New Graph Arborescence and Steiner Constructions

for High-Performance FPGA Routing*

Michael J. Alexander and Gabriel Robins

Department of Computer Science, Thornton Hall,
University of Virginia, Charlottesville, VA 22903-2442
Email: robins@cs.virginia.edu

Phone: (804) 982-2207, FAX: (804) 982-2214

Abstract

The flexibility and reusability of field-programmable gate arrays (FPGAs) enable signifi-
cant speed and cost savings in the VLSI design/validation /simulation cycle. However, this is
achieved at a substantial performance penalty due to signal delays through the programmable
interconnect. This motivates a critical-net routing objective which seeks to minimize source-
sink signal propagation delays; we formulate this objective as a graph Steiner arborescence
(i-e., shortest-path tree with minimum wirelength) problem and propose an effective heuristic
which produces routing trees with optimal source-sink pathlengths, and having wirelength on
par with the best existing graph Steiner tree heuristics. Our second contribution is a new
class of greedy Steiner tree constructions in weighted graphs, based on an iterated applica-
tion of an arbitrary given graph Steiner heuristic; this construction significantly outperforms
the best known graph Steiner tree heuristics of Kou, Markowsky and Berman [24], and of
Zelikovsky [38]. We incorporated our algorithms into an actual router, enabling the complete
routing of several industrial designs while requiring a reduced maximum channel width. All
of our methods are directly applicable to other graph-based routing regimes, such as building-
block design, routing in the presence of obstacles, etc., as well as in non-CAD areas such as
multicasting in communication networks.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are flexible and reusable high density circuits that can
be easily (re)configured by the designer, enabling the VLST design/validation /simulation cycle to
be performed more quickly and cheaply [37]. Unfortunately, the flexibility provided by FPGAs
is achieved at a substantial performance penalty due to signal delay through the programmable
routing resources, and this i1s currently a primary concern to both FPGA designers and users

[34]. In order to increase FPGA performance, partitioning and technology mapping have been

*Corresponding author is Professor Gabriel Robins, Department of Computer Science, Thornton Hall, University
of Virginia, Charlottesville, VA 22903-2442, Email: robins@cs.virginia.edu, phone: (804) 982-2207, FAX: (804) 982-
2214.

extensively studied by e.g. [9, 18, 19, 23, 32], where a typical goal is to minimize the maximum
circuit depth. On the other hand, less attention has been focused on the actual routing, which is
surprising since it was observed that FPGA performance is limited by routing delays, rather than

by combinational logic delays [3].

The use of a specific routing resource in routing a particular net precludes its use in routing
other nets. In order to maintain the routing feasibility of the overall design, it is therefore prudent
to minimize the number of routing resources used by each net. However, for routing critical nets,
the primary objective is not wirelength optimization, but rather the minimization of source-to-sink

delays. (with the secondary criteria being wirelength minimization).

Our first contribution is a method for critical-net routing based on a generalization of rec-
tilinear Steiner arborescences (RSAs) [31] to arbitrary weighted graphs. An arborescence is a
shortest-paths tree with minimum wirelength; this minimizes signal delay in a natural way, since
shortening pathlengths in the routing reduces the signal travel distance, while the minimum wire-
length requirement implies a low overall routing tree capacitance, which again tends to reduce
delay. Thus, we generalize Dijkstra’s shortest-paths approach [14]: given an arbitrary weighted
routing graph, our algorithm produces a spanning tree where all source-sink paths are the shortest
possible, but where total tree cost is heuristically optimized as well. Experimental results indicate

that the wirelength used is competitive with the best known Steiner tree heuristics.

