, the

performance of individual modules of modern DRAM components is sensitive to the

sequence of requests; this issue is not addressed in previous parallel memory studies.

A multicopy memory is proposed here as a parallel memory system consisting ofm mod-

ules of replicated data such that if represents the contents of addressa at module

, then . A multicopy memory system increases the

potential for access concurrency, as maximum concurrency is achievable for all strides of

reference. Furthermore, for systems of page-mode DRAMs, page overhead can be more

effectively amortized by directing stream accesses to a smaller number of modules.

Access ordering algorithms [Moye92c] are developed that exploit a multicopy memory.

Access ordering is a loop optimization that reorders non-caching accesses to better utilize

†. Both superscalar and VLIW architectures are suited for scientific applications and place similar demands
on the memory system.

* Mk a,()

Mk * M0 a,() … * Mm 1− a,()= =

2

memory system resources. For a given computation, memory architecture, and memory

device type, an access ordering algorithm determines a well-defined interleaving of vector

references that maximizes effective bandwidth.

In general purpose scalar computing, the addition of cache memory is often a sufficient

solution to the memory latency and bandwidth problems given the spatial and temporal

locality of reference exhibited by most codes. For scientific computations, vectors are nor-

mally too large to cache. Iteration space tiling [CaKe89, Wolf89] can partition problems

into cache-size blocks, however tiling often creates cache conflicts [LaRW91] and the

technique is difficult to automate. Furthermore, only a subset of the vectors accessed will

generally be reused and hence benefit from caching. Finally, caching may actually reduce

effective memory bandwidth by fetching extraneous data for non-unit strides. Thus, as

noted by Lamet al [LaRW91], ‘while data caches have been demonstrated to be effective

for general-purpose applications..., their effectiveness for numerical code has not been

established’.

1.1 Background

This work builds on previous analytic results derived for a single module memory system

[Moye92a]. To make this document self-contained, the necessary analysis from that report

is repeated here. Readers familiar with previous work may skip immediately to the analy-

sis of a multicopy architecture presented in section 5; note: there is an important addition

to the MAP access sequence definition presented in 3.1.

1.2 General System Model

Access ordering algorithms presume a dedicated memory system driven by a single scalar

processor, as depicted in Figure1. The memory system is dedicated in that only one pro-

cessor is serviced, implying that memory state is dependent on a single reference

sequence. This general system model is representative of uniprocessors and single-proces-

sor nodes of distributed memory parallel machines.

3

The processor is presumed to implement a non-caching load instruction, ala Intel’s i860

[Inte89], allowing the sequence of requests observed by the memory system to be con-

trolled via software. For access ordering, all memory references are assumed to be non-

caching. Combining caching and non-caching accesses is discussed with other implemen-

tation issues in section 6.

1.3 Access Ordering Observation

Access ordering formalizes the notion of reordering non-caching accesses to exploit mem-

ory system resources. To illustrate this concept, a simple example is presented below.

Consider a single module ofpage-mode DRAMs. Page-mode DRAMs operate as if imple-

mented with a single on-chip cache line, referred to as apage†. An access that does not fall

within the address range of the current DRAM page forces a new page to be accessed,

requiring significantly more time to service than an access that ‘hits’ the cached page.

Thus, the effective bandwidth is sensitive to the sequence of requests. Nearly all DRAMs

currently manufactured implement a form of page-mode operation [Quin91].

†. Note that a DRAM page should not be confused with a virtual memory page; this is an unfortunate over-
loading of terms.

A
dd

re
ss

 S
ou

rc
e

D
at

a
S

in
k

Memory System

Figure 1 General System Model

4

Figure2(a) illustrates the ‘natural’ reference sequence for a straight-forward translation of

thevaxpy, vector axpy, computation

For modest size vectors, elements, , and are likely to reside in different pages, so

that alternating accesses to each incurs the page miss overhead; memory references likely

to page miss are highlighted in Figure2.

In the loop of Figure2(a), 3 page misses occur for every 4 references; a different ordering

can result in every reference generating a page miss. By unrolling the loop and grouping

accesses to the same vector, as demonstrated in Figure2(b), page miss cost is amortized

over a number of accesses; in this case 3 misses occur for every 8 references. In reducing

page miss count, processor-memory bandwidth is increased significantly.

1.4 Computation Domain

The problem domain to which access ordering is applicable is the class ofstream-oriented

computations. A stream-oriented computation interleaves references to some number of

streams, where a stream is defined as a linear sequence of accesses to a given vector of

fixed sized elements, beginning at a known address, and proceeding at a constant stride.

i∀ yi aixi yi+←

ai xi yi

loop: loop:

load a load a

load x load a

load y load x

stor y load x

jump loop load y

load y

stor y

stor y

jump loop

(a) (b)

Figure 2 Vaxpy Code

5

Stream access results in a predictable reference pattern that can be exploited. Processor

instructions and scalar constants are assumed to be cached or held in registers, as appropri-

ate.

For example, a scalar processor performing the well knownaxpy operation:

is assumed to generate three distinguishable access streams, one load stream to each of the

vectors and , and one store stream back to the vector.

In this report, the computation domain for which access ordering algorithms are developed

is further restricted to the class of vectorizable loops. Since vectorizable loops contain no

loop-carried dependencies, excepting ignorable input dependence and self-antidependence

cycles [Wolf89], reordering accesses within an unrolled loop is simplified. Note that recur-

rence relations can often be eliminated through streaming optimizations [BeDa91], so that

algorithms developed here are actually applicable to a superset of the vectorizable loops.

1.5 Memory Device Types

For stream-oriented computations, access ordering reorders references within an unrolled

loop to exploit features of the underlying memory system. Thus, a different access order-

ing algorithm must be derived for each target memory architecture and device type. Order-

ing algorithms are derived here for each of the two major memory component types:

uniform-access and page-mode.

Uniform-access components are insensitive to the reference sequence, so that the time to

service a given access is not dependent on previous requests; SRAMs are the common

example of this device type. The performance of uniform-access components is parame-

terized by

• , the read cycle time, and

• , the write cycle time.

i∀ yi axi yi+←

y x y

Tu/ r

Tu/ w

6

Page-mode components operate as if implemented with a single on-chip cache line, as dis-

cussed in section 1.3; static-column and fast page-mode DRAMs are the common exam-

ples of this device type. The performance of page-mode components is parameterized by

• p, the page size,

• , the page-hit read cycle time,

• , the page-hit write cycle time, and

• , the additional page access overhead incurred by a page miss; thus, the page-miss

read and write cycle times are and , respectively.

The system word size is defined by w. For systems constructed from page-mode compo-

nents, page size is a multiple of word size; i.e. w | p. Note that for all system parameters,

sizes are in bytes and times are in nanoseconds.

1.6 Performance Modeling

For a given computation, access ordering results in code that generates a well-defined

sequence of vector references. Consequently, for each ordering algorithm, an analytic

model of effective memory bandwidth can be derived.

Models of memory system performance have traditionally been based on the assumption

that individual modules are insensitive to the sequence of access requests. For modern

page-mode DRAM components, this assumption is not correct. Furthermore, memory per-

formance models generally assume a stochastic sequence of references. For stream-ori-

ented computations, this is not the case.

Developing an access ordering algorithm for a given memory architecture and device type

provides a unique opportunity to derive a precise analytic model of memory system per-

formance for a large and important class of computations. In developing such models, it is

assumed that the processor is sufficiently fast so that performance is limited by the mem-

ory system. Thus performance models represent maximum effective bandwidth.

Tp/ r

Tp/ w

Tp/ m

Tp/ r Tp/ m+ Tp/ w Tp/ m+

7

2 Previous Work
Access ordering spans a number of interrelated topics from compiler optimizations to per-

formance modeling. The following sections provide the minimal level of context neces-

sary to characterize the contributions of this work; a more complete survey of all relevant

topics can be found in [Moye92c].

2.1 Stream Detection

Access ordering algorithms derived in this report presuppose the existence of compiler

techniques to detect stream-oriented computations. Benitez and Davidson [BeDa91]

describe a technique for detecting streaming opportunities, including those in recurrence

relations. Callahan et al [CaCK90] present a technique called scalar replacement that

detects redundant accesses to subscripted variables in a loop, often transforming a more

complex sequence of references to a vector into a single access stream. Finally, as stream-

oriented computations reference vector operands, well known vectorization techniques are

applicable, such as those described by Wolfe [Wolf89].

2.2 Access Scheduling Techniques

Access ordering is a compilation technique for maximizing effective memory bandwidth.

Previous work has focused on reducing load/store interlock delay by overlapping compu-

tation with memory latency, referred to here as access scheduling. Essentially, access

scheduling techniques attempt to separate the execution of a load/store instruction from

the execution of the instruction which consumes/produces its operand, reducing the time

the processor spends delayed on memory requests.

Bernstein and Rodeh [BeRo91] present an algorithm for scheduling intra-loop instructions

on superscalar architectures that accommodates load delay. Lam [Lam88] presents a tech-

nique referred to as software pipelining that structures code such that a given loop iteration

loads the data for a later iteration, stores results from a previous iteration, and performs

computation for the current iteration. Weiss and Smith [WeSm90] present a comprehen-

sive study in which they classify and evaluate software pipelining techniques imple-

8

mented in conjunction with loop unrolling. Klaiber and Levy [KlLe91] and Callahan et al

[CaKP91] propose the use of fetch instructions to preload data into cache; compiler tech-

niques are developed for inserting fetch instructions into the normal instruction stream.

Access ordering and access scheduling are fundamentally different. Access scheduling

techniques allow load/store architectures to better tolerate memory latency; however, the

effective memory bandwidth is not considered. Note that access ordering and access

scheduling are complementary. Access ordering can first be applied to a computational

kernel to obtain an ordering of load/store instructions that maximizes effective bandwidth.

Access scheduling can then be applied to reduce interlock delay while maintaining the

specified load/store instruction order.

