
Application-Layer Multicasting with Delaunay Triangulation Overlays�

Jörg Liebeherr Michael Nahas Weisheng Si

Department of Computer Science
University of Virginia

Charlottesville, VA 22904

Abstract

Application-layer multicast supports group applications without the need for a network-layer multi-
cast protocol. Here, applications arrange themselves in a logical overlay network and transfer data within
the overlay. In this paper, we present an application-layer multicast solution that uses a Delaunay trian-
gulation as an overlay network topology. An advantage of using a Delaunay triangulation is that it allows
each application to locally derive next-hop routing information without requiring a routing protocol in
the overlay. A disadvantage of using a Delaunay triangulation is that the mapping of the overlay to the
network topology at the network and data link layer may be suboptimal. We present a protocol, called
Delaunay Triangulation (DT) protocol, which constructs Delaunay triangulation overlay networks. We
present measurement experiments of the DT protocol for overlay networks with up to 10 000 members,
that are running on a local PC cluster with 100 Linux PCs. The results show that the protocol stabilizes
quickly, e.g., an overlay network with 10 000 nodes can be built in just over 30 seconds. The traffic
measurements indicate that the average overhead of a node is only a few kilobits per second if the over-
lay network is in a steady state. Results of throughput experiments of multicast transmissions (using
TCP unicast connections between neighbors in the overlay network) show an achievable throughput of
approximately 15 Mbps in an overlay with 100 nodes and 2 Mbps in an overlay with 1 000 nodes.

Key Words: Application-Layer Multicasting, Multicasting, Group Communication, Delaunay Triangulation.

1 Introduction

Due to the lack of a widely available IP multicast service, recent research has examined implementing
multicast services in the application layer. The general approach is to have applications self-organize into
a logical overlay network, and transfer data along the edges of the overlay network using unicast transport
services. Here, each application communicates only with its neighbors in the overlay network. Multicasting
is implemented by forwarding messages along trees that are embedded in the virtual overlay network.

Application-layer multicast has several attractive features: (a) There is no requirement for multicast
support in the layer-3 network; (b) There is no need to allocate a global group identifier, such as an IP
multicast address; (c) Since data is sent via unicast, flow control, congestion control, and reliable delivery
services that are available for unicast can be exploited. A drawbacks of application-layer multicast is that,
since data is forwarded between end-systems, end-to-end latencies can be high. Another drawback is that,

�This work is supported in part by the National Science Foundation through grants NCR-9624106 (CAREER), ANI-9870336,
and ANI-0085955.

if multiple edges of the overlay are mapped to the same network link, multiple copies of the same data may
be transmitted over this link, resulting in an inefficient use of bandwidth. Thus, the relative increase of
end-to-end latencies and the increase in bandwidth requirements as compared to network-layer multicast,
are important performance measures for overlay network topologies for application-layer multicast.

Most overlay topologies for application-layer multicast fall into three groups. Topologies in the first
group consist of a single tree [8, 9, 11, 13, 19, 22]. A drawback of using a single tree is that the failure
of a single application may cause a partition of the overlay topology. The second group of topologies are
mesh graphs, where data is transmitted along spanning trees which are embedded in the mesh graph [3, 4].
A drawback of mesh graphs is that the calculation of spanning trees requires running a multicast routing
protocol (e.g., DVMRP) within the overlay, which adds complexity to the overlay network. Generally, in
the aforementioned topologies, nodes in the overlay network send probe messages to each other to measure
network-layer latencies. These measurements are used to build an overlay network that is a good fit for the
network-layer topology. The third group of topologies assigns to members of the overlay network logical
addresses from some abstract coordinate space, and builds the overlay network with the help of these logical
addresses. For example, the overlay in [16] assigns each member of the overlay network a binary string,
and builds an overlay network with a hypercube topology. In [21], logical addresses are obtained from n-
dimensional Cartesian coordinates on an n-torus. An advantage of building overlay networks with logical
addresses is that, for good choices of the address space and the topology, next-hop routing information for
unicast and multicast transmissions can be encoded in the logical addresses. A disadvantage of building
overlay networks using a logical address space is that the overlay network may not be a good match for
the network-layer topology. Note that recent proposals for location services in peer-to-peer networks have
adopted logical coordinate spaces that assign logical addresses to data items, e.g., [20, 24, 25]. Even though
lookup services and application-layer multicast services have different objectives, some logical coordinate
spaces can be applied in both contexts [21].

In this report we present an application-layer multicast solution that is suitable for very large group sizes
with many thousand nodes. Our approach is to use a Delaunay triangulation as overlay network topology.
The choice of the overlay topology falls into the third group of application-layer multicast solutions, which
draw logical addresses from a coordinate space. Specifically, each member of an overlay network is assigned
logical (x; y) coordinates in a plane. We show that Delaunay triangulations can be built in a distributed
fashion, and that multicast trees can be embedded in a Delaunay triangulation overlay without requiring a
routing protocol in the overlay. The mapping of a Delaunay triangulation overlay network to the network-
layer infrastructure can be suboptimal, especially if the logical coordinates of a member in the overlay
network are not well matched to the underlying network topology.

We present a protocol, called DT Protocol, which creates and maintains a Delaunay triangulation over-
lay of applications that are addressable on the Internet. The DT protocol achieves scalability through a
distributed implementation where no entity maintains knowledge of the entire group. We evaluate the DT
protocol through measurement experiments for overlay networks with up to 10 000 members on a cluster of
PCs. The results show that the DT protocol can maintain a Delaunay triangulation overlay for a multicast
group with dynamically changing group membership. In other experiments, we evaluated the performance
of the overlay’s topology using multicast batch file transfers to groups with up to 1 000 members.

The contribution of the presented Delaunay triangulation and the DT protocol is that we can build
and maintain very large overlay networks with relatively low overhead, at the cost of suboptimal resource
utilization due to a possibly poor match of the overlay network to the network-layer infrastructure. Hence,
in terms of John Chuang’s taxonomy of scalable services [5], the Delaunay triangulation overlay network
trades-off economy-of-scale for increased scalability.

The remainder of this report is organized as follows. In Section 2, we define Delaunay triangulations
and Delaunay triangulation overlay networks. In Section 3, we compare Delaunay triangulation overlay

2

networks with other proposed overlay network topologies. In Section 4, we describe the DT protocol. In
Section 5, we present measurement experiments that evaluate the performance of our implementation of the
DT protocol. In Section 6, we present brief conclusions.

2 Delaunay Triangulation as an Overlay Network Topology

A Delaunay triangulation for a set of vertices A is a triangulation graph with the defining property that for
each circumscribing circle of a triangle formed by three vertices in A, no vertex of A is in the interior of the
circle. In Figure 1, we show a Delaunay triangulation and the circumscribing circles of some of its triangles.
Delaunay triangulations have been studied extensively in computational geometry [7] and have been applied
in many areas of science and engineering, including communication networks, e.g., [1, 12].

Figure 1: A Delaunay Triangulation.

2.1 Delaunay Triangulation Overlay Network

In order to establish a Delaunay triangulation overlay, each application, henceforth called ‘node’, is associ-
ated with a vertex in the plane with given (x,y) coordinates. The coordinates are assigned via some external
mechanisms (e.g., GPS or user input) and can be selected to reflect the geographical locations of nodes.
Two nodes have a logical link in the overlay network, i.e., are neighbors, if their corresponding vertices are
connected by an edge in the Delaunay triangulation that consists of all vertices associated with the nodes of
the overlay.

The Delaunay triangulation has several properties that make it attractive as an overlay topology for
application-layer multicast. First, Delaunay triangulations generally have a set of alternate non-overlapping
routes between any pair of vertices. The existence of such alternate paths can be exploited by an application-
layer overlay when nodes fail. Second, the number of edges at a vertex in a Delaunay triangulation is
generally small. The average number of edges at each vertex is less than six. Even though, in the worst-
case, the number of edges at a vertex is n� 1, the maximum number of edges is usually small.1 Third, once
the topology is established, packet forwarding information is encoded in the coordinates of a node, without
the need for a routing protocol. Finally, the Delaunay triangulation can be established and maintained in a
distributed fashion. We elaborate on the last two properties in the next subsections.

2.2 Compass Routing

Multicast and unicast forwarding in the Delaunay triangulation is done along the edges of a spanning tree
that is embedded in the Delaunay triangulation overlay, and that has the sender as the root of the tree. In the

1The worst-case is created when n� 1 vertices form a circle and the nth vertex is in the center of the circle.

3

R A

B

C

15˚

30˚

Figure 2: Compass Routing. Node A has two neighbors, B and C. A computes B as the parent in the tree with root
R, since the angle \RAB = 15� is smaller than the angle \RAC = 30�.

R A

D

C

B

Figure 3: Compass Routing. NodeA determines that it is the parent for nodeC, since the angle\RCA is smaller than
angles \RCD and \RCB. Likewise, B and D determine that they are not the parents of node C, since \RCA <

\RCB and \RCA < \RCD.

Delaunay triangulation, each node can locally determine its child nodes with respect to a given tree, using
its own coordinates, the coordinates of its neighbors, and the coordinates of the sender.

Local forwarding decisions at nodes are done using compass routing [15]. The basic building block
of compass routing is that a node A, for a root node R, computes a node B as the parent in the tree, if B
is the neighbor with the smallest angle to R. This is illustrated in Figure 2. Compass routing in general
planar graphs may result in routing loops [14]. However, compass routing in Delaunay triangulations does
not result in loops [15]. Compass routing is also used for determining a multicast routing tree, where nodes
calculate their child nodes in the multicast routing tree in a distributed fashion. Specifically, a node A
determines that a neighbor C is a child node with respect to a tree with root R, if the edge AC is a border
of two triangles, say4ABC and4ACD (see Figure 3), and if selecting A leads to a smaller angle from C
to R, than selecting B and D. If each node performs the above steps for determining child nodes, then the
nodes compute a spanning tree with root node R.

2.3 Building Delaunay Triangulations with Local Properties

Delaunay triangulations can be defined in terms of a locally enforceable property. A triangulation is said
to be locally equiangular [23] if, for every convex quadrilateral formed by triangles 4acb and 4abd that
share a common edge a b, the minimum internal angle of triangles 4acb and4abd is at least as large as the
minimum internal angle of triangles 4acd and 4cbd. This is illustrated in Figure 4. In [23] it was shown
that a locally equiangular triangulation is a Delaunay triangulation.

In a graph that is a triangulation, each node N can enforce the locally equiangular property for all
quadrilaterals formed by N and its neighbors. In Figure 5, node N can detect that the locally equiangular
property is violated for triangles 4NBC and 4NCD, and that the edge N C should be removed and
replaced by an edge DB. Thus, N can remove node C as one of its neighbors.

