

Component-Oriented Monitoring of Binaries for Security

Raghavendra Rajkumar, Andrew Wang, Jason D. Hiser, Anh Nguyen-Tuong,
Jack W. Davidson, John C. Knight

151 Engineer’s Way, Charlottesville VA 22904
Department of Computer Science, University of Virginia
{rr4ff|aaw6f|hiser|nguyen|davidson|knight}@virginia.edu

Abstract
Security monitoring systems operate typically at the

process level. Various authors have indicated that
monitoring at a finer level of granularity than the
process is highly desirable. In this paper, we introduce
COMB, a framework for imposing policies to confine
the behavior of applications. Unlike previous
approaches, our technique is applied per component
(functions, libraries, and/or plugins) while requiring
only the availability of the binary executable form of
the program.

To demonstrate the feasibility of COMB, we report
a case study on a real-world, representative program,
the Firefox web browser. Two characteristics of
Firefox permit possibly untrusted code to be executed.
First, it provides an extensible architecture to allow
third-party developers to extend its functionality, and
second it makes use of more than 150 external
libraries. Using a simple system-call monitoring policy
applied to Firefox plugins, we show that COMB can
provide protection with reasonable overhead.

1. Introduction

In this paper, we present COMB (Component-Oriented
Monitoring of Binaries), a framework that enables
fine-grained monitoring and security-policy
enforcement of binary programs. Existing methods of
confining the behavior of binary programs typically
operate at the process level or system level, by
monitoring and regulating the interactions between
processes and the underlying operating system
[2][23][27].

COMB provides the ability to divide a single
process into components, and then monitor and enforce
distinct policies on components individually. COMB
defines a component as the code within specified
address ranges. Defining components by address
ranges provides the flexibility to include various
notions of functional abstraction, including
functionality encoded in static libraries, shared libraries

and plugins. The policies that COMB enforces include
those associated with sequences of actions, including
sequences involving multiple components.

In typical applications, process-level monitoring
forces identical monitoring policies to be applied to the
entire program. We refer to such monitoring
techniques as coarse-grained. Several authors have
observed that fine-grained monitoring, as provided by
COMB, would improve the accuracy of many security
techniques [7][13][16][17][24].

As an example of the utility of fine-grained

monitoring, consider the increasing use of extensible
applications. From the perspective of the operating
system, extensions—commonly referred to as
plugins—are indistinguishable from the hosting
application unless they operate as independent
processes. Several widely used applications, including
Mozilla Firefox and the Apache web server, utilize
plugin architectures with plugins operating in the same
process as the hosting application. Such applications
are extended, often by users, using plugins from
different sources with different levels of trust. In many
cases, an action that is normal for one plugin or the
hosting application might be considered malicious for
another. For example (see Figure 1), opening critical
files such as “/etc/group” might be required by the
hosting application and acceptable for a plugin from a

trusted source but problematic for certain files or
certain plugins.

Browsers in which plugins run as individual
processes provide finer granularity. Several such
browsers already exist, e.g. Google Chrome [1] and
Microsoft Gazelle [29], and others are under active
development, e.g. Mozilla Electrolysis [14]. We
conjecture that over the long-term even a process-per-
plugin model would not be sufficiently fine-grained.
For example, a plugin might itself be composed of
external libraries and so the unit of confinement
desired may need to be refined even further. In
addition, the existing large installed base of extensible
monolithic applications, such as Internet Explorer,
Firefox, Apache and various media players, is unlikely
to be retired in the near future.

To evaluate COMB, we have built a prototype
implementation. Our prototype operates on IA-32,
ELF program binaries and does not require access to
source code or debugging information. As a case study
in this paper, we describe the application of COMB to
the Firefox browser using only the downloaded binary
form. As an example of a simple COMB policy, we
demonstrate how system-call-based policies can be
applied to individual Firefox plugins. Our threat model
is that of benign plugins that might contain
vulnerabilities through which attackers can attempt to
gain control of the system. According to Symantec,
there were over 400 such vulnerabilities identified in
browser plugins in 2008 [26].

