

IPC Technical Report 92-008

Programming over a Persistent
Data Space

John L. Pfaltz

IPC-92-08
August 19, 1992

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract:
The purpose of this report is to describe semantic properties of languages that
support direct access to items in persistent data spaces. These languages differ
in non-trivial ways from more familiar languages which describe processes
operating over data represented in a transient memory.

These semantics are presented with respect to a formal Turing machine model,
which we first develop. Then, we examine issues associated with type and
class inheritance which we regard as distinct concepts, with symbolic naming,
with set operation semantics which are somewhat surprising, and with data
deletion which is quite difficult. Finally, we hint at a few of the differences in
programming psychology which are engendered by such semantics.

This research was supported in part by DOE Grant #DE-FG05-88ER25063. and
by JPL Contract #957721.

Our goal is to examine necessary characteristics of programming languages that allow a

programmer to directly reference and manipulate persistent data. It would be linguistically con-

venient if persistent data could be treated in precisely the same manner as a program’s non-

persistent data. Various authors have proposed this as a language design goal, e.g. [AtB87]. In

this report, however, we will argue precisely the opposite; that programming languages must

necessarily distinguish between persistent and non-persistent data; and that familiar data types

associated with non-persistent data in an executing program need not be appropriate for persistent

data.

Our first task will be to characterize just what we mean by persistent data. One frequently

encounters definitions of persistence in terms of a persistent recording medium, or in terms of its

long life. While we intuitively think of persistent data as residing in files on disk or tape storage,

rather than RAM, the introduction of memory resident databases [SaG90, Son89] clearly forces a

re-evaluation of such an intuitive definition. Persistent data is often long lived, but it need not be.

And long lived data need not fit our sense of persistent data; the local variables of a non-

terminating process such as an airline reservation system can have a very long life. The real

essence of persistence seems to be that it exists independent of any particular process, that multi-

ple processes can access it1, and that, unlike local variables in a stack model, the data can be

changed only by a deliberate rewriting of it.

To discuss programming over a persistent data space we will need a semantic model of such

computation. For this we use a Turing machine model, and in the next section develop a number
���

1 While persistent data must be capable of being shared by several processes, this property by itself is
not sufficient to characterize persistence. Data may also be shared between processes by a variety of
argument passing mechanisms in procedure calls, or by explicit message passing, e.g. [Hoa78]; none of
these need imply persistence.

of fundamental concepts based on it. Although it is not our purpose, this development can also

serve to describe the semantics of object-oriented databases as well. Then, in Section 2, we will

develop a distinction between data types and element classes that appears to be fundamental in

the development of distributed heterogeneous databases. And, we will exhibit two rather surpris-

ing results concerning the semantic behavior of union and intersection operators on sets of data.

In Section 3, we will address the issue of expanding the name space of a programming language

to accommodate the naming of persistent data, and finally, in Section 4, we examine issues asso-

ciated with the deletion of persistent data.

1. Basic Concepts

For the purposes of this report, a datum is a bit string of finite, but arbitrary, length and data

is a countable collection of such bit strings. Then, in terms of a Turing machine model of compu-

tation, a data space, denoted by DS, is a tape on which individual datum, separated by one or

more blanks, have been enumerated by a Turing machine, E. We shall refer to these bit strings

which constitute the elements of the data space, DS, as data elements, or just elements.

In addition to the bits comprising a data element, each element can also be identified by its

ordinal position in the enumeration, that is the 1st, 2nd, 3rd, ..., nth, ..., and so on. We call this ordi-

nal position a unique element identifier, or more simply just a unique identifier, denoted uid.2

This leads to the well-known, fundamental implication of data management:

uid 1 = uid 2 implies uid 1.bits = uid 2.bits , (1.1)

that is, if two unique identifiers are identical they must denote the same datum, and therefore the

same bit string. Here we are using the functional suffix bits and dot notation to emphasize the

���

2 Alternatively, we could call the ordinal position of an element, its location, since it describes its
location in the enumeration — or possibly its address. Either would suggest the approach, common in all
programming languages, by which data is identified by its storage location. However, both location and
address carry connotations of fixed length word sizes or disk blocks associated with a particular
implementational architecture which we would like to avoid for now.

2

bits comprising the element, in contrast to its uid denoting its position. Thus uid.bits and uid

must be regarded as being of a fundamentally different nature.3 In programming languages which

support pointer types the latter is called a pointer which denotes a datum; the former is treated as

a data value which may be typed in the manner of [CaW85]. Given a pointer value, or uid, in C

or Pascal for example, one must functionally dereference it, as in *uid or uid↑ to denote the

referenced bit string.

Readily, the converse need not be true; the same sequence of bits could occur repeatedly in

the enumeration. However, the contrapositive

uid 1.bits ≠ uid 2.bits implies uid 1 ≠ uid 2

must, of course, hold.

Assuming the converse is true, leads to the relational model of data, in which any two data

elements (tuples) must be distinct as bit strings. With this assumption, a data element can always

be uniquely identified by its constituent bits (or more often by some subsequence called its key)

so that the concept of an uid is logically unnecessary. If the reader prefers the more restrictive

relational model, he can replace uidi with keyi in much of what follows. The implications above

are then simply those associated with functional dependence [Mai83].

The fundamental assumption of computation is that every process can be modeled by a Tur-

ing machine [HoU79]. We will use the symbolism Pi to denote processes, or their equivalent

Turing machines. Moreover, since we wish to examine multiple processes that operate on com-

mon data, perhaps concurrently, we will assume that all such processes/Turing machines can read

and write this common data tape, DS. Each may have additional tapes to represent local

memory.
���

3 Both Beeri [Bee90] and Hull [HWW91] have made this observation, although the latter then asserts
that "the distinguishing feature of [uid]’s is that they uniquely identify objects from the real world — the
objects being identified", while Beeri dismisses them as "an implementation concept". In our model, a uid
only identifies a bit string. And since a program is an implementation of process, and since a programming
language is a description of such implementations, they become central to this report.

3

Concurrent processes must execute in time, and for our purposes it is convenient to regard

time, denoted tk , as discrete and to assume that no two operations occur simultaneously. The

basic capabilities of a Turing machine is to read and write on its tapes. We extend this to include

the two atomic operators to manipulate the common tape DS,

ds_read (uidi , Pj , tk)
ds_write (uidi , Pj , tk , bits)

where these are interpreted as: process Pj reads/writes uidi at time tk . Note, that the bits that

overwrite those of uidi in a write operation need not be of the same length as the existing datum.

If the new datum is shorter, there is no problem; the remaining bits can be overwritten with

blanks. If the new datum is longer, we may assume that all data preceding uidi are shifted left a

sufficient number of spaces; since regarding the tape as 2-way infinite does not change the power

of the model. If we wish to refer to either DS operation, without regard to reading or writing, we

will simply use the notation ds_op (uidi , Pj , tk).

We do not allow a process to insert a new datum in the middle of the enumeration, nor

delete an item from the enumeration. We assume that the data space DS is initially created by

enumeration, and that it can be enlarged only by further enumeration using

ds_enum (uidi , Pj , tk , bits)

where uidi is returned by ds_enum to denote the ordinal position of bits in DS.4 However, a Tur-

ing machine process, Pj , may be enumerating additional data concurrently with the reading and

changing of existing data by it, or other Turing machine processes, Pk . The conceptual time that

DS element uidi was enumerated is denoted tk . One can regard tk in all these operators as a time

stamp that is returned on completion of the operation.

���

4 In practice, one employs a uid server to keep track of the number of elements in DS and return the
next consecutive uid.

4

The assumption that all DS operations are atomic; occur at distinct times5; and that two or

more processes may read/write the same DS element can be more formally expressed as: if

ds_op (uidi , Pj , t 1) and ds_op (uidi , Pk , t 2) are any two data space operations, then t 1 ≠ t 2. Pj

and Pk need not be distinct processes. The property of Turing machine enumeration by which we

assume the data tape is created can be formally expressed as: if ds_enum (uidi 1
, Pj , t 1, bits) and

ds_enum (uidi 2
, Pk , t 2, bits) are data enumeration operations, then t 1 ≠ t 2 and uidi 1

≠ uidi 2
.

Let

p_initiate (Pj , tk1
)

p_terminate (Pj , tk2
)

be operators which initiate and terminate a Turing process Pj at tk1
and tk2

respectively. Readily,

for any process Pj , we must have tk1
< tk2

. And if uidi denotes a DS element where

ds_enum (uidi , Pj , t 1, bits), and if Pk is a process where p_initiate (Pk , t 2) and

p_terminate (Pk , t 3), then any DS read/write operation ds_op (uidi , Pk , t 4) will be meaningless

unless, t 2 < t 4 < t 3 and t 1 < t 4. That is, DS operations must be issued by processes while they

are executing, and no DS read/write operation can refer to a uid which has not already be

enumerated.

1.1. The Concept of Persistence

Following this development, we would assert6 that the first fundamental property of per-

sistence can be expressed by the implication

���

5 One could permit two ds_read’s to occur simultaneously, but it would add nothing to our
development.

6 We will make a number of assertions throughout this report. It is our intention to have them
highlight important points, as well as serve as analogues to propositions in a mathematical paper. Although
we give supporting arguments, only a few of these assertions can be "proven" in any formal sense. This is
characteristic of the inductive sciences. Neither Boyle’s Law nor the assertion "all crows are black" can be
proven; but both can be disproven. Consequently, they can be used to test (the original meaning of to
prove) the material of the report. They should be stated with sufficient precision that counter examples, if
the exist, can be demonstrated. We urge the reader to search for such counter examples.

