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Abstract 
Security monitoring systems operate typically at the 

process level. Various authors have indicated that 
monitoring at a finer level of granularity than the 
process is highly desirable. In this paper, we introduce 
COMB, a framework for imposing policies to confine 
the behavior of applications.  Unlike previous 
approaches, our technique is applied per component 
(functions, libraries, and/or plugins) while requiring 
only the availability of the binary executable form of 
the program.  

To demonstrate the feasibility of COMB, we report 
a case study on a real-world, representative program, 
the Firefox web browser. Two characteristics of 
Firefox permit possibly untrusted code to be executed. 
First, it provides an extensible architecture to allow 
third-party developers to extend its functionality, and 
second it makes use of more than 150 external 
libraries. Using a simple system-call monitoring policy 
applied to Firefox plugins, we show that COMB can 
provide protection with reasonable overhead. 
 

1. Introduction 

In this paper, we present COMB (Component-Oriented 
Monitoring of Binaries), a framework that enables 
fine-grained monitoring and security-policy 
enforcement of binary programs. Existing methods of 
confining the behavior of binary programs typically 
operate at the process level or system level, by 
monitoring and regulating the interactions between 
processes and the underlying operating system 
[2][23][27].  

COMB provides the ability to divide a single 
process into components, and then monitor and enforce 
distinct policies on components individually. COMB 
defines a component as the code within specified 
address ranges. Defining components by address 
ranges provides the flexibility to include various 
notions of functional abstraction, including 
functionality encoded in static libraries, shared libraries 

and plugins. The policies that COMB enforces include 
those associated with sequences of actions, including 
sequences involving multiple components. 

In typical applications, process-level monitoring 
forces identical monitoring policies to be applied to the 
entire program. We refer to such monitoring 
techniques as coarse-grained. Several authors have 
observed that fine-grained monitoring, as provided by 
COMB, would improve the accuracy of many security 
techniques [7][13][16][17][24].  

 
As an example of the utility of fine-grained 

monitoring, consider the increasing use of extensible 
applications. From the perspective of the operating 
system, extensions—commonly referred to as 
plugins—are indistinguishable from the hosting 
application unless they operate as independent 
processes. Several widely used applications, including 
Mozilla Firefox and the Apache web server, utilize 
plugin architectures with plugins operating in the same 
process as the hosting application. Such applications 
are extended, often by users, using plugins from 
different sources with different levels of trust. In many 
cases, an action that is normal for one plugin or the 
hosting application might be considered malicious for 
another. For example (see Figure 1), opening critical 
files such as “/etc/group” might be required by the 
hosting application and acceptable for a plugin from a 



 

trusted source but problematic for certain files or 
certain plugins.  

Browsers in which plugins run as individual 
processes provide finer granularity. Several such 
browsers already exist, e.g. Google Chrome [1] and 
Microsoft Gazelle [29], and others are under active 
development, e.g. Mozilla Electrolysis [14]. We 
conjecture that over the long-term even a process-per-
plugin model would not be sufficiently fine-grained. 
For example, a plugin might itself be composed of 
external libraries and so the unit of confinement 
desired may need to be refined even further. In 
addition, the existing large installed base of extensible 
monolithic applications, such as Internet Explorer, 
Firefox, Apache and various media players, is unlikely 
to be retired in the near future. 

To evaluate COMB, we have built a prototype 
implementation.  Our prototype operates on IA-32, 
ELF program binaries and does not require access to 
source code or debugging information. As a case study 
in this paper, we describe the application of COMB to 
the Firefox browser using only the downloaded binary 
form. As an example of a simple COMB policy, we 
demonstrate how system-call-based policies can be 
applied to individual Firefox plugins. Our threat model 
is that of benign plugins that might contain 
vulnerabilities through which attackers can attempt to 
gain control of the system.  According to Symantec, 
there were over 400 such vulnerabilities identified in 
browser plugins in 2008 [26]. 