To summarize, the major contributions of this
paper are:

• The development of a general and flexible
framework for monitoring, modifying and
restricting the behavior of components such as
dynamically-loaded libraries or plugins.

• The ability to do so using only the binary
executables of programs.

• A working prototype to establish the feasibility of
the COMB framework using system-call
monitoring and prevention as a sample policy.

This paper is organized as follows. Section 2,
presents the architecture of COMB, and section 3
discusses the potential approaches to exploiting fine-
grained monitoring in security applications. Section 4
summarizes our prototype implementation, and section
5 describes a case study based on Firefox and presents
performance results based on the SPEC2000
benchmarks. Section 6 discusses related work, and
finally section 7 presents our conclusions.

2. Component-Oriented Monitoring

COMB extends traditional monitoring techniques by
exposing to the system’s policy enforcement
mechanism additional information about an action
being taken. We refer to this information as the context
of the action. Traditional policies either allow or deny
actions based upon the operation and parameters of the
action. Expressed as a function, this monitoring is:

seq (operation × args)
 → {allow, deny}

COMB policies take the form:

seq (operation × args × context)
 → {allow, deny, response}

where response is a response function that can
replace the original action with recovery code.

Although other approaches are possible, our
implementation of COMB relies upon four
architectural techniques: (1) applications are executed
using software dynamic translation; (2) a component
memory map is maintained during execution; (3) a
shadow stack is maintained for each thread during
execution; and (4) policy recognizers operate with data
from the monitoring mechanism to detect and respond
to policy violations.

The overall architecture of COMB is shown in

Figure 2, and the basic principle of operation is as
follows. Prior to (for static items) and during (for
dynamic items) execution of the application, the
component memory map is built and updated to reflect
the locations of items loaded into memory. The entries
that are included in the map are determined by the
components for which fine-grain monitoring is desired.

During execution, the shadow stack is maintained
to provide a complete and consistent structure of return
addresses for function calls. Such information provides
the necessary context to express COMB policies.

The software dynamic translator (SDT) enables
software malleability and adaptivity at the instruction
level by providing run-time monitoring and code
modification capabilities. SDT can affect an executing
program by injecting new code, modifying existing
code, or controlling the execution of the program in
some way. These capabilities give system designers
unprecedented flexibility to control and modify a
program’s execution [12][14][21][22]. In Section 4, we
provide an overview of Strata, the software dynamic
translator used to implement COMB.

For COMB, we use the SDT to examine each
instruction prior to the instruction’s execution. This
examination allows the translator to detect the binary
structures corresponding to the actions of interest prior
to the actions being taken by the program. Many
actions such as system calls are unlikely to be directly
located in the responsible components, because the
actual action is effected by a library function. Thus, the
component responsible for the action is determined by
examining the shadow stack looking for a return
address that is located within a component of interest.
The details of the component are then obtained from
the component memory map.

Once the component responsible for the action is
identified, the triple—action, arguments, context—is
submitted to one or more policy recognizers. If a
policy violation is detected, the response is applied by
the binary translator. We envision a wide variety of
responses that might be appropriate depending on the
knowledge that the policy author has about the
component. A partial list of responses includes:

• Terminate the application. Although this approach
is very “brute force,” it may be the only safe option
in some cases.

• Restrict the component’s privileges by replacing the
offending action with a virtualized error, such as a
returning “File Not Found” when attempting to
open a file that should not be opened.

• Log the offending policy violation for off-line
auditing.

• Throttle the component’s progress by inserting a
pre-defined delay. This action would be useful if
the malicious activity was to consume excessive
memory, network, or disk bandwidth causing
denial-of-service for the remainder of the machine.

• Raise an alarm to a remote machine or human
indicating that a possible security breach may be
underway.

• Increase the monitoring level of the application to
thwart potential exploits via heavier-weight
instrumentation. Such an approach would be useful

for individual components with well-known APIs.
If the API is being misused, a heavy-weight
detector may be useful for determining if the
misuse is intentional and benign due to a new
version or restriction to the API, or malicious and
might cause a memory overwrite or other security
violation.