The protocol described in Section 4 builds and maintains a Delaunay triangulation overlay by enforcing
the locally equiangular property for each node and its neighbors.

3 Comparative Evaluation of Overlay Topologies

We next present a comparative evaluation of the Delaunay Triangulation and other overlay network topolo-
gies for multicasting. The basis for our evaluation is a software tool for network topology generation [2].

4

a

b

c

d

Figure 4: Locally equiangular property. The property holds for triangles 4abc and 4abd if the minimum internal
angle is at least as large as the minimum internal angle of triangles4acd and4cdb.

F

N

A

E

B

C

D

Figure 5: Locally equiangular property for a nodeN and its neighbors. NodeN can enforce the equiangular property
for all quadrilaterals formed by N and its neighbors A, B, C, D, E, and F . Here, N can determine that the locally
equiangular property is violated for triangles 4NBC and 4NCD. Thus, the edge N C should be replaced by an
edge DB.

We present results for a Transit Stub topology, which generates a network with a 2-layer hierarchy. The
parameters for the topology are as follows. The network consists of four transit domains, each with 16
routers. The routers of each transit domain are randomly distributed over a 1024 by 1024 grid. There are 64
stub domains, each with 15 routers spread over a 32 by 32 grid. Each stub domain is connected to a transit
domain router. Links between routers in transit and stub domains are set using the Waxman method [2]. The
average number of links per router is approximately three. Hosts are connected to a router of a stub domain
and are distributed over a four by four grid with the stub domain router at the center of the grid. The total
number of hosts in the entire network is varied from two to 512 hosts, and incremented by powers of two.
The hosts are distributed uniformly over the stub domains.

We assume that all unicast traffic is carried on the shortest-delay path between two hosts, where the
delay between two hosts is determined by the length of the shortest path in the generated topology. For each
generated network topology, we construct a set of overlay networks. Each host participates in an overlay
network as a single node. We consider the following overlay topologies.

1. The Delaunay triangulation as described in Section 2. The coordinates of the nodes are the grid
coordinates of the hosts in the generated graph.

2. A Minimum Spanning Tree (MST) is an overlay network which builds a shared tree with minimum
total delay, as is done in the ALMI protocol [19].

3. A Degree-3 minimum spanning tree represents a topology which is generated by the Yoid protocol
[9]. In this overlay, each node has at most three links. We select a binary tree as an initial topology
and use the update procedures described in [9] to improve the tree. We use overlay networks that are
the result of 720 rounds of updates.

4. A Degree-6 graph is an overlay network that is created by the Narada protocol [4]. The algorithm
establishes a mesh network where each node has at most six logical links. For multicast delivery, the
method uses a DVMRP routing algorithm for building per-source trees [6]. The protocol performs

5

6

Degree-3 Tree
Logical MST

Degree-6 Graph8

10

1 4 16 64 256 1024

St
re

ss
 (

A
ve

ra
ge

)

Number of Nodes

Delaunay Triangulation

0

2

4

HyperCube

(a) Average.

0

Degree-3 Tree
Logical MST

Degree-6 Graph

2

Delaunay Triangulation

4

6

8

10

1 4 16 64 256 1024

St
re

ss
 (

90
th

 P
er

ce
nt

ile
)

Number of Nodes

HyperCube

(b) 90th percentile.
Figure 6: Stress.

12
Degree-3 Tree
Logical MST

HyperCube

14

16

1 4 16 64 256 1024

R
D

P
(A

ve
ra

ge
)

Number of Nodes

Delaunay Triangulation

0

2

4

6

8

10

Degree-6 Graph

(a) Average.

2

Degree-3 Tree
Logical MST

HyperCube

4

Delaunay Triangulation

6

8

10

12

Degree-6 Graph
Degree-3 Tree
Logical MST

HyperCube

14

16

1 4 16 64 256 1024

R
D

P
(A

ve
ra

ge
)

Number of Nodes

Delaunay Triangulation

0

Degree-6 Graph

(b) 90th percentile.

Figure 7: Relative Delay Penalty (RDP).

periodic unicast delay measurements and improves the mesh, based on these measurements. We show
results for overlay networks which are obtained after 720 rounds of improvements.

5. The Hypercube assigns nodes a binary string and arranges nodes in a logical incomplete hypercube.
This topology completely ignores the network topology [16]. Data is disseminated using trees which
are embedded in the hypercube [17].

For a performance comparison of overlay networks we use the performance metrics relative delay
penalty (RDP) and stress, which have been used in the related literature (e.g., [4]).

� The relative delay penalty (RDP) for two hosts is the ratio of the delay in the overlay to the delay of
the shortest-delay unicast path.

� The stress of a network-layer link is the number of identical copies of a packet that traverse the link
for a given spanning tree embedded in an overlay network.

For network-layer multicasting, e.g., IP multicast, both RDP and link stress are equal to one. We point out
that there are many other measures which can be used to evaluate overlay networks, such as the robustness
of the topology to link or node failures, the speed of convergence of the overlay topology, and the overhead
of the routing protocol in terms of computation and bandwidth needs.

It is important to note that the results for stress and relative delay penalty are dependent on the randomly
generated network topology. To account for some of the randomness we present all numerical data as
averages from five randomly generated network topologies, where identical parameters are used for each
network topology.

6

In Figure 6 we show the stress values for various overlays when the number of hosts is varied between
two and 512. The results show the average values (Figure 6(a)), and the 90th percentile values (Figure 6(b))
for the stress of links. With exception of the hypercube topology, all overlay topologies show similar values
for stress. Figure 7 depicts the Relative Delay Penalty (RDP) values for all pairs of hosts, as averages
(Figure 7(a)), and 90th percentile values (Figure 7(b)). The results show that overlay networks which take
into consideration the network-layer topology incur a lower RDP than Delaunay triangulations. In summary,
we observe that tree-based or mesh-based overlays improve the mapping of the logical overlay network to the
network topology, if compared to Delaunay triangulations and hypercubes. On the other hand, considering
that the presented Delaunay triangulations merely account for the geographical position of a node, but do not
perform delay measurements between nodes in the overlay network, the results for Delaunay triangulations
are encouraging.

4 The DT Protocol

In this section, we describe a network protocol which establishes and maintains a set of applications in a
logical Delaunay triangulation. The protocol, referred to as DT (Delaunay Triangulation) protocol, has been
implemented and tested as part of the HyperCast overlay software [10].2

Essentially, the network protocol implements a distributed incremental algorithm for building a Delau-
nay triangulation.

In the following sections, we will refer to the protocol entities that execute the DT protocol as nodes.
Each node has a logical address and a physical address. The logical address of a node is represented by
(x; y) coordinates in a plane, which identify the position of a vertex in a Delaunay triangulation. The length
of x and y coordinates is set to 32 bits each. The logical address of a node is a configuration parameter,
and can be assigned to a node, or derived from the geographical location or the IP address of a node. The
physical address of a node is a globally unique identifier on the Internet, consisting of an IP address and a
UDP port number.

We will denote the coordinates of a node A as coord(A) = (xA; yA). We define an ordering of nodes
where coord(A) < coord(B), if yA < yA, or yA = yB and xA < xB .

4.1 Neighbors and Neighbor Test

We say two nodes are neighbors if the edge connecting the two nodes appears in the Delaunay Triangulation
graph. Each node maintains a neighborhood table which contains its neighbors in the Delaunay Triangula-
tion overlay.

The protocol operations at a node mainly consists of adding and removing neighbors to and from its
neighborhood table. To add or remove a node to or from its neighborhood table, a node needs to know if
that node is eligible to be its neighbor in the overlay network topology. We next describe the neighbor test
algorithm we developed for this purpose. The neighbor test is based on the locally equiangular property
described in Subsection 2.3.

Before describing this algorithm, we first introduce the notions of clockwise (CW) and counter-clockwise
(CCW) neighbors of a given node, say node A, with respect to another node, say node B. A neighbor of
node A is said to be the CW (or CCW) neighbor with respect to node B, if (1) it forms the smallest clock-
wise or counter-clockwise angle to node B with node A as the pivot, and (2) the smallest clockwise or
counter-clockwise angle is less than 180 degrees. The notions of CW and CCW neighbors are illustrated in
Figure 8, where we show the CW and CCW neighbors of node M with respect to node A. In Figure 8(a),

2In addition to building overlay networks, the HyperCast software provides a socket-style API for transmitting data in an overlay
network and tools that collect data from the nodes of an overlay network.

7

node B is the CW neighbor of M with respect to A, and is denoted as B = CWA(M). On the other hand,
in Figure 8(b), node B is not regarded as the CW neighbor since the clockwise angle is larger than 180�. In
this case, we say node M has no CW neighbor with respect to node A. In both Figures 8(a) and (b), node D
is the counter-clockwise neighbor of M with respect to A, and is denoted as D = CCWA(M).

A

C

M

B

D

CCW

CW

(a) CW angle < 180�.

A

D

M

C

B CCW

CW

(b) CW angle � 180�.

Figure 8: The CW and CCW neighbors of M with respect to A are M ’s neighbors that form the smallest CW and
CCW angles to A, taking M as the pivot. In (a), B = CWA(M) and D = CCWA(M); In (b), nodeB is not the CW
neighbor since the clockwise angle is greater an 180�.

We now describe the neighbor test. In the neighbor test, a testing node determines if another (the tested)
node should or should not be its neighbor. The testing node performs the neighbor test by looking at the
coordinates of its current neighbors and the tested node. The test covers all possible locations of the tested
node, relative to the testing node and the neighbors of the testing node.3

In the following description, M denotes the testing node and A denotes the tested node. Essentially, the
neighbor test verifies the locally equiangular property for convex quadrilaterals from Subsection 2.3. That
is, if M has CW and CCW neighbors with respect to A, CWA(M) and CCWA(M), and the quadrilateral
formed by M , CCWA(M), A, and CWA(M) is convex, A passes the neighbor test at M , if the edge MA
maximizes the minimum internal angle. Otherwise, A does not pass the neighbor test at M .

However, there are several cases to consider where the above test cannot be made. In these cases, A
passes the neighbor test at M , if adding A results in a triangulation. The following is a complete set of all
feasible cases:

1. If M has a neighbor D, such that M , A and D lie on the same line, A passes the neighbor test, if A is
closer to M than D. This is illustrated in Figure 9(a).

2. If M does not have a CW or a CCW neighbor with respect to A, A passes the neighbor test. This
is illustrated in Figure 9(b). Note that this includes the case where M has neither a CW nor a CCW
neighbor with respect to A.

3. If the quadrilateral formed by M , CCWA(M), A, and CWA(M) is a triangle (see Figure 9(c)) or is
concave (see Figure 9(d)), A passes the neighbor test at M .

