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Abstract
There is a trend towards multicore or manycore processors in com-
puter architecture design. In addition, several parallel program-
ming models have been introduced. Some extract concurrent threads
implicitly whenever possible, resulting in fine grained threads. Oth-
ers construct threads by explicit user specifications in the program,
resulting in coarse grained threads. How these two mechanisms im-
pact performance remains an open question. Implicitly constructed
fine grained threads exhibit more overhead due to additional thread
scheduling, thread communication, and thread context switches.
However, they also increase the flexibility in scheduling. There-
fore, computation resources can be utilized further and workloads
are more balanced among cores. Moreover, if scheduled properly,
concurrent fine grained threads may exhibit more data affinity than
coarse grained threads. In most parallel architectures, the last-
level cache is typically shared among all the cores. Therefore, it
is exposed to contention and pollution due to concurrent threads.
As a result, data sharing becomes important. A greater degree of
data sharing among threads results in fewer last-level cache misses,
which is one of the main latencies for a multithreaded process. The
data-sharing behavior among the threads depends on how the ap-
plications are parallelized and how the threads are scheduled. The
complex nature of many applications leads to nested structures in
the call graph, and concurrency can be found from a course grained
level to a fine grained level. In this project, we compare the data
sharing behavior of coarse grained threads and fine grained threads,
and evaluate their performance on a CMP cache simulator.

1. Introduction
We extract fine grained threads by regarding each function call

and each loop iteration as a potential thread. Dependency is ana-
lyzed among the threads. Coarse grained threads are defined manu-
ally by programmers using code annotation based on Pthread func-
tions. Performance is compared between the two methods.

Over the previous decades, various work has been done on ex-
tracting concurrency from common applications. Languages like
Multilisp [11] and X10 [3] have been proposed. Application pro-
gramming interfaces for parallel programs such as Pthreads, OpenMP,
and MPI are becoming more and more popular. Some of these pro-
gramming models are able to expose concurrency to a fine-grained
level, while others are meant for concurrency at a course grained
level. As hardware evolves to the era of chip multi-processor(CMP),
the communication cost becomes lower and more data sharing among
the threads are beneficial. Jaleel et al. [6] found that on a typical
CMP design, a shared last-level cache(LLC) outperforms private
last level caches. Their conclusion is drawn from experiments on
MineBench, a parallelized benchmark suite for data mining appli-
cations. We take the next step and evaluate the influence of thread
extraction and thread scheduling on data sharing behavior among
the threads. We base our evaluation on the SPLASH2 benchmarks,
programmed with Pthreads. We regard threads defined in these
benchmarks to be coarse-grained threads. For fine-grained threads,
we envision that in the near future, it may be possible to have a
programming model that treats every procedure and every loop it-
eration as a potential thread. For a parent thread, dependencies
among its child threads are known statically or can be speculated.

This programming model supports fine grained threads, and we are
interested to compare it with the same benchmarks implemented
as coarse grained threads using Pthreads. Because no available
applications are coded with fine-grained threads described above,
we perform a trace analysis and extract the fine-grained threads
from the trace of a sequential program. We call threads extracted in
this way Pseudo Trace-based Threads, or, PTthreads. To make
a valid comparison with coarse grained threads, we modify the
SPLASH2 benchmarks to be sequential programs, which use an-
notations rather than Pthread library calls to indicate where to fork
or join a coarse grained thread. In this way, coarse grained threads
are extracted as PTthreads as well, and are used to analyze data
sharing behavior on a combined CMP scheduler and cache simu-
lator. We call out tool ParaWeaver. We evaluate the benchmark
of fast fourier transform and find fine grained threads exhibit more
data sharing among concurrent threads.

Section 2 presents some recent work in workload characteriza-
tions. Section 3 describes our assumption about a programming
model for fine grained threads. Section 4 describes the ParaWeaver
tool that we use to extract PTthreads from a sequential program.
section 5 demonstrates our results. We conclude our findings in
section 6.