To summarize, the major contributions of this 
paper are: 

• The development of a general and flexible 
framework for monitoring, modifying and 
restricting the behavior of components such as 
dynamically-loaded libraries or plugins. 

• The ability to do so using only the binary 
executables of programs. 

• A working prototype to establish the feasibility of 
the COMB framework using system-call 
monitoring and prevention as a sample policy.    

This paper is organized as follows. Section 2, 
presents the architecture of COMB, and section 3 
discusses the potential approaches to exploiting fine-
grained monitoring in security applications. Section 4 
summarizes our prototype implementation, and section 
5 describes a case study based on Firefox and presents 
performance results based on the SPEC2000 
benchmarks. Section 6 discusses related work, and 
finally section 7 presents our conclusions. 

2. Component-Oriented Monitoring 

COMB extends traditional monitoring techniques by 
exposing to the system’s policy enforcement 
mechanism additional information about an action 
being taken. We refer to this information as the context 
of the action. Traditional policies either allow or deny 
actions based upon the operation and parameters of the 
action. Expressed as a function, this monitoring is: 

seq (operation × args) 
    → {allow, deny} 

COMB policies take the form: 

seq (operation × args × context) 
    → {allow, deny, response} 

where response is a response function that can 
replace the original action with recovery code. 

Although other approaches are possible, our 
implementation of COMB relies upon four 
architectural techniques: (1) applications are executed 
using software dynamic translation; (2) a component 
memory map is maintained during execution; (3) a 
shadow stack is maintained for each thread during 
execution; and (4) policy recognizers operate with data 
from the monitoring mechanism to detect and respond 
to policy violations.  
 

 
The overall architecture of COMB is shown in 

Figure 2, and the basic principle of operation is as 
follows. Prior to (for static items) and during (for 
dynamic items) execution of the application, the 
component memory map is built and updated to reflect 
the locations of items loaded into memory. The entries 
that are included in the map are determined by the 
components for which fine-grain monitoring is desired. 

During execution, the shadow stack is maintained 
to provide a complete and consistent structure of return 
addresses for function calls. Such information provides 
the necessary context to express COMB policies.  



 

The software dynamic translator (SDT) enables 
software malleability and adaptivity at the instruction 
level by providing run-time monitoring and code 
modification capabilities. SDT can affect an executing 
program by injecting new code, modifying existing 
code, or controlling the execution of the program in 
some way. These capabilities give system designers 
unprecedented flexibility to control and modify a 
program’s execution [12][14][21][22]. In Section 4, we 
provide an overview of Strata, the software dynamic 
translator used to implement COMB.  

For COMB, we use the SDT to examine each 
instruction prior to the instruction’s execution. This 
examination allows the translator to detect the binary 
structures corresponding to the actions of interest prior 
to the actions being taken by the program. Many 
actions such as system calls are unlikely to be directly 
located in the responsible components, because the 
actual action is effected by a library function. Thus, the 
component responsible for the action is determined by 
examining the shadow stack looking for a return 
address that is located within a component of interest. 
The details of the component are then obtained from 
the component memory map. 

Once the component responsible for the action is 
identified, the triple—action, arguments, context—is 
submitted to one or more policy recognizers. If a 
policy violation is detected, the response is applied by 
the binary translator. We envision a wide variety of 
responses that might be appropriate depending on the 
knowledge that the policy author has about the 
component.  A partial list of responses includes: 

• Terminate the application. Although this approach 
is very “brute force,” it may be the only safe option 
in some cases. 

• Restrict the component’s privileges by replacing the 
offending action with a virtualized error, such as a 
returning “File Not Found” when attempting to 
open a file that should not be opened. 

• Log the offending policy violation for off-line 
auditing. 

• Throttle the component’s progress by inserting a 
pre-defined delay. This action would be useful if 
the malicious activity was to consume excessive 
memory, network, or disk bandwidth causing 
denial-of-service for the remainder of the machine. 