As described above, A fails the neighbor test at M only in two cases: (1) M has a neighbor, say node
D, and M , A, and D are on a line, and D is closer to M than A; (2) The locally equiangular property is
violated in the convex quadrilateral formed by M , CCWA(M), A, and CWA(M). For all other cases, A
passes the neighbor test at M .

We can argue the correctness of the neighbor test as follows. The neighbor test is a consequence of
the locally equiangular property from [23], which states that a triangulation where all convex quadrilaterals

3For conciseness, we use “node” and “coordinates of a node” interchangeably.

8

are locally equiangular, is a Delaunay Triangulation. The neighbor test enforces the property from [23]
by enforcing two points: (1) Whenever a convex quadrilateral is formed by the nodes M , CCWA(M), A,
and CWA(M), then the locally equiangular property is enforced; (2) When no convex quadrilateral can be
formed by nodes M , CCWA(M), A, and CWA(M), i.e., the locally equiangular property is not applicable,
then node A passes the neighbor test at M if adding A as a neighbor forms a triangulation.

M

A

M

A

D

M
C

B

M

(a) M has a neighbor D,
and M, A, and D are on

the same line

(b) M has no CW or CCW
neighbor with respect to A

(c) The quadrilateral
degenerates to a triangle

(d) The quadrilateral is
concave

B

A

C

B

A

C

A

M

C

B

no CW
neighbor

no CCW
neighbor

M

B

A

C

Figure 9: Neighbor test at the testing node M for a tested node A, for cases where the locally equiangular
property is not applicable, since it is not feasible to form a convex quadrilateral of nodes M , A, CWA(M),
CCWA(M). The depicted scenarios show cases when A is added as a neighbor of M . Solid lines show
M ’s current neighbors, and dashed lines are used to indicate the quadrilateral.

Each node periodically sends neighbor messages to nodes in its neighborhood table. A neighbor mes-
sages contains the physical and logical addresses of the sending node, as well as the logical and physical
addresses of its CW and CCW neighbors with respect to the receiver.4

Each entry of the neighborhood table at a node has columns for the neighbor, the CW neighbor, and the
CCW neighbor. For example, the neighborhood entry at node M for one of its neighbors A has the form

Neighborhood table at node M :

CW CCW
Neighbor neighbor neighbor
A E = CWM(A) F = CCWM(A)
: : : : : : : : :

Now, when a node M receives a neighbor message from node A, it first checks if node A is in its neighbor-
hood table. If node A is, then it updates the entry of node A in the neighborhood table, changing the CW

4 The receiver of a neighbor must know the physical address of the sending node. However, if the physical address of the sender
is included in the payload of a neighborhood message, the DT protocol cannot be used across a private/public network boundary.
Hence, it is preferred that the physical address of the sender of a neighbor message is recovered by the receiver of the message,
using the underlying transport protocol.

9

and CCW neighbor fields of the entry if they are different from the CW and CCW neighbor fields contained
in the neighbor message. If node A is not a neighbor of M , then M runs a neighbor test for A. If A passes
the neighbor test, it will be added as a new neighbor in the neighborhood table of M .

We say a node is a candidate neighbor of another node, if it is not in the neighborhood table of that node
and it passes the neighbor test at that node. The formal definition of the candidate neighbor will be given
in Subsection 4.6. A node can learn about a candidate neighbor only in two ways: (1) through NewNode
messages described in Subsection 4.4 and (2) from the CW or CCW neighbor fields in the neighborhood
table. If a node has candidate neighbors, it will send a neighbor message to the closest candidate neighbor.
If the candidate neighbor responds with a neighbor message, the candidate neighbor is elevated to the status
of a neighbor, i.e., a new entry is created in the neighborhood table.

A neighbor can be removed from the neighborhood table for any one of the following reasons: (1) the
neighbor has sent a message indicating it has left the overlay, (2) no message has been received from this
neighbor for an extended period of time, or (3) the neighbor has failed a neighbor test.

We say that a node A is stable, if all nodes that appear in the CW or CCW neighbor columns of A’s
neighborhood table also appear in the neighbor column of A’s neighborhood table. This means that node A
has knowledge of all nodes in the overlay network that will pass its neighbor test. If all nodes are stable,
then the set of nodes has established a logical Delaunay triangulation.

4.2 Rendezvous Mechanisms with DT Servers and Leaders

Any protocol that builds an overlay network must provide a rendezvous mechanism that enable nodes which
are not members of the overlay to communicate with nodes in the overlay. The rendezvous mechanism is
also used when new nodes join an overlay and when the overlay network has been partitioned and must be
repaired.5

One can think of three methods that can accomplish a rendezvous between members and non-members
of an overlay network: (1) Non-members have available a broadcast mechanism to announce themselves
to members of the overlay network, (2) non-members maintain a list of ‘likely’ members of the overlay
network (a ‘buddy list’) and contact members from this list, (3) non-members contact a well-known server
to learn about members of the overlay network.

In the DT protocol, we select the third method, i.e., members join the overlay and partitioned overlay
networks are repaired with the help of a server. A reservation against using a well-known server is that the
server may become a performance bottleneck, and that it constitutes a single point of failure. To address
the performance concern, in our experiments, a single server was sufficient to manage the workload from
10 000 new members joining the overlay in a short period of time. The single point of failure can be avoided
by adapting the DT protocol so that it supports multiple servers. Also, we emphasize that the effort to create
variations of the DT protocol which use broadcast announcements or buddy lists is rather small, and that
these variations can preserve the main characteristics of the DT protocol.

The server component of the DT protocol is called DT server. New nodes join the overlay network by
sending a request to the DT server. The server responds with the logical and physical addresses of some
node that is already in the overlay network. The new node then sends a message to the node identified by
the DT server, and, thus, establishes communication with some node in the overlay network.

The DT server is also engaged in repairing partitions of the overlay network as follows. In the DT
protocol, a node believes to be a Leader if it does not have a neighbor with a greater logical address (using the
ordering given at the beginning of this section). Each Leader periodically sends messages to the DT server.
If an overlay has a partition then more than one node believes to be a Leader. If the server receives messages

5We say an overlay network is partitioned if the graph represented by the overlay has multiple connected components. In a
partitioned overlay, some nodes cannot communicate with each other across the overlay.

10

from multiple Leaders, the server replies with the identity of the Leader with the greatest coordinates. By
virtue of the Delaunay triangulation, if a node A that believes to be a Leader, learns about a node B and
coord(A) < coord(B), then B will pass A’s neighbor test, and, consequently, A adds node B as a candidate
neighbor. Also, A no longer believes to be a Leader. Thus, the partition of the overlay network is repaired.

The DT server maintains a list (‘cache’) of logical and physical addresses of other nodes in the overlay.
When the DT server sends the address of a node in the overlay to a newly joining node, this address is taken
from the cache. If the cache is empty, then the DT server returns the address of the Leader. We set the
default size of the cache to 100 nodes. If a newly joining node contacts the DT server and the cache is not
full, this node will be added to the cache. The DT server periodically queries nodes in the cache to verify
that these nodes are still members of the overlay. If a node does not respond to a query it will eventually be
removed from the cache. Also, a node is removed from the cache after the DT server has selected this node
six times as the ‘contact node’ for a newly joining node.

4.3 Timers

The DT protocol is a soft-state protocol, that is, all remote state information is periodically refreshed, and is
invalidated if it is not refreshed. The operations to recalculate and refresh state are triggered with the help
of timers. A node of the DT protocol uses the following three timers.

Heartbeat Timer. The heartbeat timer determines when a node sends neighbor messages to its neigh-
bors. The timer runs in two modes, SlowHeartbeat and FastHeartbeat. A node is in FastHeartbeat mode
when it joins the overlay and when it has candidate neighbors. Otherwise, it is in SlowHeartbeat mode.
The operation of the heartbeat timer in two modes trades off the need for fast convergence of the overlay
network when the topology changes, and low bandwidth consumption in a steady state. In our experiments,
we set the timeout value of the heartbeat timer to tSlowHeartbeat = 2 seconds in SlowHeartbeat mode and to
tFastHeartbeat = 0:25 seconds in FastHeartbeat mode.

Neighbor Timer. If a node has not received a neighbor message from one of its neighbors for tNeighbor

seconds, the neighbor will be deleted from the neighborhood table. There is one Neighbor Timer for each
neighbor in the neighborhood table. The default timeout value of the neighbor timer is set to tNeighbor =10
seconds.

Backoff Timer. When a node does not receive a reply from the DT server, it retransmits its request
using an exponential back-off algorithm with a Backoff timer. Initially, the timeout value of Backoff timer
is set to tBackoff = tFastHeartbeat and doubled after each repeated transmission, until it reaches tBackoff =
tNeighbor (= 10 seconds). If there are alternate DT servers, the node switches to an alternate DT server
when tBackoff � tNeighbor seconds.

The DT server keeps the following two timers.
Cache Timer. If the DT server has not received a CachePong message from a node in its node cache,

in response to CachePing message for tCache seconds, the node will be deleted from the cache. There is,
however, one exception. The node cache entry for the node with the largest coordinates, the Leader, is not
deleted, even if the the cache timer expires. There is one cache timer for each node in the node cache. The
default timeout value of the timer is tCache = 10 seconds.

Leader Timer. If the DT server has not received a message from the Leader for tLeader seconds,
another node from the node cache will be selected as Leader. The default timeout value of the leader timer
is tLeader = 10 seconds.

4.4 Message Types

The DT protocol has eight types of messages, which are sent as UDP datagrams. All messages of the DT
protocol are unicast messages. We describe the contents of each message and the operations associated with

11

the transmission and reception of each message. The message format is discussed in Appendix B.
HelloNeighbor and HelloNotNeighbor Messages. These messages are used to create and refresh

neighborhood tables at nodes. Each HelloNeighbor6 and HelloNotNeighbor message contains the logical
and physical addresses of the sender7, and the clockwise and counter-clockwise neighbors of the sender with
respect to the receiver. Each time the Heartbeat timer goes off, a node sends a HelloNeighbor messages to
each of its neighbors, and to one of its candidate neighbors, if there is a candidate neighbor. If there are
multiple candidate neighbors, the message is sent to the candidate neighbor with the ‘closest’ coordinates.

A HelloNotNeighbor message is sent as an immediate reply to the reception of a HelloNeighbor message
from a node that fails the neighbor test. The HelloNotNeighbor message serves three purposes. First, the
information in the message is used by the receiver to update its neighborhood table. Second, the clockwise
and counter-clockwise neighbors in the HelloNotNeighbor message provide the receiver with additional in-
formation about neighbors in its vicinity. Lastly, HelloNotNeighbor messages are used to resolve situations
where two nodes have the same logical address.