• Restrict execution of the component to a set of
deemed safe functions (which may be no functions
at all). For future requests to non-safe functions,
return a virtualized error code.

As a simple example of the use of COMB, consider
an attempt by an untrusted plugin to make a prohibited
system call. The binary translator detects the system
call in the binary program and identifies the associated
parameters. Using the shadow stack and the component
memory map, the component initiating the call is
identified and the simple policy of denying the system
call is invoked. The desired response of deleting the
call and returning an error code is then effected by the
binary translator.

3. Exploiting Fine Grained Monitoring

The fine-grained monitoring capabilities of the COMB
framework coupled with the use of software dynamic
translation opens up a rich design space for designing
and enforcing security policies. The potential benefits
are enhanced by two aspects of the fine-grained
monitoring framework: (1) monitoring operates on
binary programs with no additional information
required; and (2) monitoring is effected before an
action is taken by the program thereby preventing
damage from the action and permitting response
actions to be taken. We highlight several such policies:

• Prevention of Excess Resource Consumption.
Previous work has demonstrated the viability of
software dynamic translation for enforcing policies
to limit network bandwidth at the process level
using system call interposition [21]. COMB polices
are more expressive in that they can enforce
restrictions at the level of components.

• API Restriction. Application programs rely on
external libraries to implement functionality. These
libraries typically define an API that imposes
requirements on call sequences or parameter values
that programmers must conform to. Libraries often
fail to verify compliance, either accidentally or
intentionally for efficiency or ease-of-
implementation purposes. Example requirements
include failure to release allocated memory blocks,
attempts to release allocated blocks more than
once, and failure to close open files. In the context

of extensible applications such as Firefox, the API
regulates the lifecycle of extensions with respect to
the hosting application as well as providing bi-
directional support services to handle URLs,
streams, memory, drawing and events [18]. With
the ability to monitor events at the granularity of
function calls, fine-grained monitoring enables
policies that check for compliance with the API.

• Blocking System Calls with Context. COMB
policies can take into account both the arguments to
a system call and the context information provided
by the component details. This precision enables
the expression of policies to confine the behavior of
intra-process components. Furthermore, the use of
software dynamic translation enables a richer
response than simply shutting down a program. For
example, error virtualization techniques that return
an error code (as if the error originated from the
operating system) [25] are easily implemented and
tailored for each system call.

• High-Level Behavioral Policies. Though not part
of the current COMB implementation, a promising
venue to explore is to enable policies at higher
semantic levels. An example would be the ability to
write policies explicitly against the fact that
“program or component X is rendering an image,
playing a movie, or printing a file”.

• Component Shutdown. In response to a failed
component, a policy response might specify that
the component should be shut down and how to
achieve that goal. Many applications can work
acceptably with one or more missing components.
For example, the Firefox web browser can render
most web pages without the Adobe Reader plugin.
Likewise, a word processing program could
function without the dictionary component needed
to provide spell-checking support. If the component
violates its policy (say, by trying to execute an
execve system call), the response mechanism
could be to shut down that component. The safest
response allows no more instructions from the
component’s address range to execute. In the case
that some functions are necessary for the proper
shutdown procedure to complete, those functions
could be individually specified in the component.
For other functions, an error-virtualization
technique could be used to elide execution when
the functionality is requested. In both the web
browser plugin case and the word processor
dictionary component case, gracefully degrading
the performance of the application by removing
only the compromised component allows the user
to continue work until their data can be written to

permanent storage, and the program can be
restarted in an uncompromised state.

In general, applying fine-grained policies to commonly
used libraries and widely-deployed extensible
platforms such as browsers and web servers would
result in reusable policies that could easily be shared
across multiple applications. Again, since COMB
operates at the binary level, such universal policies
could be put into effect even for programs and libraries
for which the source code is unavailable.

4. Implementation

In this section, we summarize our prototype
implementation of COMB. Other implementation
approaches are possible.

