
1

Scheduling Real-Time Tasks for Dependability

Yingfeng Oh and Sang H. Son
Dept. of Computer Science

University of Virginia
Thornton Hall, Charlottesville, VA 22903, USA

Real-time systems are increasingly used in applications whose failure may

result in large economic and human costs. Since many of the systems operate in

environments that are non-deterministic, and even hazardous, it is extremely impor-

tant that the systems must be dependable, i.e., the deadlines of tasks must be met

even in the presence of certain failures. In order to enhance the dependability of a

real-time system, we study the problem of scheduling a set of real-time tasks to

meet their deadlines even in the presence of processor failures. We first prove that

the problem of scheduling a set of non-preemptive tasks on more than two proces-

sors to tolerate one arbitrary processor failure is NP-complete even when the tasks

share a common deadline. A heuristic algorithm is then proposed to solve the prob-

lem. The schedule generated by the heuristic algorithm can tolerate one arbitrary

processor failure in the worst case. The analysis and experimental data show that

the performance of the heuristic algorithm is near-optimal.

Keywords: combinatorial analysis, dependability, heuristics, scheduling

INTRODUCTION

Many mission-critical and life-critical applications, such as space exploration, aircraft avionics, the

operation of nuclear power plants and defense systems, and robotics are not feasible without the

support of computer systems. These applications require long duration of reliable operations as

well as timeliness of operations. Computer systems that are built to support these applications

include SIFT1, FTMP2, the space shuttle primary computer system3, and MAFT4. These mission

critical systems are mainly parallel or distributed systems that are embedded into complex (or even

hazardous) environments. The most sought-after properties of these systems aretimeliness and

dependability. Timeliness is the system’s ability to meet its specified timing constraints, and

dependability is the system’s ability to continue its specified operations even in the presence of

hardware failures or software errors. A great deal of efforts has been invested to make computer

systems highly responsive and dependable, just to cite a few, 5,6,7,8,9.

2

Yet, conspicuously lacking in this scenario is an approach towards supporting timeliness (real-

time) and dependability (fault-tolerance) simultaneously in a system at the level of task scheduling.

Traditional approaches to provide dependability in a real-time system have been to separate the

concern of the two issues, i.e., task deadlines are met by real-time scheduling, with the assumption

that processors and tasks are free of failures and errors, while the dependability of the system is

achieved through redundancy techniques, assuming that task deadlines can be met separately.

These two assumptions have been challenged recently by several researchers10, arguing that real-

time and dependability requirements are not orthogonal. Consequently, some efforts11 have been

made to address the joint requirement of the two. However, the approaches adopted so far have

either beenad hoc or limited to specific case studies. A formal approach which addresses the prob-

lem in a top-down or bottom-up manner is needed, because such approach is essential in building

timeliness and dependability into a single computer system.

Since most cases of the general real-time scheduling problem are intractable, it is reasonable

to expect that many cases of the general real-time fault-tolerant scheduling problem are also intrac-

table. This is indeed the case, as shown by some of the results in this paper. However, this fact nei-

ther makes the problem go away nor render our approach ineffective; rather it requires that

heuristics be developed where the problem instances are NP-complete. In this paper, we formulate

the scheduling problem, and then show that the problem of scheduling a set of real-time tasks with

a common deadline on more than two processors for the tolerance of one arbitrary processor failure

is NP-complete.

Since NP-complete problems are widely believed to be computationally intractable, a heuristic

algorithm is proposed to obtain an approximate solution. The schedule generated by the scheduling

algorithm can tolerate, in the worst case, one arbitrary processor failure. Simulation and analysis

have been carried out to evaluate the performance of the algorithm, and it is shown that the algo-

rithm finds near-optimal solutions in most of the cases.

RELATED WORK

Though there have been several works in the literature that deal with real-time fault-tolerant

scheduling issues, they study the issues under different assumptions and are only remotely related

to our work. Here we only mention a few. Krishna and Shin12 proposed a dynamic programming

algorithm that ensures that backup or contingency schedules can be efficiently embedded within

the original “primary” schedule to ensure that deadlines continue to be met even in the face of pro-

cessor failures. Unfortunately, their algorithm has the severe drawback that it is premised on the

solution to two NP-complete problems.

Balaji et al13 presented an algorithm to dynamically distribute the workload of a failed proces-

3

sor to other operable processors. The tolerance of some processor failures is achieved under the

condition that the task set is fixed, and enough processing power is available to execute it. In other

words, the guarantee of task deadlines has been assumed beforehand. Bannister and Trivedi14 con-

sidered the allocation of a set of periodic tasks to a number of processors so that a certain number

of processor failures can be sustained. All the tasks have the same number of clones (or copies),

and for each task, all its clones have the same computation time requirement. An approximation

algorithm is proposed, and the ratio of the performance of the algorithm to that of the optimal algo-

rithm, with respect to the balance of processor utilization, is shown to be bounded by

, wherem is the number of processors to be allocated, andr is the number

of clones for each task. However, their allocation algorithm does not consider the problem of min-

imizing the number of processors used, and the problem of how to guarantee the task deadline on

each processor is not addressed. These are very important considerations that our work addresses.

Oh and Son15, 16 have investigated several special cases of the real-time fault-tolerant schedul-

ing problem. For one special case where the backup copies of the tasks are not allowed to be over-

lapped, the scheduling problem was proven to be NP-complete17. Two heuristic scheduling

algorithms were proposed to solve the problem. In this paper, we relaxes the previous requirement

that backup copies of tasks are not allowed to be overlapped, and prove that even allowing backup

copies of tasks to be overlapped, the scheduling problem is still NP-complete. The complexity

result presented here provides the solid evidence that even for a very simple instance, the schedul-

ing problem is NP-complete.

