A Study of an Alternative Split Cache Organization
Jack W. Davidson

Computer Science Technical Report 85-04a
November 30, 1984



A Study of an Alternative Split Cache Organization

Jack W. Davidson

Department of Computer Science
University of Virginia
Charlottesvilie, VA 22901

ABSTRACT

Split caches are normally divided inte two parts, one for data and one for
instructuions. Split caches provide all the advantages of a unified cache (e,
reduced memory access time and reduced memory bus traffic), and have several
additional advantages. The bandwidth s effectively doubled since a request for
data and a request for an instruction can be processed simmulianeously, and the
access time for a split cache may be Jower than a unified cache of the same size. In
addition, the individual caches can be tailored to the specific reference streams
they will encounter. In this paper we discuss a split cache organization motivated
by the execution stack found in many contemporary architectures and high—level
languages. Trace-driven simulations are used to evaluate the proposed design.
Based on these simulations, it is shown that such an organization can significantly
improve memory performance at a small cost. In particular, the miss ratio and
memory bus traffic are substantially reduced.

November 30, 1984

Department of Computer Science
The University of Virginia

Charlotiesvilie, VA 22901



A Study of an Alternative Split Cache Organization

1. Introduction

A cache memory is a ‘small (relatively), high—speed memory that maintains a copy of recently
used instructions and data. Data and instructions held in cache memory can be referenced in 10 to
25 percent of the time reguited to access main memory. Computer systems with good
price/perfc;rmance ratios are possible using cache memories. Consequently, most all modern,

medium to large—scale computer systems include some type of cache memeory.
There are two aspects of program behavior that make cache memories effective. They are:

1. Temporal Jocality, which is the tendency of a program to reference in the near future
those locations referenced in the recent past. Loops are one type of comstruct that contri~

bute to this phénomena.

]

Spatial iocality, which is the tendency of a program to reference in the near future loca-
tions near those referenced in the recent past. Processing arrays and sequential portions of

code lead te this phenomena.

The cache makes use of these phenomena by bringing in extra words on each access t© Iaip

memory (look ahead) and keeping copies of recently used words {look behind).

The main metric used to measure a cache memory’s effectiveness is hit rate. The hit rate is the
ratio of the toial number of memory references to the cache and the total number of memory
references expressed as a percentage. 1 ypically cache memories operate at hit rates of 85 10 90 per~
cent or greater. A small increase in the hit rate can mean substantially faster execution times. For_
an excelient introduction to cache memeories and survey of research in the design of cache mem{)rieé

up to approximately 1981 see [Smit82].

One method of improving certain aspects of cache performance is 1o split the cache into Two



separate caches. Normally one cache holds instructions while the other holds data. Such an
approach has several advantages. The bandwidth of the cache is essentizlly doubled since the two
caches can service requests simultaneously. As the size of a cache increases so may its access time.
This effect is caused by several factors. A very large cache may require mose COmpIex 4CCess Circu—
itry. Purther, with a large unified cache it may not be possible to place the cache near all the com~
ponents that need access to the cache. Splitting the cache may allow each portion to be placed at 1ts
most advantageous position, and since the individual caches are smaller they may have less compli-

cated access circuitry (hence faster).

A third possible advantage of a split cache organization is that the insiruction cache can be
simpler {hence faster or cheaper) if no stores are allowed into the instructicn éache [Smitgd). A
fourth advantage is that the imstruction cache and data cache can be tailored to the specific
referencing patterns found in their respective reference streams. A fifth advantage is that & sphi
cache allows more flexibility in choosing the total capacity of cache. Since most caches employ bit
selection to choose a set. caches usually come in sizes that are a power of two. For example, with &
unified cache of size 8K bytes, the next increment would be 16K. With a split cache it would be

possible 10 have total capacities of 9K (8K + 1K), 10K, and 12K.

The main disadvantage of the split instruction/data cache is its ipeficient use of the cache
memory. A unified cache is in some sense sélf ~managing. It can devote space to the portions of a
program (instruction or data) in the most demand. On the other hand, in & split cache instructions
agd data.cannot share the total resource available. Simulation studies havé shown that where
instruction and data can appear in the same cache lines, split caches may have lower hit rates than

upified caches. The effect depends on the particular workload [Smit82).