3 Model Access Pattern
For deriving access ordering algorithms and performance models, it is useful to define a

notation for expressing sequences of requests generated by stream-oriented computations.

The Model Access Pattern notation used to denote specific reference sequences is defined

below, along with a set of general definitions and assumptions applicable to all computa-

tions. Access ordering in the presence of wide words is also discussed. Finally, a restric-

tion is placed on stream interaction to simplify optimality results.

3.1 MAP Notation

Two characteristics define the Model Access Pattern (MAP) for a stream-oriented compu-

tation: a set of access streams to individual vectors, and an interleaving of stream refer-

ences into a merged access sequence.

9

An access stream is defined by the tuple where

An access sequence describes the interleaving of stream accesses within a loop and is

defined recursively as follows:

let denote access to the ‘next’ element of the stream, then

1. is an access sequence.

2. is an access sequence where are access sequences;

are performed left to right with all accesses in initiated prior to the initiation of

accesses in .

3. is an access sequence whereA is an access sequence andc is a positive integer;

A is repeatedc consecutive times.

4. is an access sequence where are access sequences

and are positive integers. are performed left to right in a modified

round-robin fashion, with accesses from until all accesses in have

been initiated. If fewer than accesses remain in , then only these accesses are

issued. When all accesses specified in have been initiated is dropped from the

pattern.

A strict round-robin selection of accesses from each of the sequences is

achieved when , and is denoted simply as .

In discussing a particular MAP

• stream parameters are referred to by dot notation, e.g. is stride, and

• refers to the access from for a given access sequence iteration.

ti v s d m, , ,() : σ=

v = vector to be accessed = stream starting address

s = stride of access

d = data type size

m = access mode, read(r) or write(w)

σ = number of data items accessed in a single functional iteration

ai ti

ai{ }

A1 … An, ,{ } A1 … An, , A1 … An, ,

Aj

Aj 1+

A: c{ }

A1 … An�|� α1 … αn, ,, ,[] A1 … An, ,

α1 … αn, , A1 … An, ,

αi Ai A1 … An, ,

αi Ai

Ai Ai

A1 … An, ,

α1 … αn 1= = = A1 … An, ,[]

ti.s

ai
k kth ti

10

For visual clarity, and extraneous brackets are omitted when the mean-

ing is unambiguous. When the access mode is known, an access is denoted as or for

 or , respectively.

To illustrate, the MAP notation is applied to the axpy operation

Three access streams are generated defined by the tuples ,

, and . The ‘natural’ access sequence imple-

menting the axpy computation is: , specifying one read from each of and

, followed by one write from , per loop iteration.

The above notation affords convenient specification of accesses to parallel memory mod-

ules. For example, given a parallel memory system, if sequence represents requests to

module , then specifies an access sequence that references each mod-

ule with periodm† and provides for concurrency among accesses from different streams.

3.2 Definitions and Assumptions

The following definitions complement the MAP notation:

• S = { | defines an access stream for a given computation}, i.e.S is the set of all

access streams for a given MAP,

• N = , i.e. for a given MAP the total number of access streams isN, and

• V = number of unique such that , i.e. for a given MAP the number of vectors

accessed isV.

For the set of streamsS of a given MAP, it is assumed that for all

• | w, i.e. for all streams inS word size is a multiple of the data size,

• access stream begins at an address divisible by , i.e. data is aligned, and

†. Module reference sequence has periodm if all modules service the same number of accesses per iteration.

ai{ } : c ai: c{ }≡

ri wi

ti.m r= ti.m w=

i∀ yi axi yi+←

tx x sx dx r, , ,() :1=

tyr
y sy dy r, , ,() :1= tyw

y sy dy w, , ,() :1=

rx ryr
wyw

, ,{ } tx

tyr
tyw

Ai

Mi A0 … Am 1−, ,[]

ti ti

S

ti.v ti S∈

ti S∈

ti.d

ti ti.d

11

• stride of access is positive; the stream interaction restriction defined below allows

this assumption without loss of generality.

3.3 Wide Word Restrictions

For completeness, it is desirable to accommodate wide word access in ordering algorithms

and performance models; a typical example being a 32-bit value referenced from a 64-bit

word. To fully utilize wide words, and simplify modeling, several minor restrictions are

placed on stream parameters and code generation for a computation. Prior to presenting

these restrictions, the following definition is made:

For access stream with and , the average number of data items per

word is

Then for the set of streams S of a given MAP, it is assumed that for all

• access stream begins at an address divisible by w, i.e. streams are word aligned, and

• the average number of data items per word is an integer, implying that each

word accessed contains exactly the same number of data items.

Access ordering employs loop unrolling to increase the number of stream accesses within

a loop that can be reordered, as discussed in section 1.3; b is defined to be the depth of

unrolling. To maximize wide word utilization, an access ordering algorithm must insure

that for a given computation, the depth of loop unrolling is such that the number of data

items referenced from each stream per iteration is a multiple of the number of data items

per word; i.e. for stream with , . Note that in the most common

case of one data item per word per stream, b can be any positive integer.

ti. s

ti s ti. s= d ti. d=

γ s d,()
1 when

w
sd

1≤

w
sd

when
w
sd

1>






=

ti S∈

ti

γ s d,()

ti σ ti. σ= γ s d,() �|� bσ

12

Given the above restrictions, each access to stream references exactly data

items, with the number of accesses per loop iteration defined by

Wide word access is accommodated in a natural, intuitive, and optimal fashion. Each

stream access is guaranteed to reference a different word, and the number of data items per

word is constant.

3.4 Stream Interaction Restriction

Recall that for a memory module constructed from page-mode components, the time to

complete a given access depends on whether or not the page referenced is the same as that

of the immediately preceding access. If two consecutive accesses are from different

streams, the impact of the first on the one that follows is difficult to capture analytically as

they may or may not reference the same page. To simplify analysis, the following restric-

tion is placed on the streams of a given computation:

• stream interaction restriction - for any two access streams , implies

that the streams have non-intersecting address spaces; in particular, streams reference

no pages in common. When stream parameters are identical except in

mode, where by definition .

The stream interaction restriction results in stream accesses that interact with memory

architecture features in a well defined manner. To illustrate, when two streams have differ-

ent start addresses, i.e. , the stream interaction restriction states that the streams

reference no pages in common. Thus it is known that an access from stream preceded by

an access from stream will cause a page miss. When two streams have the same start

address, i.e. , the stream interaction restriction states that the stream parameters

are identical except in access mode, accommodating read-modify-write operations. Thus,

within a given loop iteration, the accesses from each of and reference the same

data item and hence the same page.

ti γ s d,()

εi

bσ
γ s d,()=

ti tj, S∈ ti. v tj. v≠

ti. v tj. v=

ti. m tj. m≠

ti. v tj. v≠

ti

tj

ti. v tj. v=

kth ti tj

13

Strict adherence to the stream interaction restriction limits the applicability of access

ordering algorithms. However, this limited problem domain is still large and encompasses

many interesting computations. Furthermore, under the stream interaction restriction, opti-

mality results are obtained for single module access and concurrency is more easily man-

aged in parallel memory systems. Relaxation of this restriction for applying ordering

algorithms to the set of vectorizable loops is discussed in section 6.

3.5 MAP Dependence Relations

Access ordering alters the sequence of instructions that access memory. In performing this

reordering, dependence relations must be maintained. As discussed below, the stream

interaction restriction limits the types of dependencies that can exist between accesses

from different streams. Rules are derived for maintaining dependencies during access

ordering.

Briefly, output andinput dependence results when two write or two read accesses, respec-

tively, reference the same data item.Antidependence occurs when a read from a data item

must precede a write to that datum. Finally, data dependence occurs when a write to a data

item must precede a read from the same. A dependence relation between two accesses

from the same instance of a loop iteration is said to beloop-independent, while a depen-

dence between accesses from different instances is said to beloop-carried. A detailed

treatment of dependence analysis can be found in [Wolf89].

3.5.1 Output and Input Dependence

Output and input dependence can not exist as a result of the stream interaction restriction;

two streams of the same mode have a non-intersecting address space. Therefore, depen-

dence relations of this type need not be considered.

3.5.2 Antidependence

The stream interaction restriction states that two streams referencing the same vector do so

with stream parameters that differ only in access mode. Thus, antidependence is limited to

14

loop-independent antidependence between corresponding components of a read stream

and write stream implementing a read-modify-write. So, if , then is anti-

dependent on ; notationally .

Simply specifying and such that is assumed to imply antidependence; the

only alternative, a loop-independent data dependence, is redundant and the read stream

unnecessary. Compilation is assumed to remove extraneous access streams.

3.5.3 Data Dependence

Data dependence does not exist between access streams in the usual sense that a memory

location is written and later read during the execution of a loop. Loop-independent data

dependence implies an extraneous read stream, as discussed above. Loop-carried data

dependence can not exist as a result of the stream interaction restriction.

Though data dependence does not exist in the usual context, it is present in the data flow

sense; that is, as right-hand-side values required in performing a computation. A write

operation represents the assignment of a computation result and as such usually requires

that some set of read operations precede it. In this sense, a write operation is data

dependent on a read operation if defines a value used in the computation of the result

assigned by ; notationally, .

3.5.4 Dependence Rules

Summarizing the above, dependence between accesses belonging to different streams is

limited to two types under the stream interaction restriction: loop-independent antidepen-

dence between a read and write streams that access the same vector, and data dependence

in the data flow sense. This observation leads to the following two rules necessary for

maintaining data dependence in access ordering algorithms.

For read stream and write stream , an access sequence maintains all dependencies if

1. precedes when , i.e. a read precedes its corresponding write in a read-

modify-write operation, and

ti

tj ti.v tj.v= wj
k

ri
k ri

k� δ� wj
k

ti tj ti.v tj.v=

wj
k

ri
q ri

q

wj
k ri

q� δ� wj
k

ti tj

ri
k wj

k ri
k� δ� wj

k

15

2. precedes when , i.e. a read operation that defines a value used in the

computation of a result precedes the write of that result.