PROBLEM FORMULATION AND COMPLEXITY RESULT

We assume that processors fail in the fail-stop manner and the failure of a processor can be

detected by other processors. The means of processor monitoring, failure detection, and failure

notification are not considered here. We further assume that all tasks have hard deadlines and their

deadlines must be met even in the presence of processor failures. We say that a task meets its dead-

line if either its primary copy or its backup copy finishes before or at the deadline. Because proces-

sor failure is unpredictable and the task deadlines are hard, no optimal dynamic scheduling

algorithm exists. We therefore focus on static scheduling algorithms to ensure that task deadlines

are met even in the presence of processor failures. The scheduling problem can be formally defined

as follows:

A set ofn tasks is given to be scheduled onm processors. Each task is

characterized by the tuple− , where , , , and are the release time, the

computation time, the period, and the deadline of task. If is specified as a variable, then the

task system is termed anaperiodic task system. Otherwise, it is aperiodic task system. Associated

9m() 8 m r– 1+()()⁄

Σ τ1 τ2 … τn, , ,{ }=

τi ri ci pi di, , ,()= ri ci pi di

τi pi

4

with each task are a number of primary copies and a number of backup copies. A k-Timely-Fault-

Tolerant (hereinafter k-TFT) schedule is defined as the schedule in which no task deadlines are

missed, despite k arbitrary processor failures. Then, given a set Σ of n tasks, m processors, the

scheduling problem (hereinafter referred to as the TFT scheduling problem) can be defined, in

terms of a decision problem, as deciding whether there exists a k-TFT schedule for the task set Σ
running on m processors. In reality, it is more likely that a task set Σ is given, and the scheduling

goal is to find the minimum number of processors m, such that a k-TFT schedule can be constructed

for the task set Σ on m processors. This then becomes an optimization problem. If a decision prob-

lem is NP-complete, then its corresponding optimization problem is NP-hard.

The TFT scheduling problem is a natural extension to the real-time scheduling problem. It is

worth noting that tasks in most of the real-time systems are periodic7,9, and the scheduling of peri-

odic tasks has been the focal point of real-time scheduling theory. On the fault-tolerance aspect,

hardware and software redundancy, more specifically processor and task redundancy, are incorpo-

rated into the scheduling problem. The scheduling goal is instead captured by the new parameter,

k-TFT.

In the following, a special case of the TFT scheduling problem is considered. The tasks are

assumed to be independent and non-preemptive. Each task has a primary copy and a backup copy,

and the scheduling goal is to achieve 1-TFT for processor failure, i.e., the tolerance of one arbitrary

processor failure. This case of the TFT problem is chosen to be studied, because it is the simplest

case. Our strategy to tackle the TFT scheduling problem is to start with the simplest cases, and then

walk our way towards more complicated cases.

The task redundancy scheme specified in this case actually corresponds to the primary-backup

copy approach or recovery block approach. Primary-backup copy approach requires the multiple

implementation of a specification6. The first implementation is called the primary copy, and the

other implementations are called the backup copies. The primary and if necessary, the backup cop-

ies, execute in series. If the primary copy fails, one of the backup copies is switched in to perform

the computation again. This process is repeated until that either correct results are produced or all

the backup copies are exhausted. Here we consider a special case of the primary-backup copy

approach, i.e., each task has one backup copy only. The following Lemmas guarantee that having

one backup copy for each task is sufficient for the tolerance of one arbitrary processor failure. The

proofs of these Lemmas can be found in 16.

Lemma 1

In order to tolerate one or more processor failures and guarantee that the deadline of a task is

met using primary-backup copy approach, the computation time of the task must be less than or

5

equal to half of the period of the task, assuming that the deadline coincides with the period.

Lemma 2

One arbitrary processor failure is tolerated and the deadlines of tasks are met, if and only if the

primary copy of a task and its backup copy is scheduled on two different processors such that there

is no overlapping in time between their executions, and the backup copies of the tasks whose pri-

mary copies are scheduled on a processor must not be overlapped in time for their execution on the

same processor.

An obvious implication of Lemma 1 is that for each task, if the computation time of the task is

larger than half of its period, it is impossible to find a schedule that is 1-TFT. This is due to the

observation that if the primary copy fails at the very end, there will not be enough time left to start

a backup copy and finish executing it, assuming that the backup copy has the same computation

time requirement as the primary copy. This fact is used implicitly in many situations throughout

the paper.

In scheduling the backup copies, we have the options of allowing them to be overlapped or for-

bidding them from overlapping. Here we consider the case where the backup copies are allowed to

be overlapped with each other. What we mean by allowing them to be overlapped is that backup

copies of the tasks whose primary copies are scheduled on different processors are allowed to be

overlapped in time of their execution on a processor, since, by assumption, only one processor fail-

ure is tolerated in the worst case. However, backup copies of the tasks whose primary copies are

scheduled on the same processor should not be scheduled to overlap each other in time of their exe-

cution on a processor. To illustrate this concept of overlapping, let us consider an example.

Example 1

A set of tasks is given as follows: is the set of primary cop-

ies and the backup copy has the same computation time requirement as its primary . The pri-

mary schedule for the task set is given in Figure 1a. For the tolerance of one arbitrary processor

failure, a 1-TFT schedule is constructed in Figure 1b, where the backup copies are not allowed to

overlap each other. In contrast, the schedule where the backup copies are allowed to overlap each

other in time is given in Figure 1c. Let us look at the time after the primary copy P6 has finished

execution on processor 1. In the case of non-overlapping, the backup copy B3 will be executed if

processor 2 fails, while in the case of overlapping, either the backup copy B2 or the backup copy

B3 will be executed depending on whether processor 3 or 2 fails. Intuitively the length for the

schedule allowing overlapping of backup copies is shorter, but the overall schedule is more com-

plex since multiple backup schedules must be generated for each processor.

Σ P1 P2 P3 P4 P5 P6 P7, , , , , ,{ }=

Bi Pi

6

If the given number of processors is two, there apparently exists an optimal algorithm to sched-

ule a set of tasks having a common deadline so as to tolerate one arbitrary processor failure. How-

ever, for more than two processors, the scheduling problem is NP-complete even if the tasks have

the same deadline.