This paper examines the performance of a split cache organization that is motivated by the exe~
cution behavior of high—level languages. ln particular we examine the performance of a cache that
is split into a section that holds references to the runtime stack, and a section that hoids references

to instructions and all other data.

The rest of this paper is organized in the following manper. This section concludes with 2



review of some of the current work in cache memory design. Section 2 describes the motivation
for splitting a cache into a section for the runtime stack and a section for instructions and all other
data. Section 3 describes the proposed design. The trace—driven simulations conducted to evaluate
the proposed design are described in Section 4. The results of the simulations are presented in Sec
tion 5. Section 6 analyies the simulation resulis and discusses the architectural ramifications of the

proposed cache organization. Conclusions are presented in Section 7.

1.1 Recent Work

In his PhD dissertation, Borgwardt describes the development of cache structures 1o speed up
memory referencing for block structured languages such as Pascal [Borg8il. Most of his propésals
are for additional hardware aimed at reducing the number of microinstructions needed 10 emulate
an instruction_ rather than at attempts to improve the cache hit rate. To test the various schemes
proposed, six different mictoengines were coded 1o emulate Pascal P-code, and their performances

were compared on a variety of Pascal test programs.

He concludes that the use of special hardware to generate stack addresses based op the Pascal
runtime environment can result in significant speedups. He also tests the effects of various write
policies, the use of top of stack registers, and a 64 word top of stack minicache, and prograrn pre-

fetching. Each one of these provided a small amount of improvement in performance.

A Tecent sf.udy by Hill and Smith, describes the design of on—chip caches for microprocessors
[Hil184]. Placing the cache on the processor chip can reduce both memory access time and bus
traffic. Using ;craces frorn' four machines, two 16—bit architectures and two 32-bit architectures,
they determined that a sectbr cache organization is a good choice for small on—chip caches. The use
of a sector cache aliows tradeoffs between the chip at¢a required, the hit rate, and the amount of

trafic on the memory bus.

Smith and Goodman analyze, both theoretically and experimentally, the cache placement poli-
cies for instruction caches [Smit84). The theoretical analyses are based on a pew model for cache
references — the loop model. The loop model assumes the instruction stream consists of an

unbounded sequence of address references formed by periodically repeating the same finite seguence

-3



of new address references. Their experimental resuits indicate that the loop model is a good pred-

ictor of observed cache behavior.

Several techniques for reducing processor-memory traffic are discussed in [Good83]. He shows
that when process switches are infrequent, an effective way 10 reduce memoTy—processor trafhe is
1o have the cache exploit primarily temporal locality. The trafic ratio can be reduced further by
using a new write strategy — wrile once. With the write once strategy, initially write—thkrough is
employed. All other caches are purged of the block being written. On successive writes 1o the
block, copy—back is employed. Goodman shows how this policy reduces memory traffic, yet pro~
vides a general solution to the cache consistency problem. Trace~driven simulations were per-—

formed for the VAX~-11 and PDP~11 architectures to test these ideas.

In a recent paper by Clark, cache performance of the VAX-11/780 is studied by direct measure—
ment of the hardware [Clar83l. .Two different types of workloads were measured using the
hardware monjtor. One was measuremeni of the machine in normal use at a Digital Equipment
Engineering Site. The second was a synthetic workload produced by a remote terminal emulator
using canned scripts to simulate a general timesharing load in an educational program-—development
environment. Besides characterizing the behavior of the 780°s cache, this study shows that trace—

driven simulations appear to be overly optimistic in their characterization of cache performance.

2. Motivation

The implementations of many high-level languages use a central stack for storing procedure
and .f unction e'nvimnments. Pascal, C, Algol, Modula, and Ada are all examples of such languages.
Conseéquently, for this reason apd others, many CORtemporIary architectures support a hardware
stack. Besides providing support for the implementation of high-level languages, hardware stacks
allow interrupts to be nested and they support shareable or reentrant routines. The PDP-11 and
VAX-11 processors, the Motorola 68000, the MNazional Seiniconductor 32016, the Prime processors,

and the Pyramid processor, 10 name a few, all support hardware stacks.