• Raise an alarm to a remote machine or human 
indicating that a possible security breach may be 
underway. 

• Increase the monitoring level of the application to 
thwart potential exploits via heavier-weight 
instrumentation. Such an approach would be useful 

for individual components with well-known APIs. 
If the API is being misused, a heavy-weight 
detector may be useful for determining if the 
misuse is intentional and benign due to a new 
version or restriction to the API, or malicious and 
might cause a memory overwrite or other security 
violation. 

• Restrict execution of the component to a set of 
deemed safe functions (which may be no functions 
at all). For future requests to non-safe functions, 
return a virtualized error code. 

As a simple example of the use of COMB, consider 
an attempt by an untrusted plugin to make a prohibited 
system call. The binary translator detects the system 
call in the binary program and identifies the associated 
parameters. Using the shadow stack and the component 
memory map, the component initiating the call is 
identified and the simple policy of denying the system 
call is invoked. The desired response of deleting the 
call and returning an error code is then effected by the 
binary translator. 

3. Exploiting Fine Grained Monitoring 

The fine-grained monitoring capabilities of the COMB 
framework coupled with the use of software dynamic 
translation opens up a rich design space for designing 
and enforcing security policies. The potential benefits 
are enhanced by two aspects of the fine-grained 
monitoring framework: (1) monitoring operates on 
binary programs with no additional information 
required; and (2) monitoring is effected before an 
action is taken by the program thereby preventing 
damage from the action and permitting response 
actions to be taken. We highlight several such policies: 

• Prevention of Excess Resource Consumption. 
Previous work has demonstrated the viability of 
software dynamic translation for enforcing policies 
to limit network bandwidth at the process level 
using system call interposition [21]. COMB polices 
are more expressive in that they can enforce 
restrictions at the level of components. 

• API Restriction. Application programs rely on 
external libraries to implement functionality. These 
libraries typically define an API that imposes 
requirements on call sequences or parameter values 
that programmers must conform to. Libraries often 
fail to verify compliance, either accidentally or 
intentionally for efficiency or ease-of-
implementation purposes. Example requirements 
include failure to release allocated memory blocks, 
attempts to release allocated blocks more than 
once, and failure to close open files. In the context 



 

of extensible applications such as Firefox, the API 
regulates the lifecycle of extensions with respect to 
the hosting application as well as providing bi-
directional support services to handle URLs, 
streams, memory, drawing and events [18]. With 
the ability to monitor events at the granularity of 
function calls, fine-grained monitoring enables 
policies that check for compliance with the API.  

• Blocking System Calls with Context. COMB 
policies can take into account both the arguments to 
a system call and the context information provided 
by the component details. This precision enables 
the expression of policies to confine the behavior of 
intra-process components. Furthermore, the use of 
software dynamic translation enables a richer 
response than simply shutting down a program. For 
example, error virtualization techniques that return 
an error code (as if the error originated from the 
operating system) [25] are easily implemented and 
tailored for each system call.  

• High-Level Behavioral Policies. Though not part 
of the current COMB implementation, a promising 
venue to explore is to enable policies at higher 
semantic levels. An example would be the ability to 
write policies explicitly against the fact that 
“program or component X is rendering an image, 
playing a movie, or printing a file”.  

• Component Shutdown. In response to a failed 
component, a policy response might specify that 
the component should be shut down and how to 
achieve that goal. Many applications can work 
acceptably with one or more missing components. 
For example, the Firefox web browser can render 
most web pages without the Adobe Reader plugin. 
Likewise, a word processing program could 
function without the dictionary component needed 
to provide spell-checking support. If the component 
violates its policy (say, by trying to execute an 
execve system call), the response mechanism 
could be to shut down that component. The safest 
response allows no more instructions from the 
component’s address range to execute. In the case 
that some functions are necessary for the proper 
shutdown procedure to complete, those functions 
could be individually specified in the component. 
For other functions, an error-virtualization 
technique could be used to elide execution when 
the functionality is requested. In both the web 
browser plugin case and the word processor 
dictionary component case, gracefully degrading 
the performance of the application by removing 
only the compromised component allows the user 
to continue work until their data can be written to 

permanent storage, and the program can be 
restarted in an uncompromised state. 

