
1

Specification Modeling Methodologies
for

Reactive System Design

University of Virginia, Charlottesville, VA 22903
email: {  ambar | ronw | cohoon@virginia.edu }

Abstract

The goal of this paper is to investigate the state-of-the-art in specification-modeling methodol-
ogies applicable to reactive-system design. By combining the specification requirements of a reac-
tive system and the desirable characteristics of a specification-modeling methodology, we develop
a unified framework for evaluating any specification-modeling methodology applicable to reac-
tive-system design. A unified framework allows the designer to look at the spectrum of choices
available and quickly comprehend the suitability of a methodology to the specific application.

Using the unified framework, we study a number of representative methodologies, identifying
their respective strengths and weaknesses when evaluated for the desired characteristics. The dif-
ferences and relationships between the various methodologies is highlighted. We find our frame-
work to be quite useful in evaluating each methodology. A summary of our observations is
presented, together with recommendations for areas needing further research in specification mod-
eling for reactive systems. Two such areas are improving model continuity and providing better
complexity control, especially across different abstraction levels and modeling domains. We also
present a description of each methodology studied in the unified framework.

1. Intr oduction

A reactive system is one that is in continual interaction with its environment and executes at a
pace determined by that environment. Examples of reactive systems are network protocols, air-
traffic control systems, industrial-process control systems etc.

Reactive systems are ubiquitous and represent an important class of systems. Due to their com-
plex nature, such systems are extremely difficult to specify and implement. Many reactive systems
are employed in highly-critical applications, making it crucial that one considers issues such as
reliability and safety while designing such systems. Designing reactive systems is considered to be
problematic, and pose one of the greatest challenges in the field of system design and development.

In this paper, we discuss specification-modeling methodologies for reactive systems. Specifi-
cation modeling is an important stage in reactive system design where the designer specifies the
desired properties of the reactive system in the form of a specification model. This specification
model acts as the guidance and source for the implementation. To develop the specification model
of complex systems in an organized manner, designers resort to specification modeling methodol-

Ambar Sarkar Ronald Waxman James P. Cohoon
Computer Science Electrical Engineering Computer Science



2

ogies. In the context of reactive systems, we can call such methodologiesreactive-system specifi-
cation modeling methodologies.

Given the myriad of specification methodologies available today, each different from the other
in its chosen formalism, analysis techniques, methodological approaches etc., we establish a
framework that allows one to study the merits and demerits of any specification methodology for
reactive systems.

By combining the specification requirements of a reactive system and the desirable charac-
teristics of a specification-modeling methodology, we develop a unified framework for evaluating
any specification-modeling methodology applicable to reactive-system design. A unified frame-
work allows the designer to look at the spectrum of choices available and quickly comprehend the
suitability of a methodology to the specific application.

In order to identify the specification requirements of reactive systems, we enumerate their char-
acteristics. During the specification process, a conceptual model for each of these characteristics is
developed by the designer. The combination of the developed conceptual models results in a spec-
ification model. In order to enumerate the desirable attributes of a specification-modeling method-
ology, we broadly categorize them under the three categories, namely: supporting complexity
control; developing and analyzing the specification; and maintaining model continuity with respect
to other modeling stages. The problem of maintaining model continuity can be decomposed into
three subproblems: checking conformance of the specification model with those developed in other
design stages, making the specification visible at all other design stages, and providing back-anno-
tation of design details into the specification.

Using the unified framework, we study a number of representative methodologies, identifying
their respective strengths and weaknesses when evaluated for the desired characteristics. The dif-
ferences and relationships between the various methodologies is highlighted. We find our frame-
work to be quite useful in evaluating each methodology. A summary of our observations is
presented, together with recommendations for areas needing further research in specification mod-
eling for reactive systems. Two such areas are improving model continuity and providing better
complexity control, especially across different abstraction levels and modeling domains. We also
present a description of each methodology studied in the unified framework. The methodologies
studied are applicable to the specification of reactive systems.

2. Characteristics of reactive systems

Reactive systems follow what can be called the stimulus-response paradigm of behavior:
on the occurrence of stimuli from its environment, the reactive system typically responds or reacts
by changing its own state and generating further stimuli. Reactive systems are typically control
dominated, in the sense that control-related activities form a major part of the reactive system’s
behavior.

Reactive systems have typically been contrasted with transformational systems. The behavior
of a transformational system can be adequately characterized by specifying the outputs of the sys-
tem that result from a set of inputs to the system. In contrast, the behavior of a reactive system is
characterized by the notion ofreactive behavior [HLN88,  Pnu86]. To describe reactive behavior,
the relationship of the inputs and outputs over time should be specified. Typically, such descrip-
tions involve complex sequence of system states, generated and perceived events, actions, condi-
tions and event flow, often involving timing constraints.

For example, given an adder, its behavior is easily defined as producing an output which is the



3

sum of its inputs at any given time. This behavior is unaffected by the environment in which the
adder operates, and therefore the output, given a set of inputs, remains the same regardless of time.
In contrast, a traffic signal continually monitors its traffic and establishes traffic flow based on its
current traffic pattern. It would be difficult to describe the behavior of the traffic signal by specify-
ing the output (traffic signals) as a result of the input (current traffic pattern), since outputs may
depend on how the traffic pattern varies over time.

We now present important characteristics of reactive systems.
• State-transition oriented behavior:

Reactive systems are intrinsically state based, and transition from one state to
another is based on external or internal events. The concept of states is an useful
tool to model the relationship between the inputs and outputs over time.

• Concurrent in nature:
Reactive systems generally consist of concurrent behaviors that cooperate with

each other to achieve the desired functionality. Concurrency is further character-
ized by the need to express communication, synchronization, and nondeterminism
among concurrent behaviors.

• Timing sensitive behavior:
Two categories of timing characteristics can be identified: namely, functional

timing and timing constraints. Functional timings represent actual time elapsed in
executing a behavior. Functional timings may change with the implementation.
Guessing correct functional timing associated with a specification is therefore dif-
ficult during the specification stage. Timing constraints, on the other hand, specify
a range of acceptable behavior that the implementation is allowed to exhibit. The
constraints are typically externally imposed on the system, and all correct imple-
mentations of the system must obey such constraints.

A special class of reactive systems are real-time systems, which have the added
attribute of temporal correctness in addition to the functional correctness of a reac-
tive system

• Exception-oriented behavior:
Certain events may require instantaneous response from the system. This

requires the system to typically terminate the current mode of operation and transi-
tion into a new mode. In some cases, such as interrupt handling, the system is
required to resume in the original state at which the interrupt occurred.

• Environment-sensitive behavior:
Since the response of a reactive system depends heavily on the environment in

which it operates, a reactive system can often be characterized by the environment.
For example, the specification of a data-communication network designed for han-
dling steady network-traffic can be expected to quite different than one designed
for bursty traffic.

• Nonfunctional characteristics:
Reactive systems often are characterized by properties which are nonfunc-

tional in nature, such as reliability, safety, performance, etc. These properties are
often not crucial to the system’s functionality, but are often considered important
enough to evaluate alternative implementations.

The expression of all the characteristics of a reactive system should be directly supported by



4

the language of specification. Since a specification methodology is typically associated with a spe-
cific set of specification languages, the effectiveness of the methodology lies in how well its spec-
ification languages support the expression of the above characteristics. In addition to the language,
the methodology plays an important role in developing the representation in a methodical rather
than a haphazard manner.

3. Specification modeling methodology requirements

To appreciate the requirements of a specification modeling methodology, one must understand
its role in the overall design process. The design process of a reactive system can be segmented
into three major phases: the specification phase, the design phase, and the implementation phase.
In the specification phase, the requirements of the system under design are formulated and docu-
mented as a specification. In the design phase, the possible implementation strategies are consid-
ered and evaluated. Finally, in the implementation phase of design, the specification is realized as
a product. Note that even though the three phases may be initiated in the order we mention them,
these phases often overlap. Overlapping of phases implies that during the design process, one
phase may not be completed before the next phase is initiated. Another point to note is that in some
methodologies, it can be difficult to distinguish the three phases from one another, especially when
the difference in the levels of abstraction between the specification and implementation is small.
In such cases, the specification is often a reflection of the implementation, and the process of devel-
oping specification may reflect the design phase.

We are concerned with the specification phase, where the designer (henceforth known as the
specifier) typically develops a model of the system called the specification model. A specification
model, or simply, aspecification is a document that prescribes the requirements, behavior, design,
or other characteristics of a system or system components. By developing and analyzing the model,
the specifier makes predictions and obtains a better understanding of the modeled aspects of the
system.