2. Related Work
Eeckhout, Sampson, and Calder [5] use the micro-architecturally-

independent characteristics outlined in Phansalkal[10] to analyze
the SPEC2000 benchmark suite written in legacy code. While micro-
architecturally-independent characteristics reveals significant prop-
erties of sequential programs, little work has been done on charac-
terizing parallel programs. Jaleel et al[6] have characterized MineBench
benchmarks based on their cache sharing at the last level cache(LLC).
The characterization reveals the importance of a shared LLC. We
base our approach on this shared LLC assumption.

To study the properties of parallel programs, Asanovic et al. have
identified 13 dwarves they think cover the main categories of par-
allel applications [7]. These benchmarks have various parallelism
and communication patterns. They are of specific interest to the
parallel architecture designers. We pick several important bench-
marks from their selection.

Rul et al.[12] have studied function-level parallelism for bzip2.
Their method is similar to ours in that they also analyze traces cap-
tured from a running process. In their methodology, a call graph is
captured. Besides the call graph, a special data dependency graph is
constructed to provide information about concurrency. The data de-
pendency graph has nodes for both functions and data. Data-nodes
are connected to all functions that share it. In this way, data shar-
ing is easily detected from the dependency graph. The functions
are then regrouped into threads according to how much data they
share with each other. They actually construct real threads and run
them on a multiprocessor with 4 cores. Their result shows a maxi-
mum speedup of 3.64. While they achieved good performance for
bzip2, their methodology only focus on function level parallelism
of bzip2, while we want to explore fine grained threads on a more
complete set of typical parallel programs. As in Rul et al.[12]’s
work, our analysis focuses on memory dependencies, since register
dependencies can be predicted[13] or precomputed[4]. However,
we are not attempting to translate a sequential program to a real
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parallel program. Instead, we focus on characterizing the effect of
fine-grained threads on cache sharing behavior and thread commu-
nication.

In addition, several programming models have recently been in-
troduced that expose parallelism at fine granularity, including data
parallel haskell[2], shader metaprogramming[9], and NVidia’s Cuda
programming toolkit. Nevertheless, fine grained threading tends to
require more effort from both the software side and the hardware
side. Moreover, it usually demands more effort from programmers.
Our work attempts to justify this effort in fine grained threading.

3. A Programming Model for Implicit Fine
Grained Threads

We propose a programming model that extracts fine grained threads
implicitly. The assumption is that the programming model regards
each function call and each loop iteration as a potential thread.
With appropriate programmer hints, compiler analysis and hard-
ware speculations, the dependency among the potential threads can
be pre-computed or predicted. We base our definition of fine grained
threads on function level parallelism and loop iterations for the fol-
lowing reasons:

1. Often, loops carry no dependencies among iterations and can
be expressed as ”foreach”. Pthread and OpenMP are com-
monly used to extract parallelism based on loop iterations.

2. Functions exhibit a nested function-call structure. Leaf fun-
cions can be easily defined as light-weight kernels that fit fine
grained threading.

3. Functions are natural units for computation grouping. Closely
related instructions with a significant amount of dependen-
cies tend to be grouped within a function.

4. Functions are conceptually the smallest unit of user config-
urable tasks. A programmer tends to configure or optimize
computation based on functions. We expect the parallel pro-
gramming model to allow programmer to express additional
information based on functions. This additional information
may include data access patterns(which region of the array is
going to be consumed), data sharing status(read-only or read-
write), etc. With this information, more dependencies can be
deduced statically, and run-time thread speculation becomes
more accurate.

5. Previous work[1][12] has shown that function level paral-
lelism demonstrate good speedup. Balakrishnan and Sohi
et al. [1] made an effort to speculatively execute methods.
In their approach, programmers pick which method to exe-
cute speculatively. The appointed method usually performs
a significant amount of computation. Their result also shows
good speedup, which supports function level parallelism.

4. Methodology
Since our dependency analysis is based on memory dependency,

dependencies caused by side effects are omitted. As a result, the
user must annotate the source code to indicate the interested code
region for our analysis. The selected code region is typically com-
putation and data intensive. It forms the main component of the
program’s computation with no side effects (such as printing). We
are not counting register dependencies since many register depen-
dencies are caused by hardware limitations. Most importantly, reg-
ister dependencies can be predicted[13] or precomputed[4].