In general, applying fine-grained policies to commonly 
used libraries and widely-deployed extensible 
platforms such as browsers and web servers would 
result in reusable policies that could easily be shared 
across multiple applications. Again, since COMB 
operates at the binary level, such universal policies 
could be put into effect even for programs and libraries 
for which the source code is unavailable. 

4. Implementation 

In this section, we summarize our prototype 
implementation of COMB. Other implementation 
approaches are possible. 

The application is executed using software dynamic 
translation. In general, software dynamic translation 
can affect an executing program by injecting new code, 
modifying existing code, or controlling the execution 
of the program in prescribed ways. Examples of 
software dynamic translation systems include Strata 
[22], Pin [14], and Dynamo-RIO [12]. We chose Strata 
for our prototype. 

 

 
The Strata Virtual Machine mediates application 
execution by examining and translating instructions 
before they execute on the host processor. Blocks of 
translated instructions called fragments are held in a 
Strata-managed cache, called the fragment cache. 
Strata is implemented as a co-routine resident with the 
application and is entered by capturing and saving the 
application context (e.g., program counter, condition 
codes, registers, etc.). Following context capture, Strata 
processes the next application instruction fragment. If a 
translation for this fragment has been cached, a context 
switch restores the application context and begins 
executing cached translated instructions on the host 



 

machine. Performance assessment of optimized 
versions of Strata indicates that it imposes modest 
overhead on the application [10][22], and this is one of 
the reasons why we chose Strata for our prototype. 

The component memory map (CMM) maps virtual 
address ranges to components. The CMM is 
implemented as a splay tree. To populate the CMM, 
the application binary code is instrumented using 
Strata’s introspection capabilities to monitor open, 
mmap and close system calls, so as to detect the 
dynamic loading of libraries. This is illustrated in 
Figure 4. 

A global table that maps file descriptors to 
filenames is maintained, and updated whenever an 
open or close system call is made. The mmap 
system call loads a file into memory, given its file 
descriptor. The mapping from an address range to a file 
descriptor yields a mapping from an address range to a 
label when composed with the file descriptor table. The 
resultant mapping is stored in the CMM. 

 

 
The CMM can contain multiple entries for a single 

dynamically loaded library. This occurs because 
functions may be loaded lazily, where calls to multiple 
functions in a dynamic library correspond to multiple 
loads. Moreover, the two entries might not be 
contiguous if the two function calls are separated by 
other dynamic loads. 

To maintain the shadow stack, our implementation 
instruments call/return instructions to push/pop the 
return address.  As an optional feature, our prototype 
verifies that the address of a return matches the top of 
the shadow stack to detect various stack-corrupting 
attacks.  

Figure 5 shows how the component memory map 
and the shadow stack are used for fine-grained 
monitoring. When a system call is made, the shadow 
stack is first composed with the CMM to produce a 
new structure, the component stack. The component 
stack is identical to the shadow stack but with 
component names replacing addresses. The detailed 
content in Figure 5 comes from the Firefox case study 
described in the next section. 

 

 
The component stack is examined to verify that 

each component in the stack is permitted to make the 
desired action. The entire stack is examined, because a 
malicious action might be initiated by a component 
lower in the stack that uses other benign components to 
achieve its goals. In general, arbitrary complex policies 
may be expressed but we use a relatively simple policy 
for illustrative purposes. In the example in Figure 5, 
libc.so.6 is allowed to perform system calls, 
because libc.so.6 is the standard interface for 
making system calls. evil.so (a malicious 
component) does not have permission to make the 
execve system call. Thus the system call is not 
permitted and a response action is initiated.  