The application is executed using software dynamic
translation. In general, software dynamic translation
can affect an executing program by injecting new code,
modifying existing code, or controlling the execution
of the program in prescribed ways. Examples of
software dynamic translation systems include Strata
[22], Pin [14], and Dynamo-RIO [12]. We chose Strata
for our prototype.

The Strata Virtual Machine mediates application
execution by examining and translating instructions
before they execute on the host processor. Blocks of
translated instructions called fragments are held in a
Strata-managed cache, called the fragment cache.
Strata is implemented as a co-routine resident with the
application and is entered by capturing and saving the
application context (e.g., program counter, condition
codes, registers, etc.). Following context capture, Strata
processes the next application instruction fragment. If a
translation for this fragment has been cached, a context
switch restores the application context and begins
executing cached translated instructions on the host

machine. Performance assessment of optimized
versions of Strata indicates that it imposes modest
overhead on the application [10][22], and this is one of
the reasons why we chose Strata for our prototype.

The component memory map (CMM) maps virtual
address ranges to components. The CMM is
implemented as a splay tree. To populate the CMM,
the application binary code is instrumented using
Strata’s introspection capabilities to monitor open,
mmap and close system calls, so as to detect the
dynamic loading of libraries. This is illustrated in
Figure 4.

A global table that maps file descriptors to
filenames is maintained, and updated whenever an
open or close system call is made. The mmap
system call loads a file into memory, given its file
descriptor. The mapping from an address range to a file
descriptor yields a mapping from an address range to a
label when composed with the file descriptor table. The
resultant mapping is stored in the CMM.

The CMM can contain multiple entries for a single

dynamically loaded library. This occurs because
functions may be loaded lazily, where calls to multiple
functions in a dynamic library correspond to multiple
loads. Moreover, the two entries might not be
contiguous if the two function calls are separated by
other dynamic loads.

To maintain the shadow stack, our implementation
instruments call/return instructions to push/pop the
return address. As an optional feature, our prototype
verifies that the address of a return matches the top of
the shadow stack to detect various stack-corrupting
attacks.

Figure 5 shows how the component memory map
and the shadow stack are used for fine-grained
monitoring. When a system call is made, the shadow
stack is first composed with the CMM to produce a
new structure, the component stack. The component
stack is identical to the shadow stack but with
component names replacing addresses. The detailed
content in Figure 5 comes from the Firefox case study
described in the next section.

The component stack is examined to verify that

each component in the stack is permitted to make the
desired action. The entire stack is examined, because a
malicious action might be initiated by a component
lower in the stack that uses other benign components to
achieve its goals. In general, arbitrary complex policies
may be expressed but we use a relatively simple policy
for illustrative purposes. In the example in Figure 5,
libc.so.6 is allowed to perform system calls,
because libc.so.6 is the standard interface for
making system calls. evil.so (a malicious
component) does not have permission to make the
execve system call. Thus the system call is not
permitted and a response action is initiated.

To build on this scenario, we provide sample
pseudo-code (Listing 1) for a more sophisticated policy
in which, upon detection of execve, we turn off all
system calls for the plugin. On lines 14-16, we turn on
monitoring for execve for evil.so and register a
policy handler. Lines 1-13 illustrate this handler. Strata
will automatically invoke the handler with the system
call number and associated arguments. On line 3, we
search for evil.so in the component stack. If it is not
present, we allow the system call to proceed normally
(line 11). However, if evil.so is on the stack, then it
is performing a malicious action. We then turn off all
system calls for this plugin by registering the
disallow_policy handler (lines 5-6), and return an
appropriate error code for the policy using (line 7).