This suggests that a possible division of the cache may be to split it into & section for stack

references, and one for imstruction references and non-stack datz references. To study how

._.4..._



programs reference stack data and non-stack data, address traces for five programs run on a VAN~
11/780 running UNIX were produced with tags to discriminate between instructon references {1-
stream’), data references (‘D-siream’). and stack references (‘Swstream’). These programs are
described in Section 3. Table 1 shows the percentage of references for each of these streams broken
down by whether they were reads or writes. It should be noted that the ]~stream percentages are
adjusted to refiect that individual bytes are not fetched from memory, but that an iastruction
buffer feiches ahead of the program counter. This is, of course, only an approximation 1o the way

the VAX actually operates.

Stream Distribution

program || instruction stream data stream stack siream

Teads reads  writes  total [l reads writes  total
pargen 73.0 6.6 0.4 7.0 7.8 12.3 201
ed 48.7 18.1 12.2 36.3 10.6 10.4 21.0
nroff 52.3 12.6 51 17.7 14.8 15.2 30.0
ZBT0S 399 9.3 5.5 14.8 21.4 23.9 45.3
cC 58.3 14.5 3. 17.6 12.6 1.5 1 241
average 54.4 12.2 5.2 17.5 15.4 14.7 28.1

Table 1. Distribution of Address References (percent)

The table shows that in all cases but one, the percentage of S—stream references is greater than
the D-stream references. D-stream references are 17.5 percent of the total number of references,
while S—stream references make up 28.1 percent of the total. It is interesting to note that refer-—
ences to the S=stream are spiit about equally between reads and writes, while for the D-stream the

reads are 12.2 percent of the total and the writes are only 5.2 percent of the total.

3. Proposed Design

Based on the statistics in Table 1, a cache split into 2 section for all stack references, and & sec~
tion for instructions and all non-stack data could be a viable organization for machines similar 1o
the VAX~11. Such an organization would provide increased bandwidth, and the stack cache’s

design could be driven by jts referencing patterns.

A stack's referencing paitern is very predictable. By its very nature, stack references are ver
2P

local. Consider how programs reference data. Most procedures and subroutines reference local

-5 -



variables that are found in the procedure’s activation record, which is Jocated at the top of the
stack. This reduces the possibility for conflicts, and indicates that a set—associative organization
could be an unnecessary expense for a stack cache. A more natural organization would be a

‘direct~mapped cache. This has the advantage of being cheaper and faster.

Approximeatelv SO percent of the references 1o the stack are writes. This is not surprising if one
considers hov\.f runtime stacks are used in programming languages. On a procedure or subroutine
call the caller’s state must be saved on the stack. For complicated calling sequences this may
invelve saving significant amounts of information. Even for the simplest calling sequence three to
four words must be saved. Similarly when & new procedure begins execution, its local variables
are allocated on the stack. At each invocation of the procedure, these variables zﬂust be initialized
(i.e. written) before they are used. Caches for many processors use a write—through and no write~
allocate policy because the percentage of data reads (ouy D-stream plus S—stream) is much greater
than data writes. The extra expense and complexity of write-allocate can not be justifed. Because
of the behavior shown in Table 1, it is clear that a stack cache should employ write—allocate. This
increases the hit rate, and if used in conjunction with a copv—back scheme, it significantly reduces

the number of memory Wwrites.

4. Trace—Driven Simulations

To test the above ideas, several controlled experiments were performed using address traces
gathered .on a VAX-11/780 running UNIX. Simulations were performed to determine: 1) the

optimal size of the stack cache, and 2) the effectiveness of the split cache organization,

The traces were generated by modifying and instrumenting the UNIX debugger, adb, to record
every address referenced by the program. Each address was tagged with information to identfy
the stream, the type of object referenced, and the operation to be performed. The possible streams

are: I-stream, D—stream, and S—stream. They are as previously described.

The possible types of objects are: byte, word, longword and- fioat, and guadword and doubie.

These types have lengths of 8, 16, 32, and 64 bits respectively. The possible operations are: read,



write, and modify. A modify operation is essentially a read thep a write of the same Jocation.
The address along with its tag allows reasonably realistic simulations of the VAX architecture to

be performed.
The programs traced were:

1) Pargen — & LR(1} parser generator written in Pascal.

2} Ed - a simple text editor writien in C.

3) Nroff — a text formatting program written in C.

4) Zeros — z program for finding the zeros of functions written in FORTRAN-T77.