A special case exists, when several nodes have the same logical address. When a node A learns about the
existence of a node B with coord(A) = coord(B), through any method except a HelloNeighbor message
from B, then A sends a HelloNeighbor message to B. When a node B receives a HelloNeighbor message
from a node A, and coord(B) = coord(A), then B changes its logical address. When a node A has a node
B in its neighborhood table, and A learns about a node C , with coord(B) = coord(C), then A sends a
HelloNotNeighbor message to C . This is discussed in more detail in Subsection 4.5.

Goodbye Message. When a node leaves the overlay, it sends Goodbye messages to the DT server and
all its neighbors. If a node receives a Goodbye message, it removes the sender of the Goodbye message
from the neighborhood table. The DT server removes the sender of a Goodbye message from its cache. A
node that has sent Goodbye messages, can continue to send Goodbye messages in response to each message
received, until the process that runs the node is terminated by the application.

ServerRequest and ServerReply Messages. ServerRequest and ServerReply messages, respectively,
are queries to and replies from the DT server. ServerRequest messages are sent by newly joining nodes and
Leaders. A Leader sends a ServerRequest message every tFastHeartbeat seconds. ServerRequest messages
are retransmitted if no Server Reply is received, using the exponential backoff outlined above.

Each ServerRequest message contains the logical and physical addresses of the sender.8 The Server-
Reply message contains the logical and physical addresses of some node in the overlay. More specifi-
cally, a ServerReply sent to node X , contains the logical and physical addresses of some node Y , with
coord(X) � coord(Y). Newly joining nodes use addresses in the ServerReply message to find a node that
is already in the overlay. Leaders use the addresses in the ServerReply message to determine if the overlay
has a partition.

NewNode Message. The NewNode message contains the logical and physical addresses of a new node.
When a new node N obtains from the DT server the address of some node in the overlay, say D, then N will
send a NewNode message to D. If N passes the neighbor test at D, then N becomes a candidate neighbor
at D, and D responds to N with a HelloNeighbor message. Otherwise, D passes the NewNode message
to one its neighbors whose coordinates are closer to those of N . In such a way, the NewNode message is
routed through the overlay towards the coordinates of the new node, until the NewNode message reaches a
node where the new node passes a neighbor test.

6Earlier, we referred to HelloNeighbor messages as neighbor messages.
7 Refer to Footnote 4. The receiver of a HelloNeighbor or HelloNotNeighbor message needs to know the physical address of

the sending node. However, it is preferred that the physical address of the sender is recovered by the receiver of the message, rather
than being included in the message itself.

8 See Footnote 7. The same argument holds for the sender of a ServerRequest message. The physical address of the sender
should be recovered by the receiver of the message, rather than being included in the message itself.

12

CachePing and CachePong Messages. CachePing and CachePong messages are used to refresh the
contents of the cache at the DT server. Every tSlowHeartbeat seconds, the DT server sends a CachePing
message to every node in the cache. A node that receives a CachePing message immediately replies with a
CachePong message.

4.5 Shifting Coordinates

Since the logical address of a node is a configuration parameter, it may happen that two nodes have the
same coordinates, or that the coordinates of four nodes lie on a circle. In the former case, the Delaunay
triangulation is not defined, and in the latter case, the Delaunay triangulation overlay is not unique. In both
cases, the DT protocol forces one of the nodes to change its coordinates by a small amount, thus, ensuring
that the Delaunay triangulation of the nodes is unique.

Whenever a node receives a message from a node with the same coordinates, the receiver shifts its coor-
dinates by a small amount, and removes all neighbors that fail the neighbor test with the new coordinates. If
a node A receives a message from a node B, and a node in A’s neighborhood table has the same coordinates
as node B, then node A sends a HelloNotNeighbor message to B. Since the HelloNotNeighbor message
contains A’s neighbor with B’s logical address, B sends the node with the duplicate logical address a Hel-
loNeighbor message. The receiver of this HelloNeighbor message notices that the message was sent by a
node with the same coordinates, and changes its logical address.

If a node A receives a HelloNeighbor or HelloNotNeighbor message from a node N such that the
sender N , the receiver A, the CW and CCW neighbors of A with respect to N , CWN (A) and CCWN(A),
contained in the message lie on a circle, A will shift its coordinates before processing the message.

Each time a node receives a HelloNeighbor or HelloNotNeighbor message from a neighbor, it checks
if the neighbor’s logical address has changed. If the logical address has changed, the node removes the
neighbor’s entry from the neighborhood table and then processes the message. In most cases, the node with
the shifted coordinates will be added again as a neighbor.

4.6 States and State Transitions of the DT Protocol

We next discuss the states and state transitions of the DT protocol. The discussion summarizes our earlier
description of the protocol. The DT protocol has two different finite state machines, one for a node and one
for the DT server. A detailed description of the state transitions is presented in tabular form in Appendix A.

4.6.1 Node States

The state of a node is derived from the neighborhood table and the presence of candidate neighbors. There
are no variables that memorize the states of a node.

A node is in one of five states: Stopped, Leader without Neighbor, Leader with Neighbor, Not Leader,
and Leaving. Recall that a node is a Leader if the node has no neighbor with greater coordinates than its
own. By definition, a node with no neighbors is a Leader. The states Leader with Neighbor and Leader
without Neighbor are distinguished, for the following reason. When a newly joining node starts up or when
a node has no neighbors, it believes itself to be a Leader, and it will generate NewNode Messages when it
learns about a node in the overlay to contact. A node with neighbors does not send NewNode Messages.

The definitions of the five states are given in Table 1.
For nodes in states Leader with Neighbor and Not Leader, we define three sub-states: Stable With

Candidate Neighbor, Stable Without Candidate Neighbor, and Not Stable. We say a node X is stable when
all nodes that appear in the CW and CCW neighbor columns of node X’s neighborhood also appear in the
neighbor column; Otherwise node X is not stable. We say a node M has a candidate neighbor, say node N ,

13

State Name State Definition

Stopped The node is not running
Leaving The node is going to leave the group
Leader without Neighbor The node that has no neighbors
Leader With Neighbor The node that has neighbors, and no neighbor has greater coordi-

nates than its own
Not Leader The node has a neighbor with coordinates greater than its own

Table 1: Node State Definitions.

if (1) N appears in the CW or CCW column of M ’s neighborhood table, or if N is contained in a NewNode
message received by M , and (2) N is not in the neighbor column of M ’s neighborhood table, and (3) N
passes the neighbor test at M . The definitions of the three sub-states are given in Table 2.

Sub-state Name State Definition

Stable Without Candidate Neighbor The node is stable and has no candidate neighbors
Stable With Candidate Neighbor The node is stable and has candidate neighbors
Not Stable The node is not stable

Table 2: Node Sub-state Definitions.

A new node starts in state Stopped. When it is in state Leader With Neighbor and Not Leader, the
node also has a sub-state. The transition diagram of states and sub-states is shown in Figure 10.

4.6.2 DT Server States

The functions performed by the DT server are minimal. It is used as rendezvous point when new nodes join
the overlay network and when the overlay Newark must be repaired after a partition. The DT server has
only two states: Has Leader and Without Leader. Recall that the DT server maintains a cache of nodes. The
node with the highest logical address is identified by the DT server as the Leader of the overlay network. If
the node cache is empty, the DT server has no information about nodes in the overlay network. This state is
referred to as Without Leader. If the node cache is not empty, the DT server can identify the Leader of the
overlay network. This state is referred to as Has Leader. The definitions of the two states are given in Table
3.

State Name State Definition

Has Leader The node cache contains at least one node
Without Leader The node cache is empty

Table 3: DT Server State Definitions.

The state transition diagram of the DT server is shown in Figure 11. The DT Server starts in state
Without Leader. When the first joining node sends a ServerRequest message to the DT server, this node is
added to the node cache, and the DT server will enter state Has Leader.

14

Leader
without

Neighbor

Leader with
Neighbor

Not
Leader

Leaving

Stopped

Neighbor added
(with smaller
coordinates)

All neighbors
leave or
timeout

Neighbor added
(with larger
coordinates)

All neighbors
leave or
timeout

Application
starts

A new neighbor with
greater coordinates is

added

After removing some neighbor,
this node has largest

coordinates

Send
Goodbye

Send
Goodbye

Send
Goodbye

Application
exits

(a) Transition Diagram of Node States.

Stable Without
Candidate
Neighbor

Stable With
Candidate
Neighbor

Not
Stable

Node contained in NewNode
passes neighbor test

After handling the
candidate neighbor,
node remains stable

After neighborhood
updating, node becomes

 not stable

After neighborhood updating,
node becomes stable.

After neighborhood updating,
node becomes not stable

We say a node X is stable when all
nodes that appear in the CW and
CCW neighbor columns of node
X's neighborhood also appear in
the neighbor column; Otherwise
node X is not stable.

(b) Transition Diagram for Sub-states.

Figure 10: State transition diagrams for nodes. States are indicated as circles. State transitions are indicated
as arcs. Each arc is labeled with the condition that triggers the transition.

15

Without
Leader

Has Leader

 Node Cache
is not empty

 Node Cache
is empty

Figure 11: DT Server State Transition Diagram.

4.7 Examples

In an overlay network, without any changes for an extended period of time, there are three types of events:
(1) all nodes send HelloNeighbor messages to their neighbors every tSlowHeartbeat seconds; (2) the Leader
exchanges ServerRequest and ServerReply messages with the DT server every tFastHeartbeat seconds; and
(3) the server exchanges CachePing and CachePong messages with the nodes in its cache every tSlowHeartbeat

seconds.
In the following, we illustrate the dynamics of the DT protocol, when a node joins and leaves the

Delaunay triangulation.

4.7.1 Node Joins

In Figure 12 we illustrate the steps of the DT protocol when a new node, N , with coord(N) = (8; 4),
joins an overlay network. As shown in Figure 12(a), N first sends a ServerRequest to the DT server, and
receives a ServerReply, which contains the logical and physical addresses of some node X with coord(X) >
coord(N). Then, node N sends a NewNode message to X (Figure 12(b)). X performs a neighbor test for
N , which fails. Therefore, X forwards the NewNode message to neighbor Y , which is closer to N than X .
Assuming that N fails the neighbor test at Y , node Y forwards the NewNode message to D which is closer
to N than Y . At node D, N passes the neighbor test and, therefore, D makes N a candidate neighbor and
sends a HelloNeighbor message to N .9 Now, N has found its first neighbor.

Since the HelloNeighbor from D in Figure 12(b) contains B = CWN (D) and C = CCWN(D),
nodes B and C become candidate neighbors at N . At the next timeout of the Heartbeat timer, N sends a
HelloNeighbor message to its neighbor D, and its closest candidate neighbor B (Figure 12(c)). As soon
as these HelloNeighbor messages are received at B and D, these nodes will drop each other from their
neighborhood table. In other words, the link in the overlay between nodes B and D is removed.

