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Abstract:
A major concern of environmental scientists, and others with long term data requirements, has been the
establishment of metadata standards so that data recorded today will be accessible 50 to 100 years hence.
We contend that more important than the standards themselves will be a context in which they can be
represented and can evolve as new requirements and technologies emerge. In this paper, we discuss an
object oriented language which facilitates both the representation of metadata and its graceful evolution.
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1. Introduction

In the IEEE Metadata Workshop of 1993, Francis Bretherton asked a fundamental question, "if

scientists fifty, one hundred, or two hundred years in the future look at the data we are recording now,

will there be sufficient metadata for them to use it effectively?" [Bre93]. The answer, which was almost

universally echoed by the participants, has been a resounding "no". In [Bre96], the wording of this ques-

tion was refined to what he calls the 20 year test: "what will our successors think 20 years from now

when they observe changes between now and then and are trying to decide whether such changes are real,

or artifacts of the way in which we took, processed, or analyzed the data". These kinds of questions, by

Bretherton and a growing community of researchers concerned with metadata issues, e.g.

[DiM91, FJP90, GAL96, Les95], have led to an evolving understanding of the nature and purpose of

metadata. One categorization has been into guide metadata and control metadata, where the former had

been assumed to be natural language notes intended for interpretation by humans, and the latter were

machine readable values, such as field lengths, intended to control data manipulation operations and data

transfer. For example, netCDF [Ful88, ReD90] and others provide a way of specifying control metadata

needed to exchange data files. To be machine readable, control metadata must be restricted to a con-

trolled vocabulary with a well defined syntax. Gradually, it has become apparent that guide metadata

becomes more valuable if it too is expressed with respect to a structured language having a common

vocabulary, that is, if it more closely resembles control metadata. Only then does guide metadata facili-

tate automatic searching, browsing and retrieval. This suggests another taxonomy of metadata based on

its intended usage including those above, and: ingest, quality assurance, reprocessing, machine to

machine transfer, storage and archival functions [BrS94]. The reader can easily identify examples of

metadata associated with each of these functions.

The interest in metadata has also generated considerable pressure to develop a set of standards

specifying "what metadata should be provided" (a) to facilitate access to distributed data sets [Bar94], (b)

to interpret complex spatial data [FGD94], or (c) to ensure that long term data sets can be accurately

interpreted in the future [Bla96, KGM96, Rot96]. The authors have encountered this metadata problem in



the specific context of a global change simulation. We are implementing a large global environmental

change system that had been written in Fortran using flat files for storage to one written in C using

object-oriented database technology for storage. What metadata must we incorporate into our database to

make it intelligible to other global change researchers? to global change researchers 50 years from now?

But trying to establish "what" metadata is necessary may be the wrong issue on which to initially

focus. We are unlikely to be able to precisely specify all the metadata our successors will regard as

necessary. Perhaps a better question would be "can we identify the facilities needed to express metadata

concepts in an evolving family of languages?" We are familiar with the slow evolution of languages with

which to express computational procedures; a similar process seems appropriate for the representation of

data and its metadata. NetCDF would be one member of this family, as would SQL. The ADAMS data-

base system [PfF93, Pfa93], which facilitates access in shared, distributed databases provides another syn-

tax for expressing metadata. We are convinced that metadata is a conceptually deep problem which will

never be solved, only managed incrementally; and that progress will only come from dispersed nuclear

groups developing their own solutions [Bre96]. The emergence of database languages that facilitate the

expression of metadata concepts will be necessary to coalesce such evolving standards.

The ADAMS database system we discuss in the next section is being incorporated into GCSYS

(Global Change SYStem) to manage its persistent data. The two related questions we address are: "are

the kinds of metadata we are recording for global change sufficient?" and "is such a functional language

model an appropriate mechanism for representing metadata"?

2. The Decomposed Storage Model

By a decomposed storage model, we mean one in which all data, or object values, are decomposed

into distinct attribute functions. Data is not regarded as a string of bits packed in some storage structure.

Rather data associated with any object is obtained by evaluating the attribute function given the object

identifier, or oid, as argument. As long ago as 1974, Lorie proposed much the same decomposed struc-

ture in XRM [Lor74]. Copeland and Khoshafian [CoK85, KCJ87] have also employed such a data
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representation. They first coined the term DSM, or decomposed storage model. A primary difference

between ADAMS and other object-oriented systems is that in our language we treat functions as first

class objects, just like any other data object. We also make a clear distinction between data values and

data objects.1 A data value is a bit string which is treated as an atomic, scalar value (which may be treated

as a numeric, string, image etc.) but whose internal structure, if any, is not expressible within the

language. In contrast, data objects may have considerable structure. All data objects are uniquely

identifiable, whereas data values are not.