The annotated code is compiled by gcc/g++. We use Pin [8] to
capture the memory trace of a process. Because dynamically linked
libraries may be linked to a program with a far jump and no returns,
we require programs to be statically linked so that Pin can capture
all procedure calls and returns. For each instruction, we record in

the trace its program counter, load address and store address. In-
formation about loops is recorded as well. In addition, user mark-
ers are preserved in the trace. After that, the trace record is post-
processed to extract PTthreads based on procedure calls, loops, and
user markers. PTthreads are organized in a nested task graph. De-
pendencies among child PTthreads are known to the parent PT-
thread. With appropriate memory reallocation, PTthreads can be
rescheduled and simulated on a CMP cache simulator. Statistics
can then be gathered and analyzed.

Figure 1 gives a birds-eye view of what ParaWeaver does.

4.1 Source Level Interaction
Besides annotating the interested code region to inspect, we also

rely on programmers to define coarse grained threads. In reality,
it is common for programmers to define threads explicitly using
Pthreads, OpenMP, etc. In our experiment, we replace Pthread
function calls in SPLASH2 benchmarks with user markers. By do-
ing this, we can make sure that our definition of coarse grained
threads corresponds to reality.

We provide five markers for code annotation. These markers are
merely names to functions with no-ops. Pin is able to capture pro-
cedure calls with procedure names. Thus, user markers can be cap-
tured and analyzed. THREAD BEGIN and THREAD END
enable programmers to regroup the computation that can poten-
tially form a thread. Programmers can also insert a THREAD BARRIER
marker whenever they want all the previous child threads to finish
before continuing the parent thread. This marker is needed when
there is a dependency among the threads so that the consumers have
to begin execution after the producers finish.

To annotate the beginning and end of the interested code region,
programmers can use PROCESS BEGIN and PROCESS END.

Figure2 shows simplified sample code for a fast fourier trans-
form with code annotation.

4.2 Loop Detection
Loops are detected based on backward branches and other heuris-

tics. Instruction traces between the backward branch target address
and the most recent instruction at its branch target address forms
an iteration. To extract PTthreads from an iteration, we need to iso-
late the main loop body from the loop monitor code which always
causes a dependency across iterations. To do this, we maintain a
small window when tracing the program under Pin. Each dynam-
ically executed instruction is given a unique ID which increments
per instruction. A window records memory load information for
the most recent instructions and their dependent stores. When a
taken backward branch is found, we compare the current instruc-
tion’s ID to the store instruction’s ID recorded in the window. If
the store instruction is within a reasonable distance (4 instructions,
in our example), we will isolate the code between the store instruc-
tion and the current branch instruction as loop monitoring code.
We realize that this loop-body isolation technique doesn’t cover all
cases and is not precise, but experiments show it works for the most
common scenarios.

Figure 3 shows an example of loop detection. The detected back-
ward branch corresponds to line 17 in the FFT source code. In this
example, the loop monitoring code in bold font is detected and iso-
lated from the loop body.

4.3 Synthesize Memory Trace for a Parallel
Program

As an offline post process, ParaWeaver loads in the sequential
memory trace and synthesizes memory traces of a parallel program.
A call graph representation of the PTthreads is built as well. Each
node in this call graph represents a PTthread. Dependencies among
the child PTthreads are kept within each node.

Figure 4 illustrates a PTthread node in the call graph. Shaded
areas represent child PTthreads that link to child nodes. White
areas represent native computation within this PTthread. A de-
pendency graph among native computation segments and child PT-
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Figure 1: Flow Chart of ParaWeaver

threads also resides in each node (not shown in Figure 4). Note that
the per-node dependency graph is built by traversing the sequen-
tial memory trace while simulating a call stack. Memory loads and
stores issued by the current threads are also broadcasted to parent
threads in the call stack. Dependency edges are added accordingly.
Figure 5 gives a simple example of the call graph.