In Figure 12(d) we assume that the Heartbeat timers expire at both B and D. (Note that the sequence
of events in this example is different if the Heartbeat timers expire in a different order.) Both nodes send
HelloNeighbor messages to their neighbors. When N receives the message from B, it promotes B from a
candidate neighbor to a neighbor. The messages from B to E and, from D to C , contain N as CW or CCW
neighbor. Hence, N becomes a candidate neighbor at C and E.

Assuming that the next Heartbeat timeout occurs at nodes C and E, these nodes send HelloNeighbor
messages to all their neighbors and their candidate neighbor N (Figure 12(e)). When N receives the mes-
sages from C and E, it adds these nodes as neighbors. Now, N has a correct view of its neighborhood.

At the next Heartbeat timeout at N , shown in Figure 12(f), N sends HelloNeighbor messages to nodes
B, C , D, and E. When the respective HelloNeighbor messages arrive at C and E, these nodes promote
node N from candidate neighbor to neighbor. This completes the procedure for joining node N to the
overlay network. Subsequently, each node sends HelloNeighbor messages to its neighbors at each Heartbeat

9Since the NewNode message contains the physical address of node N , any node that receives the NewNode message can send
messages to N .

16

A
0,6

10,8

C
12,0

B
5,2

E
4,9

D
10,8

N
8,4

new
node

Server

S
erverR

eply

S
erverR

equest

Y
14,9

X
16,9

(a)

A
0,6

10,8

C
12,0

B
5,2

E
4,9

D
10,8

N
8,4

Server

Y
14,9

NewNode

new
node

NewNode

NewNode
X

16,9

H
el

lo
N

ei
gh

bo
r

(b)

A
0,6

10,8

B
5,2

D
10,8

C
12,0

E
4,9

H
el

lo
N

ei
gh

bo
r

Hello

Neighbor

N
8,4

(c)

A
0,6

10,8
D

10,8

N
8,4

E
4,9

H
el

lo
N

ei
gh

bo
r

Hello

Neighbor

Hello Neighbor

B
5,2

Hello Neighbor

H
ello N

eighbor

C
12,0

H
ello

 N
eig

h
b

o
rHello Neighbor

(d)

A
0,6

10,8
D

10,8

Hello Neighbor

B
5,2

N
8,4

Hello Neighbor

C
12,0

H
ello N

eighbor

Hello Neighbor

Hello Neighbor

Hello
 N

eighbor

E
4,9

H
ello

 N
eig

h
b

o
r

(e)

A
0,6

10,8
D

10,8

Hello Neighbor

B
5,2

N
8,4

E
4,9

Hello Neighbor

C
12,0

H
el

lo
N

ei
gh

bo
r

Hello

Neighbor

(f)

Figure 12: Node N with coordinates coord(N) = (8; 4) joins the overlay network. Note that in (a) and (b), we have
omitted some edges from the Delaunay triangulation for the sake of simplicity, and in (c)–(f), we have omitted nodes
X and Y .

17

A
0,6

10,8
D

10,8

C
12,0

N
8,4

E
4,9

Goodbye

G
oodbye

B
5,2

G
oo

db
ye

Goodbye

G
o

o
d

b
ye

To DT server

(a)

H
ello

N
eighbor

A
0,6

10,8
D

10,8
Hello Neighbor

B
5,2

N
8,4

Hello Neighbor

C
12,0

H
ello

N
eighbor

Hello
Neighbor

Hello
 N

eighbor

E
4,9

H
ello

N
eig

h
b

o
r

HelloNeighbor

HelloNeighbor

Hello
Neighbor

H
ello

N
eig

h
b

o
r

Hello
Neighbor

Hello

Neighbor

H
el

lo
N

ei
gh

bo
r

(b)

A
0,6

10,8
D

10,8G
oodbye

B
5,2

N
8,4

Goodbye

C
12,0

E
4,9

Goodbye

G
oo

db
ye

(c)

A
0,6

10,8
D

10,8

C
12,0

N
8,4

E
4,9

B
5,2

Hello Neighbor

H
ello

 N
eig

h
b

o
r

Hello Neighbor

H
ello N

eighbor

Hello Neighbor

Hel
lo

 N
ei

gh
bo

r

Hel
lo

 N
ei

gh
bo

r

(d)

Figure 13: Node N with coordinates coord(N) = (8; 4) leaves the overlay network.

18

Switch 8

Switch 9

Switch 11

Switch 10

Switch 4

Switch 5

Switch 6

Switch 7

Switch 3

Internet

centurion149-167
centurion183
centurion253-255

centurion246
centurion250
centurion251

centurion249
centurion252

centurion168-182
centurion164-187

centurion188-211

centurion228-247centurion128-147

Gigabit Ethernet

Figure 14: Network topology of the Centurion cluster. The figure only shows equipment involved in the experiments.
Switches 3 to 11 are Ethernet Switches with 100 Mbps ports and one 1 Gbps uplink. All links are full-duplex. Hosts
are labeled ‘centurionN’, where N is a number. All hosts have valid IP addresses and may run other applications at
the time of the experiments. At most 100 nodes are involved in any single experiment.

timeout.

4.7.2 Node Leaves

In Figure 13 we illustrate the steps involved when node N leaves the overlay network. When N decides to
leave the overlay, it sends Goodbye messages to all its neighbors and the DT server (Figure 13(a)). When
the server receives the Goodbye message, it removes N from the cache. When the neighbors receive the
Goodbye message, they remove N from the neighborhood table.

However, even though N is deleted as neighbor at nodes B, C , D, and E, these nodes have some other
neighbor entries, where N is listed as CW or CCW neighbor. For example, since N = CWE(B) and
N = CCWE(D), node N appears as CW neighbor of B and as CCW neighbor of D in E’s neighborhood
table. By definition of a candidate neighbor, N is now a candidate neighbor at B, C , D, and E, and the
nodes will send HelloNeighbor messages to N at their next Heartbeat timeout.10

Let us now assume that all nodes send HelloNeighbor message to their neighbors, and their candidate
neighbor N (Figure 13(b)). When N receives the messages, it responds with Goodbye messages, as shown
in Figure 13(c).

The HelloNeighbor messages sent in Figure 13(b) contain the updated values of the CW and the CCW
neighbors of the nodes. For instance, B’s message to E lists C (and no longer N) as the CW neighbor of
B with respect to E, that is, C = CWE(B). As a result, after Figure 13(b), node N no longer exists as
a CW or CCW neighbor in the neighborhood tables of any node. Further, nodes B, C , D, and E, know
about each other either as neighbors, or as CW or CCW neighbor of some neighborhood table entry. When
the neighbor tests are executed, C fails the neighbor tests at node E, and vice versa. On the other hand,
D passes the neighbor test at node B, and B passes the test at node D. Hence, nodes B and D add each
other as candidate neighbors and send HelloNeighbor messages to each other (Figure 13(d)). Once these
messages are received, both B and D have established each other as neighbors, and, as a result, the overlay
network is repaired.

10These HelloNeighbor messages to N are superfluous. However, avoiding these messages adds a requirement that nodes
remember recently received Goodbye messages.

19

5 Evaluation of the DT Protocol

We have evaluated the performance characteristics of the DT protocol in measurement experiments on a
cluster of Linux PCs. The experiments include up to 100 PCs and overlay networks with up to 10 000
nodes.

The DT protocol was implemented in Java using Sun’s Java Virtual Machine 1.3.0, which includes the
HotSpot just-in-time compiler. Details of the implementation can be obtained from [10].

The measurement experiments were conducted on the Centurion computer cluster at the University of
Virginia. The experiments use up to 100 PCs from the cluster, each equipped with two 400 Mhz Pentium II
processors and 256MB RAM. The server of the DT protocol was run on a 933 Mhz Pentium III with 1GB
RAM. All machines run the Linux 2.2.14 operating system. The network of the Centurion cluster is a
switched Ethernet network with a two-level hierarchy, as shown in Figure 14. Each PC is connected to a 100
Mbps port of an Ethernet switch. Each Ethernet switch has a 1 Gbps uplink to a Gigabit Ethernet switch.
All machines of the Centurion cluster have valid IP addresses and are on the same IP subnetwork. Hosts
used in the experiments were not available for exclusive use, and may have run other applications.

In the experiments, each PC (henceforth referred to as “host”) executes between 1 and 100 nodes of
the overlay networks, allowing overlay networks with up to 10 000 nodes. The number of nodes in an
experiment are evenly distributed over the 100 hosts of the PC cluster. For instance, in an experiment with
1 000 nodes, 10 nodes are assigned to each host. In all experiments, the coordinates of a node in the DT
triangulation are assigned as a randomly selected point from a 10 000 by 10 000 grid. Results obtained with
this random assignment of coordinates can be interpreted as lower bounds for the expected performance of
any more sophisticated assignment method that considers the topology of the underlying network.

5.1 Evaluation of the Overlay Graphs

We first evaluate the properties of the overlay graphs generated by the DT protocol for the network topology
in Figure 14. We have constructed overlay networks with 1 000 to 10 000 nodes. Recall that the coordinates
of nodes are randomly assigned, and, hence, the DT protocol does not consider the network topology when
constructing an overlay network.

We evaluate the outdegree, defined as the number of neighbors of a node, the path length, defined as the
number of logical overlay edges between a given pair of nodes, and the stress, where the stress of a network
link l with respect to a multicast sender is the number of overlay edges in the embedded spanning tree (with
the multicast sender as root of the tree) that pass over link l. Since the outdegree of a node provides an
upper bound for the number of times that any particular message is forwarded at a node, the outdegree is a
measure for the processing load at a node in the overlay. The path length is an indicator for the delay in the
overlay network. The stress indicates how efficient the overlay utilizes the available network bandwidth.

The results are shown in Figure 15. Each data point in the plots contains the results from five generated
overlay networks. Figure 15(a) shows the outdegree of nodes when the number of nodes in the overlay
network is increased. The average outdegree is approximately six, as is expected for any triangulation
graph. Although the worst-case outdegree of a node in a Delaunay triangulation is N � 1, where N is the
number of nodes, the maximum outdegree is relatively small.

Figure 15(b) shows the path length in the overlay network between randomly selected pairs of nodes as
a function of the number of nodes in the overlay topology. Each data point in the graph shows the values
from five topologies, where in each topology, we evaluate 1 000 randomly selected pairs of nodes. (The
random selection of paths is justified by the considerable effort to compute all paths.) The average number
of hops closely matches

p
N=4, where N is the number of nodes.

Figure 15(c) shows the stress values for the links of the network in Figure 14. (We ignore any logical

20

5

10

1000080006000400020000

30

25

20

15

0

Maximum

99th percentile

Average

Number of Nodes in Overlay

O
ut

de
gr

ee

(a) Outdegree of nodes.