In spite of this object-oriented flavor, we hesitate to call this an object-oriented model because we

do not associate general methods with the data objects2. This database language is primarily concerned

with the representation of, and access to, data and metadata in persistent secondary and tertiary storage;

but because methods can only be executed in volatile primary storage ADAMS only provides implicit

fetch and put methods. We assume that the host language, in which applications are expressed, is the

proper medium for expressing most methods and data processing procedures. ADAMS is then embedded

within this host language to provide high-level support for persistent data structures and their metadata.

We believe there are three advantages to this approach. First, scientists will always elect to use the

language most appropriate for their domain specialty, for example C to express global change processes.

An embedded language can permit scientists using different programming languages to share data.3

Second, when one thinks of data in functional terms, it is quite natural to let the function access disparate,

distributed data and transform it by means of filters to the form expected by the host process. For exam-

ple, Kemp and Gray [KDG96], whose system is based on the functional data model, have been quite suc-

cessful in combining distributed genome data. Third, this treatment of attribute functions as first-class

objects enhances several forms of class, or schema, evolution. On the other hand, a "seamless" database
�����������������������������������������������������������������������

1 Many object-oriented languages make this distinction explicitly, or in a de facto manner [ZdM90]; others do
not [KGB90].

2 There seems to be a consensus that object-oriented languages must support methods [ElN94, ZdM90].
3 If properly designed, the language will facilitate the sharing of data models and the linking of modules

implemented in different languages [PKW96]. One example of this kind of module interconnection can be found in
[AIL96].
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language, using for example the syntax of C++, need not gracefully migrate to some different, higher-

level object-oriented language of the future. If an embedded metadata language can interface with two, or

more, current programming languages, it can probably accommodate yet another ten years hence. In this

paper we illustrate both evolution of metadata and evolution of the underlying database structure itself.

ADAMS assumes that all objects belong to user defined classes, of which there are four generic

base classes — ordinary objects, set objects, scalar valued function objects, and object valued function

objects. Treating sets and functions as objects in their own right is central to the ADAMS approach

because these three latter kinds of objects have all the properties, capabilities, and restrictions of ordinary

objects, such as class inheritance. In addition, a "set" object is comprised of zero, or more, distinct

objects of the same class; a "scalar valued function" object returns a data value when invoked with an

object oid as argument; and an "object valued function" returns an object identifier. In accordance with

traditional usage in both the relational and object-oriented models, we will call the scalar valued function,

an attribute. Many authors also use the term "attribute" for object valued functions as well; we will call

them obj_attributes.

2.1. The Global Change Application

To illustrate some of the features we believe are appropriate in a metadata language, we examine a

module that describes incident solar radiation at the terrestrial surface. [WSE95]. The basic unit of this

model is a map pixel, or an unit of earth area 50km × 50km, which has a known latitude, longitude, and

elevation. We may also associate the average solar radiation with each element.4 Consequently, we

might declare our basic element as:

�����������������������������������������������������������������������

4 Actually we can calculate incident solar energy from latitude, elevation, and time of day. (In the actual
model we use a monthly average; in this paper we suggest how such refinements can be made to the database.)
Standard solar radiation formulas come from [Jon92].
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EARTH_ELEMENT isa CLASS
having attributes = { latitude, longitude, elevation, s_rad }
having obj_attributes = { east, west, south, north }

Figure 2-1
A class declaration

Here, the elements east, west, south and north denote those earth elements standing in that relation to the

current one. If x denotes an earth_element object, that is its oid, then x.elevation will denote its numeric

elevation and x.west will denote the earth_element object immediately to the west of this one.5 It is not

difficult to write corresponding declarations for this item of structured data in Pascal, C, or C++. In a

struct the attributes would be represented by numeric variables of appropriate type; the four directions

would be pointer variables.

This emphasizes the fundamental characteristic of the language we are describing. In a decomposed

model, neither latitude, longitude, elevation, s_rad, east, west, south or north would be variables of any

type; they are functions, which given an object identifier of the earth_element class, have a single scalar

or object value; but otherwise are objects with all the aspects of any object.