Dependence information is derived from context. As discussed in section 2.1, it is

assumed that stream information has been provided for the access ordering algorithm; it is

assumed that dependence information is provided as well.

3.5.5 Other Dependencies

The above discussion completely characterizes the dependence that can exist between

accesses belonging to different streams under the stream interaction restriction. However,

two other types of dependence may exist: loop-carried input dependence within a single

read stream, and control dependence.

Loop-carried input dependence can result from the transformation of a more complex

sequence of read accesses to a single read stream. Consider the finite difference approxi-

mation to the first derivative

Analysis techniques [BeDa91, CaCK90] can transform the ‘natural’ pattern of access to

vector to a simple stream requiring one access per iteration; two values of are pre-

loaded prior to entering the loop, and each successive value accessed is carried in a regis-

ter for two iterations. The loop-carried input dependence created in the transformation has

no affect on the ordering of memory access instructions.

Control dependence results from branch statements within a loop. When control depen-

dence is present, access ordering can still be applied by considering each path through the

loop body independently. Ordering and code generation is performed for each path, with

the code segment to be executed on each iteration determined dynamically. For the

remainder of this discussion, loops are assumed free of control dependence.

ri
q wj

k ri
q� δ� wj

k

i∀ dvi

vi 1+ vi 1−−()
2h

=

v v

16

4 Single Module Analysis
Prior to examining a multicopy system, techniques are first presented for minimizing page

overhead at a single module of page-mode DRAMs. Complete ordering algorithms for a

single module system are not derived; only the tools necessary for analyzing a multicopy

system of page-mode components are developed.

4.1 Minimizing Page Overhead

Given a stream not involved in a read-modify-write, minimizing page overhead is trivial.

For streams implementing this operation, page overhead is minimized via intermixing and

wrap-around adjacency.

Given stream such that does not participate in a read-modify-write, i.e.

for all , minimum page overhead is achieved by performing a sequence of accesses

 without an intervening access to a second vector . This follows from the observation

that only results in a page miss if it does not reference the same page as ; an inter-

vening access is guaranteed to generate a page miss by the stream interaction restric-

tion.

The average page miss count for accesses grouped by stream is derived as follows. For

access stream with and , the average number of data items per page is

Then arranging accesses from as , the average per iteration page miss

count is

ti S∈ ti ti. v tj. v≠

tj S∈

ai aj

ai
k 1+ ai

k

aj

ti s ti. s= d ti. d=

φ s d,()
1 when

p
sd

1≤

p
sd

when
p
sd

1>






=

ti … ai: c …, ,{ }

η s d c V, , ,()

cγ s d,()
φ s d,() when V 1=

1
c 1−() γ s d,()

φ s d,()+ when V 2≥





=

17

That is, when the number of vectors referenced is one, i.e. , the average page miss

count for c consecutive accesses to is the number of data items referenced divided by

the number of data items per page. For , is guaranteed to page miss, so that the

average page miss count is one plus the remaining data items to access, ,

divided by the number of data items per page.

Note that the average page miss count per access, , is either constant or

inversely proportional to c. In the later case, separating the c accesses must increase the

per reference page overhead. Consequently, minimum page overhead is achieved when

accesses are grouped by stream.

Theorem 1: Given stream such that does not participate in a read-modify-write,

i.e. for all , minimum average page overhead is achieved by the access

sequence .

4.1.1 Intermixing

For read stream and write stream that implement a read-modify-write, i.e.

and , it is often possible to reduce the average page miss count of the write

stream below that achieved by the access sequence .

Consider the general intermix sequence

that generates the string of references

Since and refer to the same location, will only page miss when referencing a

page different from that referenced by . Thus, the average page miss count for the read

stream is unchanged. However, the sequence of accesses through ,

, suffers a page miss only when and reference a different page.

V 1=

ti

V 2≥ ai
1

c 1−() γ s d,()

η s d c V, , ,() c⁄

ti S∈ ti

ti. v tj. v≠ tj S∈

… ai: εi …, ,{ }

ti tj ti tj, S∈

ti. v tj. v=

… ri: εi … wj: εj …, , , ,{ }

… ri: c wj: c,{ } : h …, ,{ }

… ri
1 ri

2 … ri
c wj

1 wj
2 … wj

c ri
c 1+ …, , , , , , , , , ,

ri
c wj

c ri
c 1+

ri
c

wj
k 1−() c 1+ wj

kc

1 k h≤ ≤ ri
k 1−() c 1+ ri

kc

18

For write stream with and , the average page miss count in perform-

ing each set of c write accesses in the intermix sequence is

derived in Appendix A.1 as

Thus, the total average page miss count in performing all write operations for a given

iteration is . The general intermix sequence is

optimal, as demonstrated in Appendix A.2.

Based on the preceding analysis, for a computation that references two or more vectors the

intermix sequence results in a lower page overhead for write

operations than the sequence if .

Similarly, for a computation that references exactly one vector the intermix sequence

 results in a lower page overhead for write operations than the

sequence if . Then for write stream , the

affect of intermixing on average per iteration page miss count is computed as

It can be shown algebraically that , i.e. intermixing reduces write

access page miss count, if or . Therefore, when

 the average page miss count in performing each set of c write

accesses, , is directly proportional to c. Thus, choosing c as small as possible

minimizes write page overhead.

tj s tj. s= d tj. d=

… ri: c wj: c,{ } : h …, ,{ }

ρ s d c, ,()

2 c 1−() γ s d,() sd
p

when c 1−() γ s d,() sd d p≤+

1
c 1−() γ s d,()

φ s d,()+ when c 1−() γ s d,() sd d+ p>





=

ch

hρ s d c, ,() … ri: c wj: c,{ } : h …, ,{ }

… ri: c wj: c,{ } : h …, ,{ }

… ri: ch … wj: ch …, , , ,{ } hρ s d c, ,() η s d ch V, , ,()<

ri: c wj: c,{ } : h{ }

ri: ch wj: ch,{ } hρ s d c, ,() ρ s d ch, ,()< tj

imix s d c h V, , , ,()
ρ s d ch, ,() hρ s d c, ,()− when V 1=

η s d ch v, , ,() hρ s d c, ,()− when V 2≥



=

imix s d c h V, , , ,() 0>

c 1= c 2−() h 1+() γ s d,()sd p<

imix s d c h V, , , ,() 0>

ρ s d c, ,()

19

4.1.1.1 Intermix Factor

For the general intermix sequence, the values of the intermix parameters c and h that min-

imize page overhead for the write stream are a function of both the stream parameters and

data dependence information. Intuitively, the intermix parameter c is chosen to be the min-

imum value that preserves data dependence while efficiently utilizing wide word access,

when applicable. If write stream is not data dependent on read stream , implying the

computation is not a strict read-modify-write, then . Otherwise, c is the minimum

number of accesses required to reference all data items for a number of computation itera-

tions such that all data items in the words accessed are consumed; this minimal value of c

is referred to as the intermix factor.

For write stream with , and , the intermix factor is com-

puted as

From the derivation of in section 3.3, it can be seen that the number of accesses to

stream per loop iteration is a multiple of the intermix factor ; i.e. | . Thus, inter-

mix parameters and minimize page overhead if ;

otherwise, intermixing increases page overhead and is therefore not employed.

Theorem 2: For read stream and write stream that specify a read-modify-write, i.e.

 and , minimum average page overhead for write stream is achieved

by the general intermix sequence with and

if . Page overhead for read stream is unaffected by intermixing and

equivalent to that achieved by the access sequence .

Though intermixing minimizes page overhead, the resulting sequence may not be amena-

ble for execution on pipelined processors; this issue is discussed further in section 6.

tj ti

c 1=

tj s tj. s= d tj. d= σ tj. σ=

θj

1 when tj is�not�data�dependent�on ti

lcm σ γ s d,(),()
γ s d,() otherwise







=

εj

tj θj θj εj

c θj= h εj θj⁄= imix s d c h V, , , ,() 0>

ti tj

ti tj, S∈ ti. v tj. v= tj

… ri: c wj: c,{ } : h …, ,{ } c θj= h εj θj⁄=

imix s d c h V, , , ,() 0> ti

… ri: εi …, ,{ }

20

4.1.2 Wrap-around Adjacency

Given read stream and write stream that specify a read-modify-write, i.e.

and , it is often possible to reduce the average page miss count of the read

stream via wrap-around adjacency. Streams and are wrap-around adjacent if accesses

to each occur at the beginning and end of an access sequence, respectively; i.e.

Note that in the special case where and are the only streams in a computation, the

intermix sequence also results in wrap-around adjacency.

Since and reference the same location, then for a given iteration will only page

miss when referencing a page different from that referenced by on the previous itera-

tion. In terms of page overhead the read stream proceeds as if no other vector is accessed,

so that page miss count is computed by where .

Then, for a wrap-around adjacent read stream with and , the average

per iteration page miss count is

The affect of wrap-around adjacency on per iteration page miss count for read stream is

computed as

For a given read stream wrap-around adjacency results in minimum possible page over-

head, as the read stream proceeds without page thrashing.

Theorem 3: For read stream and write stream that specify a read-modify-write, i.e.

 and , minimum average page overhead for read stream is achieved

via wrap-around adjacency.

ti tj ti tj, S∈

ti. v tj. v=

ti tj

ri: εi … wj: εj, ,{ }

ti tj

ri: c wj: c,{ } : h{ }

ri
εi wj

εj ri
1

ri
εi

η s d c V, , ,() V 1=

ti s ti. s= d ti. d=

ω s d c, ,()
cγ s d,()
φ s d,()=

ti

wadj s d c V, , ,() η s d c V, , ,() ω s d c, ,()−=

ti tj

ti tj, S∈ ti. v tj. v= ti

21

5 Multicopy Architecture Analysis
Access ordering algorithms and performance predictors are now derived for a multicopy

memory system as depicted in Figure 3. A multicopy memory is a proposed parallel mem-

ory architecture consisting of m modules of replicated data such that if repre-

sents the contents of address a at module , then .