5) Cc - the C compiler written in C.
Ed. nroff, and cc are production programs found on most UNIX systems. The trace for each pro-
gram consisted of approximately 250,000 address references. While it is felt that these programs
are reasonably representative of the types of programs run under UNIX on a VAX-11, different
programs could yield different results. In addiuon, as in the case of most trace-driven simulations,

traces of the operating sysiem were not included. Consequently, the performance reported here is

likely to be lower in practice.

Each simulation u;sed all five address traces 10 simulate multiprogramming. Each trace was used
for 10,000 time units before switching to the next trace. The simulation clock was incremented by
one time unit for each cache hit, and ten time units on each cache miss. No distinctions were made
between the time required for a read and write miss, or read and write hits. Scheduling of which
t.race 1o use next was done on a round-robin basis. The simulations were run for approximatel'y 1
million address references. Because the address traces contain the virtual addresses fetched by the
programs, each trace was mapped o its own distinct address space before being presented to the

cache.

Because the address traces were generated on a VAX-11/780, the raw trace files contain a large
pumber of J-stream Teferences. This is because the VAX uses an eight byte instruction buffer (1B7)

to prefeich bytes ahead of the program counter. The IB operates in the following manner. It



fetches ahead of the program counter. When a jump occurs, several bytes may have been fetched
that will not be used. The IB fetches an address—aligned four bytes whenever there is room in the
IB for at least one bvte. When these four bytes arrive (possibly much later), the IB takes as many

bytes as it has room for then [Emer84].

Simulation of the actual behavior of the IB would be difficult due 1o the timing dependencies of
its operation. In the trace—driven simulations described here, the IB fetched a four byte address—
aligned longword only when the IB was empty. Jt is interesting to note that Clark reports in his
paper on the measurement of the VAX that 66 percent of references to the cache are due to the I~
stream [Clar83). Our simulations with a cache organization identical to the VAX’s show an average
of about 55 percent of the references 1o the cache are due to the I-stream. Part of this difference is

due to the conservative fetch policy used in our simmulation of the IB.

The first set of simulations were conducted w determine, for aggregate cache sizes ranging from
1K bytes 1o 128K bytes, the optimal size for the szac}q. cache. The instruction/data cache had the
foliowing organization: a) Two—way set—associative, b) random replacement, ¢J write~through and
no write-allocate, and d) a line size of eight bytes. The stack cache was direct—mapped with a line
size of eight bytes. For each agpregate size, several experiments were run to determine the best
split.

To evaluate the performance of the split cache, five sets of experiments were performed. Each
experiment had a different cache organization. In all experiments 1nvolving a stack cache, only the
optimal size stack cache was tested. For each experiment, caches with total capacities ranging from

1K bytes 1o 128K bytes were tested. The five organizations tested were:

1) a unified, two—way sel—associative cache, random replacement, write~through ané no
write—allocate, and a line size of eight bytes. This organization is the one found in the

VAX-11/780.

2) asin 1 above, except that on S—stream references write allocation is performed.



Optimal Stack Cache Size
Total Cache | 1/D Cache | Stack Cache | Hit Rate
Size ' Size Size

1k 25k 5k 0.84467
1k S0k S0k 0.88290
1k 5% 25k 0.89112
1k 825k J75k 0.88845
2k 1.k 1k 0.90600
2k 1.5k Sk 0.91445
2k 1.75k 25k 0.91451
2k 1.825% 25k 0.90844
4% 2% 2k 092418
4% 2k 2k 0.92418
"4k, 3k 1k 0.93046
4k 3.5k Sk 0.93029
8k 6k 2% | 0.94878
8K 7k 1k 0.94977
Bx 7.5k Sk 0.94880
16k 14K 2% | 0.96136
*16k 15k 1k 0.96201]
16k 15.5k Sk 0.96185
32k 30k 2% 0.97294
#32k 31k 1k 0.97300
32k 31.5k Sk 0.97247
64% 50k sk | 0.98006
564K 60k 4% | 098034
64k 62% 2k 097914
64k 63k ik 0.97834
64k 63.5k Sk 0.97740
128k 123k 5k 0.98216
*¥128k 124% 4% 0.98231
128k 126k 2k 0.98116
128k 127k 1k 0.98014

Table 2. Experiments to Determine Optimal Stack Cache Size
3) a split cache, where the 1/D cache is organized as in 1 above. The stack cache Is a

directed—mapped cache with a line size of eight bytes.
4) as ip 3 above, except that on S—stream references write allocation is performed.
%) as in 4 above, excepl that the stack cache employs copy-back.