To build on this scenario, we provide sample 
pseudo-code (Listing 1) for a more sophisticated policy 
in which, upon detection of execve, we turn off all 
system calls for the plugin. On lines 14-16, we turn on 
monitoring for execve for evil.so and register a 
policy handler. Lines 1-13 illustrate this handler. Strata 
will automatically invoke the handler with the system 
call number and associated arguments. On line 3, we 
search for evil.so in the component stack. If it is not 
present, we allow the system call to proceed normally 
(line 11). However, if evil.so is on the stack, then it 
is performing a malicious action. We then turn off all 
system calls for this plugin by registering the 
disallow_policy handler (lines 5-6), and return an 
appropriate error code for the policy using (line 7). 

 



 

(1) int execve_policy(int sysNum, const char* 
filename, char *const argv[], char *const 
envp[]) { 

(2)   // is the component on the stack? 
(3)   if (componentStack.lookup(“evil.so”)) 
(4)   { 
(5)     unregister(“evil.so”, ALL_SYSCALLS);  
(6)     register(“evil.so”, ALL_SYS_CALLS,      

       disallow_policy); 
(7)     return ERROR_VIRTUALIZE(sysNum);  
(8)   } 
(9)   else 
(10)   { 
(11)     return ALLOW_CALL; 
(12)   } 
(13) } 

 
(14) void init_policy() { 
(15)   register(“evil.so”, SYS_execve, 

    execve_policy); 
(16) } 
 
(17) void disallow_policy(int sysNum) { 
(18)   return ERROR_VIRTUALIZE(sysNum); 
(19) } 

 
Listing 1. Pseudo-code for implementing  

COMB policies 

5. Evaluation 

As a case study of our fine-grained monitoring 
framework, we applied the framework to the Mozilla 
Firefox browser (version 2.0). The goals of the case 
study were to determine the feasibility, efficacy, and 
overall performance of the system on a significant 
application for which we were not the authors. 

A variety of vulnerabilities have been documented 
for existing Firefox plugins. For purposes of our case 
study, we chose not to use these plugins because the 
associated vulnerabilities provide neither a 
comprehensive nor a controllable set of samples. 
Instead, we developed a custom plugin (evil.so) that 
was designed to have controlled and predictable 
behavior. We seeded a variety of exploits into this 
custom plugin so that invoking the plugin had the 
effect of an adversary exploiting a vulnerability in a 
Firefox plugin. 

Firefox is a large, real-world program that uses a 
large number of shared libraries. As part of this case 
study, we detected 151 shared libraries being loaded 
during a single execution. Approximately two-thirds of 
these libraries were system libraries and the rest were 
Firefox-specific libraries. The large number of third-
party libraries poses a threat as a source of potentially 
exploitable vulnerabilities. Figure 5 shows a snippet of 
the shadow and component stacks for Firefox when an 
execve system call is made by the evil.so plugin. 

The shadow stack actually contains 52 entries that 
correspond to 5 dynamically loaded libraries (not 

including pre-linked libraries). Note that the 
component shadow stack contains duplicate entries 
(not shown in the Figure except for libc.so.6) as 
intra-library calls are made. 

Case Study Methodology 

The protocol we followed with this case study was: 

1) The Firefox browser binary was downloaded 
from the distribution site. 

2) The custom plugin was developed and 
installed to operate with the prepared version 
of Firefox. 

3) We developed fake malicious web pages and 
verified that the seeded exploits were 
triggered when COMB is not activated 

4) The software dynamic translator was installed 
in the binary.  

5) The browser was used to view a variety of 
randomly selected web sites, including sites 
that make heave use of JavaScript such as 
Google Local. 

6) The browser was used to view a set of 
custom-developed web sites that were 
designed to invoke the custom plugin and 
cause the associated undesirable behavior. 