5

Assertion 1.1: If ds_read (uidi , Pi , t 1).bits ≠ ds_read (uidi , Pj , t 3).bits and t 1 < t 3,
then there must exist ds_write (uidi , Pk , t 2, bits) where t 1 < t 2 < t 3.

Essentially, data is persistent if the bits comprising a data element can only be changed by a pro-

cess that deliberately rewrites it. If the data element can be changed by the initiation or termina-

tion of a process, or losing power, or by any other mechanism, it is not persistent.

However, the property above does not by itself characterize persistence as we intuitively

understand it. For example, if Pi = Pj = Pk , then this property is true of all data denotational

schemes, whether persistent or not. A variable in a process Pi does not change its value unless it

is changed by the process. Nor is requiring Pi , Pj , and Pk to be distinct sufficient to make this

property characterize our intuitive understanding of persistence; the three processes could be dis-

tinct sub-processes of a single process which has passed the identity, or uidi , of the data element

to each of them.

Assertion 1.1 really expresses the property of persistence over the interval [t 1, t 3]. To be

persistent, we might require a data element uidi to be persistent over the half open interval

[tk , ∞), where ds_enum (uidi , Pj , tk , bits). But not only is such a concept involving ∞ difficult to

use, variables in non-terminating processes also satisfy this condition. We believe that the fol-

lowing assertion characterizes persistent data as it is intuitively understood.

Assertion 1.2: The data element denoted by uidi is persistent , where
ds_enum (uidi , P 1, t 1, bits), if it is persistent over the interval [t 1, t 2], where
t 2 > maxtk

{ p_terminate (Pj , tk)
�
p_initiate (Pj , tk′), tk′ < t 1 }.

That is, the data element uidi persists after all processes which were initiated before uidi was

enumerated have terminated.

1.2. Identifiers, Data, and Data Names

In [CaW85], Cardelli and Wegner assume an initially untyped data space. One must

approach this assumption with caution in our Turing machine interpretation. We also assume that

the data elements, or bit strings, themselves are untyped. However there is a fundamental differ-

6

ence between a data element and its ordinal position, even though the latter may also be

expressed as a finite bit string.

For implementation efficiency, it is convenient to regard pointers, or uid ’s, as integer data

types and most languages do so. However, the operations on each should not be the same. Only

the equality, inequality, and successor operators are really meaningful for ordinal enumerators.

The latter can be implemented by integer addition, as in the manipulation of C pointers; but

clearly the other integer operators multiplication, division, and exponentiation are, or ought to be,

undefined. Consequently, we claim

Assertion 1.3: The semantics associated with unique element identifiers and the element bit
strings themselves should be distinct; and the syntax of any language should reflect
this semantic difference.

Programming with numeric addresses, or ordinal identifiers, is at best aggravating. We

quickly eschew coding in binary and introduce equivalent mnemonic element names.7 But what

does the name denote? In assembly languages, the name is a synonym for a memory location, or

in our sense an identifier. In higher level languages, the variable name is also bound to a storage

location, say loc; but denotes, in the language, its contents or loc.bits.

This leads to the delightful confusion in compiler theory of l-values and r-values [AhU79],

or location and value [Pra84] of a variable name, say x, when used in an assignment

x = x + 5. (1.2.1)

On the right side, the expression is evaluated as "r −value (x) + 5", while we want l −value (x) for

the left hand x in order to generate an operation of the form

write (l −value (x), Pj , tk , r −value (x) + 5).

In this report, a persistent element name will always be syntactically synonymous to an identifier,

or l −value , and assignments such as that above will be written8

���

7 Even in assembly languages, the mnemonic names that replace absolute, virtual, or relocatable
addresses may denote more than just data. They may denote entire procedures or statements within a code
segment. For the most part, however, we are concerned only with names that denote data elements.

7

x.bits ← x.bits + 5. (1.2.2)

A symbolic name must, at some point, be bound to that which it denotes. Binding times

may vary widely. In the case of variable names, both their l −values and r −values must be

bound. The former binding may occur at compile time, if the storage location is absolute; at load

time if it is relocatable; or at run time if it is virtual or a stack offset. The r −value binding occurs

whenever an initialization or assignment is executed.

When are persistent element names bound to unique identifiers? The preceding binding

times were all expressed relative to a single process Pj . Because, persistent element names can

be shared by several processes, their binding must be independent of any particular process that

employs them. Just as with more conventional languages, the mechanism of binding may vary

according to the desires of the language designer9; nevertheless, we may assert

Assertion 1.4: If persistent data can be named, then a name space binding symbolic names
to unique element identifiers must be maintained. Moreover, this name space,
together with every name in it, must itself be persistent.

By asserting that the name space, which we will denote by NS, is itself persistent, we are assert-

ing that multiple processes can access it; in particular, any language translation process must have

access to the name space; and that element names will be synonymous to uid’s. One can easily

envision the binding pairs (name, uid) of NS as elements of the same persistent tape, DS. How-

ever, it can be conceptually convenient to regard NS as a separate persistent tape. A more impor-

tant programming language issue is whether these bindings should be allowed to change.

In the assignment (1.2.1), there are two different kinds of names. The name "5" is a con-

stant in that the name is permanently bound to its value for the duration of its life [Pra84]. The

name "x " is a variable name, in that the value it denotes may vary, even though the storage
���

8 To have an arithmetic expression on the right side of the assignment such as this requires type
information about the interpretation of x.bits which we have not yet developed.

9 In a language we have implemented, we let the enumerating process, E, which adds new elements to
the tape also bind its symbolic element name, if any, to the ordinal identifier. But other mechanisms seem
equally viable.

8

location will not — so long as the name is within scope.

As we have defined them, unique identifiers always denote the same element (whose consti-

tuent bits may change) in the enumeration. Should data element names, which are linguistic

synonyms, also be invariant? In many cases, the answer is yes. If an element is named, say

"adam ", then we would expect "adam " to denote the same element in every process that employs

it. Like "5", "adam " then functions as a constant name, except that it is the element identity, or

uid , which is invariant, not the element’s bits.10 By a element name we will mean a symbolic

name in a language whose binding to a unique identifier can not be changed. It is a linguistic

constant. Those symbolic names whose bindings to persistent data can be changed, typically at

runtime, we will call variable element names. These will function very much like pointers. In

this report, all element names, unless specifically prefixed as variable, will be assumed to be per-

sistent, constant, element names.

If we assume that the meaning of persistent element names, at least in so far as they are

bound to unique identifiers, is invariant, then we need to be able to distinguish constant element

names from variable element names and ordinary process variable names in order to avoid

assignments of the form

adam ← <dif f erent uid >. (1.2.3)

No programming language allows its constants to be redefined, as in

7 ← 5 + 3.

We should perhaps note that the usual semantic interpretation of the integer 5 in the assignment

above, and in expressions (1.2.1) and (1.2.2) have no counterpart in the model we have

developed. The value 5 may exist as a bit string on the tape, but it is identified by its ordinal uid .

If "5" is to be a constant name, a bit string denoting the value 5 must be enumerated on the tape,
���

10 A good example of such naming can be found in [AbK89] which develops a functional model of
object oriented query languages that reaches some of the same conclusions found in this report. They
include a lucid example with named elements adam, eve, cain, abel, and seth, from which we have
shamelessly borrowed.

9

say by a language translation process, and its enumeration uid bound to the symbol "5".

A persistent name space, NS, is global. As such it introduces the same advantages and lia-

bilities as global variables in a program’s name space. The most serious liability is that an ele-

ment name is bound to the element identifier across all procedures. Even popular data element

names, such as "x " or "count " can only be bound once; and once bound they may not be reused

by any other process sharing the same name space.

Most humans have a rather limited set of mnemonic data names relative to the quantities of

data to be identified. In Section 3 we will examine ways of naturally expanding a programmers

name space. But, even so, explicitly naming every element in a persistent data space, in the way

that the variables in the local data space of a process are named, will prove impossible. Rather,

one must name entire sets of data elements. Consequently,

Assertion 1.5: Any programming language which references persistent data must provide
general mechanisms for creating, naming, and operating on collections, or sets, of
data elements.

This characteristic, in itself, will distinguish languages that access and manage persistent data

from those that do not.

A number of assertions have been made in this section regarding the naming of persistent

data. It might be wise to test them against experience. Sequential files represent the earliest, and

most basic, form of persistent data. A sequential file is a set of elements, called records.11 The

file name identifies the set. The file name itself is persistent, out living any process which opens

or closes the file. Sequential access provides a primitive mechanism for looping over the set. A

set union operator can be implemented by a file merge process. If one extends the sequential file

to provide for direct access, as in an indexed sequential file, then the record id functions in a

manner that is completely analogous to a unique identifier. If symbolic access by name is

���

11 In fact, it is an ordered set, not unlike the Turing machine’s tape.

10

desired,12 it is frequently implemented by a B-tree index [Com79], which binds the set of sym-

bolic names to file addresses in a persistent structure. Our treatment is completely conformable

to these traditional usages. But, files and their indexes are usually regarded as auxiliary to the

programming language itself. Our goal is to investigate what must be involved if they are to be

included as an integral part of a programming language that can access persistent data as its

operands.