Our second contribution is a new general class of graph-based greedy algorithms for non-
critical-net routing, based on an iterative application of an arbitrary given graph Steiner heuristic.
Our Graph Steiner construction significantly outperforms the best-known general Graph Steiner
tree heuristics, i.e., those of Kou, Markowsky and Berman [24], and of Zelikovsky [38]. Moreover,
the performance bound of our new method is the same as that of Zelikovsky’s heuristic, namely
< % times optimal. The recent incorporation of our algorithms into an actual FPGA router [1]
enabled the successful routing of several large industry benchmark circuits, using smaller channel
widths than was required by other tools. All of our methods are directly applicable to other
graph-based routing regimes, such as building-block design, routing in the presence of obstacles,

ete., as well as in non-CAD areas such as multicasting in communication networks [25, 29].

The remainder of the paper is organized as follows: Section 2 describes a typical FPGA ar-
chitecture, reviews previous FPGA routing work, and states the FPGA routing problem for both
critical and non-critical nets. Section 3 presents the graph-based Steiner arborescence algorithm
for routing critical nets. Section 4 describes the graph Steiner routing method for non-critical-net

routing. Section 5 outlines the experimental results, and we conclude in Section 6.

2 FPGA Routing

An FPGA architecture consists of a symmetrical array of user configurable logic “blocks”, and a
set of programmable interconnection resources used for routing [7] [35] (See Figure 1). Each of
the logic blocks implements a portion of the design logic, and the routing resources are used to
interconnect the logic blocks. Our work focuses on the routing phase of FPGA design; thus, we

assume that partitioning, technology mapping, and placement have already been performed.

= L

L ogic Blocks %. . i\\\\ l||
[]

1
1|

II'"_|
LT
/

1
1 |
-
(I

Switch Box

Figure 1: A symmetrical-array FPGA showing some of the logic blocks and pro-
grammable interconnection resources.

Previous work on FPGA routing has primarily concentrated on producing feasible solutions
that use the fewest routing resources. For example, the SEGA [27] detailed routing algorithm
and its predecessor, CGE [6, 7], route nets based on demand and assign critical nets a higher
routing priority. Other research has adopted a more abstract model of FPGA routing connec-
tions [28], or explored modified architectures [33] in order to reduce the number of programmable
switches required. More recently, [1] developed a routing framework where mutually competing
objectives (such as congestion, wirelength, and jog minimization) may be simultaneously opti-
mized. Unfortunately, none of these works directly minimizes the source-sink signal propagation
delays. While these approaches implicitly equate delay minimization with wirelength optimization
[15, 21, 22, 30], it recently became increasingly apparent that these two goals are not synonymous

[4, 5, 10, 11].

The bounded-radius bounded-cost (BRBC) method of Cong et al. [11] and the AHHK method
of Alpert et al. [2] both achieve wirelength-radius tradeoffs in weighted graphs, but can not directly
produce a shortest paths tree with minimum wirelength. Rather, with the tradeoff parameter tuned
completely towards pathlength minimization, the methods of [11] and [2] both produce the same
shortest-paths tree as would Dikstra’s algorithm. The recent A-Tree algorithm of Cong et al. [12]
for rectilinear arborescence Steiner trees depends heavily on the Manhattan norm, and is therefore

not suitable for graph-based regimes.

Before we can apply graph-based techniques to FPGA routing, we must first model the FPGA
as a graph, where the overall graph topology mirrors the complete FPGA architecture; paths in
this graph correspond to feasible routes on the FPGA, and conversely. Let G = (V, F) denote
such a graph, where each graph edge e;; € F has a weight w;;, which typically corresponds to
the wirelength of the associated FPGA routing wire segment (weights may also reflect congestion,
jog penalties, etc.). A net N = {ng,ny,...,np} C V is a set of pins that are to be electrically
connected, where ng is the signal source and the remaining pins are sinks. A routing solution for
a net is a tree 7' C GG which spans N, and the cost of a tree T, denoted cost(T'), is the sum of the
weights of its edges.