Problem (Task Sequencing Using Primary-Backup with a Common Deadline)

Instance: Set Σ of tasks, number of processors , for each task , one primary copy

 and one backup copy , a length (i.e., computation time), a common release

time , a common deadlined(t) = , and = . Note that

overlapping among backup copies of the tasks on different processors is allowed. denotes the

set of positive integers.

Question: Is there an 1-TFT schedule for Σ running onm processors, i.e., for each task ,

+ , and + , where , i andj desig-

nate the indices of processors.

Theorem 1

The Task Sequencing Problem is NP-complete.

Proof

It is easy to verify that the scheduling problem belongs to NP. We now transform the PARTI-

TION problem18 to the scheduling problem when the number of processors is 3, i.e.,m = 3.

The PARTITION problem is defined as follows:

Instance: Finite setA and a size for each .

Question: Is there a subset such that ?

This problem has been proven to be NP-complete18 and due to its simple form, it has frequently

P1 P2

P3 P4

P5 P6

B1 B2
B5 B6

B3 B4

B3
B1

B2

B4 B5

B6

(a) Primary schedule (b) No overlapping for backup copies

(c) Overlapping of backup copies

processor 3
processor 2
processor 1

Backup schedule for processor 1 Backup schedule for processor 3

FIG. 1:Comparison of schedules (overlapping vs non-overlapping of backup copies)

Backup schedule for processor 2

m 3≥ t Σ∈
P t() G t() c t() Z

+∈
r Z

+∈ D Z
+∈ c t() c P t()() c G t()()=

Z
+

σ t Σ∈
σi P t()() c P t()() σj G t()()≤ σi G t()() c G t()() D≤ i j≠

s a() Z
+∈ a A∈

A′ A⊆ s a()
a A ′∈∑ s a()

a A A′–∈∑=

7

been used in the NP-complete proof of other problems.

Given an instance ofA = of the PARTITION problem, we construct a task set

Σ using the primary-backup copy approach to run on three processors for the tolerance of one arbi-

trary processor failure, such thatΣ can be scheduled, if and only if there is a solution to the PAR-

TITION problem.Σ consists ofn + 4 tasks as follows:

, , ,

for t = , where = 2B (This can be assumed without lose of generality).

Thesen tasks are referred to asα-type tasks.

The other four tasks , , , and are defined as

, , ,

whereβ = . These four tasks are referred to asβ-type tasks.

It is easy to see that this transformation can be constructed in polynomial time. What we will

show in the following is that the setA can be partitioned into two sets and such that

 = and + = A, if and only if the task set can be scheduled to pro-

duce an 1-TFT schedule.

First, suppose thatA can be partitioned into two sets and such that =

 and + = A. Then for each task whose length is = , its primary

copy is scheduled on processor 2 anywhere during time interval[B, 2B), and its backup copy on

processor 3 anywhere during time interval [2B, 3B). For each task whose length is

= , its primary copy is scheduled on processor 3 anywhere during time interval [B, 2B), and its

backup copy on processor 2 anywhere during time interval [2B, 3B). For the tasks , , , and

, they are scheduled in the manner as shown in Figure 2. The schedule thus generated is 1-TFT

according to Lemma 2. Therefore, the task setΣ is scheduled on the three processors such that the

schedule is 1-TFT.

Conversely, if the task set Σ can be scheduled on three processors such that the schedule is 1-

TFT, then the schedule has one of the two forms as given in Figures 3 and 4, if the processors are

properly renamed and the tasks properly adjusted. Note that for each processor schedule, shuffling

a1 a2 … an, , ,{ }

r t() 0= c t() at= d t() 3B=

τ1 τ2 … τn, , , ai1 i n≤ ≤∑

β1 β2 β3 β4

r β() 0= c β() B= d β() 3B=

β1 β2 β3 β4, , ,

S1 S2

s a()
a S1∈∑ s a()

a S2∈∑ S1 S2

S1 S2 s a()
a S1∈∑

s a()
a S2∈∑ S1 S2 α S1∈ l α() a

α S2∈ l α()
a

β1 β2 β3

β4

2B 3B

P(β1)
P(β2)
P(β3)

P(β4)
P(S1)
P(S2)

G(β3) | G(β2)
G(β1) | G(S2)
G(β4) | G(S1)

0 B

FIG. 2:Mapping from PARTITION to Task Sequencing

processor 1

processor 2
processor 3

8

the primary copies in front of all the backup copies will not violate any scheduling constraint, since

primary copies can start earlier than scheduled and backup copies can start later than scheduled, as

long as the release time and the deadline constraints are not violated.

Case 1 (Figure 3): The primary copies of the four tasks , , , and are scheduled on

three processors. Let us assume, without lose of generality, that the primary copies of and

are scheduled on processor 1. Then one of their backup copies must start at time 2B and complete

at the deadline 3B, either on processor 2 or on processor 3. It is further assumed that backup copy

is scheduled on processor 2. For processor 3, exactly one copy, either primary or backup, of any

task among the n α-type tasks must be scheduled on it. This is because any 1-TFT schedule for the

three processor requires that no idle time exists on any processor, and the primary copy of a task

and its backup copy must not be scheduled on the same processor. Therefore, let all the tasks sched-

uled on processor 2 during time interval [B, 2B) be the set (U2 during [B, 2B] in the Figure 3),

and the tasks on processor 1 during time interval [2B, 3B) be the set , we have =

 and + = A. We have solved the PARTITION problem.

Case 2 (Figure 4): The primary copies of the four tasks , , , and are scheduled on

two processors. For the backup copies of the tasks , , , and , there are two cases in which

they can be scheduled.

Case 2.1: The four backup copies are scheduled on processor 3 during time interval [B, 3B).