1.3. The Relational Model

We now briefly examine the relational database model [KoS86, Mai83]. Unlike the model

of persistent data we have been developing, the pure relational model is completely value based.

A relation is a set of bit strings (of equal length) called tuples. It is a mathematical set, in that the

position of any tuple in the set is irrelevant, and in principle, unknowable. The fundamental

assumption of the relational model is that some subsequence of bits in the tuples of a relation,

called a key, is sufficient to uniquely distinguish the tuples of the relation. There are no tuple

identifiers.

The sequence of bits comprising a tuple element is seldom, if ever, regarded as a single

value. Instead, it is subdivided into distinct subsequences, called attributes, which individually

denote data values. Such attributes are typically named, say a 1, a 2, ..., ak .13 Thus, if we let t

denote a single tuple, as is customary in the tuple calculus, the expressions

t.a 1, t.a 2, ..., t.ak

denote the corresponding bit subsequences of t in precisely the same way that we used uid.bits in

Section 1 to denote the bits comprising any data element. The schema of a relation, R =

{ a 1, a 2, ... , ak } can be regarded as simply an enumeration of the attributes, or bit subsequences,

comprising a tuple.

���

12 Symbolic access is more often by content rather than name.
13 In practice, of course, attribute names are usually mnemonically chosen, such as name, age, etc.

11

The advantages of this relational approach are two-fold. First, it is conceptually clear.

Tuples provide a clean mechanism for aggregating logically related data values as a single ele-

ment in a k -ary mathematical relation, whence its name. Second, its implementation is relatively

straightforward. Tuples are easily visualized as formatted records in a sequential file, in which

case attributes can be interpreted as fields, or visualized as record structures in Pascal, C, or C++,

in which case the attributes name structure members. This accounts for the natural extensions of

Pascal to Pascal/R [Sch77] and C++ to EXODUS [RiC87, RiC89] or ODE [AgG89].

While the relational model, as originally formulated by Codd [Cod70] is purely value

based, it need not be. Both the domain and tuple calculi have been shown to be equivalent to the

relational algebra, e.g. Chapter 10 [Mai83]. The tuple calculus makes extensive use of tuple

identifiers, as in the formula

{ x ∈ usedon | (∃y ∈ instock) [x.part_nbr = y.part_nbr ∧ y.quantity ≥ 100] } (1.3.1)

which corresponds to the algebraic expression

usedon σquantity ≥ 100(instock)

found in that chapter. The names usedon and instock are persistent names denoting sets in the

data space, and x and y are logical variables (one free and one bound), or variable tuple names

that can denote any tuple in these sets. This example indicates how tuple identification can be

handled within the relational model. Moreover, many implementations routinely include a "hid-

den" unique identifier attribute to every tuple to facilitate join operations and to ensure the

existence of keys. Relational database languages based on the semantics developed here can be

implemented; however care must be taken regarding the semantics of the relational operators ∪

and ∩, as discussed in the following sections.

2. Categories of Data

We have distinguished between uid ’s and the elements they denote. Both are bit strings;

the former is an ordinal number represented as a binary integer, the latter is an arbitrary bit string.

12

It is the most basic categorization of data. In this section we refine the categorization of those bit

strings comprising data elements. We will distinguish between bit strings which are to be

regarded as single entities, or values, and those which are compositions of smaller substrings.

The former we will assign to "types"; the latter to "classes". An important category of data will

be those data elements comprised of uid substrings; these we will call "sets". Finally, we will

examine the implications of class hierarchies with respect to set operators.

2.1. Types and Classes

By a data type we mean an interpretation of a bit string. A bit string declared to be real

will be interpreted, that is processed, differently from one declared to be integer . For example, in

our model if one wants to "add" two bit strings, a different addition process, or Turing machine,

must be invoked if the strings are to be interpreted as integer from that invoked if they are to be

interpreted as real.

There are a variety of ways of introducing type information into our model semantics. In

Section 1, we employed the notation uid.bits to denote the bit string comprising the uid th datum.

Instead of the generic designator bits , we might have used uid.integer , uid.real , or uid.char to

denote a typed bit string — one that is to be interpreted as a integer, real, or character value,

respectively. A Turing process INT_ADD, given two datum identifiers uid 1 and uid 2 may return

a value regardless of corresponding bit strings, but to be semantically meaningful both arguments

should admit interpretations as uid 1.integer and uid 2.integer .

The important point is that data types and their interpretations are a property of the process-

ing environment rather than any programming language per se. The bit string that is interpreted

to be an integer 5 (00...101) on a SPARC will be quite different from that on a Intel 80x86

(00000101...00).14 The bit string that will be interpreted as the character ’a’ in an ASCII

���

14 This is simply an example of the byte order difference between its big and little Endian
representations [HeP90].

13

environment (01100001) is a different bit string in an EBCIDC environment (10000001). And

Fortran character strings have a different representation than C character strings in any architec-

ture. Processes operate in an particular environment, so that the traditional language data types,

integer, real, and character denote different interpretations depending on the

language/architecture environment. If the items of the data space are to be shared by processes

operating in different environments, then the bit strings of DS may have to be coerced into the

form expected by the particular processing environment. This constitutes the heart of the data

heterogeneity problem that has hindered the development of widely shared databases

[ScY89, SeL90, TTC90].

For now, we will use class to mean a pattern which only describes the format of an data ele-

ment; its decomposition into substrings.15 It can be regarded as only a linguistic construct that

defines those data denotational expressions which are well-formed with respect to the data space.

It is independent of the processing environment. This distinction between types and classes is

non-standard, and will require amplification.

Consider a relational scheme R = { a 1, a 2, ..., ak } from Section 1.3. It defines a class. It

declares that for any given tuple t belonging to the class, the attributes a 1, a 2, ..., ak are defined

on t . Or, on our Turing machine tape, that the bit string, t.bits can be decomposed into

corresponding substrings,16 and the expressions t.a 1, t.a 2, ..., t.ak will be valid, well-formed

expressions. Each expression t.ai denotes a bit string, that is meaningful within the language. If

the attribute is typed, say as integer , then the bit string denoted by t.ai may be interpreted as an

integer. In most relational languages, the declaration of an attribute name also establishes its

���

15 One can extend the meaning of a class to include predicates which must be true for all instances of
the class [PfF92], or to methods which are defined on these instances [Str87]. For the purposes of this
report they will not be needed. However, all of the assertions of this and the following section will be true
for these more general extensions of the class concept.

16 A tuple need not be represented as a single bit string, and attributes need not be substrings or fields,
c.f. [PFG92]. But visualizing it this way provides a clear semantic interpretation; and it can serve as the
basis of an implementation.

14

attribute domain, type, or interpretation. For example, we might declare the attribute a 1 to be

integer, a 2 to be real, and a 3 to be strings of 10 characters. Thus the expression, t.a 2, not only

denotes a bit string, it also conveys the appropriate interpretation (or type) for that string.

Let t.ai be a well-formed expression in a language. Its l −value semantics is that of a

unique element identifier as established by our model of persistent data spaces — the subject of

this report. Its r −value semantics, or type, is dependent on the processing environment. We

have been concentrating on integer , real , and character types because they are familiar. If the

processing environment can process bit strings of type image 17, then this model of a persistent

data space will support reference to them in the data space, together with their access and

delivery as operands to such a process.

In Section 1.2, we observed the fundamental distinction between the ordinal position

(enumeration uid) of an element and the bit string comprising the element; and asserted (1.3) that

semantics of unique identifiers and the data themselves must be distinct. For this reason, we will

call any expression denoting a bit string whose interpretation is dependent on the processing

environment, a value designator. The expressions t.a 1, ... , t.ak are value designators. If the

expression denotes a bit string which is to be interpreted as a unique identifier, we will call it an

element designator.18 Data element names are element designators. The expression t by itself,

denoting a tuple element, is an element designator as are all data element names. Value designa-

tors are typed. Element designators belong to a class.19

���

17 Presumably, very long, possibly variable length, bit strings.
18 We choose this terminology to suggest "a generic element of the data space". The term "data

object" is frequently used, so we might call it an "object designator". But, with object-oriented
programming, the term "object" has ceased to be generic and has taken on some very specific connotations
which we wish to avoid.

19 In the object-oriented model, one makes no distinction between composite objects and objects that
are treated as single values, as we have. There are only "objects". However, the latter are frequently said
to belong to a "primitive class", and "for performance reasons, if the domain of an attribute is a primitive
class, the values of the attribute are directly represented; that is, instances of a primitive class have no
identifiers associated with them" [Kim90]. That is, they are actually implemented according to our model.

15

With this formulation, a C array declaration such as

int count[20];

combines both a type and a class declaration. It declares that expressions, such as count[15],

or count[i], or count[3*k-2*i] are well formed value designators (provided the sub-

script evaluates to 0 ≤ i < 20), whose interpretation is to be integer. This interpretation is illus-

trated by early Fortran syntax in which arrays were declared by

DIMENSION COUNT(20)
INTEGER COUNT

Similarly, a Pascal record declaration, such as

type CELL_ptr = ↑CELL;
type CELL = record

size: real;
count[0..19]: integer;
next: CELL_ptr;

end;

also combines both type and class information. If x is an element designator of class CELL, then

x.size, x.count[3], and x.next are all well-formed expressions. The first two are value designators,

the latter is an element designator, or pointer to a data element of class CELL. In our terminol-

ogy, any expression of type CELL_ptr is an element designator.