Experiments 1 and 3, and 2 and 4 serve to isolate the effects of the split cache organization.

Experiment 5 serves 1o determine the effectiveness of using copy—back in the stack cache.

Throughout the simulations several parameters were kept constanl. For instance, the line size

and the number of elements per set were not varied. The motivation for this was to stay as close



as possible 1o the organization used in the VAX. This allows comparisons between our results and
resuits in several reports in the literature that described both the simulated and actual behavior of
the VAX~11/780's cache. This provides some degree of verification that the simulations are reliable.

Whenever possibie we compare the results reported here with the results from other sources.

5, Results

The results of the experiments to determine the optimal stack cache size are shown in Table 2.
The starred entries mark the optimal split for each totel size. For aggregate cache sizes of 1K and
2K bytes, a stack size of 256 bytes produced the best hit rate. For aggregate sizes ranging from 4K
to 32K bytes, a stack cache size of 1X bytes produced the best hit rate. For cachés larger than 32K

bvtes, a 4K swack cache is required for optimal performance.

Table 3 shows the hit rates for experiments 1, 2, 3, and 4. Experiment S's hit rate is identical .10
experiment 4's. These statistics are plotted in Fipure 1. As expected, there is a substantial
difference between the hit rates of the experiments where the indepepdent variable is write—
allocate or no write—allocate. We note that that splitting the cache into an instruction/data cache
and a stack cache incurred no miss ratio penalty. In fact, in both experiments where the indepen—

dent variable was the split cache, the split cache, in general, had a slightly higher hit ratio.

Cache Hit Rate Statistics
Unified Cache Snlit Cache(Optimal Split)
No Write Alloc | Write Alloc (1/D) {Stack) | No Write Alloc | Write Alloe
Experiment 1 Experiment 2 Experiment 3 Experiment 4
Size Hit Hit Size Size Hit Hit
(bvtes) Rate Rate (bvies)  {bvtes) Rate ‘Rate
1k 0.84441 0.88708 5k 25k 0.86166 . 0.89112
2k 0.88232 0.91634 1.75k 25k (0.88663 0.91451
4k 0.90024 0.92911 3k 1k (0.91280 0.93047
Sk 0.92665 0.94856 7k 1k 0.93381 0.94977
16k 0.94575 0.96129 15k 1k 0.94671 0.96202
32k 0.9617% 0.97298 31k 1k 0.95976 0.97300
64k 0.96948 0.97847 &0k 4% 0.97237 0.98034
128k 0.97376 0.98174 124k 4k 0.87503 0.98232

Table 3. Hit Ratios for Experiments 1, 2, 3, and 4

We note that the 8K cache in experiment 1 is the orpanization found on the VAX. lIts hit ratio

mlo_



is 92.6 percent. In Clark’s paper on the measured performance of the VAX, he notes that 1. §. Emer
performed some simulations of the 780°s cache organization {Clar83). Emer reporied hit ratios of 93

percent.

Experiment 5 was conducted to determine the effects of using a copy~back mechanism in the
stack cache. One set of simulations were conducted that used ap optimally split cache that
employed write—allocate, but no copy—back. A second set of simulations were Tun with the same
organization except that the stack cache employed write—allocate with copy~back. Table 4 con-

tains the results of this experiment.

Write Traffic Reduction (Experiment 5)

Total Cache /D Stack § Write Through Copy Back Reduction
Size (bvtes) | (bvies) | (byies) # of Writes) | (# of Writes) | (percent)

1k 75k 25k 164954 46477 7

2k 1.75k AN 177611 48559 T2

4k 3k 1k 181627 46275 74

8k 7k 1k 202704 49575 75

16k 15k 1k 226653 54193 76

32k 31k 1k 247529 58816 76

64k 60k 4k 255132 57251 77

128k | 124k 4k 260185 58101 77

Table 4. Comparison of Memory Writes Copy Back vs. No Copy Back

The number of memory writes is reduced by anywhere from 71 percent for an aggregate cache
size of 1K bytes to 77 percent for an aggregate cache size of 128K bytes. The extra complexity and

expense of a copy—back cache would seem to be worthwhile.