Then during time interval [0, B) for processor 3, only primary copies can be scheduled if any 1-

TFT schedule exists. Let all the tasks scheduled on processor 3 during time interval [0, B) be the

set , and the rest of the n tasks be the set , we again have = and

 + = A.

β1 β2 β3 β4

β1 β2

S1

S2 s a()
a S1∈∑

s a()
a S2∈∑ S1 S2

β1 β2 β3 β4

β1 β2 β3 β4

2B 3B

P(β1)
P(β2)
P(β3)

P(β2)
P(U2)
P(U1)

G(S1)P(U2)

G(U2)

0 B

FIG. 3: Mapping from Task Sequencing to PARTITION

G(S2)
processor 1

processor 2

processor 3

2B 3B

P(β1)
P(β2)

P(β4)
P(β3)

processor 1

0 B

FIG. 4: Mapping from Task Sequencing to PARTITION

processor 2
processor 3

S1 S2 s a()
a S1∈∑ s a()

a S2∈∑
S1 S2

9

Case 2.2: Two of the four backup copies are scheduled on processor 1 and processor 2 during

time interval [2B, 3B) respectively. This implies that all the primary copies of the n tasks are sched-

uled on processor 3 (if any of the n tasks is scheduled on processor 1 or 2, then there is not enough

time for any of the backup copy of -type tasks to finish). The backup copies of the n -type tasks

must be scheduled on processor 1 and 2 during time interval [2B, 3B). Let all the tasks whose

backup copies are scheduled on processor 1 during time interval [2B, 3B) be the set , and the

tasks whose backup copies are scheduled on processor 2 during time interval [2B, 3B) be the set

, we have = and + = A. We have solved the PARTITION

problem.

Therefore, the scheduling problem is NP-complete. ■

1-TFT SCHEDULING ALGORITHMS

The NP-completeness result in the previous section suggests that the more generalized prob-

lem, where tasks do not share a common deadline, is at least NP-complete. While we would like

to design a heuristic for this problem, it is not yet clear to us at this moment that a reasonably effi-

cient heuristic exists for it. The evidences provided by Jeffay, Stanat, and Martel19 show that a set

of periodic tasks may not be feasibly scheduled non-preemptively on a single processor, even if its

total utilization is very small, i.e., close to zero. The utilization of a task is defined as the ratio

between its computation time and its period, and the total utilization for a set of tasks is the sum of

the utilization of each task in the set. The fact that multiple processors are involved further com-

plicates the scheduling problem, let alone the additional requirement of guaranteeing task dead-

lines even in the presence of processor failures. Therefore, we restrict our attention to the case

where all tasks share a common deadline.

In the following, we will first develope a heuristic to solve the scheduling problem as formu-

lated in the previous section, and then evaluate its performance. Though the requirement that all

tasks share a common deadline may seem restrictive, the analytic results obtained below can be

quite useful. In fact, our results answer the following question as well: Given a set of tasks each

with a primary copy and a backup copy (but with no real-time constraints), and the requirement

that the failure of any one processor be tolerated, how to schedule the task set, such that the length

of the fault-tolerant schedule is minimized, i.e., all the tasks complete execution as early as possible

even in the presence of one arbitrary processor failure?

In scheduling a set of tasks on m processors, the algorithm must be designed to minimize the

schedule length on each processor such that the task set can be successfully scheduled, and at the

meantime, to prevent the overlapping of the primary copy of a task and its backup copy. This 1-

TFT scheduling problem, at a glance, seems very much to resemble the scheduling problem of min-

β α

S1

S2 s a()
a S1∈∑ s a()

a S2∈∑ S1 S2

10

imizing the length of a schedule in a multiprocessor system. Since the scheduling to minimize the

length of a multiprocessor schedule is NP-complete, several scheduling heuristics have been devel-

oped, among which LPT20 and MULTIFIT21 are notable ones. However, there are two key issues

that set this 1-TFT scheduling problem apart from the problem to minimize the schedule length:

the requirement of scheduling primary copies as well as backup copies, and the requirement that

the primary copy of a task can not overlap its backup copy, but backup copies of the tasks whose

primary copies are scheduled on different processors can be overlapped with each other. The MUL-

TIFIT algorithm, though out-performing LPT in the worst cases, is not easily adapted to solve this

1-TFT scheduling problem. The LPT algorithm is therefore adopted here to serve as the base algo-

rithm upon which a heuristic scheduling algorithm is developed.

The scheduling algorithm starts by sorting the set of tasks in order of non-increasing computa-

tion times, and invokes the LPT algorithm to schedule the set of primary copies on the m proces-

sors. After all primary copies have been scheduled, all the tasks scheduled on any processor are in

order of non-increasing computation time, since the LPT algorithm schedules tasks in the same

order. Starting from the first processor schedule, we repeatedly apply the Adapted Largest Process-

ing Time first (or ALPT) algorithm to the backup copies of the tasks, whose primary copies are

scheduled on the same processor, until either the inability of the heuristic algorithm to schedule the

task set is reported, or all the m processor schedules are exhausted. In the later case, the task set

can be scheduled by the heuristic algorithm to produce an 1-TFT schedule on m processors. The

ALPT algorithm schedules tasks like LPT, except that the tasks (backup copies) may be scheduled

a little bit later than they should be in LPT. This modification is to avoid the overlapping of the

primary copy of a task and its backup copy.

We use pseudo-code to describe the heuristic algorithm as follows. Note that we sometimes

refer to the m schedules for m processors as one schedule as a whole. Let and denote

the starting time of task and its finishing time on processor i, respectively. The processors are

numbered from 1 to m. The function is defined as = y for the schedule , or

for task , where y is the index of the processor on which task copy is scheduled. denotes

the length of schedule or the schedule itself (understood by context) for the processor y.