Two questions should be apparent. First, if element designators are nothing more than

dressed up pointers20 — why not simply call them pointers? In a sense they are. But the term

"pointer" is inextricably associated with the concept of storage locations and addresses, whether

virtual or not. Persistent data can not be identified by an addressing concept. It must be

identified by an immutable symbolic element identifier. These uid ’s may be bound to memory

locations, virtual addresses, or disk sector addresses. But such bindings can be transient21, the

���

20 In ODE [AgG89], persistent data is accommodated by simply designating two different kinds of
pointers — ordinary pointers (to objects allocated in either a heap or stack) and persistent pointers, together
with dual persistent constructors and destructors. The resulting duality must then be maintained by all
processes using these pointers.

16

uid itself can not.

Second, we may ask why distinguish between the notion of a type and that of a class?

Typed languages, such as Pascal and C, have been extremely successful. Moreover, in the class

concept of object oriented languages, the thrust has been just the reverse. The methods of a C++

class are explicit interpretations, in the form of code describing operations on the objects of the

class. This question is harder to answer, just because it can be very convenient to syntactically

combine the two concepts; nevertheless we would assert

Assertion 2.1: Programming languages that support processes in heterogeneous systems
over shared persistent data should make a clear distinction between those features
which are environment dependent and those which are dependent on the semantic
structure of the data space.

Our distinction between types and classes is an effort to do just that. Moreover, in Section 2.3,

we will demonstrate inheritance concepts that make sense for classes, but not for types.

2.2. Sets and Set Operations

In Section 1.2, we asserted that languages which deal with persistent data must have sub-

stantial set manipulation capability. Yet, sets have always been a problem for programming

languages. They are a fundamental mathematical concept; their logical semantics are well under-

stood; and yet, none of the standard programming languages provide for a generic set concept.22

Part of the reason has been that there is confusion between sets of values23, such as

{ 0.0 ≤ x ≤ 1.0 }

and sets of elements, as denoted by pointers.

���

21 The way datum id’s are bound to long term storage and to volatile memory processing is crucial to
an effective implementation.

22 Pascal sets must be of limited size. Semantically, they are really only fixed length bit strings with
Boolean operators defined on them. SETL [SDD86] is a complete set-based language, but it has not gained
wide acceptance. Icon [GrG83] too, may be regarded as a set language, although its generators (which are
in many ways analogous to our enumerator) really generate sequences, or ordered sets.

23 A relation is a set of values; the relational model employs value based set semantics.

17

For us, a set will always means a set of elements, or more properly, a set of their uid ’s. In

Turing machine tape semantics, a set is a single, possibly long but always finite, bit string

comprised of enumeration uid ’s separated by special markers. As illustrated in Figure 2-1, each

set, as a single string on the DS tape, is itself an element of the persistent data space and has its

own uid .

uidk +1 elementuidk set elementuidk −1 element

uid 1 uid 2 uid 3 ... uidn

Representation of a Set as a single string of uid ’s
Figure 2-1

Given the semantic concept of a set as a specified sequence of of uid ’s, it is easy to define

the standard set operators, union, intersection, and relative complement24 on them, as in

set1 union set2
set1 intersect set2
set1 minus set2

and to form set expressions such as

(set1 union set2) minus (set3 intersect set4).

Other set expressions, such as (1.3.1), or its equivalent formulation,

{ x in usedon | (exists y in instock)
[x.part_nbr = y.part_nbr and y.quantity >= 100] }

are easily written and semantically clear. They are data element access expressions. Here, x is a

free variable denoting any element of the set usedon for which the following predicate evaluates

to true. It is a variable element name whose binding is changed in the course of execution.

���

24 Establishing the semantics of a unary complement is more difficult. Even in mathematics, it is
interpreted as the complement with respect to a universe, U. The question is, how does one define, or
interpret, U? Should it be the universe of all uid’s, or all uid’s so far enumerated, or all uid’s denoting
elements in the same class? Can the universe include elements which could be consistently included in the
data space, but which have not as yet been specifically enumerated? Or should the complement of a set of
bit strings be all those bit strings that are not in the set? This is the interpretation in formal language
theory, which admits infinite sets. This question constitutes the heart of the issue regarding safe queries in
relational database theory [Mai83].

18

Given the power to create set expressions, we would expect an assignment operator, such as

result ← { x in set1 union set2 | x.a1 = 17 }

This assignment is semantically valid, whereas the assignment (1.2.3) is not, because result

denotes a set and we assume that the set of uid ’s comprising the set expression on the right

becomes the set of uid ’s comprising the set denoted by the element name result . We are chang-

ing result.bits , not its associated uid . This then constitutes shallow copy semantics for set

assignments of this form.

In addition to set assignment, we should be able to iterate over a set of elements, as in the

following looping statement,

for_each x in result do
value1 ← x.a1

.

.
valuek ← x.ak

end_do

In these statements and expressions we have been conceptually operating on, or assigning

to, or looping over elements in the persistent data space, not bit strings. This is an important

semantic distinction. For two distinct elements in result , say uid 1 and uid 2, we may have

uid 1.bits = uid 2.bits . Herein lies the key difference between the semantics of this model of per-

sistent data and that of the relational model of data.

Assertion 2.2: The fundamental semantic characteristic of any programming language that
manipulates sets, is whether they are considered to be sets of distinct identifiers
denoting data elements, or sets of distinct element bit strings.

Both semantic models are viable. Each model has its associated implementation costs which we

will discuss more fully in the following section.

Nothing in our treatment of persistent data elements in DS so far has required a class con-

cept. However, the introduction of sets changes that. Regardless of one’s semantic model of

sets, it is clear that one must be able to distinguish between a set and the elements comprising it.

There must be a conceptual class, say SET, to which all data elements that can be semantically

manipulated as a set must belong. This being so, all other data elements automatically belong to

19

the class "not-set", or more simply just a generic CLASS.

What we have done is to create a very coarse equivalence relation on, or partition of, DS

into just two equivalence classes, from whence the term "class" arises. Data elements in the same

class are semantically equivalent; e.g. they support the same data denotational expressions. In

most data dependent applications it is convenient to provide a much finer partition than just these

two gross equivalence classes. For instance, in preceding sections we introduced the tuple

schema R = { a 1, a 2, ..., ak } and record structure CELL = { size , count [0..19], next } as

representative classes. Both are refinements of the generic CLASS. Both are equivalences, in

that any two elements uid 1, uid 2 of R (or uid 3, uid 4 of CELL) support identically the same data

denotational capacities, such as uid 1.a 2. Consequently, we say that two elements belong to the

same equivalence class , if they are semantically indistinguishable with respect to the properties

used to define the equivalence relation. The earlier usage of class as a pattern describing the for-

mat, or decomposition, of an element is simply a special case of this more general interpretation

of the class concept. The nature of a particular data denotational language governs what

equivalence relations, and thus what classes, can be defined.

We assume that all data elements in DS belong to a class. We will also assume that the

class of any element is invariant, although in the next section we will explore the possibility of

permitting certain kinds of class migration.

If all data elements must belong to some class, then it is reasonable to expect that in set

operations, such as set 1 ∪ set 2, the elements must be, in some sense, conformable with respect

to class. One such restriction might be that the elements of set 1 and set 2 belong to the same

class. One should not be allowed to mix "apples" and "oranges". Well, perhaps this is too

stringent. But, at least the resulting set should be one of class "fruit". In the following section,

we discuss issues relating to the class of data elements in general, and the class of set elements in

particular.

20

2.3. Class Inheritance

We have been using the Turing Machine model to develop the distinction between data as

bit strings and their denotation by ordinal position or uid ’s. However, it was assumed that the bit

strings comprising elements of a persistent data space, DS, need not be interpreted in their

entirety as either enumeration uid s or integer , real , or other environment dependent values. The

class concept provides a formal mechanism for denoting, and accessing, substrings within

uid.bits . We permit composite elements, such as records or tuples, whose component parts are

denoted by value and element designators of the form uid.attribute . The collection of attributes

that are defined on an element define the class of the element, in precisely the same way that the

schema of a relation defines the class of its tuples.

In Section 2.1, we said that a class defines the well-formed expressions denoting data in the

data space, DS. This we subsequently generalized in terms of an equivalence relation. Let us

develop a concrete example in which the property defining an equivalence class is simply

assumed to be a set of attributes, perhaps established by a statement such as

PERSON isa CLASS
having { name, age, social_security_nbr }.

All elements belonging to the class PERSON are now known to have the attributes name , age ,

and social_security_nbr defined on them.25 So, if x denotes such an element, the value designa-

tor x.name is well-formed. We might want some elements to have other attributes, as well. A

doctor might have the additional attributes specialty , training , and address ; or a patient might

have the additional attributes case_history , address , and outstanding_amount_due . The class of

elements representing these kinds of people might be established as subclasses of the class PER-

SON by the statements

���

25 To the data space these attributes are just bit strings; it is unconcerned with whether they are
integer, real, character or whatever.

21

DOCTOR isa PERSON
having { specialty, training, address }

PATIENT isa PERSON
having { case_history, address, outstanding_amount_due }

We have refined the original class partition.

Every element belonging to the class DOCTOR, because it "isa" PERSON, has the attri-

butes name , ..., social_security_nbr , as well, and so "inherits" these attributes. So, if y denotes

an element of class DOCTOR, then y.name is well-defined data denotational expression as is

y.speciality . Every attribute, or property, of a class must be inherited by any subclass of it; this is

what we mean by subclass .26 The resulting subclass hierarchy is often visually represented as a

semi-lattice such as

......