We now precisely define a specification-modeling methodology. A specification-modeling
methodology is a coherent set of methods and tools to develop, maintain and analyze the specifica-
tion of a given system. A method, in the context of specification modeling, consists of three com-
ponents. The first component is anunderlying model which is used to conceptualize and
comprehend the system requirements. The second component is aset of languages that provides
notations to express the system requirements. Finally, the third component of a method is aset of
techniques ranging from loosely specified guidances to detailed algorithms that is needed to
develop a complete specification from preliminary concepts.

In this paper, we focus mostly on the methods. The tools are important. However, the tools are
primarily concerned with providing support for the methods. Therefore, the tools can be character-
ized by the method component of a methodology and are not considered separately.

There are three key requirements of a specification modeling methodology. First, it should be
supported by languages that are appropriate for specifying requirements of the system. Second, it
should provide assistance in controlling the complexity of specifying nontrivial systems. Third and
finally, the methodology should also support the usefulness of the specification model across the
design and implementation phases.

4. Specification modeling methodology for reactive systems

Based on the characteristics of a reactive system and the requirements of a specification-mod-



5

eling methodology, we synthesize the necessary attributes of a reactive-system specification mod-
eling methodology. These attributes are presented in Figure 1.

There are three major attributes of an reactive system specification modeling methodology:
language attribute, complexity-control attribute, and model-continuity attribute.

The language attribute represents the modeling languages that supported the methodology.
This attribute distinguishes reactive system specification modeling methodology from other spec-
ification methodologies, since the chosen languages should provide appropriate conceptual models
and analysis techniques applicable to reactive systems. There are two dimensions of the language
attribute. The conceptual-models dimension determines the available conceptual models for
expressing reactive systems. The analysis-technique dimension determines the kind of support
available for checking the specification consistency.

The second attribute represents the support available in the methodology for complexity con-
trol. Complexity-control is necessary for any design methodology that is applicable to design prob-
lems of nontrivial complexity. There are two dimensions along which complexity control should
be supported: representational complexity and developmental complexity. Representational com-
plexity deals with the understandability of the developed specification, whereas developmental
complexity provides support for developing the specification in an organized and productive man-
ner.

The third attribute of reactive system specification modeling methodology, support for model-
continuity, distinguishes a reactive system specification modeling methodology as a specification
methodology, instead of a design methodology. The specification modeling methodology should
be more focussed towards developing and maintaining a specification model instead of a proposed
implementation. Support of model-continuity should be considered along three dimensions: inte-
grated modeling, implementation independence, and implementation assistance. Support along
these three dimensions ensures that the usefulness of the specification model is maintained beyond
the specification modeling stage of a design. Since a considerable investment of time and effort is
made in developing a specification model, extending the useful life of the specification model will
increase the usefulness and appeal of the associated specification methodology.

To be effective, a reactive system specification modeling methodology must strongly support
all three of the attributes mentioned above. We describe each of these components in the following
sections. The strengths and weaknesses of a reactive-system specification-modeling methodology
can be quickly identified by evaluating the strengths of each of these components in the methodol-
ogy.

reactive systems specification methodology

conceptual

Figure 1. Attributes of a reactive-system specification methodology

implementation
independence

language complexity control model continuity

analysis
techniques

representational
complexity

developmental
complexity

model
integration

implementation
assistancemodels



6

4.1. Support for specification languages
The primary purpose of a specification-modeling language is to unambiguously express the

desired functionality of a specified system. As discussed in Section 2, a reactive system possesses
a number of characteristics. To express and comprehend these characteristics, a number of concep-
tual models are used. A specification language is defined by the conceptual models it offers the
specifier to express these characteristics. In this section, we present the major conceptual models
available for each reactive system characteristic. A specification language typically offers one con-
ceptual model for a given characteristic, based on its targeted domain of application. For a good
summary of available language techniques, see [BT85,  Dav88, GVN93].

In addition to providing conceptual models, the specification language also offers support for
analyzing and reasoning about the specification. The type of analysis and reasoning mechanisms
that are available depend mainly on the specification language used. We think the two most impor-
tant language characteristics are whether the language is based on a sound mathematical formalism
and whether the specification is executable.

4.1.1. Available conceptual models
For each reactive system characteristic, we present the popular conceptual-model alternatives.

When evaluating a specification-modeling methodology, one should identify if it provides concep-
tual models for each reactive-system characteristic. One should then check if the conceptual mod-
els that are supported by the specification-modeling methodology are appropriate given the
application domain and specifier preference.

For the purpose of evaluation, we consider a methodology suitable for reactive systems speci-
fication as long as it offers at least one conceptual model for expressing the following characteris-
tics:
• System views

There are three views that are complementary to each other: activity, behavior,
and entity view. In the activity view, the specification represents the activities that
occur in the system. Activity in a system is closely tied to the flow of data in a sys-
tem. In the behavior view, the specification represents the ordering and interaction
of these activities. Behavior in a system is often represented in terms of states and
transitions, or the flow of control. Finally, in the entity view, the entities in the sys-
tem, are identified. These entities represent the system components that are respon-
sible for the activities and behavior in the system. Entities in a system are often
represented as the data-items present in a system.

• Specification style
There are two primary styles of specification: model-oriented and property-ori-

ented [Win90]. In a model-oriented specification, the system is specified in terms
of a familiar structure such as state-machines, processes, or set theory. In a prop-
erty oriented specification, the system is viewed as a black-box, and the properties
of the system are specified in terms of the directly observable behavior at the inter-
face of the black-box. Generally speaking, model-oriented specifications are con-
sidered easier to understand than their property-oriented counterparts. On the other
hand, property-oriented specifications are considered less implementation depen-
dent (discussed in Section 4.3.3), since no assumption is made about the internal
structure or contents of the system.



7

• Concurrency
Reactive systems generally consist of concurrent behaviors that cooperate with

each other to achieve the desired functionality. Concurrency is further character-
ized by the need to express communication and synchronization among concurrent
behaviors.
Communication among concurrent behaviors

Communication between concurrently acting portions of a system is usually
conceptualized in terms ofshared-memory or message-passing models. In the
shared-memory model, a shared medium is used to communicate information. The
communication is initiated by the sender process writing into a shared location,
where it is available immediately for all receiver processes to read. In the message-
passing model, a virtual channel is used, with “send” and “receive” primitives used
for data transfer across that channel. Both shared-memory and message-passing
models are interconvertible: each model can be expressed in terms of the other
model.
Synchronization among concurrent behaviors

In addition to exchanging of data, the concurrent components of a system need
to be synchronized with one another. Such synchronization is needed since the
concurrent components often need to coordinate their activities, and have to wait
for other components to reach certain states or generate certain data or events. Syn-
chronization may be achieved using control constructs or communication tech-
niques. Examples of control constructs are fork-join primitives, initialization
techniques, barrier synchronizations etc. Examples of using communication tech-
niques for synchronization are global-event broadcasting, message passing, global
status detection etc.

In addition to communication and synchronization, a specification language
often supports expression of nondeterminism among concurrent behaviors [Dij75,
MP91]. We consider nondeterminism an attribute for complexity control rather
than a reactive system characteristic, since it allows the specifier to focus on the
allowable alternative behaviors without committing to any specific choice. This
choice is determined at a later stage depending upon the implementation.

• Timing constraints
Timing constraints are an important part of any reactive system behavior and

can be specified eitherdirectly or indirectly. Timing constraints can be specified
directly as inter-event delays, data rates, or execution time constraints for execut-
ing behaviors. Supporting temporal logic [MP91] can be seen as a direct specifica-
tion technique. Indirect specification of timing constraints occurs when the actual
constraint is implied through a collection of specification language constructs. This
approach is followed in Statecharts [Har88], where timing constraints are specified
by a combination of states, transitions, and time-outs.

• Modeling time
Reactive system behavior is often specified in terms of their time metric (E.g.

wait for 5 minutes to warm up electromechanical equipment). Consideration of
time in a separately modeled entity increases the ease with which the specifier can
specify such timing behavior, instead of referring to time indirectly.

• Exception handling



8

Certain events may require instantaneous response from the system. This
requires the system to typically terminate the current mode of operation and transi-
tion into a new mode. In some cases, the system is required to resume in the origi-
nal state at which the interrupt occurred. Interrupt handling is one such case.