20000

80

60

40

20

0
800060004000 10000

100

120

140

160

Number of Nodes

Pa
th

 L
en

gt
h

be
tw

ee
n

T
w

o
N

od
es

99th Percentile

Average

(b) Path Length between Two Nodes.

1000080006000
Number of Nodes
4000200001

10

100

1000

St
re

ss

Average stress
99th percentile of stress

1 Gbps link

100 Mbps link

(c) Stress.

Figure 15: Outdegree of nodes, path length between two nodes, and stress of links in the overlay network. Each data
point shows the results from five generated graphs. In (b), the values for the path length are computed from 1 000
randomly selected node pairs. In (c), the values for the ‘stress’ of a link are computed for at most 1000 randomly
selected multicast trees.

links between nodes that run on the same host.) With the random assignment of logical addresses to nodes
of the overlay, the links at the Gigabit switch are expected to have higher stress values than the 100 Mbps
links. Thus, we plot the stress in Figure 15(c) separately for 100 Mbps links and 1 Gbps links. Each data
point contains the results from five overlay topologies generated for the network in Figure 14. Since the
values for stress at a link depend on the selection of the multicast routing tree, we calculate the stress for
the multicast routing trees of 1 000 randomly selected senders (if the number of nodes is less than 1 000, we
consider all senders). The results in Figure 15(c) show that the stress for 10 000 nodes can exceed 100 at
a 100 Mbps link, and can exceed 1 000 at a 1 Gbps link. In comparison to Section 3, the stress values are
significantly worse. This is due to the random assignment of (x,y) coordinates, and the star-shaped topology
of the network in Figure 14. Note that the small difference between the average stress and the 99th percentile
of the stress indicate that the stress is high for all multicast trees.

5.2 Performance of the DT Protocol

We now evaluate the performance of the DT protocol by measuring the time required to form a Delaunay
triangulation overlay network, and to repair the Delaunay triangulation after nodes depart. Later, we examine
the steady state bandwidth requirements of the protocol at the nodes and at the DT server.

To measure the time to build an overlay network, we set up an initial Delaunay triangulation overlay
network with N nodes, and add M new nodes at the beginning of the experiment. The rate at which new
nodes are generated is limited by the computational power and number of the hosts. In our experiments,
each hosts spawns off new nodes as fast as possible. Then we measure the time delay until the overlay

21

10

5

40002000

40

35

30

25

20

15

6000
0

1000080000

T
im

e-
to

-S
ta

bi
liz

e
(s

ec
)

Final number of nodes (N+M)

N=7500N=5000N=2000

N=1000

N=0

M nodes are added

to an overlay of N nodes.

(a) Time-to-Stabilize when new nodes join.

10

35

80006000400020000

5

40

15

30

25

20

0
10000

Final Number of Nodes (N-M)

M nodes are removed

from an overlay of N nodes.

N=10000

N=5000

N=1000

N=2000

T
im

e-
T

o-
St

ab
ili

ze
 (

se
c)

(b) Time-to-Stabilize when nodes leave.

Figure 16: Time-to-Stabilize when nodes join or leave the overlay network. In (a), M new nodes are added to an
overlay of N nodes. The time to stabilize is the time until the resulting overlay network of N +M nodes has formed
a Delaunay triangulation. In (b), there are N nodes initially, and M nodes depart at the beginning of the experiment.
Here, the time to stabilize is the time until the resulting overlay network of N �M nodes has formed a Delaunay
triangulation.

network of N +M nodes has formed a Delaunay triangulation. The Time-to-Stabilize is measured from the
time the first new node joins the overlay until the last node has been added. In all experiments, nodes are
evenly distributed over 100 hosts of the PC cluster.

The measurements of delays and bandwidth requirements heavily depend on the selection of the timer
values of the protocols. In all our experiments, we use the values given in Subsection 4.3.

Figure 16(a) shows the Time-to-Stabilize for experiments with N = 0; 1 000; 2 000; 5 000; 7 500 and
M = 50 � 10 000 nodes. We consider overlay networks with up to 10,000 nodes, that is, M + N �

10 000. Each data point shows the average of five repetitions of the same experiment. Since the coordinates
are randomly assigned, each repetition of an experiment is likely to result in a different overlay topology.
Figure 16(a) contains five curves, one plot for each value of N . Each curve shows the Time-to-Stabilize,
measured in seconds, as a function of M + N , i.e., the final number of nodes. The figure shows that a
Delaunay triangulation with 10 000 nodes is formed in less than 35 seconds. In other words, on the average
one node is added every 3.5 msec.

Figure 16(b) shows the time to stabilize when nodes leave the overlay network. We assume that there
is an overlay network with N nodes, where N = 1000; 2 000; 5 000; 10 000. At the beginning of each
experiment, M nodes depart from the overlay network. We measure the time until the resulting overlay
network of N � M stabilizes to a Delaunay triangulation. Each data point presents an average of five
repetitions of an experiment. As before, we present one curve for each value of N , and depict the Time-
to-Stabilize as a function of N �M . The results show that the Delaunay triangulation is quickly repaired
even when a large number of nodes depart. When almost all nodes leave the overlay network, that is, when
N �M is small, the overlay network stabilizes on the average in less than 10 seconds for all considered
values of N .

We also measured the peak bandwidth requirements when nodes are added to an overlay network, by
counting the maximum number of sent and received messages between any two expirations of the Heartbeat
timer at nodes and the DT server. Recall that Hearbeat timers are set to either tFastHeartbeat or tSlowHeartbeat

seconds. We present the data in terms of bits per second, but we only account for the payload size of
messages and do not account for the UDP header, IP header, or Ethernet headers. Since messages are at
most 61 bytes long, the bandwidth requirements at the data link layer are up to 75% higher than shown in
the graphs.

Figure 17 shows the bandwidth requirements of nodes in an experiment which builds a Delaunay tri-

22

20000

150

800060004000

500
450
400
350
300
250

50

200

100

0

Number of Nodes (M)

Maximum (worst-case node)

99th percentile Average

10000

Pe
ak

 B
an

dw
id

th
 (

kb
ps

)

(a) Peak bandwidth requirements of nodes.

0 4000

800

600

400

200

0
10000800060002000

Number of Nodes

Average

Peak Rate

1400

1200

1000

B
an

dw
id

th
 a

t D
T

 s
er

ve
r

(b) Average and peak bandwidth requirements at DT server.

Figure 17: Bandwidth requirements of nodes and the DT server in an experiment where M nodes are added to an
initially empty overlay network. Measurements are taken for intervals of the length of the Heartbat timer until the
Delaunay triangulation is completed. In (a), the peak bandwidth of nodes is presented as average, 99th percentile, and
maximum over all nodes. In (b), the average and peak bandwidth requirements at the DT server are presented.

0.3

0.25

0.2

0.15

0.1

0.05

0
0 5 10 15 20 25

R
el

at
iv

e
fr

eq
ue

nc
y

Messages sent or received per second (rounded to nearest integer)

(a) Messages Transmitted and Received.

0.3

0.25

0.2

0.15

0.1

0.05

0
0 5 10 15 20 25

Outdegree of a node in the overlay network

R
el

at
iv

e
fr

eq
ue

nc
y

(b) Number of Neighbors.

Figure 18: Distribution of the number of messages (sent and received) of a node and the number of neighbors per
node in an overlay network with 10 000 nodes. The histogram in (a) shows the average number of messages sent and
received by a node in a 1-second time interval.

angulation with M nodes, starting with an overlay network with N = 0 nodes. The figure depicts the
bandwidth requirements as a function of M . The measurements are taken over the entire length of the ex-
periment, that is, until the Delaunay triangulation of M nodes is completed. Figure 17(a) illustrates that
the peak bandwidth, averaged over all nodes, is below 38 kbps for all values of M . The 99th percentile of
the peak bandwidth at nodes is below 70 kbps. However, the node with the highest peak bandwidth, was
measured at 485 kbps, corresponding to 249 messages in a time period of tFastHeartbeat = 0:25 seconds.

Figure 17(b) shows the peak and average bandwidth requirements at the DT server during the same
experiment. The average bandwidth requirements at the DT server are below 400 kbps, even when 10 000
nodes want to join the overlay network. The peak bandwidth requirement at the DT server is about 1 300 kbps.
Since each node that joins the overlay network sends a message to the DT server, the bandwidth require-
ments at the DT server should increase with M . The fact that the peak bandwidth does not increase for
M � 2000 nodes indicates that the rate at which new nodes are generated is limited by the rate at which the
hosts can start new overlay nodes.

5.3 Bandwidth Requirements of DT Protocol in Steady State

We have performed measurements of the bandwidth requirements by the DT protocol in a steady state,
that is, when no nodes are added or removed from the Delaunay triangulation overlay. We use an overlay

23

network with 10 000 nodes and measure the number of messages transmitted by each node. For each overlay
network topology, we take measurements over a period of one hour. We repeat each experiment five times.
Figure 18(a) shows a histogram which depicts the distribution of the number of transmitted and received
messages for all five repetitions of the experiment. Since, in a steady state, the number of messages at
nodes consists mostly of HelloNeighbor messages, the amount of traffic at a node largely depends on the
outdegree of the node. To support this observation, we include in Figure 18(b) a histogram which depicts
the distribution of the outdegree of nodes. A comparison of Figures 18(a) and 18(b) makes clear that the
traffic at a node indeed correlates with the number of neighbors. Recall that in a triangulation graph, each
node has on the average six neighbors. Thus, with the Heartbeat timer set to tSlowHeartbeat = 2 seconds,
we expect that each node sends and receives 12 messages over a period of 2 seconds. With 61 bytes per
HelloNeighbor message (not counting UDP, IP and Ethernet headers), the bandwidth requirements per node
are less than 3 kbps. In all measurements of overlay networks in steady state, no node sent or received more
than 23 messages per second, or more than 11.2 kbps of traffic.

As a final comment, the steady state traffic at the DT server consists mostly of CachePing and CacheP-
ong messages to the nodes in the cache. If the cache has a size of 100 nodes, the steady state bandwidth
requirement at the DT server is approximately 50 kbps.

5.4 Measurements of Multicast Bulk Transfers

We tested the application-level performance by measuring the throughput and delay of multicasting bulk data
in the overlay network. Recall from Section 2 that a node A in a Delaunay triangulation overlay forwards a
multicast message from source node S to a neighbor node B, if A is the next hop on the (compass routed)
path from B to S. Thus, once the overlay network is established, no routing protocol is needed.

We present measurements from an experiment where multicast data is carried over (unicast) TCP links
between neighbors in the overlay. We assume that all data is partitioned into messages with 16 kB payload
and 16 bytes of header information.11 The header information contains, among others, the logical address
of the sender of the multicast message.