CLASS

PATIENTDOCTOR

PERSON

A small subclass hierarchy
Figure 2-2

We would note (1) that any data element belonging to the class of DOCTOR also belongs to the

class PERSON; (2) so that any expression for which an element of the class PERSON can serve

as operand, an element of class DOCTOR can be operand as well; and (3) that restriction is

created by defining more attributes on the elements of the subclass.

It is more difficult to define inheritance concepts on bit strings whose interpretation is

environment dependent. In mathematics, the integers are a subset of the reals; an integer is a real
���

26 Brachman [Bra83] correctly notes that inheritance as defined by the IS_A construct is really little
more than a convenient syntactic shorthand for incrementally creating subclasses. We, too, will treat it in
just this fashion. This way of incrementally creating subclasses has also been called "specialization"
[HuK87].

22

number, and can therefore serve as an operand wherever a real is expected. This inheritance pro-

perty is not reflected in the bit string representations of these types. One may not use an integer

bit string where a real bit string is expected. The integer must first be explicitly coerced into a

real form. This example becomes more pointed if we consider real numbers to be a subset of the

complex numbers. The representation of data of type complex has a structure very different from

that of type real . Both integer and real types can be coerced into a complex type, and so can

strings of type character , such as "17.5" or "-3 + 5i". But, the very fact that coercion is neces-

sary emphasizes that the types as they are represented do not have an inheritance structure.

Assertion 2.3: The presence of coercion in the semantics of a language demonstrates that
the elements being coerced do not conform to a desired inheritance structure.

This is a primary reason for wanting to treat class and type as distinct semantic concepts, as we

did in Section 2.1. Because classes embody denotational information — the nature of well-

formed data expressions in DS — we may assume a language design that assures class inheri-

tance. Because types embody information about the processing environment and its interpreta-

tions, expected inheritance properties may, or may not, be present.

The issue of class inheritance becomes more interesting when we address sets. As observed

in Section 2.2, a set in our model is an element of the data space, or Turing machine tape.27 It has

its own uid . It belongs to the generic class, SET. A more appropriate subclass of SET can be

defined by class of elements that can comprise the set. For example, the classes, PERSONS,

DOCTORS, and PATIENTS, might be declared by

PERSONS isa SET of PERSON elements
DOCTORS isa SET of DOCTOR elements
PATIENTS isa SET of PATIENT elements

As declared above, there is no explicit inheritance between these three classes. Nevertheless,
���

27 We should emphasize that in our semantics, a class is not a set. We regard a class to be a only a
pattern defining the structure of instantiated elements that could belong to the class. In object-oriented
systems based on the smalltalk paradigm [GoR83], e.g. [BOS91, CoM84] the class denotes, and also
manages, all its instantiated elements. While this is semantically possible, its practical implications in a
distributed persistent implementation are daunting.

23

because an element in a set of class DOCTORS belongs to the class DOCTOR, and because an

DOCTOR element can be linguistically employed wherever a PERSON element can be

employed, we would expect that a set of DOCTORS can be used linguistically wherever a set of

PERSONS can be used. That is, we have an implicit class hierarchy as shown below.

......

SET

PATIENTSDOCTORS

PERSONS

Induced Inheritance Semi-lattice of Set Classes
Figure 2-3

Using the more general notation of Ci for an arbitrary class and S [Ci] for the class of sets

consisting of elements in Ci one gets the apparent isomorphism shown in Figure 2-4. However,

this illustrated isomorphism is deceptive; it is not necessary. It is possible to create consistent

semantic models in which the inheritance lattice (or semi-lattice) of constructed classes is more

S [C 6]

S [C 5]S [C 4]S [C 3]

S [C 2]S [C 1]

S [C 0]

C 6

C 5C 4C 3

C 2C 1

C 0

Class Inheritance Lattice and corresponding
Inheritance Lattice of Set classes

Figure 2-4

24

complex than that of their constituent elements. However, it can be demonstrated, under much

more general definitions of the class concept than we have introduced here [PfF92], that if S [Ci]

is a sub-class of S [Ck] then Ci must be a sub-class of Ck , or equivalently

Assertion 2.4: If sets of elements belonging to a specific class can be constructed, then a
sub-lattice (sub-semi-lattice) of the set hierarchy must be isomorphic to the class
hierarchy.

Of course, one may have sets of sets, and so forth. Adherence to the set class semantics intro-

duced here eliminates many of the paradoxes arising in a pure naive set theoretic model.

The semantics of many standard set operators is relatively straightforward. For example, if

residents denotes a set in the data space of class DOCTORS, then within the body of a looping

construct such as

for_each y in residents do
.
.

end_loop

it is known that y denotes an element of class DOCTOR; and that any linguistic expression that is

valid for this class, such as y.name or y.specialty will be semantically well-defined within the

loop. Expressions such as y.case_history will not.

The semantics of set assignment also conforms to expected class inheritance hierarchy, but

with an interesting twist. Suppose that peer_group denotes a set of class PERSONS. An assign-

ment of the form

peer_group <- residents

is semantically well-defined because every element of the set residents must belong to the class

DOCTOR, and hence to the class PERSON — its superclass. Consequently, any expression

involving an element of peer_group will be well-defined. However, the assignment

residents <- peer_group

is not semantically well-defined because linguistic expressions, such as y.speciality , that are valid

25

for the class DOCTOR may not be defined for an arbitrary element in peer_group of class PER-

SON.

Consider the familiar numeric hierarchy involving integers and reals, and let i and x denote

integer and real variables respectively. The assignments

x := i

and

i := x

are both syntactically legal in most programming languages, but only the former has semantics

that really conforms to the type hierarchy. In this case, the actual value of i is assigned to x ,

albeit possibly with a different representation. In the latter, the value of x , unless by chance it is

integral, will be altered and a different semantic value assigned to i . The value of x is coerced

into an integer form by some environment dependent rule, such as truncation or rounding. These

two examples lead to the observation that

Assertion 2.5: If the semantics of a language allows class (or type) inheritance, then inheri-
tance must be monotone; only elements of a subclass may be used in lieu of ele-
ments of a superclass, without some form of ad hoc coercion.

The semantics associated with the familiar union, ∪, and intersection, ∩, operators in a

class hierarchy model are far more interesting. We will only sketch a few of the representative

complexities in this report. If the two operands belong to the same class, or one is a subclass of

the other, there are no semantic problems. But suppose the two operand classes are not directly

comparable in the class inheritance lattice. Suppose, for example, that residents and

trauma_patients are instances of sets of DOCTORS and PATIENTS respectively. We wish to

look at each element in the union of these two sets, say by the looping expression

for_each z in residents union trauma_patients do
.
.

end_loop

The question is: what is the class of the expression residents ∪ trauma_patients? or more

26

particularly, what is the class of z within the loop body? A reasonable semantic interpretation is

that, since the class of residents and the class of trauma_patients are both sub-classes of PER-

SONS, their union is of class PERSONS, and in particular z must be of class PERSON. These

semantics, in which the class of a union operator is the least upper bound of its operand classes,

can be implemented in fairly straightforward manner. But note, the expression z.address is

well-defined regardless of whether z denotes an element in residents or in trauma_patients ,

because address was declared to be an attribute of both the classes DOCTOR and PATIENT.

Yet z.address is not well-defined if one regards z to be of class PERSON.

It is possible to define a semantics in which the class of the union is the most general upper

bound of its two operand classes. In this case, the class of z would be a new class C with attri-

butes name , age , social_security_nbr , and address ; the subclass hierarchy of Figure 2-2 would

become

C

PATIENTDOCTOR

PERSON

Generalized subclass hierarchy
Figure 2-5

and class of the union would be S [C]. The creation of such most general upper bounds in the

subclass hierarchy has been called "generalization" [HuK87]. While it leads to a consistent

semantic interpretation, it appears to be fairly difficult to implement in practice.

The intersection operation presents different problems. Suppose we wish to process the set

of residents who have themselves been trauma_patients , say in a loop of the form

27

for_each z in residents intersect trauma_patients do
.
.

end_loop

What is the class of the set residents ∩ trauma_patients ? What is the class of z ? Readily, z

must have all the attributes of DOCTOR as well as all the attributes of PATIENT, and thus be a

subclass of both. It will be the greatest lower bound of the two argument classes. This implies

the class hierarchy illustrated in Figure 2-6.

DOCTOR_PATIENT

PATIENTDOCTOR

PERSON

Closed subclass hierarchy
Figure 2-6

We call this a closed subclass hierarchy because it is closed with respect to set intersection opera-

tion.28

Establishing the class of the set resulting from an intersection operation is only part of the

issue. More important are the semantics that determine the actual resultant set. Let x denote any

element of residents belonging to the class DOCTOR and let y denote any element of

trauma_patients belonging to the class PATIENT. Because the elements they denote belong to

different classes, x and y cannot possibly denote the same element. Consequently, to be a

member of the intersection, z must already be an instantiated29 element of the class

���

28 Even if the class DOCTOR_PATIENT has never been explicitly declared by the programmer, it
could be artificially created. For example, in our case of class declaration which includes only associated
attributes one can form the union of the set of DOCTOR attributes with the set of PATIENT attributes to
generate the new class. But, this will prove to be of little value.

29 Instantiation, in the object-oriented sense, is synonymous to enumeration in our model; a new
element with a new uid is written to the data space, DS.