The multicopy architecture is defined to function as follows. Read accesses specify the

module to which the request is to be directed. If input buffer space is available then the

request is queued at the appropriate module, otherwise the memory system blocks until a

buffer slot is freed. Write accesses are broadcast to all modules to maintain consistency

among copies. If the input buffer is full at one or more modules, the memory system

blocks until the appropriate buffer slots are freed; all writes are queued simultaneously.

Access requests are serviced at a module in the order queued, with data from read requests

placed in the module’s output buffer.

Note that in a parallel memory system, accesses may not complete in the order of request.

Read accesses are assumed tagged so that data may be returned in the requested order. The

details of such a tagging scheme are not important to the analysis presented here, and as

such are not defined. It is sufficient to assume that results can be returned at the rate satis-

fied. Recall that in modeling maximum effective bandwidth, the request rate is assumed

sufficient such that performance is limited by the memory. These are common assump-

tions in the study of parallel memory systems.

* Mk a,()

Mk * M0 a,() … * Mm 1− a,()= =

. . .M1M0 Mm-1

A
dd

re
ss

 S
ou

rc
e

D
at

a
Si

nk

Figure 3 Multicopy Architecture

22

A multicopy memory system increases the potential for read access concurrency, as maxi-

mum concurrency is achievable for all strides of reference. Furthermore, for systems of

page-mode components, read stream page overhead can be more effectively amortized by

directing stream accesses to a smaller number of modules. However write operations must

be broadcast to maintain coherence, serializing an otherwise parallel operation. Thus it is

intuitive that the relative performance of a multicopy system is dependent on a high read

to write ratio; simulation results verify this to be the case.

The following sections discuss the problem space for efficient utilization of a multicopy

memory and notation is developed for expressing the mapping of read accesses to mod-

ules. Access ordering algorithms and performance predictors are derived for a multicopy

system of uniform-access and page-mode components, respectively. The effectiveness of a

multicopy architecture and accuracy of performance predictors are demonstrated via simu-

lation.

5.1 Problem Dimensions

Three features of current parallel memory systems can be exploited to increase processor-

memory bandwidth: module concurrency, page-mode operation (if applicable), and wide-

word access. Note that wide-word access is managed optimally via conditions specified in

section 3.3.

For a multicopy memory, ordering reads to maximize concurrency is a matter of distribut-

ing accesses uniformly across modules. Write accesses are broadcast to all modules so that

concurrency is not an issue.

Techniques for minimizing page overhead come directly from analytic results derived in

section 4 for a single memory module. Page overhead for a given stream is minimized if

elements of that stream are referenced consecutively from a single module on each itera-

tion. For two streams that implement a read-modify-write, page overhead may further be

reduced via intermixing and wrap-around adjacency.

23

Optimal effective memory bandwidth results from an access sequence that minimizes

completion time for all accesses in a loop. Such a sequence usually requires a trade-off

between minimizing page overhead and maximizing concurrency.

To illustrate, consider mapping onto a 2 module system accesses from the three read

streams , and . Assume all streams are stride 1 with 4 accesses per stream per itera-

tion. Figure 4 demonstrates the time to complete a typical loop iteration for three different

mappings of accesses to modules given that an access to the current page requires 1 time

unit and a page miss incurs a 3 time unit penalty . Figure 4(a) depicts a

mapping that results in the minimum page overhead, with all accesses from a given stream

serviced by a single module. Figure 4(b) depicts a mapping that maximizes concurrency

for a given stream by distributing accesses evenly across all modules. Finally, Figure 4(c)

depicts an optimal solution that balances minimizing page overhead and maximizing con-

currency.

5.2 Module Access Notation

To facilitate the specification of a MAP access sequence that maps read accesses to spe-

cific modules, notation developed in section 3.1 is augmented as follows. For individual

read accesses, denotes access to the next element of stream from module .

This notation augments the previous definition of with the specification of the module

to which the access is directed.

5.3 Multicopy Storage and Uniform-access Components

Deriving an optimal access ordering algorithm for a multicopy system of uniform-access

components is trivial. Concurrency is maximized and dependence maintained by distribut-

ing read accesses uniformly across all modules and initiating all reads prior to the first

write.

tx ty tz

Tp/ r() Tp/ m()

r i Mk,() ti Mk

ri

24

For streams S, let through be read streams and through be write streams.

Let R be the total number of read accesses, so that

Then m sequences are defined such that the R accesses are evenly distrib-

uted among the sequences. That is, of the sequences contain

reads, with the remaining sequences containing read accesses.

Furthermore, accesses in sequence are tagged for service a module .

0 2 4 6 8 10 12 14

Time (units)

(a)

(b)

(c)

Figure 4 Minimizing Completion Time

16

x x x x z z z z

y y y y

x x y y z z

x x y y z z

x x x x z z

y y y y z z

M0

M1

M0

M1

M0

M1

t1 tNr
tNr 1+ tN

R εi
ti S∈

ti. m r=

∑=

A0 … Am 1−, ,

m R�mod� m()− R m⁄

R�mod� m() R m⁄ 1+

Ak Mk

25

Then an optimal access sequence is

The above sequence maximizes concurrency among read accesses while maintaining

dependencies. Note that module buffering is not required to achieve optimal bandwidth, as

read access times are uniform and read requests are initiated across modules in a strict

round-robin sequence.

5.3.1 Performance Predictor

For a MAP consisting of streams S and an access sequence defined as above, a perfor-

mance predictor is derived for the average time per access and processor-memory

bandwidth .

Let be the time required to complete all read accesses. Then is the time to complete

accesses at the module servicing the greatest number of requests, that is

Similarly, let be the time to complete all write accesses. By definition every write

request generates a memory access that is serviced at all modules, so that

A0 … Am 1−, ,[] wNr 1+ : εNr 1+ … wN: εN, , ,{ }

Tavg

BW

Tr Tr

Tr

R
m

Tu/ r when R�mod� m 0=

R
m

1+() Tu/ r when R�mod� m 1≥





R
m

Tu/ r=

=

Tw

Tw εi
ti S∈

ti. m w=

∑ Tu/ w=

26

Then the average time per access is the time to complete all accesses in a given itera-

tion divided by the number of data items referenced, i.e.

And the effective memory bandwidth is the number of bytes of relevant data trans-

ferred per iteration divided by the time to complete all accesses, so that

All times are in nanoseconds and sizes in bytes with bandwidth measured in megabytes

per second.

5.4 Multicopy Storage and Page-mode Components

For a multicopy system of page-mode components, optimal performance results from a

sequence that balances maximizing concurrency with minimizing page overhead to

achieve minimum completion time. Determining such a sequence is NP-complete with a

time complexity exponential in the number of accesses; this result is obtained by restric-

tion to multiprocessor scheduling [GaJo79]. As an optimal solution is intractable, a heuris-

tic solution is presented below.

In the sections that follow, a base access sequence and module reference model are devel-

oped. Intermixing and wrap-around adjacency are then discussed for computations imple-

menting a read-modify-write. A heuristic is developed that determines the order and

mapping for read operations. Finally, a general ordering algorithm is presented and a per-

formance predictor derived.

Tavg

Tavg

Tr Tw+

b ti. σ
ti S∈
∑

=

BW

BW

103b ti. d() ti. σ()[]
ti S∈
∑

Tr Tw+=

27

5.4.1 A Base Access Sequence

For streams S, let through be read streams and through be write streams.

Then the base access sequence employed is

(1)

In the above, the sequences specify read operations for streams through

 where accesses in are directed to module . The read sequences

are defined by a mapping heuristic that attempts to minimize completion time. Write

accesses are grouped by stream to minimize page overhead; recall that writes are broad-

cast so that concurrency is not an issue. Write accesses follow reads, maintaining depen-

dence relations. Intermixing and wrap-around adjacency are employed at the boundary of

read and write accesses in a greedy fashion.

5.4.1.1 Request Buffering

For a multicopy system, modules may be buffered as depicted in Figure 3. Ordering

accesses as above results in a sequence that references each module at most once per

round robin selection of accesses . Since individual access times vary, the

sequence provides maximum bandwidth only if buffering is sufficient to

eliminate access gaps that result in increased completion time for all accesses in a loop.

An access gap is defined as a period of time during which a module is idle due to the

memory system blocking on a busy module. For this analysis, buffering is assumed suffi-

cient so that results in maximum performance for that sequence.

5.4.2 A Module Reference Model

For defined in the base access sequence (1), assume that references from

each read stream are distributed uniformly among some number of sequences, and

hence modules, . Furthermore assume all accesses from in a sequence are

arranged consecutively. Such a sequence arises from the mapping heuristic derived in sec-

tion 5.4.4.

t1 tNr
tNr 1+ tN

A0 … Am 1−, ,[] wNr 1+ : εNr 1+ … wN: εN, , ,{ }

A0 … Am 1−, , t1

tNr
Ak Mk A0 … Am 1−, ,

A0 … Am 1−, ,[]

A0 … Am 1−, ,[]

A0 … Am 1−, ,[]

A0 … Am 1−, ,

ti S∈

µ̂i ti Ak

28

Mapping accesses as above minimizes page overhead for references serviced at a given

module. However, the absolute page overhead is dependent on the overall pattern of refer-

ence.

To illustrate, 4 accesses from a stream and 2 from a stream are mapped to a 2 module

system as depicted in Figure 5. For the references of Figure 5(a), elements of stream are

accessed alternately from each module so that the observed stride at a given module is

. Such a mapping results from sequence .

Alternatively, references depicted in Figure 5(b) access consecutive elements of at each

module so that the observed stride is . Such a mapping results from the sequence

.