Algorithm OV (Input: Task Set Σ, m, 1-TFT; Output: success, schedule)

(1) Sort the tasks in the order of non-increasing computation time and rename them

. Compute = . If or , then

success := false and report that the task set is not schedulable on m processors such that a

1-TFT schedule be produced. Otherwise, go to step (2).

(2) Apply LPT algorithm to schedule the task set on m processors.

si τ() fi τ()
τ

ρ ρ Ly() Ly ρ υ() y=

υ υ Ly

τ1 τ2 … τn, , , Ω c τi()
i 1=
n∑= cii 1=

n∑ Ω mD≥ l T1() D 2⁄>

11

(3) Let denote the lengths of the schedules on m processors (initially equal to

the lengths of primary schedules). If > D, then success := false; exit

(the task set can’t be scheduled); else o to step (4).

(4) (line 1) For processor to m do

 Let be the tasks (primary copies) scheduled on processor i.

(line 2) For task to do /* ALPT Algorithm */

(line 3) x := ;

(line 4) z := ;

(line 5) := z + ; := z;

(line 6) If > D then success := false; exit (the task set is infeasible);

(line 7) success := true; exit.

The scheduling process of algorithm OV can be illustrated by a simple example.

Example 2

The following set of tasks is given to be scheduled on three processors such that one processor

failure can be tolerated: = , = {10, 8, 8, 7, 6, 3}, r = 0,

and D = 25. First, the LPT algorithm is used to schedule the primary copies of the tasks on three

processors, as shown by Figure 5. For a processor i, the backup copies of the tasks whose primary

copies are scheduled on processor i are scheduled on all the other processors except processor i.

The scheduling process is illustrated by Figures 6a, 6b, and 6c. Note that if the number of proces-

sors available is two, this task set cannot be scheduled on two processors to produce an 1-TFT

schedule.

L1 L2 … Lm, , ,
max Li 1 i m≤ ≤(){ }

i 1←

υ1 υ2 … υki
, , , ki

j 1← ki

ρ min Lh h i 1 h m≤ ≤∧≠{ } 
 

max fi υj() Lx,{ }

Lx c υj() sx G υj()()

Lx

Σ τ1 τ2 … τ7, , ,{ } c τi() i 1 … 7, ,={ }

10
8

8 7
6

6
3

processor 1

processor 3
processor 2 primary backup idle

25

FIG. 5: Schedule created by LPT

8
8 7

6 3
processor 1

processor 3
processor 2 6

10

25

(a) Schedule created by OV for the backup task copies on processor 1

10

8 7

6processor 1

processor 3
processor 2

6 3

8

25

(b) Schedule created by OV for the backup task copies on processor 2

12

The correctness of the schedule generated by OV is guaranteed by the following theorem.

Theorem 2

Algorithm OV generates a 1-TFT schedule.

Proof

According to Lemma 2, what we need to show is that for each task, its primary copy and its

backup copy are scheduled on two different processors, such that the starting time for the backup

copy is no earlier than the completion time of the primary copy, and its finishing time is no later

than the deadline, and that the backup copies of the tasks whose primary copies are scheduled on

a processor can not be overlapped in time for their execution in the same processor.

Formally, following the notations used above, we need to show that

∀i (1 ≤ i ≤ m ∧ ∀j (∧ ∀ (< j ∧
((= x) → (≤))))) holds, where m is the number of proces-

sors, and ki is the number of primary copies scheduled on processor .

For each and , since x = from line

3, . Since = z = , ≥ . ≤ D from

line 6.

Since Li is initialized to be the length of the primary schedule on processor i, ≤
 since = z + and = z = ≥ Lx from lines 4 &

5, for < j.

Therefore, the schedule thus generated is 1-TFT. ■

Note that algorithm OV is a heuristic solution to the 1-TFT decision problem, where a task set

and a certain number m of processors are given, and the question is to determine whether an 1-TFT

schedule exists for the task set running on the m processors. As we have previously noted, it is more

likely that in reality, a set of tasks is given and the question is to find the minimum number m of

processors such that an 1-TFT schedule can be generated for the task set running on the m proces-

sors. This problem then becomes the corresponding optimization problem of the 1-TFT decision

10
8 6

6
3

processor 1

processor 3
processor 2 7

8
25

FIG. 6: Scheduling process of OV

(c) Schedule created by OV for the backup task copies on processor 3

1 j ki fi υj() sx G υj()() fx G υj()() D i x≠∧≤∧≤∧≤ ≤ j1 j1

ρ G υj1
()() fx G υj1

()() sx G υj()()
i 1 m,[]∈

i 1 m,[]∈ j 1 ki,[]∈ ρ min Lh h i 1 h m≤ ≤∧≠(){ } 
 

i x≠ sx G υj()() max fi υj() Lx,{ } sx G υj()() fi υj() fx G υj()()

fx G υj1
()()

sx G υj()() Lx c υj() sx G υj()() max fi υj() Lx,{ }
j1

13

problem. For this case, the solution to the optimization problem can be easily derived from the

solution to the decision problem. Here we employ the familiar binary search technique to find the

minimum number of processors required to schedule a given set of tasks such that the schedule

generated is1-TFT. The algorithm is given as follows:

Algorithm OV-OPT (Input: Task SetΣ, 1-TFT; Output:m, schedule)

(1) lowerB := ; upperB := n;

(2) m := ; If (lowerB = m) then {m := m + 1; exit};

(3) Invoke OV (Σ, m, 1-TFT, success, schedule);

(4) If success thenupperB := m elselowerB := m; gotostep 2.

Let us consider an example.

Example 3

Suppose the same task set is given as in Example 2, and the question is to find the minimum

number of processors necessary to execute the task set, allowing for one processor failure. The

number of processors returned by executing OV-OPT is three, which is in fact equal to the optimal

number of processors required.

The time complexity of Algorithm OV is , where is the number of tasks,

and is the number of processors. The sorting process takes time. The LPT in step 2

takes time, and the scheduling of backup copies takes , since there

are exactlyn backup copies. Algorithm OV-OPT takes time, since the

binary search is bounded by .