28

DOCTOR_PATIENT! For residents ∩ trauma_patients to be non-empty, the set residents must

consist of some elements in the class DOCTOR_PATIENT, as must the set trauma_patients .

The intersection operation then only extracts those DOCTOR_PATIENT elements which belong

to both.

Assertion 2.6: In a persistent data space, where all elements have uid ’s and all uid ’s are
bound to a single class on instantiation, the intersection operator is only a mechan-
ism for designating a subset of existing elements.

Not only are these intersection semantics counter-intuitive, they also stand in clear contrast

to the relational model in which the intersection (which can be generalized to create the important

join operator) operator generates a new set of tuples using a value based concept of identity.30 It

is worth exploring these two different intersection semantics further.

Intuitively, there may be elements of type DOCTOR in a data space corresponding to doc-

tors in the real world. Some of these may be residents and therefore in the set residents . Simi-

larly, we might expect the periodic addition of PATIENT elements, and if they have suffered a

trauma, insertion into the set trauma_patients . Subsequently, a resident, x , may suffer a trauma

with a corresponding PATIENT element, y instantiated and entered into trauma_patients . A

query to discover which residents have been trauma patients seems to be quite reasonable. Value

based identity, that is x.name = y.name and x.social_security_nbr = y.social_security_nbr , may

be used (as in the relational join operator) to establish that the persistent data elements x and y

actually denote the same entity in the real world being modelled, and thus should be combined.

Could such an operation be accommodated in the model of persistent data that we have been

developing? The answer seems to be a qualified, yes.

The governing condition of assertion 2.6 is that an element instantiated with respect to a

class C , cannot later be bound to a class C′ ; e.g. an integer variable cannot subsequently be

���

30 This creates additional problems with regard to any system-wide uniqueness of keys, since clearly
tuples in the relations resulting from any of the operations must have identical counterparts with identical
keys in the argument relations. However, resolution of this is not issue in this report.

29

declared to be real. If, instead, one permits individual elements in the data space to change their

class, say by migrating to a subclass, then the assertion need not be true. One can easily visualize

a join-like, intersection operation on elements of residents and trauma_patients as describe

above in which two elements are considered to be equivalent on some appropriate basis, and in

which one of the two argument elements, say x is moved into the intersection class and the attri-

butes of the other assigned to it. But, now the semantics become messy. Should the element y

be retained, or deleted. If it is retained, then the established identity is not retained in the per-

sistent data space, we still have two distinct data elements. If it is deleted then all occurrences of

its uid , say in sets or other denotational expressions, must be replaced by the uid of x .

As observed above, the relational model with its set semantics based on the tuple element

bit string, not its ordinal identity, has no such problems with either intersection, or its extension

as a natural join. The tuples denoting an individual as doctor, denoting an individual as patient,

and denoting him as both, are distinct tuples. Doesn’t a set semantics based on the element bit

string, or content, make more sense? Possibly. However, implementing the union, ∪, operator

which is known to be required in a complete query system, c.f. (p. 242) [Mai83], turns out to be

quite difficult in a distributed environment, as shown by the following example. We may assume

that there exist at least two relations r 1 and r 2 with the same schema, R . For simplicity, we

assume that R = { a 1, a 2 }, where a 1 is the key. If the property of being a key is restricted to

individual relations, then both r 1 and r 2 below are well-formed relations

a
1
| a

2
a
1
| a

2

r
1
= ----+---- r

2
= ----+----

0 | w 1 | y
1 | x 2 | z

but r 3 = r 1 ∪ r 2 must be the relation

30

a
1
| a

2

r
3
= ----+----

0 | w
1 | x
1 | y
2 | z

in which a 1 has lost its key property. To be a correct implementation, the non-duplication of key

values must be maintained for all relation instances in the database. Because of the cost, few

existing relational database implementations will automatically eliminate duplicate keys in even

a single relation. In a distributed system, the assurance of key uniqueness is even more costly.

Assertion 2.7: In distributed persistent data spaces, content based data element identity is
computationally prohibitive.

This is the primary reason that we have elected to ignore content based element identity as a basis

for set semantics.

This has been a long section. However, we believe its contents are crucial. In Section 1.2,

because of the impossibility of uniquely naming every element in very large persistent data

spaces, we asserted (1.5) that "any programming language which references persistent data must

provide general mechanisms for creating, naming, and operating on sets of data" — and, in prac-

tice, all management of persistent data has been set based. Thus the semantics of such operations

must be developed. As asserted in (2.2), "the fundamental semantic characteristic of any pro-

gramming language that manipulates sets is whether they are considered to be sets of distinct

identifiers denoting data elements, or sets of distinct element bit strings". This choice governs the

semantic nature of any language for processing persistent data. If, because content based element

identity is impractical in distributed persistent data spaces (2.7 above), one chooses the former

and if one also categorizes such elements with respect to a class hierarchy, then there will be

semantic restrictions on what such a programming language can, or cannot, do. Assertion 2.6

illustrates one such restriction.

31

3. Persistent Name Spaces

Central to any programming language is the way that a user may name those items of

interest to him, typically the nouns of the language. In this report we are concerned with ways of

denoting elements of the persistent data space, DS, with symbolic strings, or names. Naming is

not the only mechanism for identifying persistent data elements [KhC86], but it is a primary one.

As in any programming language, a symbolic data name must be bound to the element it

denotes, or equivalently in our model to its uid . But, when persistent data is named, both the

name itself and the binding must also be persistent, as asserted in (1.5). Persistent names cannot

be freely reused in different source program files, or even within different lexical blocks of the

same program file, as most programmers are used to doing. One must treat persistent names as

global names, that are global to not only a single process, but global to all processes which

operate over the shared persistent data space.31 The consequence is that our space of symbolic

names seems to be far too small to facilitate naming all of the elements of a very large data space

with many disparate kinds of data. Accumulating large collections of similar data items into sets

helps, but we still seem to exhaust the range of appropriate names. The purpose of this section is

to briefly consider four different ways of expanding a programmer’s name space. They are:

(1) allow arbitrarily long symbolic names;

(2) partition the name space so that the same name in different partitions may have different

denotational bindings;

(3) subscript names; and

(4) parameterize names so that the same name with different parameters may be bound to dif-

ferent elements.

���

31 Linda [CaG89, Gel85] is a programming language that operates over a persistent data space
according to our definition. It is one that is concerned with global naming [FlH89]. However, it does not
have a name space that is conceptually separate from its data space; individual tuples of the tuple space
cannot be explicitly named. Instead, it employs content based identity to denote desired tuples.

32

The first two techniques are embodied in an operating system’s directory structure. Per-

sistent files are denoted by path names of arbitrary length. Of course, very long symbolic names

are an invitation to error. The cd , or change directory, command can be regarded as nothing

more than a mechanism for designating a common prefix for very long path names in an other-

wise conceptually flat name space. Now only a relatively short symbolic suffix need be provided

to derive the entire path name.

Directory systems also serve to partition the name space. The same "name" or symbolic

suffix will denote different files if their complete path names have different prefixes. Moreover,

certain prefix strings may be reserved for specific users or for specific groups of users through

familiar protection mechanisms. Name servers in distributed systems employ both these tech-

niques [Lam86], but so may a language designed to operate over a persistent data space. If the

language provides for a partitioned persistent name space, then one need not be constrained to a

strictly tree-structured configuration [PFW88], and, perhaps more importantly, one can write

processes within the language itself to search the common name space. In the database literature

this is sometimes called "browsing".

Mathematicians routinely use subscripting to distinguish between similar, but distinct, ele-

ments. So too, do all familiar programming languages. But, subscripting in traditional program-

ming languages has come to be limited to array structures. One can conceive of languages in

which all user generated names, such as those of processes, can be arbitrarily subscripted in order

to distinguish between different instantiations. Such general subscripting facilities can be effec-

tively implemented [PfF90], but the development of any particular syntax or implementational

semantics is not the point of this report.

The concept of parameterizing individual names so that their meaning, or binding, is deter-

mined by the particular parameters provided at the time of reference has not to the author’s

knowledge been actively studied with regard to higher level languages. Assembly level macro

33

substitution represents a limited form of such a facility.

The four techniques described above probably do not exhaust the available mechanisms for

organizing and expanding a persistent name space, but they do support the contention that

Assertion 3.1: To program over persistent data spaces, more sophisticated methods for
creating and manipulating persistent names must be employed than are found in
currently implemented programming languages.

4. Data Deletion

From time to time a user may decide that persistent data is no longer necessary and can be

deleted; but deletion of data, even of non-persistent data32 is complex and difficult. In our Turing

machine model, data elements are never deleted from the DS tape because uid ’s denote an

enumerated position and cannot be reused. Since the DS tape is unbounded, deletion is, in

theory, not needed. But in practice, storage is bounded. Need we delete items? Must we make

provision to reuse uid ’s?

The latter is easiest to answer. In a practical implementation we will allocate only a fixed

number of bits to represent uid ’s. If we treat uid ’s as 64-bit integers, we have 1.84×1019 distinct

uid ’s which according to some estimates approximates the number of atoms in the universe. If

this still seems insufficient, one could employ 128-bit uid ’s to obtain 3.4×1038 unique elements,

while no more doubling the physical storage requirements. Although technically finite, there

should be no need to ever reuse a uid once its data element has been enumerated.