For accesses from the same stream, page overhead at a given module is a function of the

distance between individual references. As demonstrated above, this distance is dependent

on the overall pattern of reference and as such can not be expressed as a closed form equa-

tion.

For the remainder of this discussion, distance between consecutive accesses from a read

stream serviced at a given module is modeled as the product of the stream stride and the

number of modules referenced; i.e.

The module stride is the stride that results if elements of are accessed alternately

from each of the modules referenced. Thus performance models developed represent

estimated performance rather than bounds.

5.4.3 Greedy Intermixing and Wrap-around Adjacency

For streams S implementing a read-modify-write, intermixing and wrap-around adjacency

may reduce page overhead in each phase of the base sequence (1), potentially reducing

completion time for all accesses. Note that in this context, intermixing refers to read

ta tb

ta

2 ta. s() r a 0,() : 2{ } r a 1,() : 2 r b 1,() : 2,{ },[]

ta

ta. s

r a 0,() : 2{ } r b 1,() : 2 r a 1,() : 2,{ },[]

ti

ξ̂i µ̂i ti. s()=

ξ̂i ti

µ̂i

29

accesses immediately preceding corresponding write accesses at a given module; read and

write operations are not interleaved.

Because the base sequence separates accesses by mode and because write accesses are

broadcast, at most two pairs of streams may benefit from intermixing and wrap-around

adjacency. Furthermore, intermixing generally reduces the time for writes to complete

only if corresponding read accesses reference all modules.

Intermixing and wrap-around adjacency are employed in a greedy fashion by choosing

prior to access mapping the two pair of streams most likely to benefit from these relation-

ships. From streams S, and are a pair of read and write streams, respec-

tively, designated to be mapped for wrap-around adjacency. Similarly, and

are designated to be mapped for intermixing. All else being equal, streams with the small-

est stride have the lowest average page miss count per access and hence the most to gain;

 () and () are chosen accordingly. For S consisting of fewer

(a)

(b)

Figure 5 Dependence of Module Stride on Reference Pattern

M0

M1

M0

M1

ra
1

ra
3

ra
2 ra

4 rb
1 rb

2

ra
1 ra

2

rb
1 rb

2 ra
3 ra

4

tr- wadj tw- wadj

tr- imix tw- imix

tr- wadj tw- wadj tr- imix tw- imix

30

than two read-modify-write operations, and are chosen in that order, with

one or both remaining undefined.

Then in the base sequence (1), the first write sequence specifies accesses

to stream and the last write sequence specifies accesses to , if

defined. Similarly, in defining the read mapping heuristic insures that

accesses to occur at the beginning of a sequence and accesses to occur at

the end, as appropriate.

5.4.4 Read Mapping Heuristic

For read sequences of the base sequence (1), an optimal mapping of read

accesses to modules usually requires a trade-off between minimum page overhead and

maximum concurrency as discussed in section 5.1. Minimizing completion time results in

a balanced load of accesses such that if is the time to complete accesses in the

sequence , then

That is, for any pair of modules the time required to complete all read accesses differs by

no more than the maximum read access time.

The Read Mapping Heuristic (RMH) derived below approximates an optimal solution as

follows. For a read stream , accesses are mapped uniformly to a number of modules

proportional to the ratio of the minimum time to complete accesses to at a single module

and the minimum time to complete all read accesses at a single module. Essentially, each

stream is assigned resources proportional to the amount of work to be completed; over-

allocation limits the amortization of page overhead while under-allocation limits concur-

rency. Load balancing is performed in a greedy fashion by mapping accesses from to the

 modules with the minimum load. Page overhead is minimized at each module as refer-

ences to are initiated consecutively.

tr- wadj tr- imix

wNr 1+ : εNr 1+{ }

tw- imix wN: εN{ } tw- wadj

A0 … Am 1−, ,

tr- wadj tr- imix

A0 … Am 1−, ,

T Ak()

Ak

T Ak() T Al()− Tp/ r Tp/ m+≤ for� 0 k l, m 1−≤ ≤

ti µ̂i

ti

ti

µ̂i

ti

31

To compute and perform load balancing in mapping, a model is required for the time to

complete accesses to at a single module. From the performance models derived in sec-

tion 4, the time to complete c consecutive accesses to at a given module is the sum of c

multiplied by the page-hit read cycle time and the average page overhead multiplied

by the page miss time , so that

The function is parameterized for stride s so that completion time can be com-

puted both for all accesses to a single module where , as when computing fraction

of total work load to determine , and for accesses to one of modules where ,

as when computing module load for balancing. Note that in the page overhead modeling

function the number of vectors V is the number referenced by all streams in S.

For a multicopy system, not all modules necessarily service accesses referencing V vec-

tors; however, for load balancing the number to be referenced is not known until mapping

is complete. Thus the computed values of module load for balancing may be an over-esti-

mate under certain conditions.

From the preceding analysis, the minimum time to complete one iteration of accesses to

all read streams in S at a single module is

Then accesses from read stream are mapped to a number of modules computed as

µ̂i

ti

ti

Tp/ r

Tp/ m

Γi s c,() cTp/ r

ω s ti. d c, ,()Tp/ m when� ti tr- wadj= �(wrap-around�adj.)

η s ti. d c V, , ,()Tp/ m otherwise



+=

Γi s c,()

s ti. s=

µ̂i µ̂i s ξ̂i=

η s d c V, , ,()

∆ Γi ti. s εi,()
ti S∈

ti. m r=

∑=

ti µ̂i

µ̂i min εi max 1
Γi ti. s εi,()

∆ m 0.5+,(),()=

32

Note that the number of modules servicing is rounded to the nearest integer with a lower

bound of 1, as determined by the function, and an upper bound of the total number of

accesses to , as determined by the function.

For each module of the multicopy system, the load at module is the time to com-

plete read accesses in the sequence . As state previously, load balancing is performed in

a greedy fashion by mapping accesses from to the modules with the minimum load.

Thus the accesses to are distributed uniformly by placing references

in the sequences with the minimum module loads, and references

in each of the remaining sequences. For a sequence to which is

mapped, the load at module is recomputed as

where or , as appropriate.

Figure 6 presents the complete read mapping heuristic (RMH). To summarize, for each

read stream

• the number of modules to reference is computed, and

• access are distributed uniformly to the sequences referencing modules with the min-

imum loads.

5.4.4.1 RMH Performance

Table 1 compares results of the RMH with an optimal mapping of read accesses as deter-

mined via exhaustive search. The general form of the problem mapped is

(2)

Due to the time complexity of optimal assignment, problem sizes are small. The number

of modules m is 2 or 4, the number of read streams is between 2 and 4 and the depth of

loop unrolling b is between 1 and 3, inclusive; variables are chosen from a uniform ran-

dom distribution.

ti

max

ti min

Λk Mk

Ak

ti µ̂i

εi ti εi µ̂i⁄ 1+ ri

εi�mod� µ̂i() εi µ̂i⁄ ri

µ̂i εi�mod� µ̂i()− Ak ti

Mk

Λk Λk Γi ξ̂i c,()+=

c εi µ̂i⁄= c εi µ̂i⁄ 1+=

ti S∈

µ̂i

µ̂i

i∀ y i() fn x1 i() … xn i(), ,()=

33

// if the total number of read accesses R is less than the

// number of modules, assign one access to each sequence (module)

if

assign each , , one read access;

else

{

 for ;

// for each read stream in S

// note: first and last, as appropriate.

for all such that

{

compute ;

determine modules with smallest

such that ;

// assign accesses from to sequences and recompute

// module loads.

for (to)

{

if

;

else

;

;

;

}

}

}

R m≤

Ai 0 i R 1−≤ ≤

Λi 0←() �and� Ai ∅←() 0 i m 1−≤ ≤

ti
tr- wadj tr- imix

ti S∈ ti. m r=

µ̂i

Mp 1() … M
p µ̂i()

, , µ̂i Λi

Λp 1() …≤ Λ
p µ̂i()

≤

ti

k 1= µ̂i

k εi�mod� µ̂i≤

c εi µ̂i⁄ 1+←

c εi µ̂i⁄←

Ap k() Ap k() r i Mp k(),() : c{ }∪←

Λp k() Λp k() Γi ξ̂i c,()+←

Figure 6 Read Mapping Heuristic (RMH)

34

Table1 contains ratios of RMH to optimal performance, where performance is defined as

the average time to completeall read operations for a given iteration. Only read accesses

are considered to avoid skewing results in favor of the RMH, as write accesses in the gen-

eral problem (2) take the same time regardless of mapping.

Results from 300 tests are presented, with 100 from each of 3 different categories. Cate-

gory S1 presents results for streams of stride one access. CategoryS1SL presents results

from streams with a mixture of stride one and stride ‘large’, where large is defined as 1

data item per page. Finally, categorySRND presents results for a mixture of strides chosen

from a uniform random distribution between 1 and , wherep is page size andw

is word size. Overall, the RMH achieved optimal performance in 79% of the trials and was

within 20% of optimal for 93% of the trials.

5.4.5 Access Ordering Algorithm

Recall that for streamsS, with read streams through and write streams

through , the base access sequence employed is

The complete access ordering algorithm consists of the following steps:

Table 1 RMH / Optimal Performance Ratios

Category
Percentage of tests for which

S1 90 100 100 100

S1SL 77 81 89 93

SRND 71 81 91 97

RMH�performance
Optimal�performance

C≤

1.0= 1.1≤ 1.2≤ 1.3≤

1.5 p w⁄()

t1 tNr
tNr 1+

tN

A0 … Am 1−, ,[] wNr 1+ : εNr 1+ … wN: εN, , ,{ }

35

1. From the pairs of streams in S implementing a read-modify-write, if extant, choose a

pair to map for wrap-around adjacency, and , and a pair to map for inter-

mixing, and ; define write accesses in the base sequence accordingly.

2. Apply the RMH to determine the read sequences for the base sequence;

 and are mapped first and last, respectively.