ANALYSIS AND SIMULATION RESULTS

In order to evaluate the performance of the algorithm OV-OPT, we generate task sets randomly,

and run OV-OPT on these task sets. Since the 1-TFT decision problem isNP-complete when the

number of processors is three, it is hopeless in practice to use enumeration techniques to find the

optimal solution even when the number of tasks is small (e.g. 20). However, to find out how well

the algorithm performs, we consider the lowest bound possible for each schedule. Since backup

copies are allowed to be overlapped, the minimum number of processors required to schedule a

task set is given by , whereSum is the total computation time of the tasks in the given

set, andD is the deadline or period. Therefore, we use as the lowest bound possible

for each schedule.

Our simulation is carried out in the following fashion: first, a common deadlineD is chosen.

Then a range of values is chosen, from which the computation times of the tasks are randomly gen-

ci D⁄
i 1=
n∑

lowerB upperB+() 2⁄

O n nlog n mlog+() n

m O n nlog()
O n mlog() O n m 1–()log()

O n nlog n mlog+() nlog()
O nlog()

Sum D⁄
Sum D⁄

14

erated according to the uniform distribution. OV-OPT is run for each set of tasks. The ratio between

the common deadlineD and the maximum computation time of the tasks, i.e.,r = D / ,

is kept between 2 and 10. For each different valuer, we run OV-OPT for a wide range of task sets.

Because of space limit, we only show the result of a typical set of experiments, wherer = 3 and

each data point represents the average value of the number of processors obtained by running 20

independently generated task sets. The result is plotted in Figure 7. It is evident from our extensive

simulation that OV-OPT uses less than 5% more processors than the minimum number of proces-

sors possible, when the minimum number of processors required is larger than 20. Thus it is con-

cluded that the performance of the algorithm is near-optimal.

Next we perform an analytic study on the performance of the proposed algorithms. It is appar-

ent that the performance of OV-OPT depends on that of OV, since the former invokes the latter in

its execution. Because of the difficulty involved in obtaining a reasonably meaningful upper bound

on OV-OPT, we will be instead interested in studying the performance of algorithm OV. Before we

proceed any further, let us define what we mean by being optimal for a fault-tolerant schedule with

regard to the 1-TFT decision problem and its optimization problem.

For the 1-TFT decision problem, a fault-tolerant schedule is optimal if for all possible proces-

sor failure as assumed, its schedule length is the minimum possible. More specifically, letm denote

the number of processors in the system, andWL(i) the length of the fault-tolerant schedule (sched-

ule with primary and backup copies) on the other processors, assuming that processorPi has

maxi Ci()

50 100 150 200

Number of Tasks

0

10

20

30

N
um

be
r

of
 P

ro
ce

ss
or

s

Algorithm OV-OPT
Sum/D

FIG. 7:Performance of algorithm OV-OPT (D = 90, 1 ≤ Ci ≤ 90)

m 1–

15

failed, then the length of the overall fault-tolerant schedule is defined asWL = .

If WL is the minimum possible, then the schedule is optimal. The algorithm that always generates

the optimal schedule is called the optimal algorithm. Let and (or just)

denote the length of the overall fault-tolerant schedule generated by heuristicA and the optimal

schedule length, respectively. Then the ratio

 =

measures how close a schedule is to an optimal one, in terms of the completion time of the tasks.

This metric is an indicator of how good a heuristic scheduling algorithm is. For example, if the ratio

 is 1.2 for heuristicA, then as long as the given periodD is equal to or more than 1.2 of the

optimal schedule length, it can always find a feasible schedule. A heuristic with a ratio of 1.2 will

always perform no worse than a heuristic with a ratio of 1.8. Note that the ratio is obtained under

the worst case.

Similarly, we can define the optimal schedule for the 1-TFT optimization problem as the one

that is 1-TFT and for which the minimum number of processors is used. The optimal algorithm is

the one that always uses the minimum number of processors to accommodate its 1-TFT schedule.

Let and (or just) denote the number of processors required by heuristic

B to schedule a set of tasks and the minimum number of processors required for the same set of

tasks, respectively. Then the ratio

 =

measures how well the heuristicB performs, as compared with the optimal algorithm, in terms of

the number of processors used.

For our algorithms at hand, no proven relationship between and has been

established. But because of the close relationship between OV and OV-OPT, we have reasons to

conjecture that for a very small number , . For reader who is interested

in finding out how we arrive at this conjecture, please consult the paper by Coffman, Garey, and

Johnson21, where it discusses how a bin-packing heuristic algorithm is modified to solve a similar

scheduling problem and the analysis of the performance of the algorithm.

In the following, we seek the value of . Note that for any given task set, OV may not be

able to schedule it simply because the given deadlineD is too small or too tight, i.e., the parameter

does not play a role in the relative performance of the heuristic algorithm and the optimal algorithm

in terms of the completing time of tasks. Hence, in the analysis of the performance of algorithm

max1 i m≤ ≤ WL i()

LA Σ m,() L0 Σ m,() L0

ℜA sup
LA Σ m,()

L0
------------------------: all task setsΣ

 
 
 

ℜA

mB Σ D,() m0 Σ D,() m0

Σ

rB sup
mB Σ D,()

m0
-------------------------: all task setsΣ

 
 
 

ℜOV rOV-OPT

ε 0> ℜOV rOV-OPT– ε≤

ℜOV

16

OV we disregardD, i.e., we omit line 6 of step 4 from algorithm OV.

Let be the largest computation time in a task set and be the length of the schedule

on processorPi for . Then we have the following theorem, the proof of which is

given in the appendix.

Theorem 3

≤ , wherem is the number of processors. ≤ if 2 ≤

 =  / .