6. Amnalysis

The proposed split cache design offers all the advantages previously mentioned for a split cache.
The bandwidth is doubled since the cache can service Two reguests sirnultaneously if the xequeéts
are not to the same cache. Another advantage is that the individual caches can be placed near the
components that need access 1o them. In a later section we discuss placing the stack cache on the
chip with the processor. The split cache provides flexibility in choosing total cache size. It is pos—
sible 1o have a cache memories with capacities other than powers of two. The following sections

discuss specific areas of analysis.

_.11_



s T B e ¢ SRR S

- EXP1

) EXP2
£ EXP3
2, EXP4

©.84 :

T T P T T T T R

2 3 . 4 5
19 18 16 18 18

CACHE SIZE

Figure 1. Hit Rate Comparisons of Experiments 1, 2, 3, and 4

6.1 Hit Ratio

Comparison of the results of Experiment 1 and Experiment 3 show that with all other design
parameters being the same, the overall hit rate for a split cache was higher than the hit rate for a

unified cache of the same size (see Figure 1). The diference, however, is small.

The major impact was caused by tatloring the stack cache’s organization 1o handle the referepc—

...'12._



ing patterns it encountered. Using a write—allocate policy in the stack cache significantly
improved the hit rate. It is interesting 1o note that in his simulations of the PDP~11/70 cache,
Strecker reports neligible performance differences between write-allocate and no write—allocate
for 2 unified cache of 1K byies, two—way set~associative, and random replacement [Sire76). Use of
this organization is so effective that a split cache of a specified size out performs a unified cache that
has double the capacity. For example in Tebie 3, the hit rate of the 8K split cache (7K + 1K) has 2
hit rate of 94.9 percent. The unified cache of 16K has a hit rate of 94.5 percent. This improvement

would be even higher in an actual configuxation where the size of the 1/D cache would be 8K bytes.

It is interesting to note that the recently announced VAX 8600 emplioys a 16K copv—back cache
{Desmf4). Qur simulation studies indicate that comparable performance could be obtained by
emploving an 8K 1/D cache with write~through and a 1K stack cache with copy-back. Such a

configuration would be cheaper providing a significant]y better cosi/performance ratio.

Tabkle 5 shows a breakdown of the hit ratios by stream. The hit rates for the I-stream and S~
stream are significantly higher than the hit rate for the D-stream. This is not surprising consider-
ing that the referencing patterns for the J—stream and S—stream are predictabie. This points out
several avenues of experimentation. ls it possible to significanty improve the hit raie of the D~
stream? One possible way would be 1o have the sof tware (i.e. the compiler) predict the referencing
pattern for the D-stream. Perhaps performance could be improved further by splitting the cach
into three parts: a cache for the I-stream, a cache for the D-stream, and & cache for the S—stream.
In this way the data cache could be tailored to iis referencing stream (if there is one). If there is no
discernible pattern to the D-stream, it may be that a small fully associative cache could pravide

better performance.

6.2 Cache Consistency

While using a copy—back mechanism reduced the number of writes to memory by approxi-
mately 77 percent, a copy-back cache exacerbates the problem of cache consistency In multiproces-
sor systems [Cens78, Dubo82, Smit82] If write—through is used, main memory always contains an

up—to—date copy of all information. With copy—back, however, different versions of the same

....13__



Breakdown of Hit Ratigs bv Stream
Total Cache 1/ Stack ]-stream | D-stream | S—stream Total
Size (bvtes) | (bvies) | (bvtes)
1k 5k 25k 0.90560 0.72102 0.84851 0.89112
2k 1.75k 25k 0.92692 0.78264 088164 0.91451
4k 3k 1k 0.940%6 0.80847 0.89647 0.93047
8k 7k 1k | 0.9594% 0.85680 0.92455 0.94977
16k 15k 1k 0.97182 0.88794 0.94170 0.96202
32k 31k 1k 098307 0.91603 0.953671 0.97300
64Kk 60k 4k 0.98819 0.92967 0.96410 (.98034
128x 124k 4k 0.98968 0.93658 0.06775 £.98232

Table 5. Hit Ratios by Stream
piece of information may exist in several different places at the same time. There are several solu-
tions to this problem. One approach was discussed in the review of recent work. A second
approach is 1o create a special bus to broadcast the address of a write by a processor to all other
processors [Cens78). The other processors can then invalidate their copy. A third solution is to use
a directory of main memory lines, and use it to ensure that no lines are write~shared. This method

is very complex and may be expensive in terms of hardware.