Exception handling can be provided through explicit specification language
constructs. Examples are text-oriented exception handling mechanisms in Ada
programming language or graphics-oriented mechanisms such as complex transi-
tions and history operators in Statecharts.

• Environment characterization
Since the reactive system is expected to be in continual interaction with its

environment, it is important to be able to characterize the environment. Since the
environment itself is reactive in nature, one may choose to model it using the same
specification language. The operational environment of a reactive system can
therefore be specified as an explicitmodel or as a set ofproperties. When specified
as a separate model, the environment is seen as a separate entity that interacts with
the model of the system under design. For property oriented characterization, the
system’s operational environment can be specified via hints about various opera-
tional conditions such as inter-arrival of events (expected frequencies, timings),
expected work-loads, etc.

• Nonfunctional characterization
In addition to providing conceptual models for specifying the functionality of

the system, a specification methodology reactive system should also provide sup-
port for expressing nonfunctional characteristics such as maintainability, safety,
availability etc. Mechanisms to represent hints, properties,or external constraints
that a system should follow should be provided.

4.1.2. Analysis techniques
There are two main considerations for the support of the methodology for analyzing and com-

prehending the specified reactive system behavior: support forformal analysis and support for
model executability.

First, we examine whether the language itself has a sound mathematical basis. Having a sound
mathematical basis for the specification language enables one to automatically check for inconsis-
tencies in the specification itself. Given the advances in formal techniques and the ever increasing
number of safety critical reactive systems being designed, we consider that support for formal anal-
ysis of the specification is important. We examine if the specification language has a strong math-
ematical formalism as its basis. A number of formalisms are available: Petri-nets, finite state
machines, state diagram, temporal logic, process algebras, abstract data types etc. A specification
methodology may offer several of these formalisms as a choice for analyzing its specification mod-
els. In this paper, we observe whether the specification-modeling methodology chose a language
which has a formal basis.

Second, given the typical nontrivial complexity of the systems being designed today, execut-
ability of the specification is a big help in improving the comprehensibility and robustness of the
specification. Executability also offers the ability to experiment with preliminary prototypes of the
system under design which is useful to validate the specification against the requirements of the
system.



9

4.2. Complexity control
One of the main requirements of a design methodology is to be able to control the complexity

of the design process. Support for complexity control in a specification-modeling methodology can
exist along two dimensions. The first dimension is the representational complexity, which makes
the specification itself concise, understandable, and decomposable into simpler components. The
second dimension is developmental complexity, which supports the development of the specifica-
tion in an incremental, step-wise refined manner.

4.2.1. Representational complexity
Support for this dimension is usually dependent on the specification language chosen. We list

this dimension separately under complexity control, since it allows us to separate the complexity
control aspect of a specification language from its support for expressing reactive system charac-
teristics.
• Hierarchy

The notion of hierarchy is an important tool in controlling complexity. The
basic idea in hierarchy is to group similar elements together and to create a new
element that represents this group of similar elements. By introducing the common
behavior in this way, multiple levels of abstractions can be supported.

• Orthogonality
A complex behavior can often be decomposed into a set of orthogonal behav-

iors. By supporting such decomposition in the representation, significant improve-
ment in clarity and understandability can be attained.

• Representation scheme
The representation scheme plays an important role in the understandability of a

specification. We make the distinction between graphical and textual representa-
tion schemes. By graphical scheme, we imply visual formalisms where both syn-
tactic and semantic interpretations are assigned to graphical entities. For example,
Statecharts, Petri-nets etc. are such visual formalisms. In our opinion, graphical
representation schemes are preferable to a textual ones since the former allow the
specifier to visualize the system behavior more effectively, especially during exe-
cution of the specification. For many textual approaches, however, tools exist
today that transform the textual approach into a graphical approach.

4.2.2. Developmental complexity
In addition to the representation of system behavior, a specification methodology must also

support the evolution of the specification model from initial conceptualization of system require-
ments. We think the following dimensions should be supported.
• Nondeterminism

By incorporating nondeterminism in a controlled manner, the specification can
leave details to the implementation and final stages. For example, in a typical pro-
ducer-consumer type system, if requests for both element insertions and element
deletions from a buffer arrive simultaneously, the specification may non-determin-
istically select either operation to be executed first. The commitment to an actual
choice in such a scenario is deferred to later design stages. Nondeterminism thus
supports a evolutionary approach to specification development. In addition to the
incorporation of nondeterminism, a specification methodology should also provide



10

mechanisms to detect and resolve nondeterminism. It is often difficult to detect
nondeterminism in specifications of complex systems, given the complex interrela-
tionships of the behaviors of the system components. If left undetected and conse-
quently unresolved, nondeterminism is a potential source of ambiguity.

• Perfect synchrony hypothesis
Perfect-synchrony hypothesis [Ber91] implies that a reactive system produces

it outputs synchronously with its inputs. In other words, the outputs are produced
instantaneously after the inputs occur. This assumption of perfect-synchrony is
borne out in many cases, especially if the inputs change at rates slower than the
system can react. For example, in a clocked system, if the clock cycle is long
enough, the system gets a chance to stabilize its output values before the next
clock event occurs.

Based on the assumption of perfect-synchrony hypothesis, specification lan-
guages can be divided into two types: synchronous and asynchronous. In synchro-
nous languages, time advances only if explicitly specified. In asynchronous
languages, time advances implicitly. Examples of synchronous languages are Stat-
echarts, Esterel etc. Examples of languages based on asynchronous hypothesis are
those based on concurrent programming languages such as Ada, SREM etc.

Perfect-synchrony assumption makes the specification concise, composable
with other specifications, and in general lend the specification to a number of ele-
gant analysis techniques.

However, the assumption of perfect synchrony may not be valid at all levels of
abstractions especially if the reaction of the system is complicated. For example, if
the reaction is a lengthy computation, clearly assumption of perfect synchrony will
be violated, as the input may change before the computation is completed.

• Developmental guidance
Guidance for model development is helpful in identifying the next step in the

process of specifying a system. One may do it bottom up, where the primitives are
first identified and then combined. Another guidance is in the form of a top-down
approach, where a specification is decomposing into smaller and more detailed
components. Yet another approach is called the middle-out approach, which com-
bines both top-down and bottom-up approaches.

Typically, development style is a matter of choice and not strictly enforced. In
some methodologies, however, this can be enforced. Enforcing the style may inter-
fere with designer creativity.

4.3. Model-continuity
Significant effort is involved in the development and debugging of a model of the system under

design. Once the model has been developed and analyzed, however, it is often discarded and is not
revisited in the remainder of the design process. Such a limited useful life of a specification model
tends to make the corresponding modeling methodology unpopular with designers. The reason for
the limited usefulness of a specification model is the problem of maintaining model continuity.

Model continuity can be defined as the maintenance of relationships between models created
in different model spaces such that the models can interact in a controlled manner and may be uti-
lized concurrently throughout the design process. The problem of maintaining model continuity for
a specification can be divided into following three subproblems: model integration, implementa-



11

tion assistance, and implementation independence. Model integration addresses the challenge of
making the specification model compatible with models developed during the design and imple-
mentation stages. Implementation assistance increases the usefulness of the specification by help-
ing during the design and implementation stages. Implementation independence increases the
useful life of the specification by not committing it to a particular design/implementation choice,
thus avoiding restriction of creativity during the design process.

4.3.1. Model integration
Model integration can be subdivided into three attributes:

• Conformance
The conformance attribute identifies how a methodology addresses the first

subproblem of model continuity, namely: checking conformance among models
developed. The methodology should provide either a simulation-based support or
an analysis-based support for checking conformance between the models (or both).

We categorize conformance checking along two dimensions: vertical and hori-
zontal. Vertical-conformance checking involves validating conformance between
models representing different levels of abstraction. Horizontal-conformance
checking involves validating conformance between models representing different
modeling domains. To be effective, the methodology must provide support for
checking conformance along both dimensions. For example, one should be able to
check the conformance between an algorithmic-level model and a logic-level of a
system. This is a example of vertical-conformance checking. As an example of
horizontal-conformance checking, one should also be able to check the conform-
ance between a functional level behavioral model involving register-transfers and
state-sequencers and a structural model involving ALUs, MUXs, registers etc.

• Model interaction
The interaction attribute identifies how a methodology addresses the second

and third subproblems of model continuity, namely: maintaining visibility of the
specification model during the implementation phase and incorporating relevant
details obtained from the implementation phase back into the specification model.
Supporting such a high degree of interaction and information flow among these
models requires integrated modeling across different levels of abstraction and
modeling domains. By integrated modeling, we imply that the flow of information
occurs in both directions across the model boundaries. This flow of information
can occur during either integrated simulation or integrated analysis of both models.
A methodology must support bidirectional information flow across model bound-
aries.