The ordering algorithm is efficient, with a time complexity of for read

streams in S; this complexity represents sorting required for load balancing in the RMH.

5.4.6 Example Problem

For a 2 module multicopy system, an access sequence is generated for the canonical axpy

operation to illustrate the ordering algorithm derived above. Recall that axpy is defined as

and generates the three streams defined by , ,

and .

For each vector assume that data size equals word size, i.e. , and stride of

access is 1. The depth of loop unrolling is 2 so that .

The initial step identifies streams for intermixing and wrap-around adjacency, as discussed

in 5.4.3. For the axpy computation, and ; and

are undefined.

The RMH is then employed to define the read sequences and of the base access

sequence. First, the number of modules to service each stream is computed. For the given

stream parameters, the average times to complete accesses to and at a single module

are

tr- wadj tw- wadj

tr- imix tw- imix

A0 … Am 1−, ,

tr- wadj tr- imix

O Nr
2 Nrlog()() Nr

i∀ yi axi yi+←

tx x sx dx r, , ,() :1= tyr
y sy dy r, , ,() :1=

tyw
y sy dy w, , ,() :1=

dx dy w= =

εx εyr
εyw

2= = =

tyr
tr- wadj= tyw

tw- wadj= tr- imix tw- imix

A0 A1

tyr
tx

Γyr
1 2,() 2Tp/ r ω 1 w 2, ,()Tp/ m+ 2Tp/ r≈=

Γx 1 2,() 2Tp/ r η 1 w 2 2, , ,()Tp/ m+ 2Tp/ r Tp/ m+≈=

36

Approximations for and derived above are used to simplify expressions

in the remaining computations.

Then the time to complete all read accesses is

Finally, the number of modules servicing each of and is

The RMH load balancing criteria insures that accesses from streams and are placed

in sequences and respectively. As accesses from are mapped first,

though in this example the order is irrelevant.

Thus application of the access ordering algorithm to the axpy computation defined above

results in the access sequence

representing the linear sequence of references

Figure 7 depicts a typical iteration of the above sequence, assuming an access to the cur-

rent page requires 1 time unit and a page miss incurs an additional 2 time

unit penalty .

Γyr
1 2,() Γx 1 2,()

∆

∆ Γyr
1 2,() Γx 1 2,()+ 4Tp/ r Tp/ m+= =

tyr
tx

µ̂yr
min 2 max 1

Γyr
1 2,()

∆ 2 0.5+,(),() 1= =

µ̂x min 2 max 1
Γx 1 2,()

∆ 2 0.5+,(),() 1= =

tyr
tx

A0 A1 tyr
tr- wadj= tyr

r yr M0,() : 2 r x M1,() : 2,[] wyw
: 2{ },{ }

r yr M0,() r x M1,() r yr M0,() r x M1,() wyw
wyw

, , , , ,{ }

Tp/ r Tp/ w,()

Tp/ m()

37

5.4.7 Performance Predictor

For a MAP consisting of a set of streams S and an access sequence defined as above, a per-

formance predictor is derived for the average time per access and the processor-

memory bandwidth . Recall that as a result of the module reference model developed

in section 5.4.2, performance models represent estimated performance rather than bounds.

Functions modeling page overhead derived in section 4 for a single module system are

applicable to accesses at individual modules of a multicopy system. Recall that in general,

average page overhead is modeled by the function . For stream accesses that

are wrap-around adjacent or intermixed, average page overhead is modeled by the func-

tions and respectively. In employing these functions for a multicopy

system, stride s is module stride.

Let define the sequence of reads serviced by module for an iteration of the base

access sequence (1). Each is composed of a number of component sequences

where the first subscript i is defined to be that of the stream referenced. Thus repre-

sents the read access set , where or as appro-

priate. Similarly, is the sequence of write accesses serviced at and

ryr

1

rx
1

ryr

2

rx
2 wyw

1

wyw

1

wyw

2

wyw

2

0 1 2 3 4 5 6 7 8

Time (units)

M0

M1

Figure 7 Multicopy Example

Tavg

BW

η s d c V, , ,()

ω s d c, ,() ρ s d c, ,()

Pk Mk

Pk P i k,()

P i k,()

r i Mk,() : c{ } c εi µ̂i⁄= c εi µ̂i⁄ 1+=

Qk Mk Q i k,()

38

represents the write access set ; recall that writes are broadcast so that each mod-

ule services all accesses from write stream .

The time required to complete all accesses in the sequence is the sum of the number

of accesses c multiplied by the page-hit read cycle time and the average page over-

head multiplied by the page miss time ; i.e.

Note that in modeling page overhead, conditions that determine appropriate use of model-

ing functions must be applied in the context of the module accessed. is wrap-around

adjacent if there exists a such that read stream and write stream implement a

read-modify-write, is the first access set in and is the last access set in

; then models page overhead. Otherwise, is the applica-

ble model where the number of vectors V is the number accessed at module . For clar-

ity, functions modeling page overhead are subscripted with the module number to denote

context. Note that for a wrap-around adjacent access set, the page overhead

is an upper-bound representative of the overhead at the module servicing the access

from read stream ; this effect is a consequence of distributed reads and broadcast writes.

Similarly, the time required to complete all accesses in the sequence is the sum of

the number of accesses multiplied by the page-hit write cycle time and the aver-

age page overhead multiplied by the page miss time , so that

wi: εi{ }

εi ti

P i k,()

Tp/ r

Tp/ m

T P i k,()() cTp/ r

ωk ξ̂i ti. d c, ,()Tp/ m when� P i k,() �is�wrap-around�adj. �

ηk ξ̂i ti. d c V, , ,() otherwise



+=

P i k,()

Q j k,() ti tj

P i k,() Pk Q j k,()

Qk ωk ξ̂i ti. d c, ,() ηk ξ̂i ti. d c V, , ,()

Mk

ωk ξ̂i ti. d c, ,()

µ̂i
th

ti

Q i k,()

εi Tp/ w

Tp/ m

T Q i k,()() εiTp/ w

ρk ti. s ti. d εi, ,()Tp/ m when� Q i k,() �is�intermixed

ηk ti. s ti. d εi V, , ,()Tp/ m otherwise



+=

39

In this context is intermixed if there exists a such that read stream and

write stream implement a read-modify-write, is the last access set in and

 is the first access set in . Note that for an intermixed access set, the page over-

head is an upper-bound representative of the overhead at the module ser-

vicing the last reference from the corresponding read access set ; again this is a

consequence of distributed reads and broadcast writes.

From the preceding analysis, the time to complete all read operations in the sequence is

the sum of the time to complete all accesses in each component sequence; i.e.

Then the time to complete all read accesses in an iteration of the base sequence (1) is the

maximum time to complete read operations at any module, so that

Note the tacit assumption in computing is that buffering is sufficient so that read

accesses proceed without access gaps that result in increased completion, as discussed in

section 5.4.1.1.

Similarly, the time to complete all write operations in the sequence is the sum of the

time to complete all accesses in each component sequence; i.e.

And the time to complete all write operations in an iteration of the base sequence is

Q i k,() P g k,() tg

ti P g k,() Pk

Q i k,() Qk

ρk ti. s ti. d εi, ,()

rg
εg

Pk

T Pk() T P i k,()()
P i k,() Pk∈

∑=

Tr max T P0() … T Pm 1−(), ,()=

Tr

Qk

T Qk() T Q i k,()()
Q i k,() Qk∈

∑=

Tw max T Q0() … T Qm 1−(), ,()=

40

Then an estimate of the time to complete all accesses in a given iteration is the sum of the

time to complete all read and write accesses so that

From the above, the average time per access is computed as the time to complete all

accesses in a given iteration divided by the number of data items referenced, resulting in

The effective memory bandwidth , in megabytes per second, is the number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

5.5 Simulation Results

For a multicopy memory system there is no ‘natural’ mapping of accesses to modules.

Thus the quality of the access ordering algorithm is best captured by comparison with an

optimal reference sequence; such a comparison is presented in section 5.4.4.1. For refer-

ence sequences generated by the ordering algorithm, simulation results are presented to

validate the accuracy of the performance models.

To assess the viability of a multicopy system two factors must be considered: performance

and cost. Performance is evaluated relative to a sequentially interleaved memory, as inter-

leaving is the most common parallel memory storage scheme. Cost is evaluated in terms

of both hardware complexity and data space.

Ttot Tr Tw+=

Tavg

Tavg

Ttot

b ti.σ
ti S∈
∑

=

BW

BW

103b ti.d() ti.σ()[]
ti S∈
∑

Ttot
=

41

5.5.1 Performance Predictors

Results are first presented to validate performance predictors. A non-buffered 2 module

multicopy system of both uniform-access and page-mode components is considered; mod-

ule parameters for both component types are defined in Table 2.

Table 3 compares performance of ordered accesses as calculated analytically and mea-

sured via simulation for a range of scientific kernels. For all computation the depth of loop

unrolling is 4 and data is double-precision.

The daxpy and dvaxpy computations are double-precision versions of the axpy and vaxpy

computations, respectively, discussed earlier. The remaining computations are selections

from the Livermore Loops [Mcma90]. This set of scientific kernels serves as the bench-

mark suite for all subsequent simulations.

For the computations and conditions modeled, analytic and simulation results differ by

less than 1%. Two exceptions are highlighted. Recall from section 5.4.1.1 that in modeling

performance for read operations, buffering is assumed sufficient so that accesses proceed

at the maximum rate. For both cases noted, a non-buffered system results in access gaps

that reduce performance; for a buffer size of 1, simulated performance achieves the pre-

dicted bandwidth.