Case Study Results 

Firefox is a large and complex program. It is also 
representative of the type of application for which fine-
grained monitoring can provide significant value. We 
did not test Firefox (in the sense of comprehensive 
software testing) operating with COMB in a systematic 
manner, but our use of the browser to view a variety of 
web pages illustrates the feasibility of applying fine-
grained monitoring to a program of this complexity. 

Malicious actions that could be triggered using our 
custom plugin include the following seeded system 
calls: execve, mprotect, chmod, creat, 
mkdir, setuid and unlink. These were chosen as 
a sample subset of system calls deemed security-
critical by other researchers [17]. However, we note 
that COMB can easily be configured to monitor any 
system call. The custom plugin does not need to make 
any of these calls for its normal operation. Using our 
prepared web pages that invoked the plugin, each of 
these calls was made to occur in various ways with 
various parameters. 

The results obtained from these exploits 
demonstrated the efficacy of the approach. All of the 
synthetic exploits were detected prior to the associated 



 

system call being made. There were no false positives 
when viewing other web pages that did not result in the 
plugin being invoked. Although we included only 
default recovery actions, i.e. returning an error code to 
indicate the system call had failed, a wide variety of 
responses to attack are possible.  

Measurement of the time and space performance of 
a program like Firefox is problematic since the metric 
of interest is not well defined. The issue with a major 
application is utility because there are many factors 
(network load, server loads, client machine 
capabilities, etc.) that impact the performance as 
perceived by the user. We assessed the overall 
performance of the monitored version of Firefox 
merely by asking users whether the interactive 
performance was deemed adequate. In all cases it was.  
Concrete measurement of such overheads is presented 
in the next section. 

5.1. Performance 

To supplement the subjective assessment discussed in 
the previous section, we conducted a benchmark 
assessment of the overhead imposed by the COMB 
monitoring framework on the C/C++ subset of the 
SPEC2000 benchmarks. 

Performance on these benchmarks is shown in 
Figure 6.  All experimental data were measured on a 
2.66GHz quad-core Mac Pro with 8GB of main 
memory. The benchmarks were run on top of Fedora 
Core 8 running inside of VMWare Fusion. 

The first bar shows the performance of the Strata 
SDT system alone, normalized to native execution (i.e., 
no monitoring and no SDT).  The second bar shows 

performance with COMB monitoring (using a simple 
policy to disallow mprotect calls from the standard C 
library.) As the figure shows, average overhead is 31% 
and 44% for the two configurations.  The difference of 
13% between the two configurations measures the cost 
of implementing the component memory map and 
monitoring policies above and beyond a standard 
configuration of the Strata virtual machine. 

Many benchmarks (164.gzip, 175.vpr, 
181.mcf, 256.bzip2, 300.twolf, 177.mesa, 
179.art, 178.equake, and 188.ammp) show 
little or no slowdown. These are the benchmarks with 
relatively fewer indirect branches and call/return pairs.  
We see the benchmarks (252.eon, 254.gap, and 
255.vortex) with the most call/returns have the most 
additional overhead with COMB monitoring.  

Although non-trivial, our unoptimized prototype 
numbers indicate that such a system could be used for 
a wide variety of applications, including interactive 
programs (such as Firefox), and high-security or low-
bandwidth servers. Further, many optimizations are 
possible. For instance, SDT overhead can be reduced 
[8][9][10]. Another example would be to optimize the 
shadow stack to only track components, i.e. a 
component shadow stack, so that COMB could more 
cheaply determine which component is responsible for 
the behavior. 

5.2. Security of COMB 

For COMB to protect an application from attacks, it 
must protect itself. If it fails to do so, attacks will 
instead use a vulnerability in the application to attack 
the monitor program and subvert its protections. 

Figure 6. SPEC Benchmark. Performance is normalized to native execution. 



 

In our experimental prototype, we have not 
implemented any protections. We do feel however that 
thorough protection would be easy to implement. To 
protect the SDT’s code and data structures, the SDT 
can use hardware page protection mechanism to 
prevent any application instructions from reading or 
writing the SDT’s data structures. The SDT has to 
carefully manage transitions between SDT code and 
non-SDT code to turn on and off page permissions 
during the switch. This mechanism has been shown to 
be inexpensive in previous work [10]. 