Analogous to conformance checking, we categorize model interaction along
two dimensions: vertical and horizontal. Vertical interaction occurs between mod-
els belonging to different levels of abstractions, whereas horizontal interaction
occurs between models belonging to different domains of modeling. A methodol-
ogy must provide mechanisms that support both vertical and horizontal model
interactions.

• Complexity
The complexity attribute addresses the problem of controlling complexity dur-

ing the development and analysis of models throughout the design stages. Given



12

the considerable complexity of models representing nontrivial systems, support for
this attribute is necessary for effective implementation of the conformance and
interaction attributes.

Complexity control is primarily achieved by supporting a hierarchy of repre-
sentations. Support of hierarchy significantly reduces design time, as the designer
is allowed to provide less detail in creating the original representation. For adding
or synthesizing further information, he or she can then use automated or semi-
automated design aids. In addition to the addition or the synthesis of details, a hier-
archical approach allows the designer to quickly identify what portion of the
design should be expanded upon, without necessarily expanding the rest of the
system. This incremental-expansion approach is of tremendous advantage when
the expanded representation is radically different from the original representation.
By enabling incremental modifications, a hierarchical representation improves
designer comprehension of the effect of change on the original model.

Similar to conformance checking and model interaction, model complexity can
also be divided into two dimensions: vertical and horizontal. Abstraction of a
lower-level model into a higher-level is an example of managing vertical complex-
ity. Combination of models from different modeling domains into a unified repre-
sentation is an example of managing horizontal complexity. The hierarchical
representation must possess capability to manage both horizontal and vertical
complexity.

4.3.2. Implementation assistance
The task of developing an implementation from a specification is complex. As

a result, there has been a significant research in the automated synthesis of imple-
mentations from specifications[BT85,  CPT89, CR85, HD88, LB91, TM91,
WWD92]. There are two prime motivations for implementation assistance: reduc-
tion of designer effort and increase in implementation accuracy. By supporting
automated/semi-automated techniques for the synthesis of a design/implementa-
tion, there is a significant reduction in required designer effort. Also, an automated
technique avoids human errors that can be introduced otherwise during the manual
design process. Synthesis of efficient implementations from system-level specifi-
cations is still immature. Another limitation of current synthesis techniques is that
they are generally based on the structure of the specification, thus limiting design
space and therefore producing less optimal solutions.

4.3.3. Implementation independence
According to [Win90], a specification has an implementation bias if it specifies

externally unobservable properties of the system it specifies. A specification is
therefore considered implementation independent if it lacks implementation bias.
While evaluating a specification methodology, we examine how well it supports
implementation independence. There are two key advantages of an implementa-
tion independent specification. First, it allows the specifier to focus on describing
the behavior of the system, rather than how it is implemented. Second, it avoids
placing unnecessary restrictions on designer freedom.



13

5. A survey of methodologies

We consider ten specification methodologies and evaluate their relative merits and demerits
against the framework established in Section 4. Clearly, a number of other specification methodol-
ogies exist that have not been included in this report. However, we consider the presented set to be
representative.

A few observations regarding these ten methodologies are in order. The opinions presented are
subjective, especially when considering issues such as complexity control and model continuity.
Many of the deficiencies pointed out are not necessarily fundamental to the methodologies them-
selves, but, in our judgement, need to be explicitly addressed by them. Each methodology therefore
has the potential to evolve to the point where they support all the dimensions indicated in the
framework. No relative judgement has been offered between any two methodologies.

The surveys are organized as follows. We introduce each methodology with a brief background
of its development. We next mention the system views supported, followed by a brief description
of the steps in the methodology. We conclude each survey with a description of a few noteworthy
features that we consider are the methodology’s strengths and weaknesses. These surveys are by
no means exhaustive, and the reader is encouraged to follow up the references provided for further
detail. The main features of the methodologies are summarized in Tables 1-4.

In each table, the rows represent the methodology and the columns represent the attributes.
Each table cell presents a summary of how the corresponding specification methodology supports
the attribute represented by the corresponding column. In Tables 1, 2, and 3, we describe the sup-
port of the surveyed specification methodologies for the language, complexity control, and model
continuity attributes respectively. The three attributes are then summarized in Table 4.

5.1. Ward and Mellor ’s Methodology (SDRTS or RTSA)
Ward and Mellor’s methodology [SWC94], calledStructuredDevelopment forReal-TimeSys-

tems (SDRTS), was developed for the specification and design of real-time applications. Since the
methodology is an extension of the Structured Analysis [DeM79] methodology for real-time sys-
tems, it is also calledReal-TimeStructuredAnalysis (RTSA). A similar methodology can be found
in Hatley and Pirbhai’s [HD88] approach.

There are two system-views adopted by RTSA: Data-Flow Diagrams (DFD) and Control-Flow
Diagrams (CFD). DFD is used to model the activities in the system, whereas the CFD is used to
express the sequencing of these activities. The CFD itself is defined in terms of a finite-state model
such as FSM or decision table.

The methodology is based on structured analysis, one of the earlier approaches to express sys-
tem requirements graphically, concisely, and minimally redundant manner. To develop a specifica-
tion of the system, two models are created: the environment model and the system model. The
environment model describes the operational context in which the system operates and the events
to which the system reacts. The system model, which expresses the system’s behavior, is then
developed through successive refinements.

The language attribute is not supported well, since several aspects of reactive system behavior
cannot be modeled conveniently. For example, there is no direct support for specifying timing con-
straints or handling exceptions elegantly.   A lack of any formal method support makes the meth-
odology less useful in specification and design of critical systems. Lack of orthogonality makes it
harder to conveniently represent and understand the behavior of complicated systems. The model-
continuity attribute is also not well supported.



14

5.2. Jackson System Development (JSD)
Jackson System Development [Jac83] methodology, originally developed for program design

[Jac75], is considered suitable for the design of information systems and real-time systems
[Cam86]. In its current stage, the methodology covers specification, design and implementation
stages.

The methodology is based on entity modeling. The system requirements are expressed as Jack-
son’s diagram for entities. The diagram presents a time-ordered specification of the actions per-
formed on or by an entity. A system specification diagram is also created, which is a network of
processes that model the real world. A process communicates with others by transmitting data and
state information. It is also possible to model time explicitly by introducing explicit delays.

The basic modeling philosophy is that the structure of a system to be designed can be deter-
mined from the structure and evolution of data it must manage. The methodology consists of two
phases: specification and design. In the specification phase, the environment is described in terms
of entities (real world objects the system needs to use) and actions (real world events that affect the
entities). These actions are ordered by their expected sequence of occurrences and represented with
Jackson diagrams. The actions and entities are then represented as a process network using system
specification diagrams. The connection between these processes and the real world are defined.
The creation of the initial process network can be seen as the end of specification phase.

During the design phase that follows the specification phase, the process network is succes-
sively elaborated by identifying further processes that are needed to execute the actions associated
with the entities described in the Jackson Structure Diagram. The completed process network rep-
resents the final design which is then mapped to a set of hardware/software components.

The JSD methodology supports model continuity by carrying the specification through further
well defined design steps. However, timing considerations come very late, almost after the design
phase. The specification is implementation dependent, since it is closely tied to an implementation,
thereby reducing designer freedom. The methodology lacks support for expressing several reac-
tive-system characteristics such as exception handling. Neither does it support any formal analysis
or well defined execution semantics. The main strength of the methodology lies in its complexity-
control attribute, especially regarding its developmental guidance and representational elegance.

5.3. Software Requirements Engineering Methodology (SREM)
Software Requirements Engineering Methodology (SREM) [AAH82] was developed for cre-

ation, checking and validation of specifications of real-time and distributed applications for data
processing.

The SREM method is useful for specification making use of structured finite-state automata
called requirement nets (r-nets). R-nets express the evolution of outputs and final state starting
from inputs and current state. Both inputs and outputs are structured as sets of messages, commu-
nicated by an interface connected to the environment.

To develop a specification, the interface between the system and the environment and the data-
processing requirements are specified. The initial description is produced using r-nets. Functional
details, timing and performance constraints are then added. Next, validation and coherency checks
are performed on the specification. A final feasibility study is conducted to guarantee that the spec-
ification will result in a feasible solution.