To compare the fine grained threads and coarse grained threads,
we provide two options for building the call graph and extracting
PTthreads. PTthreads can be extracted where programmers anno-
tate the source code. This correspond to the extraction of coarse
grained threads. Fine grained threads are extracted from procedure
calls and detected loops.

4.4 Detecting Shared Variables and Private
Variables

The PTthreads extracted directly from a sequential memory trace
cannot be used to study the cache sharing behavior of a parallel
program. In a sequential program, variables are often reused by
multiple statements, even though these statements may actually be
turned into parallel statements. A typical example is a loop iteration
with iteration-private variables. Some common scenarios are:

float a;
for(int i=0; i<MAX; i++){

a = foo(i);
...

}

for(int i=0; i<MAX; i++){
float* a = (float*)malloc(sizeof(float)*100);
foo(a);
...
free(a);

}

Assuming in these scenarios, iterations are independent with each
other (no RAW dependencies across iterations). A PTthread will
be extracted for each iteration. These PTthreads may execute in
parallel when rescheduled on our CMP cache simulator. Although
variable a is reused by each iteration in the legacy code, it will
be incorrect to reuse a in the parallelized code. Instead, a should
be a private variable to each iteration if iterations are treated as

concurrent treads. Therefore, we have to distinguish between vari-
ables that are shared by concurrent PTthreads, and variables that
are reused and are actually private to concurrent PTthreads. For
reused but private variables, we will have to rename the variable to
another memory address.

The algorithm contains two passes. In the first pass, PTthreads
are extracted along with their dependencies. Every store records
which PTthread is the previous producer for the same address. In
the second pass, we go through the trace in sequential order again.
For each store, we compare the PTthread it belongs to and the PT-
thread that writes to the same address previously. If the two PT-
threads have dependency, then the data at this address is shared.
Otherwise, the data is PTthread private and has to be renamed. Ev-
ery load instruction updates their load address to the most recently
renamed address.

We need two passes because when a PTthread writes to an ad-
dress that has been modified by a previous PTthread, it doesn’t
know whether the other PTthread has dependency with itself until
the current PTthread is fully built. Since dependencies are recorded
locally (a parent thread only knows the dependency among its child
threads), it is not straightforward to tell whether two arbitrary threads
have dependency. A naive approach is to construct a full graph
among all the threads, which is both time and space consuming.

We take another approach and use the call stack. Since PTthreads
are traversed in a depth first order in the sequential program, each
PTthread is assigned to an ID according to this order, as illustrated
in Figure5. Suppose PTthread 8 writes to an address which is pre-
viously modified by PTthread 4. At the same time, the current call
stack contains PTthread 6 and PTthread 1. Since only the parent
node knows the dependency among the child nodes, the visible de-
pendencies are those between PTthread 2 and 6, and PTthread 7
and 8. To decide whether PTthread 8 and 4 are dependent, we need
to find which PTthread in the call stack is the most recent ancestor
shared by PTthread 8 and 4. This is easily computed by finding the
lower bound of ID 4 in the call stack. In this case, it is PTthread
1. We also need to find which child of PTthread 1 has PTthread 4
as its descendant. This is achieved by finding the lower bound of
ID 4 in the list of the child PTthreads of PTthread 1. In this case,
the child list of PTthread 1 contains PTthread 2 and 6. The lower
bound for PTthread 4 is 2. To decide whether PTthread 8 is depen-
dent on PTthread 4, we only have to look up whether PTthread 6
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Figure 2: Annotated source code for fast fourier transform. Functions in bold font are annotations

Figure 3: Loop Detection For FFT source code around line 17.

is dependent on PTthread 2, which is recorded in PTthread 1. This
algorithm requires no extra storage and has the time complexity of
O(log(NM)), where N is the depth of the call stack and M is the
number of child PTthreads of the shared ancestor.