Virtually all implementations of persistent data will delete data items in order to reuse phy-

sical storage. But, in a distributed system to which very high capacity storage devices can be

added continually, we might conceive of an implementation in which physical storage is never

exhausted and in which data elements are never deleted. Even if physical storage were not a
���

32 Either the extensive literature on garbage collection in LISP systems, or the detailed discussion of
the delete operators and destructors in C++ where one encounters expressions such as "...the deletion of
an object may change its value" [Str87] (p. 500) can be regarded as cases in point.

34

constraint, what seems to inexorably force consideration of data deletion is the psychological

finiteness of a user’s name space. In practice, we delete an item because it is no longer of value,

and because we want to reuse its name for new data.

We will say an item is deleted if its uid no longer denotes a valid string. In our Turing

machine model, an unwanted item will be deleted by rewriting the element with a special deleted

symbol.

Under what conditions can a data element be deleted? Certainly, a data element uid that is

a member of an undeleted set in DS should not be deleted. Indeed, no element to which there is a

valid reference in either the data space DS, or name space NS, should be deleted. One mechan-

ism for controlling unwanted deletion is by means of reference counters. These are an old device,

which the author first encountered in 1963 [Wei63], although their use may predate even this.

Essentially a reference counter is an integer attribute, uid.ref _cntr , associated with every uid .33

It is initially zero, and incremented every time a new reference to uid is entered into DS, e.g. by a

set operation, or into NS, e.g. by binding a name to the uid ; and decremented every time a refer-

ence is erased. Conceptually, the data element denoted by uid may be deleted whenever

uid.ref _cntr = 0. However, in practice, more care must be taken. Because a process may tem-

porarily cache a uid in its local storage, it is possible to have uid.ref _cntr = 0, even though there

are still valid references to it.

We can construct a deletion semantics as follows. Let ds_delete (uid , Pj , tk) be an operator

which, if uid.ref _cntr > 0 at tk has no effect, but which, if uid.ref _cntr = 0 at tk has the effect of

inhibiting any reference to uid by any process initiated after tk so long as uid.ref _cntr remains

equal to 0. Now, one can show that

Assertion 4.1: If ds_delete (uidi , P 1, t 1) has been issued, and if at t 1, uid.ref _cntr = 0, and if
at t = maxtk

{ p_terminate (Pj , tk) | p_initiate (Pj , tk′), tk < tk′ } uid.ref _cntr = 0, then
the data element uid can have no references within the data space, DS, the name

���

33 The ref_cntr attribute may be regarded as a property of both generic classes, CLASS and SET.

35

space, NS, nor any executing process and so can be actually deleted.

Note that the third condition for these deletion semantics is precisely the condition for persistence

given in assertion 1.2.

An unfortunate corollary to the preceding assertion appears to be

Assertion 4.2: If x is a persistent element name appearing in a program, and if the preced-
ing deletion semantics are to be supported, then x can not be bound to a uid at com-
pilation, but must be rebound (if possible) on every execution through lookup in the
name space, NS.

Readily, this assertion implies a painful performance hit and one might expect many compiler

implementations to ignore it, trusting that good programming, or good fortune, will prevent refer-

ence to a deleted uid .

We do not know if the deletion semantics described here are necessary in programming

languages that manipulate persistent data. They may not be. But this discussion does emphasize

the kinds of differences that exist between programming languages whose data is only assumed to

exist while the process itself is in scope, and those which may directly reference persistent data.

5. Summary

In the preceding, we have employed a Turing model on which to base the semantics of per-

sistent data — elements on a shared persistent data tape, which once enumerated can not be

erased and which can only be changed by the deliberate rewriting by a process (1.1). It leads

naturally into the distinction between the elements of the tape, or data space, and their ordinal

position, or uid (1.3).

Because an effective programming language must employ symbolic names that are bound

to uid ’s, and because such a name space must also be persistent (1.4), we came to the unsurpris-

ing conclusion that such languages must be vitally concerned with the denotation and manipula-

tion of sets of elements (1.5). Much of Section 2 then revolved around the semantics of such sets

36

of persistent elements. These semantics must be governed by whether one chooses to regard a set

as a set of element identifiers, uid ’s, or a set of element bit strings themselves (2.2). The rela-

tional model of data employs the latter. Because of complexity of implementing the ∪ operator

(2.7), we chose to develop our semantics using uid ’s. In this regard, it is similar to several

object-oriented models.

Knowing that developing set operation semantics based on a naive untyped set model

would be extremely difficult, we first introduced the concept of element classes and explored the

distinction between data types which are dependent on the processing environment and element

classes which properties of the persistent data space itself (2.1). Given a class concept, it is

natural to introduce the powerful concept of class hierarchies and inheritance. However, we

observed that, given the standard representations of numeric types, natural type inheritance must

frequently be enforced by ad hoc coercion (2.3); it is not a property of the data itself.

Finally, if all data elements belong to classes in a class hierarchy, then sets of elements

must also belong to a parallel class hierarchy which mirrors the structure of their constituent ele-

ment classes (2.4). These class concepts combine to restrict the semantics of any resulting

language. This was illustrated by the monotonicity of inheritance (2.4) and the necessary seman-

tics of set intersection when the operand sets belong to non-comparable classes (2.6).

Section 3 discussed four ways by which the persistent name space of such a language could

be expanded to facilitate symbolic reference by many user processes to the shared, arbitrarily

large, persistent data space. And the thorny, incompletely resolved, issue of data deletion, which

is forced on a language designer by the need to reuse symbolic element names, was examined in

Section 4.

37

6. Syntax and Implementation

A consistent syntax for the semantic model proposed in the preceding sections can be

created. All of the code fragments found in Section 2 were drawn from a working database sys-

tem, called ADAMS [PSF88, PFG91], that is largely based on this model. The syntax of the

ADAMS language provides for (1) a clear distinction between the data type and element class

concepts, based on value designator and element designator constructs, (2) multiple inheritance in

the class hierarchy, (3) general set expressions involving sets in the data space, (4) process con-

trol, including both data space and host process statements, based on iteration over sets in the

data space, (5) general assignment operators between the various components of the persistent

data space and the variables of the local processing environment, (6) a hierarchical name space

which allows any element name to be subscripted and with which any process can dynamically

interact, and (7) except for a very small fraction of the statements and expressions, static type

checking in the preprocessor.

But, as Pratt points out [Pra84], there can be many equivalent programming syntaxes for the

same semantic model; the virtual equivalence of the standard procedural programming languages

demonstrate this. The existence of ADAMS only establishes that this semantic model can be

made linguistically consistent. It is possible, and in fact probable, that clearer, better syntactic

formulations can be devised.

A more important issue in the design of languages is whether the semantic model can be

effectively implemented. ADAMS has been implemented over a loosely coupled network of

heterogeneous SUN workstations and over a tightly coupled Intel iPSC/2 using the run-time sup-

port provided by the Mentat concurrent processing system [GrL90, Gri90]. The various applica-

tions that have been coded in this environment establish that the semantic model presented here

can, in fact, be implemented to provide a shared, distributed, persistent data space with reason-

able storage and processing overhead costs [PFG92].

38

We might, however, add in postscript that many individuals find programming over per-

sistent data spaces quite foreign. There can be a considerable period of adjustment. It is the per-

sistent binding of names and other program constructs that gives the most difficulty. For exam-

ple, if we have the statements

adam instantiates_a PERSON
eve instantiates_a PERSON

in a program, then because the names adam and eve have been persistently bound to to the uid ’s

of newly enumerated data elements, these statements and hence the program itself can only be

executed once! But we are used to writing code that doesn’t quite work as we expected, rewriting

it and re-executing it.

There must be a change in programming style. One change is to separate those programs

which enumerate new named data elements, from those that only reference and manipulate exist-

ing elements. A second programming change is to avoid persistent naming as much as possible,

and rely on navigation through the data space to access desired elements. For example, suppose

that the following fragment of code has been executed

first_family instantiates_a PERSONS
parents instantiates_a MAP

with image PERSONS

Both f irst_f amily and parents are persistent names denoting a set of PERSON elements and a

functional map whose image is the uid of some (unspecified) set of PERSON elements.34 One

can now execute the following fragment of code in which x , y , z and f olks are variable element

names and so do not result a persistent name-uid binding.

���

34 In ADAMS we make the distinction between attribute functions whose image is a data element that
must be interpreted with respect to a particular environment, e.g. integer, real, string, and which we call a
value, and map functions whose image is a uid denoting an element belonging to a known class. C.f.
assertion 1.3.

39

ADAMS_var x, y, z, folks

x instantiates_a PERSON
x.name <- ’adam’
insert x into first_family
y instantiates_a PERSON
y.name <- ’eve’
insert y into first_family

z instantiates_a PERSON
z.name <- ’abel’
folks instantiates_a PERSONS
insert x into folks
insert y into folks
z.parents <- folks
insert z into first_family

One can now navigate in the persistent data space with code such as

ADAMS_var x, y

for_each x in first_family do
printf ("%s tparents { ", x.name);
for_each y in x.parents do

printf ("%s ", y.name);
end_do

printf ("} n")
end_do

to yield output such as35

adam parents { }
eve parents { }
abel parents { adam eve }

To many programmers, writing code such as this seems quite unnatural. That is precisely

the point of this report. Programming over a persistent data space, whether one uses the syntax

and constructs of ADAMS or not, is very different from programming over volatile data.

For another example of the difference between programs involving persistent data and those

which declare volatile data, consider the declaration of the class of a persistent data element.