The behavior of a reactive system is well-represented by this methodology. The addition of per-
formance specifications and timing constraints are also beneficial. However, hierarchical decom-
position of the specification is not supported. As a result, the task of specification requires too much



15

detail. The attribute of model-continuity is supported since both the specification and implementa-
tion can be considered in an integrated manner for testing, feasibility analysis, supporting fault-
tolerance etc. Both implementation assistance and implementation independence are supported by
the methodology since it allows one to study multiple implementation schemes for a given speci-
fication. However, the methodology ties the specification too closely to the possible implementa-
tion in terms of its structure. As a result, the support for model continuity can be considered to be
limited, since the number of implementations considered is limited by the structure of the specifi-
cation.

5.4. Object Oriented Analysis (OOA)
OOA stands for Object Oriented Analysis, and is based on the object-oriented paradigm of

modeling. The world is modeled in terms of classes and objects that are suitable to express the
problem domain. Different schemes have been suggested for OOA [CY90,  MP92, SM88], they
differ mostly in terms of notations and heuristics.

OOA can be seen as an extensions of data or information modeling approaches. The latter
approaches focus solely on data. In addition to modeling data, OOA also concerns data transfor-
mations.

The major steps in OOA consist of identifying objects, their attributes, and the structure of their
interrelationships. The entire specification is developed as a hierarchy of modules, where each
module is successively refined both horizontally and vertically into further modules. The vertical
refinement adds further properties to a module, whereas the horizontal refinement identifies a set
of loosely-coupled, strongly-cohesive interacting sub-modules that define the behavior of the orig-
inal module. The implementation of these modules is, however, not considered at the specification
stage.

The OOA main strength lies in the complexity-control attribute. To exploit the strength of
OOA, however, it should be combined with languages that support expression of reactive system
characteristics and have both formal and operational semantics. For application to the domain of
reactive systems, we find approaches that combine languages suitable for expressing reactive sys-
tems with object-oriented design principles. Such an example can be found in [Col92].

5.5. Specification and Description Language (SDL)
Specification and Description Language is a design methodology that has been standardized by

CCITT [CCI88,   FO92], and is used for specifying and describing many types of systems. SDL is
standardized, semiformal, and can be used both as a graphical or a textual language. SDL is prima-
rily used for telecommunication systems [SSR89].

SDL provides three views of a system: structural, behavioral and data. It is the behavioral view
of the system that is used to specify the system’s reactive nature. The system is modelled as a num-
ber of interconnected abstract machines. The machines communicate asynchronously.

The specification models are developed for the three system-views as follows. The structural
model is generated hierarchically, starting from a block that is recursively decomposed into a num-
ber of blocks connected together by channels. At the topmost level, the system block has channels
that allow interfacing with the system’s environment. The behavioral model is a set of processes
that are extensions of deterministic finite-state machines. The interaction between these processes
is done via signals. These processes can be dynamically created and collectively represent the sys-
tem behavior. Temporal ordering between the signals used in inter-process communication is spec-
ified using message-sequence charts, which are useful for debugging the specification. Finally, the



16

data is modeled as an Abstract Data Type, where one describes the available data-operations and
data-values but not how they are implemented.

SDL supports the perfect-synchrony hypothesis and has an associated formal semantics. How-
ever, it does not support all the reactive system characteristics. For example, exception handling is
not directly supported since the inputs are typically consumed by a process only when the receiving
process is ready to process the input. Thus, if an exception condition is communicated as an input
to the process, it may not be acted upon immediately. Rather, the exception will be handled when
the receiving process is ready to process the arriving exception. The complexity-control attribute
is well supported. Model-continuity is not well supported in the methodology.

5.6. Embedded Computer Systems (ECS)
The Embedded Computer Systems (ECS) methodology [HLN88,  LB91] is based on the

three views of system modeling: activities, control, and implementation. Express-VHDL [ILO93]
is used as a computer-aided design tool for this methodology.

ECS supports both behavioral and functional decomposition of the system’s specification. The
system behavior is expressed using the visual formalism of Statecharts [Har87], an extension of
FSM that significantly reduces the representational state-space explosion problem encountered by
ordinary FSMs. This reduction is achieved due to the conceptual models of concurrency, hierarchy,
and complex transitions supported by Statecharts. A history operator, useful for expressing inter-
rupt-handling, is also provided to significantly reduce the representational complexity.

 The system is functionally decomposed using activity charts, and is viewed as a collection of
interconnected functions (activities) organized in a hierarchy. The activity charts visually depict
the flow of information in the system, with the control of flow being represented by the associated
Statecharts model.

To develop the specification, the methodology recommends a top-down and iterative analysis
that gradually expresses all the requirements of the system. Conceptually, a system is decomposed
into a number of subsystems, each carrying out a functionality, and a controller that coordinates the
activities between these subsystems. The behavior of each system is represented by a Statecharts
model. Each state in the Statecharts model can be refined further into AND and OR states. The
default-entry states, needed synchronizations, associated timing constraints, etc. are specified next.

Both the language and complexity-control attributes are well supported by the ECS methodol-
ogy. ECS is based on the language of Statecharts which is very suitable for expressing reactive sys-
tem requirements in an implementation-independent manner. Support for the executability and
some static and dynamic analysis is provided at each stage of development. However, model con-
tinuity, especially along the model-integration dimensions, is not supported.

5.7. Vienna Development Method (VDM)
VDM (Vienna Development Method) [LB91] is an abstract model-oriented formal specifica-

tion and design method based on discrete mathematics [HI88]. The formal specification language
of VDM is known as META-IV [Ber91].

The specification is written as a specification of an abstract data type. The abstract data type is
defined by a class of objects and a set of operations to act upon these objects while preserving their
essential properties. A program is itself specified as an abstract data type, defined by a collection
of variables and the operations allowed on these variables. The variables make the notion of state
explicit, as opposed to property-based methods.

The specification development process is closely tied to the design process. The steps of the



17

specification methodology is as follows. A formal specification is developed using the META-IV
language. Once the specification is checked via formal analysis and found to be consistent, the
specification is refined and further decomposed into what is called a realization. The realization is
checked against the original specification for conformance. The specification is iteratively and
step-wise refined until the realization is effectively a complete implementation.

This method supports model continuity very well. The main drawback, in our opinion, is that
it is relatively difficult to understand and conceptualize a reactive system from a VDM specifica-
tion. Neither is the specification executable. The structure of the specification has a large impact
on the implementation, making the methodology weak on the implementation independence since
the implementation is largely determined by how the specification is decomposed. It is not clear
how one can incorporate independently developed implementations and check for their conform-
ance against the specification.

5.8. Language Of Temporal Ordering Specification (LOTOS)
LOTOS (language Of Temporal Ordering Specification) is an internationally standardized for-

mal description technique, originally developed for the formal specification of OSI (Open Systems
International) protocols and services.

The specification is based on two approaches: process algebras and abstract data types. The
process-algebra approach is concerned with the description of process behaviors and interactions
and is based on Milner’s Calculus of Communicating Systems [Mil80] and Hoare’s work on Com-
municating Sequential Processes [Hoa85]. The abstract data type approach is based on ACT-ONE
[EM85], which deals with the description of data structures and value expressions. The resulting
specifications are unambiguous, precise, and implementation independent.

A system is specified by defining the temporal relationships among the interactions that make
up its externally observable behavior. These interactions are between processes, which act as
black-boxes. A black-box is an entity capable of performing both internal actions and external
actions. The internal actions are invisible beyond its boundaries whereas the external actions are
observable by an observer process. Interactions between these processes is achieved using events.
The processes are specified using process algebra approach, which allows the description of behav-
ior as a composition of basic behaviors using a rich set of combining rules.

Being property-oriented, LOTOS supports implementation independence, as it specifies behav-
ior of the system that can be observed only externally. The structure of the implementation is not
restricted by the specification. However, being property-oriented also makes it hard to conceptual-
ize the internal states of reactive system. Further, it also becomes hard to generate an implementa-
tion from the specification. The concept of time is also not directly supported.

5.9. Electronic Systems Design Methodology (MCSE)
MCSE (Methodologie de Conception des Systemes Electroniques) is a methodology for the

specification, design, and implementation of industrial computing systems. The methodology is
characterized by its top-down approach to the design of real-time systems, and is structured into
several steps from system specification to system implementation.