2.2. Providing Metadata

An immediate observation based on the class declaration of Figure 2-1 is that it provides absolutely

NO metadata by which it might be comprehensible 20 years from now! Because the research scientists

chose some rather clear mnemonic names, a future reader would probably know what the numeric values

latitude, longitude, and elevation mean in general. But, there is no indication of the units of measure-

ment. Is elevation measured in feet or meters? Is the convention that lat = -47.25 corresponds to 47° 15′

S latitude obvious? The variable s_rad is used in this model, but its meaning, "average solar radiation", is

not at all apparent. All the necessary metadata does exist in separate documentation; but one has to paw

through a fair amount of paper notes and source listings to find it. To be effective metadata should exist

in whatever data space contains the class declaration and data sets themselves.
�����������������������������������������������������������������������

5 We employ a postfix application of attribute functions, as in SQL. Such suffix notation supports a simple left
to right parsing and evaluation of complex expressions.
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A primary reason for choosing a decomposed storage model to represent data is that it is usually the

attributes that need documentation. When the attribute is a functional object, then we can associate attri-

butes with it, as in:

MEASUREMENT isa REAL_ATTRIBUTE
having attributes = { units, long_name }
having obj_attributes = { }

latitude instantiates_a MEASUREMENT
latitude.units <- "degrees of arc"

elevation instantiates_a MEASUREMENT
elevation.units <- "meters"

s_rad instantiates_a MEASUREMENT
s_rad.long_name <- "average solar radiation"
s_rad.units <- "W / meter^2"

Figure 2-2
Attributes declared as objects with attributes

One detail to note is that the code of Figure 2-2 is essentially assigning attributes defined in the

EARTH_ELEMENT class. That is, every instance of an EARTH_ELEMENT object does not carry the

units and long_name with its attributes; rather, the attributes latitude, elevation and s_rad are themselves

treated as entities which have these attribute properties. This mechanism allows metadata to be associ-

ated with any attribute (or table column, using the relational paradigm). Furthermore, since these string

valued attributes units and description are in the data space itself, they are available to any process that

can also access attributes of earth_element objects. In particular, one can imagine a subsequent process

examining these attribute values also performing a dimensional analysis on their associated units as a

means of quality assurance.

It can be argued that just knowing the units of measurement and a full (unabbreviated) name of an

attribute may still provide insufficient metadata. True! But, we would respond that (1) this represents

essentially all of the metadata that is available to us as documentation of this simulation project, and (2)

we are only providing a mechanism by which metadata can be attached to the data items that it describes,

were it to be available. Our experience is that a large class of important metadata is more naturally asso-
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ciated with the attributes as a whole than with individual measurements. The ADAMS language facili-

tates this.

2.3. Database Evolution

In [Bre96], it was emphasized that the representation of metadata should be evolutionary in nature.

Because of the importance of these solar radiation models, it may turn out that we should indicate a max-

imum expected error in the average solar radiation (s_rad) and to also document with a set of external

references the methodologies used to derive this average.

The first is easiest. Since maximum expected error can be a meaningful attribute for all MEAS-

UREMENT attributes, we can simply evolve the schema of this attribute class by instantiating a real attri-

bute max_exp_error, and then executing the ADAMS statement

insert max_exp_error into MEASUREMENT->attributes

By inserting this new attribute into the set of attributes associated with the MEASUREMENT class, we

have effectively changed it to that shown in Figure 2-3.

MEASUREMENT isa REAL_ATTRIBUTE
having attributes = { units, long_name, max_exp_error }
having obj_attributes = { }

Figure 2-3
Newly evolved MEASUREMENT class

Henceforth, all code referencing this class will see this new attribute schema. Adding, or deleting, attri-

butes from the set of associated attributes is fundamental to schema evolution. Some have suggested that

real schema evolution must involve more than just adding or deleting attributes, c.f .

[BKK87, MoS93, Rod92]. However, evolving schema constraints and class methods is much more com-

plex, and this ability to evolve schema "on the fly" without recompilation of code and without reformat-

ting storage seems to be an important first step.