In the above simulation experiments, since each processor is approximately assigned six tasks

and 2≤ =  / , the worst case performance bound for OV should be less

than 1 + 1/6 = 1.1667, according to Theorem 3. Since the performance of OV-OPT is closely

related to that of OV, we believe that assumes a value around 1.1667. In any case, we

can claim that the algorithms find schedules that are near-optimal.

CONCLUSIONS

The contribution of this paper is twofold: one is that theNP-completeness result tells us that

theTFT scheduling problem is a very hard problem to solve, even in the simple case when there

are only three processors and the tasks share a common deadline. Therefore, heuristic approaches

are called for to solve the problem. The second contribution is that two heuristic scheduling algo-

rithms are proposed both the decision and the optimization scheduling problems. The algorithms

generate schedules that can tolerate one arbitrary processor failure. It is shown through simulation

and analysis that the performance of the algorithms is near-optimal.

Many problems remain open, since only a special case of the general real-time fault-tolerant

scheduling problem has been considered. The tolerance of more than one processor failures

requires that the number of primary copies or backup copies be more than one for each task. Also,

good heuristics are needed to obtain approximate solutions to the scheduling problem where tasks

have different deadlines. Furthermore, it is interesting to mathematically derive the tight bound for

the scheduling algorithms presented in this paper. We are currently investigating these problems.

Acknowledgment − We would like to thank the referees for their encouragement and constructive

criticism. Their comments serve toimprove the presentation of this paper.This work was sup-

ported in part by ONR and by IBM.

APPENDIX

Let us definePSi as the schedule of primary copies (orPrimary Schedule) on processorPi, for

cmax L i()
i 1 2 … m, , ,=

ℜOV
3
2
--- 1

2 m 1–()
-----------------------– ℜOV 1 1

k
--- 1

k m 1–()
-----------------------–+

k ciτ∑ m 1–()⁄ cmax

k ciτ∑ m 1–()⁄ cmax

rOV-OPT

17

1 ≤ i ≤ m, Σi as the set of tasks whose primary copies are assigned on processor Pi, and Σi
- = .

We further define PMi as the primary schedule on the other processors when processor

Pi has failed, i.e., = . We assert that the primary

schedule PMi is equivalent to the schedule generated by LPT on the task set Σi
- for pro-

cessors. A schedule is equivalent to another schedule if both schedules have the same set of tasks

and the starting time of each task (and hence its completion time) is the same in both schedules.

The possible difference between two equivalent schedules is that some tasks may be assigned on

different processors. The relationship between PSi and PMi is illustrated in Figure 8.

Lemma 3

The primary schedule PMi is equivalent to the schedule generated by LPT on the task set

for processors, i.e., ≅ LPT(,), for 1 ≤ i ≤ m, where

LPT(Σ, m) denotes the primary schedule generated by LPT from task set Σ on m processors.

Proof

We first claim that for any task ∈ with j ∈ [1, 2, …,], it starts on time zero in

LPT(Σ, m) if and only if it starts on time zero in LPT(,). For LPT(,), the

first tasks with the largest computation times are assigned to the processors with

a starting time of zero. For LPT(Σ, m), the first m tasks with the largest computation times are

assigned to the m processors with a starting time of zero. Since one of the first m tasks is deleted,

the other tasks are the first tasks in .

Let |Σi| = ni, then = = . For any task in with a start-

ing time of for , it must be scheduled on a processor other than processor Pi and

 be the earliest idle time among the processors. This implies that the starting time

for task in the schedule is the same as it is in LPT(Σ, m).

On the other hand, for any task in with a starting time of for

, it cannot be scheduled on processor Pi in the schedule LPT(Σ, m), otherwise it

would have been deleted in through . Therefore, the earliest idle time among the

processors other than processor Pi is exactly the same as the starting time for task in

. Therefore, the two schedules are equivalent. ■

What Lemma 3 tells us is that every schedule PMi is equivalent to the schedule generated by

LPT on the task set . Since OV first schedules the primary copies using LPT and then the

backup copies using ALPT, the worst case performance bound is therefore expected to be around

 for k > m according to the result by Coffman and Sethi [22]. This is due to the observation

that for k > m, all the backup copies of the tasks are scheduled immediately after the primary sched-

Σ Σi–

m 1–()
PMi PSjj 1 … m j i≠, , ,=∪= LPT Σ m,() PSi–

m 1–()

Σi
-

m 1–() LPT Σ m,() PSi– Σ Σi– m 1–

τj Σ Σi– m 1–

Σ Σi– m 1– Σ Σi– m 1–

m 1–() m 1–()

m 1–() m 1–() Σ Σi–

Σi
- Σ Σi– n ni– τj LPT Σ Σi–() PSi–

s τj() m 1 j≤–

s τj() m 1–()
τj LPT Σ Σi– m 1–,()

τj LPT Σ Σi– m 1–,() s τj()
m 1– j n ni–≤ ≤

Σ Σi–() m 1–()
s τj() τj

LPT Σ Σi– m 1–,()

Σ Σi–()

1 1 k⁄+

18

ule on each processor. In the following, we show that our heuristic A has an upper bound which is

similar to that for LPT. But it turns out to be non-trivial to show that the upper bounds are tight for

heuristic A.

Lemma 4

Let k denote the least number of tasks (primary copies) on any processor or the number of tasks

on a processor whose last task terminates the schedule. If k = 1, then the schedule is optimal.

Proof

The backup copy of a task will be assigned a starting time no earlier than its primary copy’s

finishing time. Let be the task with the minimum computation time requirement , and P* be

the processor on which is assigned.

For any task other than , its backup copy will be scheduled on processor P* or any idle

processor, with a starting time at c, which is the computation time requirement of task . For task

, its backup copy will be assigned to an idle processor with a starting time of , if there is any

idle processor, or to the processor on which the task with the second smallest computation time

requirement is assigned, with a starting time equal to the finishing time of the task.