Three kinds of specifications are produced during the specification process. First, functional
specifications include a list of system functions and a description of the behavior of the system’s
environment. Second, operational specifications concern the performance and other implementa-
tion details that are to be used in the system. Third and finally, technological specifications include
specifications of various implementation constraints such as geographic distribution limitations,



18

a. All methodologies surveyed here support concurrency.
b. All methodologies surveyed here show limited support for nonfunctional characteristics

 Table 1: Support for language attribute by specification-modeling methodologies

Support for language attribute [Section 4.1]

Specification
Modeling

Methodologies

Available conceptual modelsa, b [Section 4.1.1]
Analysis techniques

[Section 4.1.2]

System views
Specification

style
 Timing

constraints
Modeling time

Exception
handling

Environment
characterization

Formal
analysis

Model
executability

SDRTS [Section 5.1] activity+behavior model indirect limited limited model limited limited

JSD [Section 5.2] entity model direct supported limited model limited limited

SREM [Section 5.3] behavior model  direct supported limited property semiformal supported

OOA [Section 5.4] entity+behavior model indirect limited limited limited limited limited

SDL [Section 5.5] entity+behavior model indirect supported limited limited supported supported

ECS [Section 5.6] activity+behavior model indirect supported supported model supported supported

VDM [Section 5.7] entity model indirect limited supported limited supported supported

LOTOS [Section 5.8] entity+behavior property indirect limited supported property formal limited

MCSE [Section 5.9] activity+behavior model, property direct supported limited model semiformal limited

ISPME[Section 5.10] activity+behavior model indirect supported supported model formal supported



19

Table 2:  Support for complexity-control attribute by specification-modeling methodologies

Support for complexity control
[ Section 4.2 ]

Specification
Modeling

Methodologies

Representational complexity
[ Section 4.2.1 ]

Developmental complexity
[ Section 4.2.2 ]

Hierarchy Orthogonality
Representation

scheme
Nondeterminism

Perfect-synchrony
Assumption

Developmental
guidance

SDRTS [Section 5.1] supported limited graphical limited asynchronous top down

JSD [Section 5.2] supported supported graphical limited asynchronous top down

SREM [Section 5.3] limited limited graphical limited asynchronous bottom up

OOA [Section 5.4] supported supported textual limited asynchronous  top down

SDL [Section 5.5] supported supported graphical supported synchronous top down

ECS [Section 5.6] supported supported graphical supported synchronous top down

VDM [Section 5.7] supported supported textual supported synchronous top down

LOTOS [Section 5.8] supported supported textual supported synchronous top down

MCSE [Section 5.9] supported supported graphical limited synchronous top down

ISPME [Section 5.10] supported supported graphical supported synchronous + asyn-
chronous

top down
bottom up



20

 Table 3: Support for model-continuity attribute by specification-modeling methodologies

Support for model-continuity attribute
[ Section 4.3]

Specification
Modeling

Methodologies

Model integration [Section 4.3.1] Implementation
assistance

[Section 4.3.2]

Implementation
independence

[Section 4.3.3]Conformance Interaction Complexity

SDRTS [Section 5.1] limited vertical vertical limited limited

JSD [Section 5.2] limited vertical vertical limited supported

SREM [Section 5.3] limited vertical vertical supported limited

OOA [Section 5.4] limited limited limited limited supported

SDL [Section 5.5] limited limited limited supported supported

ECS [Section 5.6] limited limited limited supported supported

VDM [Section 5.7] supported vertical  vertical supported limited

LOTOS [Section 5.8] limited vertical limited limited supported

MCSE [Section 5.9] limited limited supported limited supported

ISPME [Section 5.10] supported supported supported supported supported



21

Tabe 4:  Summarizing attributes of reactive-system specification-modeling methodologies

Specification Modeling
Methodologies

Language
[ Section 4.1]

Complexity control
[Section 4.2]

Model continuity
[Section 4.3]

SDRTS [Section 5.1] limited limited limited

JSD [Section 5.2] limited supported limited

SREM [Section 5.3] supported limited limited

OOA [Section 5.4] limited supported limited

SDL [Section 5.5] supported supported limited

ECS [Section 5.6] supported supported limited

VDM [Section 5.7] supported limited limited

LOTOS [Section 5.8] supported limited limited

MCSE [Section 5.9] supported supported limited

ISPME [Section 5.10] supported supported supported



22

interface characteristics etc.
   There are two main parts in the specification process: environment modeling and system mod-

eling. In the environment-modeling part, the environment is first analyzed to identify the entities
that are relevant to the system. Next, a model is created representing the identified entities and their
interactions, thus providing a functional description of the environment. In the system-modeling
part, the system under design is first delimited in terms of its inputs and outputs. Next, a functional
specification of the system is developed, which describes the functions to be carried out by the sys-
tem on its environment. This functional specification is developed by characterizing the system in
terms of system inputs and outputs, system entities, or system activities.

The MCSE approach provides a well defined methodology for developing a specification.
Another strength of this approach lies in the fact that it allows a multitude of system views and
modeling approaches for system specification. However, there is a lack of support for formal tech-
niques. While several modeling techniques and system views are supported, a coherent integration
of these diverse approaches is not supported.

5.10. Integrated Specification and Performance Modeling Environment (ISPME)
The Integrated Specification and Performance Modeling Environment [Sar95] is an evolving

specification modeling methodology that supports a strong interaction between the specification
phase of a design process with design and implementation phases. As a result of this interaction,
there is an increased and better communication of design intent among these phases.

ISPME is based upon the language of Statecharts, similar to ECS modeling methodology. As
a result, it supports the behavioral view of the system. However, ISPME also supports complemen-
tary modeling, where some aspects of the system are modeled using Statecharts, while the remain-
ing aspects are represented as a performance model. The performance model is developed using
ADEPT [AWJ92,  AWW90], which is based on an extension of Petri-nets [Pet81]. Since a perfor-
mance-model can coexist with the Statecharts specification, ISPME supports the activity view for
a system.

The methodology supports the development of a complete implementation from the specifica-
tion in a incremental and iteratively refined manner. Each increment represents a proposed imple-
mentation of a component of the Statecharts model. The performance model of the proposed
implementation is verified against its Statecharts counterpart. At each iteration, both the State-
charts and the ADEPT models can be refined, since it is possible that one may encounter inconsis-
tencies between the specification and the implementation. As a result of this integrated-modeling
approach, the methodology extends the specification phase to later design stages. Such extension
improves communication of design intent between various phases of design.

The ISPME approach supports all three attributes of a specification modeling methodology for
reactive systems. First, by adopting the Statecharts language, it is able to support both the language
and the complexity attributes. Second, due to its support for integrated modeling with ADEPT, the
model interaction component of the model-continuity attribute is well supported. Since the perfor-
mance model developed is independent in terms of structure from the Statecharts model,
implementation independence is supported. Further, implementation assistance is supported since
the Statecharts model itself may be synthesized into an implementation.

6. Summary

We summarize our conclusions drawn from studying Tables 1-4. For each table, we looked



23

down each column representing a feature and tried to identify if the feature was well supported by
the methodologies. Wherever possible, we identify correspondences between features and
attempted to present general observations and recommendations.

6.1. Language (Table 1)
There are a number of languages available today that are suitable for expressing reactive sys-

tem characteristics [BD87,  Ber91, FJ91, GVN93, Har92, Mar91, ZS86]. However, several of the
methodologies we examined did not incorporate such languages. Another interesting feature we
observed is that several methodologies support more than one of the following system views:
entity, activity, and behavior. For example, ECS, LOTOS, SDL support two of the possible three
system views.

Most of the studied methodologies supported explicit models. We do not find this surprising,
as it is typically easier, in our view, to conceptualize reactive system behavior in terms of internal
states. However, external or property oriented models, such as those created in LOTOS, makes it
easier to characterize the system in an implementation-independent way.

Direct support for expressing timing constraints or a model of wall-clock time was not avail-
able in several cases. Several methodologies did not directly support an explicit model of time and
supported temporal ordering between events instead. Another specification requirement of reactive
systems, namely, exception handling, was often not well supported by the specification languages.

Almost none of the approaches allow the characterization of the reactive system’s environment.
We find that most of the later and developing methodologies adopted languages that allow formal
specifications. However, operational semantics is not supported in some cases, especially in the
case of LOTOS, where there is no explicit model.

6.2. Complexity control (Table 2)
Representational complexity is generally well supported by the methodologies. In a few cases,

neither hierarchy nor orthogonality were supported to the fullest extent. Most methodologies chose
visual schemes for representing the specifications, and in some cases such as ECS, associated
semantics with the graphical objects that represented the specifications.