Adding documentation is more complex. We must declare three new object classes. If a reference

citation is an object in the class
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CITATION isa CLASS
having attributes = { author, title, journal, volume

year, pages }

and we declare the set

CITATION_SET isa SET of CITATION elements

then we may create another class of object functions by

REFERENCES isa OBJ_ATTRIBUTE with image CITATION_SET

A set of references of this form is created explicitly by instantiating the set, then iteratively reading in

each reference citation, creating a corresponding citation object which is then inserted into the

citation_set. Finally, we will associate this set of citations with the s_rad attribute by executing the

assignment

s_rad.references <- citation_set

But, before this is possible, we must make references an object attribute of the MEASUREMENT class.

As with the new attribute max_exp_error of the preceding paragraphs we use the ADAMS statement

insert references into MEASUREMENT->obj_attributes

to insert references into the set of obj_attributes associated with MEASUREMENT, so that the class

declaration now looks like

MEASUREMENT isa REAL_ATTRIBUTE
having attributes = { units, long_name, max_exp_error }
having obj_attributes = { references }

Figure 2-4
Final form of MEASUREMENT objects

This kind of flexibility can be used to evolve the associated metadata. It can also be used to modify

the underlying structure of the modeled data itself. For example, while incident solar radiation is a funda-

mental measurement, a more important variable in this study of the primary productivity of land plants is

average photon flux density in the photosynthetically active portion of the solar spectrum, measured in

10−6mol photons/m 2/sec. Over a day, both solar radiation and photon flux density are dependent on the
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length of daylight at this particular location on the earth’s surface. And, the day length is in turn a func-

tion of the time of year. In the actual global change model we have been using as our running example,

solar radiation, photon flux density and day length are calculated for each month of the year, using the

middle day of the month as representative. Consequently, we choose to subscript these attributes (with

respect to the months, 1 to 12). Since attribute functions are simply objects, of course they can be sub-

scripted [PfF90].

By inserting the subscripted attributes s_rad, pfd and day_length and a generic string valued attri-

bute called comments into the set EARTH_ELEMENT→attributes we can achieve the following class

declaration

EARTH_ELEMENT isa CLASS
having attributes = { latitude, longitude, elevation,

s_rad[1..12], pfd[1..12],
day_length[1..12], comments }

having obj_attributes = { east, west, south, north }

Figure 2-5
Evolved EARTH_ELEMENT class declaration

A functional approach, in which data is not regarded as fixed tuples of stored bits, but rather the

result of applying functional processes to which the object identifier is only an argument, opens up some

very different ways of thinking about data and its metadata. If these processes are themselves objects,

then we have a representational language that is capable of easily modifying the way data objects are

related to each other and metadata is attached to the various components of the representation. For exam-

ple, solar radiation and photon flux density are only two intermediate values in the global change model.

The real quantity of interest is npp, net primary production (of carbon), illustrated in Figure 2-6 and

which is in turn a function of vegetative density, or leaf area index.
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Figure 2-6

As the model evolves these attributes have been added to the underlying persistent database. The

application code generates the values for each earth element using intermediate parameters that have first

been calculated and collects them into 2-dimensional image objects. Then it displays these image objects

as color maps (black and white in this copy) as shown in Figure 2-6. Maps of this nature make the data

visually comprehensible and constitute a major way of comparing the output of different global change

models. They, too, are objects in the database. What metadata must be provided to make a map

comprehensible? Can it be gracefully added to your database system?

3. Metadata and Evolution in Practice

All of the concepts in the preceding section have been implemented; some such as class evolution

for over five years. This facility was reported in [PFG92] where we described the gradual evolution of a

tactical battlefield database written in ADAMS. It is now routine to let the structure of an ADAMS data-

base, such as a rather complex medical records prototype, evolve as operational experience accumulates.

All of the illustrated code fragments have been drawn from working programs. However, we have only
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begun to explore the potential of embedded metadata and its evolution.

The decomposed storage model used by ADAMS provides the ability to create self-documenting,

evolvable databases. But it does so at a cost. Each data reference requires the evaluation of the attribute

function; retrieval of a single n-tuple of values requires n function evaluations and possibly n disk

accesses in contrast to a single disk access in most relational or object-oriented database configurations.

A moderately complex retrieval in ADAMS can be two orders of magnitude slower than the equivalent

query in a well implemented relational database. This has limited the use of ADAMS in many conven-

tional applications.

On the other hand, ADAMS provides superior performance in multi-threaded database applications.

The global change simulation described here is one such application because the computation and data

access associated with one earth element can be performed asynchronously with relatively little cross talk

between threads.