Table 2 Module Parameters (Both)

Uniform-access Page-mode

Parameter Value Parameter Value

8 8

4096

40 40

40 40

120

w w

p

Tu/ r Tp/ r

Tu/ w Tp/ w

Tp/ m

42

5.5.2 Evaluation of Multicopy Performance

A multicopy system offers a number of advantages over a sequentially interleaved mem-

ory. For read streams, maximum concurrency is achievable regardless of stride and page

overhead can be more effectively amortized by directing accesses from a given stream to a

smaller number of modules. However, because read accesses must be tagged to reference

a specific module, to fully utilize concurrency the number of read accesses in a loop must

equal or exceed the number of memory modules. Furthermore, write operations are broad-

cast to all modules to maintain coherence and thus represent the serialization of an other-

wise parallel operation.

Table 3 Analytic vs Simulation Results (Both)

Computation

Uniform-access Page-mode

Analysis Simulation Analysis Simulation

daxpy 240.0 240.0 171.0 170.9

dvaxpy 256.0 256.0 177.2 159.2

LL-1 240.0 240.0 171.0 170.6

LL-3 320.0 320.0 397.7 394.6

LL-4 320.0 320.0 388.6 386.4

LL-5 240.0 240.0 171.0 170.6

LL-7 256.0 256.0 152.0 152.0

LL-11 213.3 213.3 133.0 133.1

LL-12 213.3 213.3 133.0 133.1

LL-20 261.8 261.8 171.0 171.1

LL-21 240.0 240.0 161.3 156.7

LL-22 228.6 228.6 142.5 142.3

LL-24 320.0 320.0 395.4 393.1

BW BW BW BW

43

For a multicopy system to deliver greater bandwidth than an equivalent interleaved mem-

ory, increases in parallelism and/or reduction in page overhead for read accesses must

dominate the loss of parallelism for writes; in this context an equivalent system is one with

the same number of modules, equal buffer depth, and constructed from identical memory

components. Note that in all but extreme circumstances, a multicopy system of uniform-

access components is not competitive as page overhead is not a concern. Thus only sys-

tems of page mode components are considered here.

Table 4 Multicopy vs Interleaved (4:1)

Computation

4:1

%Increase
Interleaved Multicopy

daxpy 266.7 199.2 (25.3)

dvaxpy 246.2 199.3 (19.0)

LL-1 200.0 199.2 (0.4)

LL-3 200.0 786.2 293.1

LL-4 200.0 751.6 275.8

LL-5 200.0 199.2 (0.4)

LL-7 200.0 227.8 13.9

LL-11 200.0 145.2 (27.4)

LL-12 200.0 145.2 (27.4)

LL-20 200.0 256.5 28.3

LL-21 266.7 188.4 (29.4)

LL-22 200.0 190.1 (4.5)

LL-24 781.7 772.8 (1.1)

BW BW

44

Table 4 presents simulation results comparing bandwidth delivered by a 4 module multi-

copy system with buffer depth 1 to an equivalent interleaved system for the set of bench-

mark kernels; the depth of loop unrolling is 4 for all computations. Module parameters are

those of Table 2 with a page miss versus hit cycle time ratio of 4:1, typical of current

DRAMs. For the interleaved system, access ordering is performed assuming known align-

ment [Moye92b] to achieve maximum bandwidth.

For the computations measured, vector strides are such that all m modules in a sequen-

tially interleaved system are referenced by each stream for any . Thus the multi-

copy system can reduce page overhead for read accesses but achieves no greater

parallelism. Performance results are mixed: 4 computations achieve greater bandwidth, 5

computations experience a reduction in bandwidth, and 4 computations achieve approxi-

mately the same bandwidth. Note that LL-3 and LL-4 represent dot products and do not

generate write streams, thus the substantial increase in performance.

For next generation DRAMs the page miss-hit cycle time ratio will increase dramatically.

This situation benefits a multicopy architecture as reduction in page overhead becomes

even more critical to obtaining good performance, as illustrated below.

Assume a 4 module multicopy system with buffer depth 1 and an equivalent interleaved

system. Module parameters are defined in Table 5 with a page miss-hit cycle time ratio of

Table 5 Module Parameters (Page)

Parameter Value

8

4096

10

10

90

m 2n=

w

p

Tp/ r

Tp/ w

Tp/ m

45

10:1. Table 6 presents simulation results comparing bandwidth achieved for the set of

benchmark computations; depth of loop unrolling is 4 in all cases.

Relative performance of the multicopy architecture is improved: 8 computations achieve

greater bandwidth than the sequentially interleaved system, 4 computations experience

modest degradation of less than 15%, and only 1 computation experiences a substantial

reduction in bandwidth of 21%. Note that for LL-3 and LL4, which generate no write

streams, the multicopy architecture achieves nearly an order of magnitude more band-

width than the equivalent interleaved system.

Table 6 Multicopy vs Interleaved (10:1)

Computation

10:1

%Increase
Interleaved Multicopy

daxpy 457.1 398.8 (12.8)

dvaxpy 412.9 454.3 10.0

LL-1 320.0 397.7 24.3

LL-3 320.0 3039.7 849.9

LL-4 320.0 2681.5 738.8

LL-5 320.0 398.8 24.6

LL-7 320.0 489.6 53.0

LL-11 320.0 278.3 (13.0)

LL-12 320.0 277.4 (13.3)

LL-20 320.0 550.9 72.2

LL-21 457.1 360.3 (21.2)

LL-22 320.0 408.1 27.5

LL-24 3091.3 2894.7 (6.4)

BW BW

46

A multicopy architecture can substantially improve performance over an equivalent inter-

leaved memory for computations with a high read to write ratio, as demonstrated above.

Many computations exhibit this characteristic naturally; for others, intelligent use of cache

memory and strip-mining or tiling techniques can increase the read-write ratio by holding

modified vector elements in cache.

5.5.3 Evaluation of Multicopy Cost

A multicopy architecture can provide increased bandwidth over an equivalent interleaved

memory. However, additional cost is incurred in terms of both hardware complexity and

data space. Each of these issues is considered below.

The additional hardware complexity for a multicopy system is minimal. A sequentially

interleaved memory distributes accesses to modules based on low-order address bits. For

read accesses, a multicopy architecture distributes references to modules based on high-

order address bits; these bits can be set at compile time as a result of mapping as per-

formed by the RMH. Write accesses require additional hardware for broadcast to all mod-

ules.

A strict multicopy system provides only the address space of an equivalent

interleaved architecture as data is replicated at all m modules. Note however that the hard-

ware requirements for the two systems are very similar. It is easy to imagine a memory

controller capable of implementing both schemes. In fact, given proper hardware support,

multicopy and interleaved memory can be implemented concurrently by designating a

portion of the interleaved address space for multicopy access.

Thus the cost of a multicopy architecture is considerably less than the functional descrip-

tion might imply. Building multicopy support into an interleaved architecture can provide

a low cost means for increasing effective memory bandwidth for amenable computations.

1 m⁄() th

47

5.6 Summary

Access ordering algorithms are derived for a proposed multicopy architecture. Perfor-

mance predictors are developed for the effective memory bandwidth achieved by ordered

accesses.

For a multicopy system of uniform-access components, the ordering algorithm divides

accesses into two phases: a read phase and a write phase. Read accesses are distributed

uniformly across modules, optimizing concurrency; write accesses are broadcast and

hence proceed sequentially. Ordering is trivial and a performance predictor is derived in a

straight-forward fashion. Simulation demonstrates the performance model to be accurate.

Except in extreme cases of poor data placement, a multicopy system of uniform-access

components does not represent a viable alternative to an equivalent sequentially inter-

leaved architecture.

For a multicopy system of page-mode components ordering is analogous to the uniform-

access case. However, mapping read accesses to modules is performed via a heuristic.

Intermixing and wrap-around adjacency are employed in a greedy fashion at the bound-

aries of the read and write phases. The ordering algorithm has a time complexity of

 for read streams that is representative of load balancing in the RMH.

Simulation demonstrates performance models for ordered accesses to be accurate.

Performance results indicate that a multicopy system of page-mode components can pro-

vide increased bandwidth over an equivalent interleaved memory for computations with a

high read to write access ratio. Furthermore, multicopy access can be implemented with a

minimal increase in hardware complexity as part of a heterogenous interleaved/multicopy

memory architecture.

6 Implementation Issues
Addressing all the implementation issues associated with access ordering for a multicopy

memory is beyond the scope of this report. However, several important topics are briefly

discussed below; a more complete treatment of these issues can be found in [Moye92c].

O Nr
2 Nrlog()() Nr

48

Access ordering employs loop unrolling which creates register pressure and has tradition-

ally been limited by register resources. Lee [Lee91] presents a technique that employs

cache memory to mimic a set of vectors registers, effectively increasing register file size

for vector computations. Essentially, storage is defined for a set of pseudo vector registers

and placed in cache via a standard (caching) load instruction. Vector operands are loaded

into the pseudo registers, arithmetic operations are performed, and pseudo register results

are stored back to the appropriate vector elements in memory. Vector registers are loaded

by first loading each vector element into a processor register via a non-caching access, and

then storing the value to the appropriate vector register location in cache.

Access ordering employs non-caching memory instructions to control the sequence of

requests observed by the memory system. Though the effectiveness of cache memory for

numeric codes is still the topic of much research, many codes do benefit from caching with

careful application of iteration space tiling. Thus caching and access ordering should be

used together as complementary techniques, caching multiply accessed blocks of data and

ordering non-caching accesses to single-visit data items.

Finally, to simplify analysis and obtain optimality results, ordering algorithms derived

presume access streams adhere to the stream interaction restriction. Minor relaxation of

this restriction to accommodate self-antidependence cycles and read streams with inter-

secting address spaces allows algorithms to be applied to the set of vectorizable loops.

Self-antidependence cycles are accommodated by ordering accesses from each stream

independently and insuring that all reads are initiated prior to the first write. Read streams

with intersecting address spaces are accommodated by simply ordering streams indepen-

dently, as input dependence can be ignored for non-volatile memory locations.