Developmental complexity is also reasonably well supported. However, nondeterminism and
perfect-synchrony were not well supported in some cases. In some cases, the assumption of perfect
synchrony was not made clear. Most formal specification approaches adopted the concept of per-
fect synchrony.

For guidance in the development of specifications, most methodologies supported the top-
down approach. Some allowed an iterative approach, and few supported a bottom up approach.
An incremental refinement of the specification was supported in some cases.

6.3. Model continuity (Table 3)
In our opinion, this is the weakest dimension for most methodologies. Except for

ISPME[Sar95], none support the integrated modeling dimensions, especially when one considered
models that were dissimilar. Implementation-independence of the specification was generally sup-
ported. Implementation assistance was not limited in cases where the methodology was non-formal
or was based on an external model.

Support for conformance checking, model interaction, or model complexity was limited. We
also observed that in some cases the implementations were derived from the structure of the spec-
ification. In approaches that support external models, implementations were not usually derived



24

directly from the specifications as the latter had no internal structure. Many of the approaches were
also more applicable to software, rather than both hardware and software.

6.4. Overall (Table 4)
Overall, we feel that the languages and complexity control dimensions are reasonably well sup-

ported today, even though there is room for improvement. Except for ISPME, the model-continuity
dimension is not supported well, especially when one considers dissimilar modeling domains.

7. Recommendations

Based on the observations above, we make several recommendations regarding what we feel
most specification methodologies need to specifically address today. In an overall sense, we think
approaches that support all the views, express all reactive system characteristics using a visual for-
malism, which has an associated formal and operational semantics, would be ideal. Further, this
methodology should allow integrated modeling with other models and strongly support implemen-
tation independence. Automated generation of possible implementations should also be highly
desirable.

We categorize our recommendations according to the dimensions presented earlier.

7.1. Specification languages
In addition to what is supported by the state of the art, specification language(s) adopted by the

methodology should incorporate the following guidelines:

7.1.1. Conceptual models
• should support entity, behavior and activity views at the same time

All three views of a system: entity, behavior and activity, should be supported,
since all three views are complementary to each other. Supporting more than one
view would possibly entail either supporting more than one specification language,
or choosing a language that incorporates more than one view.

• should support both model-oriented and property-oriented specifications
While it is typically easier to understand and relatively easier to generate

implementations from an model-oriented specification, property-oriented specifi-
cations are less implementation dependent and offer the implementor to be more
creative in generating solutions. We therefore recommend supporting both model-
oriented and property-oriented specifications in an integrated manner.

• should specify timing constraints explicitly
To improve the understandability and to reduce the chances or erroneous spec-

ifications, it is preferable to be able to specify timing constraints such as maximum
or minimum execution times, data transfer rates, or inter-event constraints directly.
We recommend a simple and flexible specification scheme be chosen.

• should model passage of time explicitly
While temporal ordering may often be sufficient for the purpose of proving

properties of the system, it may be easier to understand and express required
behavior in terms of explicit time. Therefore, a methodology should model time
explicitly.



25

• should support exception handling
Exception handling mechanisms should also be provided in the specification

language.
• should characterize the environment explicitly

Some allow the representation of the environment as a separate model. We
believe that the environment should be characterized as a property-oriented speci-
fication, where the environmental characteristics are specified as properties and
hints.

7.1.2. Analysis techniques
• should support formal semantics

Supporting a specification language with formal semantics will result in unam-
biguous and rigorously verifiable specifications. Formal semantics will also sup-
port automated techniques for checking inconsistencies in the specification and the
synthesis and verification of implementations. There has been an increased aware-
ness of the importance of incorporating formal specifications into software devel-
opment [FKV94]. This trend of awareness should continue to evolve and
encompass both software and hardware development.

• should support operational semantics
By supporting operational semantics, the methodology will enable the genera-

tion of early prototypes of the system under design, which would allow early vali-
dation of user requirements without necessarily committing to design decisions.

7.2. Complexity control

7.2.1. Representational complexity
• should support visual formalisms

As pointed out in [Har92,  Har88], visual formalisms assist in representing
conceptual constructs that specifiers and designers have in mind during the design
stages of complex reactive systems.

7.2.2. Developmental complexity
• should support bottom up development

We found that the existing specification methodologies rarely allow the com-
position of specifications in a bottom up manner. We believe that supporting a bot-
tom up approach will assist in specification reuse, where one may potentially
create new specifications from a collection of preexisting specifications.

• should make explicit assumption of perfect-synchrony hypothesis
The assumption of perfect-synchrony has been implicitly adopted by some

methodologies. However, this assumption is not always valid, and can cause
design scenarios to remain unexplored [Sar95]. The methodology should allow
one to explore such cases by explicitly choosing or rejecting the hypothesis.

7.3. Model continuity



26

7.3.1. Integrated modeling
• should support conformance checking between models

By supporting conformance between a specification model and models devel-
oped during later stages, divergence of these models from specified behavior can
be detected.

• should allow integrated simulation and formal analysis
Currently most methodologies simulate and analyze the specification model in

isolation from other models. Simulating and analyzing these models in an inte-
grated manner will result in a synergistic modeling environment. This synergy will
be due to an increased interaction between the two models that will result in the
exchange of information that may not be available to the models individually. The
specification methodologies should exploit simulation languages such as VHDL
[IEE88], which are able to represent digital systems at various levels of abstrac-
tions and modeling domains.

• should allow integrated representation and refinement across different design stages
To facilitate a stepwise, iteratively refined design process across all design

stages, an integrated representation scheme is needed where one can represent the
specification, design, and implementation steps at various stages of development.

7.3.2. Implementation independence
• should extend to include both software and hardware

Most specifications are either biased towards hardware or towards software.
An integrated representation scheme is required.

• should allow incorporation of implementation details without sacrificing implementa-
tion independence

While the specifications are themselves implementation independent, some
design processes tend to modify the original specifications by annotating it with
implementation dependent information. To compare different implementations for
the same specification, one should be able to devise a scheme that allows the inclu-
sion of implementation dependent details in a generic manner. The scheme should
support the inclusion of implementation information from different alternatives.
For the example of such a technique, see [Sar95].

7.3.3. Implementation assistance
• should provide automated support for generating implementations

To extend the useful life of the specification, the designers should be able to
generate, automatically if possible, reasonably good implementations from the
specification.

8. Summary and Conclusions

We presented a framework to evaluate specification modeling methodologies for reactive sys-
tems. The framework has been synthesized by combining the characteristics of reactive systems
and the requirements of a specification modeling methodology. Using this framework, we examine
ten methodologies. Such an evaluation technique proved useful, since we were able to study the



27

individual strengths and weaknesses of each methodology in a common-evaluation framework.
Further, we were able to make recommendations based on our survey that we believe should be
incorporated by both existing and emerging methodologies.

9. Bibliography

AAH82 M. W. Alford, J.P. Ansart, G. Hommel, L. Lamport, B. Liskov, G. P. Mullery, F. B.
Schneider. Distributed Systems. Methods and Tools for Specification. Lecture Notes
in Computer Science, Springer-Verlag 1982.

AWJ92 Aylor, J. H. and Waxman, R. and Johnson, B.W. and R.D.Williams,. The Integration
of Performance and Functional Modeling in VHDL. In Performance and Fault
Modeling with VHDL. Schoen, J. M., Prentice Hall, Englewood Cliffs, NJ 07632,
1992, pages 22-145.

AWW90 Aylor, J. H. and Williams, R. D. and Waxman, R. and Johnson, B. W. and Black-
burn, R. L. A Fundamental Approach to Uninterpreted/Interpreted Modeling of
Digital Systems in a Common Simulation Environment. UVa Technical Report TR
# 900724.0, University of Virginia, Charlottesville, USA, July 24, 1990.

BD87 S. Budkowski and P. Dembinski. An Introduction to Estelle: A Specification Lan-
guage for Distributed Systems. Computer Networks and ISDN Systems. North-
Holland, Vol. 14, 1987.

Ber91 G. Berry. A Hardware implementation of pure Esterel. Digital Equipment Pars
Research Laboratory, July 1991.

BCD88 Brayton, R. K. and Camposano, R. and De Micheli, G. and Otten, R. H. J. M. and
van Eijndhoven, J. T. J. The Yorktown Silicon Compiler System. In Silicon Compi-
lation. Gajski, D.D., Addison-Wesley, 1988.

BHS91 F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Specifi-
cations. Prentice Hall, 1991.