In [Had95, Had97, HaP97, PHF98], it is shown that a distributed, shared nothing ADAMS can

obtain nearly linear scale6 up of moderately complex queries involving implicit joins over 2, 4, or 8 pro-

cessors. This scale up was achieved using a relatively large database of over 1 million objects. Discus-

sion of the full details is inappropriate here. We will only note that we are in the process of implementing

an ADAMS configuration over Legion [GrW97] which is an emerging operating system for managing

globally distributed resources and that our department has just acquired a cluster of 64 DEC Alpha’s

(soon to be expanded to 128) on which we can continue our study of parallel performance. The very

characteristics which make a decomposed storage system slow in a tightly coupled system appear to make

it quite competitive for multi-threaded applications over loosely coupled distributed systems.

�����������������������������������������������������������������������

6 Recall "scale up" is the ratio timen(n * problem_size) / time 1(problem_size). It is a far more
conservative, and accurate measure of parallel performance than "speed up" which assumes a fixed problem size.
That is, speed up = timen(problem_size) / time 1(problem_size). Because of the extra cache storage and other
resources, observed speed up of ADAMS programs is markedly superlinear.
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4. Summary

In a database system, it should be possible to associate metadata either with individual data points

or with attributes. In addition, this metadata, regardless of what it is associated with, should be accessible

and searchable by the users of the database. This would provide the flexibility necessary for users with

different metadata requirements to use the same database system.

Given a relational model of data, it is not difficult to associate metadata with any row, or tuple, of

the relation r. One either adds a metadata attribute to the schema R, or creates a separate relation r_meta,

with the key of r as a foreign key. This metadata is accessible in the same manner as any other data item.

For example, in our global change model, associating each leaf area index datapoint with metadata

describing the type of vegetation predominating in a given area could easily be done in this manner. This

can be useful since leaf area index value is not necessarily associated with the type of vegetation, but

observing how they both change over time may give greater insight into the global change problem. This

can be implemented in our decomposed storage model by simply adding a metadata attribute to the class

definition that includes the leaf area index attribute. Metadata with object level granularity is not hard to

implement, even though it can be expensive in terms of storage.

But, associating metadata with the columns, or attributes, of the relation is more difficult. One must

create a relation c_meta, whose keys are the schema attribute names or column headings. Unfortunately,

such an implementation severely limits browse capability because (1) retrieving the metadata requires

prior knowledge of the attribute name, and (2) given an attribute with appropriate metadata characteris-

tics, there is no mechanism (such as a join) for introducing the corresponding attribute name into a selec-

tion process.

This problem is relevant because most metadata is about attributes. In [Len94], Lenz describes a set

of typical metadata associated with the Berlin Census of 1987.7 Here, every example he cites is with

�����������������������������������������������������������������������

7 We would note that demographers have different metadata requirements than environmental scientists, who
have different requirements than geneticists.
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respect to an attribute of the statistical table. These include (using our notation):

household.definition "All the people who live there together and have a joint budget ..."
salary.type summary_attribute
profession.type category_attribute
salary.domain decimal
city.footnote "until 1990 Berlin as Berlin(-West)"

He then goes on to list more than 40 categories of metadata that would be reasonable in the context of

census statistics. In our model, this set of metadata can be easily associated with the attributes of the sta-

tistical table using the same mechanism described in Section 2.2.

Use of an object-oriented database does not, by itself, ameliorate this problem. Normally, it is a

variable name, or sometimes a method name, that functions as the attribute name. These names are

defined in .h include files along with the class declarations. They are not part of the data space and are

not normally "browseable". It is our contention that only by making attributes themselves first class

objects can one make metadata accessible, searchable, and evolutionary.

In Section 1, we observed that there are two general kinds of metadata, guide and control. The

former is intended for use by humans and is expressed in natural language; the latter is intended for use in

computer system operations and may be expressed using a controlled vocabulary. In [Bre96], it was

noted that the boundary is not fixed and that "a strategy for improving our handling of guide metadata

should be to move that boundary towards the control category in an evolutionary manner". All of the

metadata examples of this paper have been of the guide variety (primarily because this paper is intended

for use by humans), yet all is machine accessible. By providing well-defined linguistic constructs to

express metadata, we facilitate its movement towards becoming control metadata which can be employed

in automatic, and possibly remote, retrieval and processing operations. We believe this is a crucial step in

incorporating adequate, and usable, metadata with future data sets.
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