7 Conclusions
A multicopy memory is proposed here as a parallel memory system consisting of m mod-

ules of replicated data such that if represents the contents of address a at module

, then . A multicopy memory system increases the

* Mk a,()

Mk * M0 a,() … * Mm 1− a,()= =

49

potential for access concurrency, as maximum concurrency is achievable for all strides of

reference. Furthermore, for systems of page-mode DRAMs, page overhead can be more

effectively amortized by directing stream accesses to a smaller number of modules.

Access ordering algorithms are developed that exploit a multicopy memory. Access order-

ing is a loop optimization that reorders non-caching accesses to better utilize memory sys-

tem resources. For a multicopy memory architecture, the access ordering algorithms

developed here determine a well-defined interleaving of vector references that maximizes

effective bandwidth for a given computation and memory device type. Consequently, ana-

lytic models of performance can also be derived. Access ordering algorithms developed

are applicable to a superset of the class of vectorizable loops, an arguably large and inter-

esting problem domain.

Simulation results indicate that a multicopy system of page-mode components can provide

increased bandwidth over an equivalent interleaved memory for computations with a high

read to write access ratio; nearly an order of magnitude better performance is achieved in

some benchmarks. Furthermore, multicopy access can be implemented with a minimal

increase in hardware complexity as part of a heterogeneous interleaved-multicopy mem-

ory architecture.

50

Appendix A

Intermix Sequences

A.1 Derivation of

The function is the average page miss count in performing each set of c write

accesses in the intermix sequence , where and specify a

read-modify-write operation; i.e. .

Case: (the number of data items per word is exactly one)

In deriving , the following observation is made: in accessing c data items the

address space spanned, in bytes, is .

Assume , then the address space spanned touches at most two pages. If

 is the probability that c accesses touch one page, and is the probability that two

pages are touched, then

That is, for the access sequence , the write operations

 through , , suffer a page miss only when and ref-

erence a different page.

The number of d-aligned starting positions in a given page for the c read accesses is

The number of starting positions resulting in the c read accesses touching exactly one page

is

ρ s d c, ,()

ρ s d c, ,()

… ri: c wj: c,{ } : h …, ,{ } ti tj

ti. v tj. v=

γ s d,() 1=

ρ s d c, ,()

c 1−() sd d+

c 1−() sd d+ p≤

p1 p2

ρ s d c, ,() p1 0() p2 2()+ 2p2= =

… ri: c wj: c,{ } : h …, ,{ }

wj
k 1−() c 1+ wj

kc 1 k h≤ ≤ ri
k 1−() c 1+ ri

kc

S
p
d

=

S1
p c 1−() sd d+()−

d
1+=

51

Then the probability that a set of c read accesses touch exactly one page is

and the probability that two pages are touched is

Thus, when , the average page miss count in performing each set of c

write accesses is

When , the address space spanned touches at least two pages, implying

that each sequence of c write accesses must begin with a page miss and page overhead is

modeled as

which is one plus the remaining data items to access, , divided by the number of data

items per page.

Combining the results derived above

p1

S1

S
1

c 1−() sd
p

−= =

p2 1 p1−
c 1−() sd

p
= =

c 1−() sd d+ p≤

ρ s d c, ,() 2p2
2 c 1−() sd

p
= =

c 1−() sd d+ p>

1
c 1−

φ s d,()+

c 1−

ρ s d c, ,()

2 c 1−() sd
p

when c 1−() sd d p≤+

1
c 1−

φ s d,()+ when c 1−() sd d+ p>





=

52

Case: (the number of data items per word is greater than one)

Deriving for this case is completely analogous to the previous case, with the

address space spanned being and all accesses being word-aligned, so

that

The two cases derived above may be combined into the single modeling function

A.2 Proof of Optimal Intermix Pattern

Given: read stream and write stream specifying a read-modify-write, i.e. .

Prove: the intermix sequence is the optimal interleave pattern.

Proof: Consider the general interleave case

where, by definition, must proceed and

γ s d,() 1>

ρ s d c, ,()

cw cγ s d,()sd=

ρ s d c, ,()

2 c 1−() γ s d,()sd
p

when cγ s d,()sd p≤

1
c 1−() γ s d,()

φ s d,()+ when cγ s d,()sd p>





=

ρ s d c, ,()

2 c 1−() γ s d,()sd
p

when c 1−() γ s d,() sd d p≤+

1
c 1−() γ s d,()

φ s d,()+ when c 1−() γ s d,() sd d+ p>





=

ti tj ti. v tj. v=

… ri: c wj: c,{ } : h …, ,{ }

… ri: q1 wj: k1 … ri: qn wj: kn …, , , , , ,{ }

ri
k wj

k

ql
l 1=

n

∑ kl
l 1=

n

∑=

53

Then let

It is easily seen that for , . If there exists a then there must exist at

least one u such that , in which case

let and , then

• the page miss count in performing the read sequence can be greater

than in the case where since may access a sequentially earlier page than

;

• similarly, the page miss count in performing the write sequence can

be greater than in the case where as may access a sequentially earlier

page than .

Thus, the minimum page miss count is achieved when for ; i.e. when

 for .

 is the optimal intermix pattern.

QED

ql
l 1=

λ

∑ Sq λ= and kl
l 1=

λ

∑ Sk λ=

λ n< Sq λ Sk λ≥ ql kl≠

Sq u Sk u>

uq Sq u= uk Sk u=

… ri: qu 1+ …, ,{ }

Sq u Sk u= wj
uk

ri
uq

… wj: ku 1+ …, ,{ }

Sq u Sk u= wj
uk 1+

ri
uq 1+

Sq u Sk u= u n≤

ql kl= 1 l n≤ ≤

… ri: c wj: c,{ } : h …, ,{ }∴

54

Bibliography

[BeDa91] Benitez-M, Davidson-J, “Code Generation for Streaming: an Access/Execute Mechanism”,
Proc. ASPLOS-IV, 1991, pp. 132-141.

[BeRo91] Bernstein-D, Rodeh-M, “Global Instruction Scheduling for Superscalar Machines”, Proc.
SIGPLAN’91 Conf. Prog. Lang. Design and Implementation, 1991, pp. 241-255.

[BuKu71] Budnik-P, Kuck-D, “The Organization and Use of Parallel Memories”, IEEE Trans. Com-
put.,20, 12, 1971, pp. 1566-1569.

[CaCK90] Callahan-D, Carr-S, Kennedy-K, “Improving Register Allocation for Subscripted Vari-
ables”, Proc. SIGPLAN ‘90 Conf. Prog. Lang. Design and Implementation, 1990, pp. 53-65.

[CaKe89] Carr-S, Kennedy-K, “Blocking Linear Algebra Codes for Memory Hierarchies”, Proc. of the
Fourth SIAM Conference on Parallel Processing for Scientific Computing, 1989.

[CaKP91] Callahan-D, Kennedy-K, Porterfield-A, “Software Prefetching”, Proc. ASPLOS-IV, 1991,
pp. 40-52.

[HaJu87] Harper-D, Jump-J, “Vector Access Performance in Parallel Memories Using a Skewed Stor-
age Scheme”, IEEE Trans. Comput.,36, 12, 1987, pp. 1440-1449.

[Harp89] Harper-D, “Address Transformations to Increase Memory Performance”, Proc. 1989 Intl.
Conf. Parallel Processing, 1989, pp. 237-241.

[Inte89] Intel Corporation, “i860 64-Bit Microprocessor Hardware Reference Manual”, ISBN 1-
55512-106-3, 1989.

[KlLe91] Klaiber-A, Levy-H, “An Architecture for Software-Controlled Data Prefetching”, Proc. 18th
Annual Intl. Symp. Comput. Architecture, 1991, pp.43-53.

[Lam88] Lam-M, “Software Pipelining: An Effective Scheduling Technique for VLIW Machines”,
Proc. SIGPLAN’88 Conf. Prog. Lang. Design and Implementation, 1988, pp. 318-328.

[LaRW91] Lam-M, Rothberg-E, Wolf-M, “The Cache Performance and Optimizations of Blocked
Algorithms”, Fourth International Conf. on Arch. Support for Prog. Langs. and Operating
Systems, 1991, pp. 63-74.

[LaVo82] Lawrie-D, Vora-C, “The Prime Memory System for Array Access”, IEEE Trans. Comput.,
31, 5, 1982, pp. 435-442.

[Lee90] Lee-K, “On the Floating-Point Performance of the i860 Microprocessor”, NASA Ames
Research Center, NAS Systems Division, RNR-090-019, 1990.

[Lee91] Lee-K, “Achieving High Performance on the i860 Microprocessor with Naspack Subrou-
tines”, NASA Ames Research Center, NAS Systems Division, RNR-091-029, 1991.

[Mcma90] McMahon-F, FORTRAN Kernels: MFLOPS, Lawrence Livermore National Laboratory,
Version MF443.

[Moye91] Moyer-S, “Performance of the iPSC/860 Node Architecture”, University of Virginia, IPC-
TR-91-007, 1991.

55

[Moye92a] Moyer-S, “Access Ordering Algorithms for a Single Module Memory”, University of Vir-
ginia, IPC-TR-92-002, 1992.

[Moye92b] Moyer-S, “Access Ordering Algorithms for an Interleaved Memory”, University of Virginia,
IPC-TR-92-012, 1992.

[Moye92c] Moyer-S, “Access Ordering and Effective Memory Bandwidth”, Ph.D. Dissertation in
progress, Computer Science Department, University of Virginia.

[Quin91] Quinnell-R, “High-speed DRAMs”, EDN, May 23, 1991, pp. 106-116.

[Rau91] Rau-B, “Pseudo-Randomly Interleaved Memory”, Proc. 18th Intl. Symp. Comput. Architec-
ture, 1991, pp. 74-83.

[WeSm90] Weiss-S, Smith-J, “A Study of Scalar Compilation Techniques for Pipelined Supercomput-
ers”, ACM Trans. Math. Soft., 16, 3, 1990, pp. 223-245.

[Wolf89] Wolfe-M, “Optimizing Supercompilers for Supercomputers”, MIT Press, Cambridge, Mass.,
1989.