BJ78 D. Bjorner, C.B. Jones. The Vienna Development Method: The Meta-Language.
Lecture Notes in Computer Science. No. 61. Springer-Verlag. 1978.

BT85 Blackburn, R. L. and Thomas, D. E. Linking the Behavioral and Structural Domains
of Representation in a Synthesis System. DAC 85:374-380.

Cal93 J.P. Calvez. Embedded Real-Time Systems: A Specification and Design Methodol-
ogy. Wiley Series in Software Engineering Practice. 1993.

Cam86 J.R. Cameron. “An overview of JSD”. IEEE Transactions on Software Engineering.
Vol SE-12. No. 2. February 1986.

CCI88 CCITT. Recommendation Z.100: Specification and Description language (SDL).
Volume X, Fascicle X.1, Blue Book, October 1988

Col92 D. Coleman. “Introducing Objectcharts or How to Use Statecharts in Object-Ori-



28

ented Design”.IEEE Transactions on Software Engineering. Vol. 18, No. 1. Jan
1992

CPT89 Chu, C. M. and Potkonjak, M. and Thaler, M. and Rabaey, J.  HYPER: An Interac-
tive Synthesis Environment for High Performance Real Time Applications. Pro-
ceeding of the International Conference on Computer Design, pages 432-435,
1989.

CR85 Camposano, R. and Rosenstiel, W. A Design Environment for the Synthesis of Inte-
grated Circuits.11th EUROMICRO Symposium on Microprocessing and Micropro-
gramming 1985.

CY90 P. Coad, E. Yourdon.Object-Oriented Analysis. Prentice-Hall, 1990.

Dav88 A. Davis. “ A Comparison of Techniques for the Specification of External System
Behavior”.Communications of the ACM. Vol 31, No. 9. 1988.

DeM79 T. DeMarco.Structured Analysis and System Specification. Yourdon Computing
Series, Yourdon Press, Prentice Hall, 1979.

DG89 Dutt, N. D. and Gajski, D. D.  Designer Controlled Behavioral Synthesis.  Proceed-
ings of the 26th Design Automation Conference, pages 754-757, 1989.

DH89 D. Drusinsky and D. Harel.Using Statecharts for hardware description and synthe-
sis. In IEEE Transactions on Computer-Aided Design, 1989.

Dij75 E.W. Dijkstra. “Guarded commands, nondeterminacy, and formal derivation of pro-
grams”.Communications of the ACM, Vol 18, No. 8. 1975.

EM85 H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification - 1. EATCS Mono-
graphs on Theoretical Computer Science 6. Springer-Verlag. 1985.

FJ91 L.M.G. Feijs and H.B.M. Jonkers.Specification and Design with COLD-K. LNCS
490, pp. 277-301.

FKV94 M.D. Fraser, K. Kumar, V.K. Vaishnavi. “Strategies for Incorporating Formal
Specifications in Software Development”.Communications of the ACM. Vol. 37,
No. 10. Oct 1994 p 74-86.

FO92 O. Færgemand, A. Olsen.New Features in SDL-92. Tutorial, Telecommunications
Research Laboratory, TFL, Denmark. 1992.

GVN93 D.D. Gajski, F. Vahid, and S. Narayan.A system-design methodology: Executable-
specification refinement. In Proceedings of the European Conference on Design
Automation (EDAC), 1994.

Hal93 N. Halbwachs.Synchronous Programming of reactive Systems. Kluwer Academic
Publishers, 1993.

Har92 D. Harel. “Biting the Silver Bullet: Toward a Brighter Future for System Develop-



29

ment”. IEEE Computer. Vol. 25, No. 1. Jan 1992, pages 8-24.

Har88 D. Harel. “On Visual Formalisms”. Communications of the ACM. Vol. 31, No. 5.
1988 p 514-530.

Har87 D. Harel. “Statecharts: A Visual Formalism For Complex Systems”. Science of
Computer Programming, Vol 8. 1987, pages 231-274.

HD88 D.C. Hu and G. DeMicheli. HardwareC - a language for hardware design. Stanford
University, Technical Report CSL-TR-90-419, 1988.

HLN88 D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, M. Trakhtenbrot. “Statemate: A working environment for the develop-
ment of complex reactive systems”. Proceedings of 10th International Conference
on Software Engineering. Singapore, 11-15 April 1988, p 122-129.

HI88 S. Hekmatpur, D. Ince. Software Prototyping, Formal Methods, and VDM. Interna-
tional Computer Science Series, Addison-Wesley Publishing Company, 1988.

Hoa85 C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, London. 1985.

HP87 D. J. Hatley, I. A. Pirbhai. Strategies for Real-time System Specification. Dorset
House Publishing, New York, 1987.

IEE88 IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Inc., NY, 1988.

ILO93 i-Logix Inc. ExpressVHDL Documentation, Version 3.0. 1992.

ISO89 ISO/IS 8807. Information Processing Systems - Open Systems Interconnection:
LOTOS - A Formal Description Technique. 1989.

Jac83 M.A. Jackson. System Development. Prentice-Hall, 1983.

Jac75 M.A. Jackson. Principles of Program Design. Academic Press, 1975.

LB91 Lor, K. E. and Berry, D. M. Automatic Synthesis of SARA Design Models from
System Requirements. IEEE Transactions on Software Engineering 17(12):1229-
1240 December 1991.

LW88 J. Z. Lavi, M. Winokur. “Embedded computer systems: requirements analysis and
specification: An industrial course”. Proceedings of SEI Conference, Virginia April
1988. Lecture Notes in Computer Science: Software Engineering Education, No.
327. Ed. G. A. Ford, Springer-Verlag p 81-105.

Mar91 F. Maraninchi. Argos: A graphical synchronous language for the description of
reactive systems. Report RT-C29, Univeriste Joseph Fourier, 1991.

Mil80 R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Sci-
ence 92. Springer-Verlag. 1980.

MP92 D.E. Monarchi, G.I. Puhr. “A Research Typology for Object-Oriented Ananlysis



30

and Design”. Communications of the ACM. Vol. 35, No. 9. Sep 1992.

MP91 Z. Manna, A. Pnueli. The temporal logic of reactive and concurrent systems: spec-
ification. Berlin Heidelberg New York: Springer. 1991.

Pet81 J.L. Peterson. Petri Net Theory and the Modeling of Systems. Engelwood Cliffs, NJ,
Prentice Hall, Inc.,  New York. 1981.

Pnu86 A. Pnueli. “Application of temporal logic to the specification and verification of
reactive systems.” Current Trends in Concurrency. Lecture Notes in Computer Sci-
ence. Eds: de Bakker et al. Vol. 224, No. 9. Sep 1992.

Sar95 A. Sarkar. An Integrated Specification and Performance Modeling Approach for
Digital System Design. Ph.D. Thesis. University of Virginia. Charlottesville, U.S.A.
1995.

SM88 S. Schlaer, S.J. Mellor. Object-Oriented Systems Analysis. Yourdon Press, 1988.

Spi88 J.M. Spivey. Understanding Z: A specification Language and its Formal Semantics.
Cambridge University Press. 1988.

SSR89 R. Saracco, J. Smith, R. Reed. Telecommunication Systems Engineering using SDL.
Elsevier Science Publishers. 1989.

SST90 E. Sternheim, R. Singh, and Y. Trivedi. Hardware Modeling with Verilog HDL.
Automata Publishing Company, Cupertino, CA, 1990.

SWC94 A. Sarkar, R. Waxman, and J.P. Cohoon. System Design Utilizing Integrated Spec-
ification and Performance Models. Proceedings, VHDL International Users Forum,
Oakland, California, May 1-4, 1994, pp 90-100.

TM91 D.E. Thomas and P. Moorby. The Verilog Hardware Description Language. Kluwer
Academic Publishers, 1991.

Win90 J.M. Wing. “A specifier’s introduction to formal methods”. IEEE Computer, Vol 23,
No. 9. 1990. pp 8-24.

WWD92 Woo, N. and Wolf, W. and Dunlop, A. Compilation of a single specification into
hardware and software. AT&T Bell Labs, 1992.

WM85 P. T. Ward, S. J. Mellor. Structured Development for Real-time Systems, Vols 1 & 2.
Yourdon Computing Series, Yourdon Press, Prentice Hall 1985.

ZS86 P. Zave and W. Shell. Salient features of an executable specification language and
its environment. IEEE Transactions on Software Engineering 12(2):312-325 Feb,
1986.