(1) int execve_policy(int sysNum, const char*
filename, char *const argv[], char *const
envp[]) {

(2) // is the component on the stack?
(3) if (componentStack.lookup(“evil.so”))
(4) {
(5) unregister(“evil.so”, ALL_SYSCALLS);
(6) register(“evil.so”, ALL_SYS_CALLS,

 disallow_policy);
(7) return ERROR_VIRTUALIZE(sysNum);
(8) }
(9) else
(10) {
(11) return ALLOW_CALL;
(12) }
(13) }

(14) void init_policy() {
(15) register(“evil.so”, SYS_execve,

 execve_policy);
(16) }

(17) void disallow_policy(int sysNum) {
(18) return ERROR_VIRTUALIZE(sysNum);
(19) }

Listing 1. Pseudo-code for implementing

COMB policies

5. Evaluation

As a case study of our fine-grained monitoring
framework, we applied the framework to the Mozilla
Firefox browser (version 2.0). The goals of the case
study were to determine the feasibility, efficacy, and
overall performance of the system on a significant
application for which we were not the authors.

A variety of vulnerabilities have been documented
for existing Firefox plugins. For purposes of our case
study, we chose not to use these plugins because the
associated vulnerabilities provide neither a
comprehensive nor a controllable set of samples.
Instead, we developed a custom plugin (evil.so) that
was designed to have controlled and predictable
behavior. We seeded a variety of exploits into this
custom plugin so that invoking the plugin had the
effect of an adversary exploiting a vulnerability in a
Firefox plugin.

Firefox is a large, real-world program that uses a
large number of shared libraries. As part of this case
study, we detected 151 shared libraries being loaded
during a single execution. Approximately two-thirds of
these libraries were system libraries and the rest were
Firefox-specific libraries. The large number of third-
party libraries poses a threat as a source of potentially
exploitable vulnerabilities. Figure 5 shows a snippet of
the shadow and component stacks for Firefox when an
execve system call is made by the evil.so plugin.

The shadow stack actually contains 52 entries that
correspond to 5 dynamically loaded libraries (not

including pre-linked libraries). Note that the
component shadow stack contains duplicate entries
(not shown in the Figure except for libc.so.6) as
intra-library calls are made.

Case Study Methodology

The protocol we followed with this case study was:

1) The Firefox browser binary was downloaded
from the distribution site.

2) The custom plugin was developed and
installed to operate with the prepared version
of Firefox.

3) We developed fake malicious web pages and
verified that the seeded exploits were
triggered when COMB is not activated

4) The software dynamic translator was installed
in the binary.

5) The browser was used to view a variety of
randomly selected web sites, including sites
that make heave use of JavaScript such as
Google Local.

6) The browser was used to view a set of
custom-developed web sites that were
designed to invoke the custom plugin and
cause the associated undesirable behavior.

Case Study Results

Firefox is a large and complex program. It is also
representative of the type of application for which fine-
grained monitoring can provide significant value. We
did not test Firefox (in the sense of comprehensive
software testing) operating with COMB in a systematic
manner, but our use of the browser to view a variety of
web pages illustrates the feasibility of applying fine-
grained monitoring to a program of this complexity.

Malicious actions that could be triggered using our
custom plugin include the following seeded system
calls: execve, mprotect, chmod, creat,
mkdir, setuid and unlink. These were chosen as
a sample subset of system calls deemed security-
critical by other researchers [17]. However, we note
that COMB can easily be configured to monitor any
system call. The custom plugin does not need to make
any of these calls for its normal operation. Using our
prepared web pages that invoked the plugin, each of
these calls was made to occur in various ways with
various parameters.

The results obtained from these exploits
demonstrated the efficacy of the approach. All of the
synthetic exploits were detected prior to the associated

system call being made. There were no false positives
when viewing other web pages that did not result in the
plugin being invoked. Although we included only
default recovery actions, i.e. returning an error code to
indicate the system call had failed, a wide variety of
responses to attack are possible.

Measurement of the time and space performance of
a program like Firefox is problematic since the metric
of interest is not well defined. The issue with a major
application is utility because there are many factors
(network load, server loads, client machine
capabilities, etc.) that impact the performance as
perceived by the user. We assessed the overall
performance of the monitored version of Firefox
merely by asking users whether the interactive
performance was deemed adequate. In all cases it was.
Concrete measurement of such overheads is presented
in the next section.

5.1. Performance

To supplement the subjective assessment discussed in
the previous section, we conducted a benchmark
assessment of the overhead imposed by the COMB
monitoring framework on the C/C++ subset of the
SPEC2000 benchmarks.