The measurements of multicast transmissions are performed for overlay networks with N = 2 to 1 000
nodes. In the measurement experiments we run 1 or 10 nodes on each host, and the number of hosts involved
in an experiment is varied between two and 100. In experiments with one overlay node per host, the multicast
sender performs a bulk transfer of 100 MB (= 6400 messages). For experiments with 10 nodes per host, the
multicast sender performs a bulk transfer of 10 MB of data (= 640 messages).

We measure the throughput in multicast trees for 10 randomly selected senders, with the exception of
N = 2, where we only have two senders. The throughput is measured at all receivers, as the ratio of
the amount of data sent (10 MB or 100 MB) and the time lag between the receipt of the first and last
message. As in all previous experiments, we repeat each measurement five times. Figure 19 shows the
average throughput, averaged over all nodes in all multicast trees and all repetitions. To give an indication of
the distribution of the throughput values, we include the range of throughput measurements for all multicast
trees as error bars. Note that there is a different multicast tree for each generated overlay.

Given a network topology (in our case, Figure 14), an overlay network, and a multicast sender, the
‘stress’ (see Figure 6) imposes a limit on the maximum achievable throughout. The achievable throughput
can be bounded by minl2L bwl=sl, where L is the set of all network links in the overlay network which carry
traffic from the multicast sender, bwl is the capacity of link l (here, either 100 Mbps or 1 Gbps), and sl is
the stress of link l. We calculate these bounds and compare them to the measured values. We include the
average value of the bounds, averaged over all multicast trees that were evaluated.

11A description of the message format used by the protocol is beyond the scope of this paper and we refer to [10].

24

10001
Number of Nodes

10 100

1 node per host, 100MB transfer
Measured throughput:

with 1 node per host

A
ve

ra
ge

 r
ec

ei
ve

r
th

ro
ug

hp
ut

 (
M

bp
s)

1

10

100
Bounds due to stress

with 10 nodes per host

10 nodes per host, 10MB transfer

Figure 19: Measured multicast throughput at receivers. The plots compare theoretical bounds and measured values
of the average throughput of multicast transmissions for a set of multicast trees. We show two measurements: (1)
100 MB bulk data transfers for an overlay with N = 2� 100 nodes, where at most one node is assigned to each host;
and (2) 10 MB bulk data transfers for an overlay with N = 20� 1000 nodes, where always 10 nodes are assigned to
each host. The error bars show the variance of the measurements across all considered multicast trees.

4500

500

0
1000100

Number of Nodes
101

4000

3500

3000

2500

2000

1500

1000

99th percentile of delay
Average delay

with 1 node per host

with 10 nodes per host

E
nd

-t
o-

E
nd

 M
es

sa
ge

 D
el

ay
 (

m
se

c)

Figure 20: Measured end-to-end delay of messages. The plots show average delays and 99th percentile of delays for
receivers in a set of multicast trees. We present two measurements: (1) 100 MB bulk data transfers for an overlay with
N = 2� 100 nodes, where at most one node is assigned to each host; and (2) 10 MB bulk data transfer for an overlay
with N = 20� 1000 nodes, where always 10 nodes are assigned to each host.

25

Figure 19 shows that the throughput for the multicast transmissions is high, achieving an average
throughout of close to 15 Mbps when 100 nodes are running on 100 hosts. The throughput is lower when
10 nodes are run on each host. With 1 000 nodes running on 100 nodes, the measured throughput is close to
2 Mbps. Note that in the experiments which run one node per host, the achieved throughput is close to the
theoretical bound. This indicates that the experiment is bandwidth limited in experiments where one overlay
node is run on each host. When we run 10 overlay nodes on each host, the measured data is lower than the
throughput bound. This indicates that the bottleneck is the processing at hosts.

Finally, we present measurements of the end-to-end delay experienced by individual messages during
the above multicast experiments. Clocks on the hosts of the Centurion cluster are synchronized using xntpd,
which runs the NTP Version 3 protocol [18], and should differ by at most 30 milliseconds. With the syn-
chronized clocks, we can determine the end-to-end delay of a message for a node as the time lag between
message transmission and message reception.

Figure 20 shows the average and 99th percentile values of the end-to-end packet delays for the multicast
receivers for 10 MB bulk data transfers (with 10 nodes running on a host) and 100 MB bulk data transfers
(with one node running on a host). If one node is run on a host, the average delay in a network with 100
nodes is 76 msec and the 99th percentile of the delay is 176 msec. For 100 nodes, using 10 nodes per host,
the delay is much higher, with an average of 311 msec and a 99th percentile of the delay at 935 msec.

6 Conclusions

We have examined Delaunay triangulations as overlay topologies for application-layer multicast. We have
presented a protocol, the DT Protocol, that creates and maintains a Delaunay triangulation overlay for ap-
plications.

The contribution of the presented Delaunay triangulation and the DT protocol is that we can build and
maintain very large overlay networks with relatively low overhead, at the cost of poor resource utilization
due to a possibly bad match of the overlay network to the network-layer infrastructure. To our knowledge,
our study is the first that demonstrates in an implementation that overlay networks with 10 000 members can
be built and maintained in a highly distributed fashion and with relatively low overhead.

There are several directions for future work. A limitation of this study is that the experiments with the
DT protocol are confined to a local-area environment. We plan to evaluate the DT protocol over a wide-
area network. However, managing wide-area measurement experiments for an overlay network with several
thousand members imposes significant logistical problems. In addition, since Delaunay triangulations have
multiple alternate paths between nodes, an overlay network based on Delaunay triangulations can mask
a certain amount of node failures. The geographic routing techniques from [14] may be suitable to find
routes to bypass failed nodes. Finally, we have pointed out that the mapping of the Delaunay triangulation
overlay network to the network-layer infrastructure can be poor. New coordinate spaces, that can take
into consideration network delay measurements, may provide an improved mapping of the logical overlay
network to the underlying network.

As a final comment, the software of the DT protocol, which is part of the HyperCast software [10], will
be made publicly available.

Acknowledgements

We thank Nicolas Christin, Haiyong Wang, Jianping Wang, and Guimin Zhang for their valuable feedback
and comments.

26

References

[1] F. Baccelli, D. Kofman, and J.-L. Rougier. Self organizing hierarchical multicast trees and their optimization. In
Proceedings of IEEE Infocom ‘99, pages 1081–1089, 1999.

[2] K. Calvert, M. Doar, and E. Zegura. Modeling internet topology. IEEE Communications Magazine, 35(6):160–
163, June 1997.

[3] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable multicast for heterogeneous networks. In Pro-
ceedings of IEEE Infocom, pages 795–804, 2000.

[4] Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In Proceedings of ACM SIGMETRICS, pages
1–12, 2000.

[5] J. Chuang. Economics of scalable network services. In Proceedings of SPIE ITCOM 2001, Vol. 4526, Denver,
CO, pages 11–19, August 2001.

[6] Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast packets. Communications of the ACM,
21(12):1040–1048, December 1978.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry, Algorithms and
Applications. Springer Verlag, 1997.

[8] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming live media over a peer-to-peer network. Technical
Report 2001-30, Stanford University (Computer Science Dept.), June 2001.

[9] P. Francis. Yoid: Extending the Internet multicast architecture, April 2000.
http://www.aciri.org/yoid/docs/index.html.

[10] Multimedia Networks Group. Hypercast project. University of Virginia, http://www.cs.virginia.edu/˜hypercast.
2001.

[11] D. Helder and S. Jamin. Banana tree protocol, an end-host multicast protocol. Technical Report CSETR-TR-
429-00, University of Michigan, 2000.

[12] L. Hu. Distributed Algorithms for Packet Radio Networks. PhD thesis, University of California at Berkeley,
1990.

[13] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. O’Toole. Overcast: Reliable multicasting with
an overlay network. In Proceedings of the Fourth Symposium on Operating Systems Design and Implementation,
pages 197–212, San Diego, CA, October 2000. USENIX Association.

[14] B. N. Karp. Geographic Routing for Wireless Networks. PhD thesis, Harvard University, 2000.

[15] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In Proceedings of the 11th
Canadian Conference on Computational Geometry (CCCG’99), pages 51–54, Vancouver, August 1999.

[16] J. Liebeherr and T. K. Beam. HyperCast: A protocol for maintaining multicast group members in a logical
hypercube topology. In Proc. First International Workshop on Networked Group Communication (NGC ’99),
Lecture Notes in Computer Science, volume 1736, pages 72–89, 1999.

[17] J. Liebeherr and B. S. Sethi. A Scalable Control Topology for Multicast Communications. In Proceedings IEEE
Infocom ‘98, pages 1197–1203, 1998.

[18] D. Mills. The network time protocol (NTP) distribution. University of Delaware, http://www.eecis.udel.edu/˜ntp/.
2001.

[19] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level multicast infrastructure. In
Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, March 2001.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM 2001, San Diego, pages 149–160, August 2001.

27

[21] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using content-addressable
networks. In Proceedings of Third International Workshop on Networked Group Communication (NGC ’01),
London, England, 2001. To appear.

[22] V. Roca and A. El-Sayed. A host-based multicast (HBM) solution for group communications. In 1st IEEE
International Conference on Networking (ICN’01), July 2001.

[23] R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243–245, 1977.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of ACM SIGCOMM 2001, San Diego, pages 160–172, August
2001.

[25] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, University of California, Berkeley, April 2001.

28

A Actions of the DT protocol

The following tables show the actions taken by the nodes in each state when events like message arrivals,
timer expirations happen. We do not have separate tables for the three sub-states; the description of the
actions in the sub-states are included in the Leader With Neighbor and Not Leader tables.

We use the following notations and terminology:

ServerReply(x): Indicates a ServerReply message which contains node x.
NewNode(w) : Indicates New Node message which contains node w.
! : Indicates a state transition.
return : Processing for this event is complete. Skip the remainder.
this : Refers to the local node.

A.1 Transition Table for Node

The following are transitions at node v.