Since a class is only a linguistic construct declaring which data denotational expressions are

well-formed, it is really only necessary at compilation.36 They can be incorporated as a prefix to
���

35 Since first_family and x.parents are sets, there are no guarantees regarding the order in which
elements of the set will be encountered. It need not be as shown!

36 This statement assumes static type checking, if run-time type checking is necessary, class
information must be available at run-time as well.

40

every compilation in the manner of .h files in a C program, the DATA section of a COBOL pro-

gram, or the type declarations of a Pascal program. But, they too must be persistent.37 Such an

approach of prefixing class declarations is viable, even with persistent data; but in ADAMS, class

declarations are incorporated into the persistent data space, just as persistent data name bindings

are. They are not redeclared with every new compilation. This engenders a new approach to

writing code, in which the programmer actively searches the persistent data space to discover

which persistent data names in his name space have been used, and which are available; what

classes exist, and what properties they have.

It turns out that programming over a persistent data space is very different from traditional

programming involving transient data; both in theory and in practice.

7. References

[AbK89] S. Abiteboul and P. C. Kanellakis, Object Identity as a Query Language Primitive,
Proc. 1989 ACM SIGMOD Conf. 18,2 (June 1989), 159-173.

[AgG89] R. Agrawal and N. H. Gehani, ODE (Object Database and Environment): The
Language and the Data Model, Proc. 1989 ACM SIGMOD Conf. 18,2 (June 1989),
36-45.

[AhU79] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison Wesley,
Reading, MA, 1979.

[AtB87] M. P. Atkinson and O. P. Buneman, Types and Persistence in Database Programming
Languages, Computing Surveys 19,2 (June 1987), 105-190.

[Bee90] C. Beeri, Formal Models for Object Oriented Databases, in Deductive and Object-
Oriented Databases, W. Kim, J. M. Nicolas and S. Nishio (editors), Elsevier Science
Publ., North-Holland, 1990.

[Bra83] R. J. Brachman, What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Networks, COMPUTER 16,10 (Oct. 1983), 30-36.

[BOS91] P. Butterworth, A. Otis and J. Stein, The Gemstone Object Database Management
System, Comm. of the ACM 34,10 (Oct. 1991), 64-77.

���

37 While element classes must be persistent, they need not be static. But providing dynamic class
declarations is very implementation dependent, and beyond the scope of this report. For details, see
[PFG92].

41

[CaW85] L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and
Polymorphism, Computing Surveys 17,4 (1985), 471-522.

[CaG89] N. Carriero and D. Gelernter, Linda in Context, Comm. of the ACM 32,4 (Apr. 1989),
444-458.

[Cod70] E. F. Codd, A Relational Model for Large Shared Data Banks, Comm. of the ACM
13,6 (June 1970), 377-387.

[Com79] D. Comer, The Ubiquitous B-Tree, Computing Surveys 11,2 (June 1979), 121-137.

[CoM84] G. Copeland and D. Maier, Making Smalltalk a Database System, Proc. SIGMOD
Conf., Boston, June 1984, 316-325.

[FlH89] C. J. Fleckenstein and D. Hemmendinger, Using a Global Name Space for Parallel
Execution of UNIX Tools, Comm. of the ACM 32,9 (Sep. 1989), 1085-1091.

[Gel85] D. Gelernter, Generative Communication in Linda, Trans. Prog. Lang and Systems
7,1 (Jan. 1985), 80-112.

[GoR83] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation,
Addison Wesley, Reading, MA, 1983.

[GrL90] A. S. Grimshaw and E. Loyot, The Mentat Programming Language: Users Manual
and Tutorial, Dpt. of Computer Science TR-90-08, Univ. of Virginia, Apr. 1990.

[Gri90] A. S. Grimshaw, The Mentat Run-Time System: Support for Medium Grain Parallel
Computation, Proc. 5th Distributed Memory Computing Conf., Charleston, SC, Apr.
1990.

[GrG83] R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice
Hall, Englewood Cliffs, NJ, 1983.

[HeP90] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, San Mateo, CA, 1990.

[Hoa78] C. A. R. Hoare, Communicating Sequential Processes, Comm. of the ACM 21,8
(Aug. 1978), 666-677.

[HoU79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, MA, 1979.

[HuK87] R. Hull and R. King, Semantic Database Modeling: Survey, Applications, and
Research Issues, Computing Surveys 19,3 (Sep. 1987), 201-260.

[HWW91] R. Hull, S. Widjojo, D. Wile and M. Yoshikawa, On Data Restructuring and Merging
with Object Identity, IEEE Trans. on Data Engineering 14,2 (June 1991), 18-22.

[KhC86] S. N. Khoshafian and G. P. Copeland, Object Identity, OOPSLA ’86, Conf. Proc.,
Sep. 1986, 406-416.

[Kim90] W. Kim, Object-Oriented Approach to Managing Statistical and Scientific Databases,
in Statistical and Scientific Database Management, Z. Michalewicz (editor),
Springer-Verlag, Berlin-Heidelberg-New York, Apr. 1990, 1-13.

[KoS86] H. F. Korth and A. Silberschatz, Database System Concepts, McGraw-Hill, New
York, 1986.

[Lam86] B. W. Lampson, Designing a Global Name Service, Proc. on Distributed Computing,
1986, 1-10.

[Mai83] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville,
MD, 1983.

42

[PFW88] J. L. Pfaltz, J. C. French and J. L. Whitlatch, Scoping Persistent Name Spaces in
ADAMS, IPC TR-88-003, Institute for Parallel Computation, Univ. of Virginia, June
1988.

[PSF88] J. L. Pfaltz, S. H. Son and J. C. French, The ADAMS Interface Language, Proc. 3th
Conf. on Hypercube Concurrent Computers and Applications, Pasadena, CA, Jan.
1988, 1382-1389.

[PfF90] J. L. Pfaltz and J. C. French, Implementing Subscripted Identifiers in Scientific
Databases, in Statistical and Scientific Database Management, Z. Michalewicz
(editor), Springer-Verlag, Berlin-Heidelberg-New York, Apr. 1990, 80-91.

[PFG91] J. L. Pfaltz, J. C. French and A. Grimshaw, An Introduction to the ADAMS Interface
Language: Part I, IPC TR-91-06, Institute for Parallel Computation, Univ. of
Virginia, Apr. 1991.

[PFG92] J. L. Pfaltz, J. C. French, A. S. Grimshaw and R. D. McElrath, Functional Data
Representation in Scientific Information Systems, Intern’l Space Year Conf. on
Earth and Space Science Information Systems (ESSIS), Pasadena, CA, Feb. 1992.

[PfF92] J. L. Pfaltz and J. C. French, Multiple Inheritance and the Closure of Set Operators in
Class Hierarchies, IPC TR-92-004, Institute for Parallel Computation, Univ. of
Virginia, June 1992.

[Pra84] T. W. Pratt, Programming Languages: Design and Implementation, 2nd Ed.,
Prentice Hall, Englewood Cliffs, NJ, 1984.

[RiC87] J. E. Richardson and M. J. Carey, Programming Constructs for Database System
Implementation in EXODUS, Proc. ACM SIGMOD Conf. 16,3 (Dec. 1987), 208-
219.

[RiC89] J. E. Richardson and M. J. Carey, Persistence in the E language: Issues and
implementation, Software—Practice & Experience 19,12 (Dec. 1989), 1115-1150.

[SaG90] K. Salem and H. Garcia-Molina, System M: A Transaction Processing Testbed for
Memory Resident Data, IEEE Trans. on Knowledge and Data Engineering 2,1 (Mar.
1990), 161-172.

[ScY89] P. Scheuermann and C. Yu, editors. Report of the Workshop on Heterogeneous
Database Systems, NSF Report, Northwestern Univ., Evanston, IL, Dec. 1989.

[Sch77] J. W. Schmidt, Some High Level Language Constructs for Data of Type Relation,
Trans. Database Systems 2,3 (Sep. 1977), 247-261.

[SDD86] J. Schwartz, R. B. K. Dewar, E. Dubinsky and E. Schonberg, Programming with
Sets: An Introduction to SETL, Springer-Verlag, New York, 1986.

[SeL90] A. P. Seth and J. A. Larson, Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases, Computing Surveys 22,3 (Sep. 1990),
183-236.

[Son89] S. H. Son, Recovery in Main Memory Database Systems for Engineering Design
Applications, Information and Software Technology 31(Mar. 1989), 85-90.

[Str87] B. Stroustrup, The C++ Programming Language, Addison Wesley, Reading, MA,
1987. (Second edition, 1991).

[TTC90] G. Thomas, G. R. Thompson, G. Chung, E. Barkmeyer, F. Carter, M. Templeton, S.
Fox and B. Hartman, Heterogeneous Distributed Database Systems for Production
Use, Computing Surveys 22,3 (Sep. 1990), 237-266.

[Wei63] J. Weizenbaum, Symmetric List Processor, Comm. of the ACM 6,8 (Sep. 1963),
524-536.

43

Table of Contents
1. Basic Concepts .. 2

1.1. The Concept of Persistence .. 5
1.2. Identifiers, Data, and Data Names ... 6
1.3. The Relational Model .. 11

2. Categories of Data ... 12
2.1. Types and Classes .. 13
2.2. Sets and Set Operations ... 17
2.3. Class Inheritance .. 21

3. Persistent Name Spaces .. 32
4. Data Deletion .. 34
5. Summary ... 36
6. Syntax and Implementation .. 38
7. References ... 41

44