Performance on these benchmarks is shown in
Figure 6. All experimental data were measured on a
2.66GHz quad-core Mac Pro with 8GB of main
memory. The benchmarks were run on top of Fedora
Core 8 running inside of VMWare Fusion.

The first bar shows the performance of the Strata
SDT system alone, normalized to native execution (i.e.,
no monitoring and no SDT). The second bar shows

performance with COMB monitoring (using a simple
policy to disallow mprotect calls from the standard C
library.) As the figure shows, average overhead is 31%
and 44% for the two configurations. The difference of
13% between the two configurations measures the cost
of implementing the component memory map and
monitoring policies above and beyond a standard
configuration of the Strata virtual machine.

Many benchmarks (164.gzip, 175.vpr,
181.mcf, 256.bzip2, 300.twolf, 177.mesa,
179.art, 178.equake, and 188.ammp) show
little or no slowdown. These are the benchmarks with
relatively fewer indirect branches and call/return pairs.
We see the benchmarks (252.eon, 254.gap, and
255.vortex) with the most call/returns have the most
additional overhead with COMB monitoring.

Although non-trivial, our unoptimized prototype
numbers indicate that such a system could be used for
a wide variety of applications, including interactive
programs (such as Firefox), and high-security or low-
bandwidth servers. Further, many optimizations are
possible. For instance, SDT overhead can be reduced
[8][9][10]. Another example would be to optimize the
shadow stack to only track components, i.e. a
component shadow stack, so that COMB could more
cheaply determine which component is responsible for
the behavior.

5.2. Security of COMB

For COMB to protect an application from attacks, it
must protect itself. If it fails to do so, attacks will
instead use a vulnerability in the application to attack
the monitor program and subvert its protections.

Figure 6. SPEC Benchmark. Performance is normalized to native execution.

In our experimental prototype, we have not
implemented any protections. We do feel however that
thorough protection would be easy to implement. To
protect the SDT’s code and data structures, the SDT
can use hardware page protection mechanism to
prevent any application instructions from reading or
writing the SDT’s data structures. The SDT has to
carefully manage transitions between SDT code and
non-SDT code to turn on and off page permissions
during the switch. This mechanism has been shown to
be inexpensive in previous work [10].

Per-page protections can be used for infrequent
operations, such as adding to the component memory
map. However, frequent operations like pushing or
popping from a shadow stack require a much lighter-
weight protection mechanism for efficiency. To protect
the shadow stack, the best protection mechanism
would be to use an i386 segment register to access
memory that would normally be unavailable to the
application. Although such a mechanism might cause
issues for applications which use the non-standard
segment register, such applications are very rare, and it
would be easy to detect and provide comprehensive
(and consequently more expensive) monitoring for
these applications.

6. Related Work

Anomaly Detection. Early pioneering work on system
call monitoring was reported by Forrest et al. in 1996
[5]. That work established system call sequences as an
accurate depiction of program behavior [6]. When the
sequence-based approaches began to falter against
mimicry and other attacks [28][3][19], the model was
extended to further monitor data flow of the program
by examining system call arguments [13][16].
Additional sources of information such as execution
context, return addresses and library calls have been
useful in increasing detection rates while decreasing
false positive rates [4][7][11][17][24]. Execution
context information has long been used to model a
program’s control flow, but we add a further level of
semantic detail through mapping addresses to logical
program components with our virtual memory map.
This additional level of information enables us to write
precise, fine-grained policies that further
compartmentalize functionality while also taking
advantage of qualitative judgments of quality and trust.

Mandatory access control. SELinux [23],
AppArmor [2], and Tomoyo [27] are examples of
mandatory access control frameworks, whose objective
is to enforce restrictions on access to system objects.
As these systems reside at the OS/Process boundary,
they do not make use of fine-grained context
information.

Modular browser architectures. Browsers are
moving towards more modular architectures with the
goal of isolating high-risk components from the
browser kernel. The best examples of this are Google
Chrome [1][20] and Microsoft’s experimental Gazelle
web browser [29], which sandbox tab rendering into
separate processes. Recent versions of Internet
Explorer implement a similar type of privilege
separation [30], while Mozilla has been experimenting
with a Chrome-like architecture with their Electrolysis
project [15].