Per-page protections can be used for infrequent 
operations, such as adding to the component memory 
map. However, frequent operations like pushing or 
popping from a shadow stack require a much lighter-
weight protection mechanism for efficiency. To protect 
the shadow stack, the best protection mechanism 
would be to use an i386 segment register to access 
memory that would normally be unavailable to the 
application. Although such a mechanism might cause 
issues for applications which use the non-standard 
segment register, such applications are very rare, and it 
would be easy to detect and provide comprehensive 
(and consequently more expensive) monitoring for 
these applications. 

6. Related Work 

Anomaly Detection. Early pioneering work on system 
call monitoring was reported by Forrest et al. in 1996 
[5]. That work established system call sequences as an 
accurate depiction of program behavior [6]. When the 
sequence-based approaches began to falter against 
mimicry and other attacks [28][3][19], the model was 
extended to further monitor data flow of the program 
by examining system call arguments [13][16]. 
Additional sources of information such as execution 
context, return addresses and library calls have been 
useful in increasing detection rates while decreasing 
false positive rates [4][7][11][17][24]. Execution 
context information has long been used to model a 
program’s control flow, but we add a further level of 
semantic detail through mapping addresses to logical 
program components with our virtual memory map. 
This additional level of information enables us to write 
precise, fine-grained policies that further 
compartmentalize functionality while also taking 
advantage of qualitative judgments of quality and trust. 

Mandatory access control. SELinux [23], 
AppArmor [2], and Tomoyo [27] are examples of 
mandatory access control frameworks, whose objective 
is to enforce restrictions on access to system objects. 
As these systems reside at the OS/Process boundary, 
they do not make use of fine-grained context 
information. 

Modular browser architectures. Browsers are 
moving towards more modular architectures with the 
goal of isolating high-risk components from the 
browser kernel. The best examples of this are Google 
Chrome [1][20] and Microsoft’s experimental Gazelle 
web browser [29], which sandbox tab rendering into 
separate processes. Recent versions of Internet 
Explorer implement a similar type of privilege 
separation [30], while Mozilla has been experimenting 
with a Chrome-like architecture with their Electrolysis 
project [15]. 

However, even after logical division of the 
application into separate processes, there are limits to 
the granularity of process-level monitoring. Our 
approach complements these new browser 
architectures, and through our fine-grained monitoring 
methodology can subdivide these sandboxed 
components yet further. The increased precision allows 
for more expressive policies and better enforcement. 

7. Conclusions 

We have presented COMB, a system for fine-grained 
monitoring of actions taken by applications to permit 
security policies to be applied at an intra-process, 
component level. COMB’s implementation is based 
upon software dynamic translation, a shadow stack 
mechanism, a map of memory addresses to 
components, and a set of security policy recognizers. 

The user experience of our initial prototype on the 
Firefox browser, a complex real-world application, is 
encouraging. On a selected subset of the SPEC 
benchmark suite, we observed overheads of 44% in 
absolute terms or 13% overhead above and beyond the 
overhead incurred by running within a software 
dynamic translation (SDT) environment. We expect to 
be able to reduce this overhead considerably based on 
our previous experience in optimizing SDT systems.       

COMB provides a framework within which the 
problem of securing component-based systems can be 
addressed. Where core applications and add-on 
components are acquired from sources with different 
levels of trust, COMB allows the monitoring of the 
core application and the individual components to 
differ and also to be changed over time should trust in 
a component change over time. 

COMB provides a basic capability that can be used 
in a variety of contexts to improve the accuracy and 
resolution of techniques developed by others including 
intrusion detection, application sandboxing, etc.  In 
future work, we will leverage the COMB framework to 
investigate the feasibility and efficacy of such 
techniques. 
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