The use of a simple convention and only using copy~back in the stack cache and not in the /D
cache, allows us to aveid many of these comp].icatiéns. The convention _zhat must be followed is
that information that can be shared among processors must not be stored on any processor’s stack.
While this convention must be enforced by the designer’s of the system software, it is unlikely
that glo‘oal shared data would have been allocated on the stack in the first place. Global shared

data may still be cached, but it will be entered into the I/D cache which employs write~through.

6.3 OBHChip éaches

For a given aggregate cache size, the optimal size of the stack cache is quite small. For example
for aggregate cache sizes of 1K and 2K bytes, 256 words of stack cache provides optimal perfor—
mance. For cache sizes ranging from 4K 1o 32K bytes 2 1K byte stack cache is sufficient. Hil: and
Smith note that placing a cache on the processor chip can reduce both mean memory access time
and bus trafic [Hill84]. They contend that these on—chip caches will initially be small, ranging

from 32 to 2048 bytes. The stack cache certainly falls into this range.



6.4 Architectural Requirements

The only real requirement for the proposed scheme 10 be implemented is the ability to distin-
guish between a stack reference and other types of references. For instance, the VAX-11/780 uses
one bit of the address to distinguish between references 10 the stack segment (known as the PI

space), and all other references. This capability could easily be added to other machines.

7. Summary

We believe thal the simulations presented in this paper show that a split cache crganization
based on an instruction/data cache and a stack cache is a viable split cache organization. Such an
organization provides excellent performance at a small incremental cost. While the simulations
presented here are for the VAX-11/780 only, we believe that similar results will be obtained for
other contemporary architectures. The Motorola 68000 and the National Semiconductor both have
hardware stacks and instruction similar 1o the VAX to support high—ievel languages. Simulation

experiments are currently being conducted to test this hypothesis,

8. Acknowledgements

We would like 1o thank Tim Sigmon for many helpful cbservations.



9. References

{Borg81]
{Cens78]
[Clarg3)
[DesmB4d}
[Dubos2]
(Emer84)
[Good83)
[Hiilg4]
fSmitg82]

[Smit84]

{Stre76]

F. A. Borgwardt, Cache Struciures Based on the Execution Stack for High Level
Languages, PhD Dissertation, University of Washington, 1981.

I.. Censier and P. A. Feautrier, A New Solution to Coherence Problems in Multicache
Systems, I EEE Transactions on Computers TC-27, 12 (December 1978), 1112-1118.

. W. Clark, Cache Performance in the VAX-11/780, ACM Transactions on Computer
Systems 1, 1 (February 1983), 24—37.

J. Desmond, Dec. Launches VAX 8600, Computerworld 18, 45 (November 1984), 1.
M. Dubois and F. A. Briggs, Effects of cache concurrency in multiprocessors, Froceedings

of the 9th Annual Symposium on Computer Architecture, Austin, TX, April 1982, 299-
308.

J. 8§ Emer and . D. W. Clark, A Characterization of Processor Performance in the VAX-
11/780, Proceedings of the Ilth Annual Symposium on Computer Architecture, Ann
Artbor, June 1984, 301-310.

J. R. Goodman, Using Cache Memory 1o Reduce Processor—-Memory Traffic, Froceedings
of the JO0th Annual Symposium on Computer Architecture, Stockholm, Sweden, June 3983,
124131

M. D. Hill and A. 1. Smith, Experimental Evaluation of On—Chip Microprocessor Cache
Memories, Proceedings of the 11th Annual Symposium on Computer Archileciure, Ann
Arbor, June 1984, 158~16€.

A.J. Smith, Cache Memories, Computing Surveys 14, 3 (September 19821, 473~33C.

L E. Smith and J. R. Goodman, Instruction Cache Replacement Pelicies and
Organizations, 549, University of Wiscansin, Madison, W1, July 1984,

W. D. Sirecker, Cache Memorzies for PDP-11 Family Computers, FProceedings of the
Third Annual Symposium on Computer Architecture, New York, January 1976, 155-158.

__'16_.