However, even after logical division of the
application into separate processes, there are limits to
the granularity of process-level monitoring. Our
approach complements these new browser
architectures, and through our fine-grained monitoring
methodology can subdivide these sandboxed
components yet further. The increased precision allows
for more expressive policies and better enforcement.

7. Conclusions

We have presented COMB, a system for fine-grained
monitoring of actions taken by applications to permit
security policies to be applied at an intra-process,
component level. COMB’s implementation is based
upon software dynamic translation, a shadow stack
mechanism, a map of memory addresses to
components, and a set of security policy recognizers.

The user experience of our initial prototype on the
Firefox browser, a complex real-world application, is
encouraging. On a selected subset of the SPEC
benchmark suite, we observed overheads of 44% in
absolute terms or 13% overhead above and beyond the
overhead incurred by running within a software
dynamic translation (SDT) environment. We expect to
be able to reduce this overhead considerably based on
our previous experience in optimizing SDT systems.

COMB provides a framework within which the
problem of securing component-based systems can be
addressed. Where core applications and add-on
components are acquired from sources with different
levels of trust, COMB allows the monitoring of the
core application and the individual components to
differ and also to be changed over time should trust in
a component change over time.

COMB provides a basic capability that can be used
in a variety of contexts to improve the accuracy and
resolution of techniques developed by others including
intrusion detection, application sandboxing, etc. In
future work, we will leverage the COMB framework to
investigate the feasibility and efficacy of such
techniques.

8. Acknowledgements

This research was supported in part by the National
Science Foundation under grant CNS-0716478, the
Army’s Research Office under grant W911NF-10-1-
0131, and by the Department of Defense under grant
FA9550-07-1-0532. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the sponsoring agencies.

9. References

[1] Barth, A., C. Jackson, C. Reis, and The Google Chrome
Team, The Security Architecture of the Chromium
Browser, Stanford Security Laboratory, 2008.

[2] Bauer, M., Paranoid Penguin – An Introduction to Novell
AppArmor, Linux Journal, Jul 1, 2006.
http://www.linuxjournal.com/article/9036

[3] Chen,, S. J. Xu, and X. C. Sezer, “Non-control-data
attacks are realistic threats”, In 14th Annual Usenix
Security Symposium, Aug 2005.

[4] Feng, H. H., O. M. Kolesnikov, P. Fogla, W. Lee, and W.
Gong, “Anomaly Detection Using Call Stack
Information”, IEEE Symposium on Security and
Privacy, page 62, 2003.

[5] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A Sense of Self for Unix Processes”, IEEE
Symposium on Security and Privacy, pp. 120-128,
Oakland, CA, May 1996.

[6] Forrest, S., S. A. Hofmeyr, A. Somayaji, “The Evolution
of System-Call Monitoring”, 2008 Annual Computer
Security Applications Conference (ACSAC ’08), 2008.

[7] Gao, D., M. Reiter, and D. Song, “Gray-box extraction of
execution graphs for anomaly detection”, ACM
Conference on Computer and Communications
Security, pp. 318-329, October 2004.

[8] Hiser, J. D., D. Williams, A. Filipi, J. W. Davidson, B. R.
Childers, “Evaluating fragment construction policies for
SDT systems”, Intl. Conf. on Virtual Execution
Environments, 2006.

[9] Hiser, J. D., D. Williams, W. Hu, J. W. Davidson, J.
Mars, B. Childer, “Evaluating Indirect Branch Handling
Mechanisms in Software Dynamic Translation
Systems”, Intl. Symposium on Code Generation and
Optimization, 2007.

[10] Hu, W., J. Hiser, D. Williams, A. Filipi, J. W. Davidson,
D. Evans, J. C. Knight, A. Nguyen-Tuong, and J.
Rowanhill, “Secure and Practical Defense Against
Code-injection Attacks”, Virtual Execution
Environments, 2006.