Since all the backup copies of the tasks are assigned the earliest starting times as possible, the

schedule is therefore optimal. ■

Proof of Theorem 3

Since the backup copy of any task τ must be assigned a starting time no earlier than its primary

copy’s finishing time, . Let be the smallest backup copy that finishes last in the fault-

tolerant schedule where the processor Pi has failed, and be its computation time requirement.

Let Pj be the processor on which is assigned. Since the primary schedule can be taken as gen-

erated by LPT according to Lemma , and the backup schedule by ALPT, we have L(j) = +

, where is the starting time of task . Furthermore, ≤ .

L(j) = + ≤ +

FIG. 8: Relationship between schedules

PS1
PS2

PSm

PSi

PS1

LPT(Σ, m) PMi = LPT(Σ - Σi, m - 1)

PS2

Σi
PSm-1

τ* c*

τ*

τ τ*

τ
τ* c*

L0 2c≥ τ*

c*

τ*

c*

s τ*() s τ*() τ* s τ*() ciτ τ*≠∑ m 1–()⁄

c* s τ*() c* ciτ τ*≠∑ m 1–()⁄

19

≤ +

≤ ,

since .

Since = , we have ≤ , we

have ≤ .

If = with k ≥ 2, then ≤ ≤ ≤ L0, where

is the largest computation time in the task set.

Since + ≤ , we

have ≤ . ■

REFERENCES

1. J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, R.E.
Shostak, and C.B. Weinstock (1978) SIFT: design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE 66, 1240-1255.

2. A.L. Hopkins, Jr., T.B. Smith, III, and J.H. Lala (1978) FTMP-A highly reliable fault-toler-
ant multiprocessor for aircraft. Proceedings of the IEEE 66, 1221-1239.

3. A. Spector and D. Gifford (1984) The space shuttle primary computer system. CACM 27,
874-900.

4. R.M. Kieckhafer, C.J. Walter, A.M. Finn and P.M. Thambidurai (1988) The MAFT Archi-
tecture for distributed fault tolerance. IEEE Transactions on Computers 37, 398-405.

5. A. Avizienis (1985) The N-version approach to fault-tolerant software. IEEE Transactions
on Software Engineering 11, 1491-1501.

6. B.W. Johnson (1989) Design and Analysis of Fault Tolerant Digital Systems. Addison-Wes-
ley.

7. C.L. Liu and J. Layland (1973) Scheduling algorithms for multiprogramming in a hard real-
time environment. JACM 10, 174-189.

8. K. Ramamritham and J.A. Stankovic (1991) Scheduling strategies adopted in Spring: a
overview, Chapter in Foundations of Real-Time Computing: Scheduling and Resource Allo-
cation (ed.) by A.M. van Tilborg and G.M. Koob, 277-307.

9. L. Sha and J.B. Goodenough (1990) Real-time scheduling theory and Ada. IEEE Computer
23(4), 53-65.

10. K.G. Shin, G. Koob and F. Jahanian (1991) Fault-tolerance in real-time systems. IEEE
Real-Time Systems Newsletter 7(3), 28-34.

11. S. Ramos-Thuel and J.K. Strosnider. The transient server approach to scheduling time-criti-
cal recovery operations. 12th Symposium on Real-Time Systems, San Antonio, Texas, 286-
295.

12. C.M. Krishna and K.C Shin (1986) On scheduling tasks with a quick recovery from failure.

m 2–() c* m 1–()⁄ cjτ∑ m 1–()⁄

m 2–() L0 2 m 1–()()⁄ L0+

L0 max 2c* ciτ∑ m 1–()⁄,{ }≥

ℜOV sup
LA Σ m,()

L0
------------------------: all task setsΣ

 
 
 

ℜOV max1 i m≤ ≤ L i() L0⁄{ }
ℜA 3 2⁄ 1 2 m 1–()()⁄–

kcmax cjτ∑ m 1–()⁄ kc* kcmax cjτ∑ m 1–()⁄ cmax

L i() m 2–() c* m 1–()⁄≤ cjτ∑ m 1–()⁄ m 2–() L0 k m 1–()()⁄ L0+

ℜOV 1 1 k⁄ 1 k m 1–()()⁄–+

20

IEEE Transactions on Computers35, 448-454.

13. S. Balaji, L. Jenkins, L.M. Patnaik, and P.S. Goel (1989) Workload redistribution for fault-
tolerance in a hard real-time distributed computing system. FTCS-19, Chicago, Illinois, 366-
373.

14. J.A. Bannister and K. S. Trivedi (1983) Task allocation in fault-tolerant distributed systems.
Acta Informatica20, 261-281.

15. Y. Oh and S.H. Son (1991) Multiprocessor support for real-time fault-tolerant scheduling.
IEEE Workshop on Architectural Aspects of Real-Time Systems, San Antonio, Texas, 76-80.

16. Y. Oh and S.H. Son (1992) An algorithm for real-time fault-tolerant scheduling in multipro-
cessor systems. 4th Euromicro Workshop on Real-Time Systems, Athens, Greece, 190-195.

17. Y. Oh and S.H. Son (1994) Scheduling hard real-time tasks with tolerance of multiple pro-
cessor failures, Microprocessing and Microprogramming40, 193-206.

18. M.R. Garey and D.S. Johnson (1978) Computers and Intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company, NY.

19. K. Jeffay, D.F. Stanat, and C.U. Martel (1991) On non-preemptive scheduling of periodic
and sporadic tasks. 12th Symposium on Real-Time Systems, San Antonio, Texas, 129-139.

20. R. L. Graham (1969) Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.17,
416-429.

21. E.G. Coffman, Jr., M.R. Garey and D.S. Johnson (1978) An application of bin-packing to
multiprocessor scheduling. SIAM J. Comput.7, 1-17.

22. E.G. Coffman, Jr. and R. Sethi (1976) A generalized bound on LPT sequencing. Revue
Francaise d’Automatique Informatique Recherche Operationelle10, Suppl. 17-25.