State: Stopped
Event Action
Application starts ! Leader Without Neighbor

29

States: Leader with Neighbor, Leader without Neighbor, Not Leader
Event Action

Application exits Send Goodbye to all neighbors
Send Goodbye to server
! Leaving

CachePing received Reply with CachePong message
NewNode(w) received IF w passes neighbor test at v

/* w is a candidate neighbor */
Send HelloNeighbor to w
Set timeout value of Heartbeat Timer to tFastHeartbeat

ELSE

Forward message to a neighbor which is closer to w

State: Leader With Neighbor, Not Leader
Event Action

Heartbeat Timer expires Send HelloNeighbor to all neighbors
IF node is not stable

Send HelloNeighbor to closest candidate neighbor
Set timeout value of Heartbeat Timer to tFastHeartbeat

ELSE

Set timeout value of Heartbeat Timer to tSlowHeartbeat

30

State: Leader Without Neighbor
Event Action

Backoff Timer expires IF tBackoff � tNeighbor and an alternate DT server exists
Switch to alternate DT server
Set tBackoff = tFastHeartbeat

Send ServerRequest to alternate DT server
ELSE

Send ServerRequest to DT server
Set tBackoff = 2 tBackoff
Start Backoff Timer with a random time in [0; tBackoff]

Receives Set tBackoff = tFastHeartbeat

ServerReply(w) IF w 6= this
Send NewNode(this) to w

HelloNeighbor arrives While coordthis = coordw
from node w Node shifts its coordinates, i.e., coordthis

IF w passes neighbor test
Add w as neighbor in neighborhood table
Start Neighbor Timer for w with tNeighbor

IF coordw > coordthis
! Not Leader

ELSE

Set tBackoff = tFastHeartbeat

! Leader With Neighbor

31

State: Leader With Neighbor
Event Action

Backoff Timer expires IF tBackoff � tNeighbor and an alternate DT server exists
Switch to alternate DT server
Set tBackoff = tFastHeartbeat

Send ServerRequest to alternate DT server
ELSE

Send ServerRequest to DT server
Set tBackoff = 2 tBackoff
Start Backoff Timer with a random time in [0; tBackoff]

Receives Set tBackoff = tFastHeartbeat

ServerReply(w) IF w 6= this
Send HelloNeighbor to w

Neighbor Timer for w IF w is neighbor
expires or Goodbye Remove w from neighborhood table
arrives from w Set timeout value of Heartbeat Timer to tFastHeartbeat

IF no neighbors in neighborhood table
! Leader without Neighbors

HelloNeighbor or IF w is a neighbor
HelloNotNeighbor IF w has changed its coordinates
arrives from w Remove w from neighbor table

return
Update neighborhood entry for w
Start Neighbor Timer for w
IF node is stable

Set Heartbeat Timer to tSlowHeartbeat

ELSE

Set Heartbeat Timer to tFastHeartbeat

ELSE /* w is not a neighbor */
IF another neighbor v 6= w exists such that coordv = coordw

Send HelloNotNeighbor to w
ELSE

While coordthis = coordw or, for any neighbor v, coordthis =
coordv

Node shifts its coordinates, i.e., coordthis
IF w passes the neighbor test

Add w as neighbor
Set Neighbor Timer for w
Remove all neighbors that fail neighbor test
While there are four nodes with coordinates on a circle

Node shifts its coordinates, i.e., coordthis
While there exists a neighbor v with coordthis = coordv

Node shifts its coordinates, i.e., coordthis
Remove all neighbors that fail neighborhood test

ELSE IF message type is HelloNeighbor and w fails neighbor test
Send HelloNotNeighbor to w

IF there exists neighbor v with coordv > coordthis
Clear Backoff Timer (if the timer was set)
! Not Leader

32

State: Not Leader
Event Action

Neighbor Timout for w IF w is a neighbor
or Goodbye Remove w from neighbor table
arrives from w Set timeout value of Heartbeat Timer to tFastHeartbeat

IF no neighbors left in neighborhood table
Set tBackoff = tFastHeartbeat

Start Backoff Timer
! Leader Without Neighbor

ELSE

IF coordthis > coordv for all neighbors v
Set tBackoff = tFastHeartbeat

Start Backoff Timer
! Leader With Neighbor

HelloNeighbor or IF w is a neighbor
HelloNotNeighbor IF w has changed its coordinates
arrives from w Remove w from neighbor table

return
Update neighborhood entry for w
Start Neighbor Timer for w
IF node is stable

Set Heartbeat Timer to tSlowHeartbeat

ELSE

Set Heartbeat Timer to tFastHeartbeat

ELSE /* w is not a neighbor */
IF another neighbor v 6= w exists such that coordv = coordw

Send HelloNotNeighbor to w
ELSE

While coordthis = coordw or, for any neighbor v, coordthis =
coordv

Node shifts its coordinates, i.e., coordthis
IF w passes the neighbor test

Add w as neighbor
Set Neighbor Timer for w
Remove all neighbors that fail neighbor test
While there are four nodes with coordinates on a circle

Node shifts its coordinates, i.e., coordthis
While there exists a neighbor v with coordthis = coordv

Node shifts its coordinates, i.e., coordthis
Remove all neighbors that fail neighborhood test

ELSE IF message type is HelloNeighbor and w fails neighbor test
Send HelloNotNeighbor to w

33

State: Leaving
Event Action

Application exits ! Stopped
Goodbye arrives from w Do nothing.
A message (not Good-
bye) arrives from w

Send Goodbye to w

A.2 Transition Table for DT Server

The actions of the server in its two states are shown in the following two tables.

State: Without Leader
Event Action

Server receives Add node v to node cache
ServerRequest from v Start Cache Timer for v

Set Leader := v
Start Leader Timer
Send ServerReply(v) to node v
! Has Leader

34

State: Has Leader
Event Action

ServerRequest received IF Leader = v or v is in node cache
from v IF v has changed its coordinates

Update v’s stored coordinates
Re-select Leader

ELSE IF coordv > coordLeader
Set Leader := v
Start Leader Timer (since v is new Leader)
IF node cache is full

Remove one node cache entry
Add v to node cache

ELSE

IF node cache is not full
Add v to node cache
Start Cache Entry Timer

IF Leader= v
Send ServerReply(v) to v

ELSE

Select w from node cache with coordw > coordv
Send ServerReply(w) to v
IF Leader 6= w and w has been used in 6 ServerReply messages

Remove w from cache
Goodbye received from IF v is in node cache
v or Cache Entry Timer Remove v from node cache
for v expires or Leader IF Leader = v and cache is not empty
Timer for v expires Select new Leader = y, where y is the node in the node cache with the

largest coordinates
ELSE

IF Leader = v and cache is empty
!Without Leader

Heartbeat Timer expires Send CachePing messages to every node in node cache
CachePong received
from v

Restart Cache Entry timer for v

35

Input: byte array, denoted by “A[]”.
Output: a 4-byte unsigned integer, denoted as ”result”.
Operators:

Op1� Op2: Op1 is bit-wise right shifted Op2 times.
Op1� Op2: Op1 is bit-wise left shifted Op2 times.
Op1&Op2: bit-wise AND of Op1 and Op2.
Op1̂ Op2: bit-wise XOR of Op1 and Op2.

Procedure OverlayIDHash (byte A[])
begin result := 0;

for (int i := 0 ; i < length of A[] ; i++) f
byte upperByte := (byte) ((result� 24) & 0xFF);
int leftShiftValue := ((upperByte^A[i]) & 0x07) + 1;
result := ((result� leftShiftValue)^((upperByte^A[i]) & 0xFF));

g
return result;

end

Table 4: Procedure to compute the OverlayIDHash.

B Message Formats of the DT Protocol

All DT protocol messages have the same format with the same set of fields. However, the same fields may
be interpreted differently dependent on the message type. The message format is shown in Figure 21.

OverlayID
Hash ADDR2ADDR1DSTSRCType

14 bytes 14 bytes 14 bytes 14 bytes4 bytes1 byte

Figure 21: Message format of the DT protocol.

The type of the DT protocol message is indicated by a 1-byte long Type field.

Message Type Type Field
HelloNeighbor 0
HelloNotNeighbor 1
Goodbye 2
ServerRequest 3
ServerReply 4
NewNode 5
CachePing 6
CachePong 7

The OverlayIDHash is a 4-byte long hash value which is derived from the OverlayID. If the OverlayID is
composed of only ASCII characters, we apply the hash function to the byte array of these ASCII characters.
If the OverlayID contains non-ASCII characters, we require that the character encoding scheme is UTF-8,
then we apply the hash function to the raw byte array of the UTF-8 encoding. The hash function, which can
operate on a variable-length byte array, is shown in Table 4.

36

The SRC , DST , ADDR1 , and ADDR2 fields each contain the logical and physical addresses of a node.
A logical address consists of the (x,y) coordinates of the Delaunay triangulation, where x and y are each
a 4-byte unsigned integer. A physical address consists of an IP address and a port number, where the IP
address is 4 bytes long and the port number is 2 bytes long. So, the entire length of an address field with a
logical and a physical address is 14 bytes. The exact format is shown in Figure 22.

port
numberIP address

y-coordinate of
logical address

x-coordinate of
logical address

4 bytes 4 bytes 4 bytes 2 bytes

Figure 22: Format of a logical address/physical address.

� HelloNeighbor/HelloNotNeighbor: SRC and DST contain the addresses of the sending and receiv-
ing node12 and the clockwise and counter-clockwise neighbors of the ADDR1 and ADDR2, respec-
tively, are the addresses of the CW and CCW neighbors of the sender with respect to the destination.
If the sender has no CW or CCW neighbors, the corresponding fields are set to zero.

� Goodbye: If the message is sent to the DT server, DST is set to all zeros. Otherwise, DST contains
the address of the receiving node. The fields ADDR1 and ADDR2 are set to zero.

� ServerRequest: SRC contains the address of the sending node.13 The fields DST, ADDR1, and
ADDR2 are set to zero.

� ServerReply: The IP address and port number portion of the SRC field are set to the IP address and
the port number of the DT server. The logical address part of field SRC is set to zero (Note that the
DT server does not have a logical address). DST is the address of the node that sent the corresponding
ServerRequest. The field ADDR1 has the address of a node with a larger logical address (coordinates)
than the logical address (coordinates) in the DST field. If the DT server does not know about a node
with a larger logical address, i.e., the DT server believes that the node described in the DST field is a
Leader, then the ADDR1 field is set to be equal to the DST field. The field ADDR2 is set to zero.

� NewNode: The fields SRC and DST contain the sender and receiver addresses, respectively, of the
message. Whenever, the NewNode message is forwarded to another node, the fields SRC and DST are
updated. ADDR1 contains the node who initially sends the NewNode message, i.e., the ”new node”.
ADDR2 is set to zero.

� CachePing: The SRC contains the IP and port number of the DT server, with the logical address part
of the address set to zero. The DST field contains the address of the receiving node. The ADDR1 and
ADDR2 fields are set to zero.

� CachePong: SRC contains the address of the sending node. DST is IP address and port number of
the DT server, as contained in the CachePing message. The fields ADDR1 and ADDR2 are set to zero.

Remark: In the current implementation of the DT protocol, the physical address of the sender of a message
of type HelloNeighbor, HelloNotNeighbor, or ServerRequest is included in the payload of the message. In
Footnote 4, and other footnotes, we have pointed out that carrying the physical address of a sender in the

12 See Footnote 7.
13 See Footnote 8.

37

payload of a message may complicate the use of the DT protocol across a public/private network boundary.
Instead, the receiver of a message should obtain the physical address of the sender of a message from the
underlying transport protocol.

38