[11] Jones, A., Y. Lin, “Application Intrusion Detection
using Language Library Calls”, Annual Computer
Security Applications Conference, 2001.

[12] Kiriansky, V., D. Bruening, and S. Amarasinghe,
“Secure Execution Via Program Shepherding”, 11th
USENIX Security Symposium, August 2002.

[13] Kruegel, C., D. Mutz, W. Robertson, and F. Valeur,
“Bayesian Event Classification for Intrusion Detection”,
Proceedings of the 19th Annual Computer Security
Applications Conference, 2003.

[14] Luk, C., R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. Janapa Reddi, K. Hazelwood,
"Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation", ACM SIGPLAN 2005
Conference on Programming Language Design and
Implementation, Chicago, Illinois, USA., pp. 191-200,
June 2005

[15] Mozilla, “Content Processes,” 2009.
https://wiki.mozilla.org/Content_Processes

[16] Mutz, D., F. Valeur, G. Vigna, C. Kruegel, “Anomalous
System Call Detection”, ACM Transactions on
Information and System Security (TISSEC), pp. 61-93,
Feb 2006..

[17] Mutz, D., W. Robertson, G. Vigna, and R. Kemmerer,
“Exploiting Execution Context for the Detection of
Anomalous System Calls”, Recent Advances in
Intrusion Detection, 2007.

[18] Mozilla, “Gecko Plugin API Reference”,
https://developer.mozilla.org/en/Gecko_Plugin_API_Re
ference

[19] Parampalli, C., R. Sekar, and R. Johnson., “A Practical
Mimicry Attack Against Powerful System-call
Monitors”, 2008 ACM Symposium on Information,
Computer and Communications Security, pp. 156-167,
New York, NY, USA, 2008. ACM.

[20] Reis, C, A. Barth, and C. Pizano, “Browser Security:
Lessons from Google Chrome”, Communications of the
ACM, Aug 2009.

[21] Scott, K., and J. W. Davidson, “Safe Virtual Execution
using Software Dynamic Translation”, 18th Annual
Computer Security Applications Conference,
Washington DC, 2002.

[22] Scott, K., N. Kumar, S. Velusamy, B. Childers, J.
Davidson, M. L. Soffa, “Retargetable and
Reconfigurable Software Dynamic Translation”, Intl.
Symposium on Code Generation and Optimization,
March 2003.

[23] Security-Enhanced Linux. Jan 15, 2009.
http://www.nsa.gov/research/selinux/

[24] Sekar, R., M. Bendre, P. Bollineni, and D. Dhurjati, “A
Fast Automaton-based Method for Detecting
Anomalous Program Behaviors”, 2001 IEEE
Symposium on Security and Privacy, 2001.

[25] Sidiroglou, S., Locasto, M. E., Boyd, S. W., and
Keromytis, A. D., “Building a Reactive Immune System
for Software Services”, USENIX Annual Technical
Conference, pp. 149-161, April 2005.

[26] Symantec Corporation, “Trends for 2008”, Symantec
Global Internet Security Threat Report, Volume XiV, A
pril 2009.
 http://www.symantec.com/connect/sites/default/files/b-
whitepaper_internet_security_threat_report_xiv_04-
2009.en-us.pdf

[27] TOMOYO Linux: Behavior oriented system analyzer
and protector. Dec 2009. http://tomoyo.sourceforge.jp/

[28] Wagner, D. and D. Dean, “Intrusion Detection via Static
Analysis”, Proceedings of the IEEE Symposium on
Security and Privacy, Oackland, CA, May 2001.

[29] Wang, H. J., C. Grier, A. Moshchuk, S. King, P.
Choudhury, and H. Venter, “The Multi-Principal OS
Construction of the Gazelle Web Browser”, Microsoft,
Feb 2009.

[30] Zielgler. A., “IE8 and Loosely-Coupled IE (LCIE)”,
2008. http://blogs.msdn.com/ie/archive/2008/03/11/ie8-
and-loosely-coupled-ie-lcie.aspx