4.5 Synthesizing a Parallel Process
After ParaWeaver constructs the call graph and synthesized mem-

ory trace for PTthreads, it reschedules the PTthreads and simulates
an execution of a parallel program. Users are able to specify the
number of cores, the scheduling policy, and memory access pol-
icy. The available scheduling policies are FIFO and LIFO. FIFO
scheduling corresponds to breadth first traversal of the call graph,
while LIFO scheduling corresponds to depth first traversal. For
memory accesses, ParaWeaver provides three policies. A core can
either stall and wait for a memory request, or it can continue exe-
cution assuming a perfect MSHR implementation. Another option
is to switch to another PTthread whenever a memory request is is-
sued, which is the scheduling policy implemented in some graphics
hardware.

We choose our simulation hardware to have a two level cache
hierarchy. Each core has its private 16K L1 cache, the L2 cache is
shared and has a size of 512K. Memory requests to the L2 cache are
uniform. Memory is also modeled. Figure 6 illustrates the structure
of our CMP cache simulator.

Our simulation is not cycle accurate. It assumes a uniform cycle
per instruction(CPI) for instructions don’t access memory. Over-

head caused by thread context switches are tunable in our simula-
tor. Although the simulator is not cycle accurate, we can still gain
some insights from the experiment. In our simulation, consumers
will always start when its producers finish execution.

5. Results
Figure 7 shows the speedup normalized to coarse gained threads

running on one core with FIFO scheduling. Threads also stall on
memory requests. Figure 8 shows the same result but plotted with
lines. For last level cache miss rate, Figure 9 and Figure 10 show
the results for the last level cache miss rate.

Our results indicate that fine grained threads have significant
speedup than coarse grained threads on CMP architectures. Even
for this simple FFT program, the speedup usually ranges from 1.5
to 2 regardless of the scheduling policy and memory request mech-
anism. Moreover, fine grained threads have a lower shared cache
miss rate, as we expected. FFT is a micro-benchmark that a fine-
grained threaded program doesn’t differ significantly from a coarse
grained program. In the case of FFT, L2 cache miss rate under fine
grained threads doesn’t differ much from coarse grained threads.
Therefore, we believe that the performance gains come primarily
from the fact that workloads are more balanced among the cores
under fine grained threads than from coarse grained threads. We
think that the benefits of fine grained threads will become more ob-
vious for more complex programs with a deeply nested call graph
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Figure 4: A Typical PTthread node in the call graph

Figure 5: Call Graph of PTthreads

like video processing, where threads can be extracted from each
frame, and from each pixel in one frame.

Our results also show that FIFO scheduling and LIFO schedul-
ing don’t make much difference for the FFT application. Except
for coarse grained threads, if the core switch to other threads when-
ever a memory request is being made, FIFO scheduling usually per-
forms better than LIFO scheduling in both speedup and L2 cache
miss rate. This result is counter-intuitive, because LIFO scheduling
tends to execute concurrent threads with similar working sets. The
fact that LIFO doesn’t make much difference may be due to the fact
that FFT has a flat call graph with doesn’t exhibit a deeply nested
structure, all the threads are mainly extracted at the same layer.
Thus, LIFO and FIFO don’t make much difference. FIFO schedul-
ing has advantages over LIFO scheduling in that FIFO scheduling
corresponds to a breadth first traversal of the call graph and can
spawn more threads than LIFO scheduling, which corresponds to a
depth first traversal of the call graph.

6. Conclusions and Future Work
In this paper, we show that a programming model for fine grained

threads is beneficial to parallel programs running on CMP architec-
tures. This is even true for a our microbenchmark which has a flat
call graph. We expect that for a more complex program with a
deeply nested call graph, fine grained thread’s benefits will become
more obvious for the following reasons:

1. Fine grained threads expose parallelism into much finer de-
tails than coarse grained threads. Therefore, it is easier to
balance the workload among several cores.

2. If scheduled appropriately, fine grained threads can be exe-
cuted in a way that concurrent threads have better data affin-
ity and share a significant section of working set. This will
lower last level cache misses.

However, we haven’t evaluated the impact of increased thread
communication and increased thread context switches due to fine
grained threads. As our future work, we will characterize the im-
pact of these factors. More sophisticated benchmarks will be ana-
lyzed as well.

In summary this work indicates fine-grained threads will be ben-
eficial if communication of switching overheads can be kept low
enough.
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