Recall that the high-performance requirement of critical nets dictates a shortest source-sink
paths objective, with wirelength minimization being a secondary optimization criteria. For a
weighted graph G = (V, F) and two nodes u, v € V| let minpathg(u, v) denote the cost of a shortest
path between w and v in G. With this in mind, we formulate the graph Steiner arborescence

problem as follows:

The Graph Steiner Arborescence (GSA) Problem: Given a weighted graph G = (V| F),
and a net N C V to be routed in G, construct a least-cost spanning tree T = (V’, E') with
N CV'CV and E' C E such that minpathy(ng,n;) = minpathg(ng, n;) for all n; € N.

The complexity of the GSA problem is currently open: no polynomial-time algorithm has been
found, and nor is the GSA problem known to be NP-complete [20]. In Section 3 we address the
GSA problem using a graph-based generalization of rectilinear Steiner arborescence heuristic of

Rao et al. [31].

For non-critical nets, the wirelength minimization objective is crucial in maintaining the feasi-
bility of routing all nets of the design; here we abandon the shortest-paths requirement and state

the wirelength minimization problem as follows:

The Graph Minimum Steiner Tree (GMST) Problem: Given a weighted graph G = (V, F),
and a net N C V, find a spanning tree 7' = (V/, E’) with N C V' C V and E’ C E such that

cost(T) is minimum.

Any node in V — N may be used as a potential Steiner point in order to optimize the overall
wirelength. The GMST problem is known to be NP-complete [20]; it arises in various applications,
e.g., routing in the presence of obstacles [17], FPGA routing [1], as well as in building-block design
[8, 16, 26]. In Section 4 we address the GMST problem using an effective greedy strategy.

Figure 2 gives an example of three different routing solutions for a four-pin net (the source is
the dark block, while the lightly-shaded blocks are the sinks). Figure 2(a) depicts the solution
produced by the KMB graph Steiner heuristic of [24]; Figure 2(b) depicts the optimal Steiner
tree solution (which is also the solution produced by our IGMST algorithm described below); and

Figure 2(c) depicts the optimal Steiner arborescence solution (which is also the solution produced
by our GSA algorithm described below). Note that KMB uses more wirelength than either of the
solutions produced by our two heuristics (IGMST and GSA both produce a wirelength savings
of 10% in this example); moreover, the maximum pathlength improvements of IGMST and GSA
over KMB in this example are 23% and 45%, respectively.

Ooooooooooo Ooooooooooo Ooooooooooao
Ooooooooooo Ooooooooooo Ooooooooooao
ogoaoooooo ooo oooooao ODoo@moooood
Ojoojpooooooo ooopooooooo ooogpooooood
oo ol oo ooo 0Ooojo oo 0 0o gooiooo ooo
oooogogpeoo Oooooooojoo DDDDDDI%DDD
Oooooooioo Ooooooool o OO0 oo oojoooo
goooboood 0 Ogjooooooood E]DDDDDDDDD
ooooooooo DDDDDDDD%P ooooooooado
Ooooooooood Ooooooooood A oooooooooo

,.\
&

(b)

—~
O
~

Figure 2: An example of three different routing solutions for a four-pin net (the source is
the dark block, while the lightly-shaded blocks are the sinks): (a) the solution produced
by the KMB graph Steiner heuristic of [24]; (b) the optimal Steiner tree solution (which
is also the solution produced by our IGMST algorithm described below); (¢) depicts the
optimal Steiner arborescence solution (which is also the solution produced by our GSA
algorithm described below). The wirelength saving of IGMST and GSA over KMB in

this example is 10%, while the maximum pathlength improvements of IGMST and GSA
over KMB are 23% and 45%, respectively.

3 A New Graph Steiner Arborescence Heuristic

For pointsets in the Manhattan plane, a particularly effective heuristic was recently proposed,
namely the rectilinear Steiner arborescence (RSA) construction of Rao et al. [31]. The RSA
method enjoys a good performance ratio of < 2 times optimal [31], as well as excellent empirical
performance. However, the RSA method is strongly dependent on the underlying geometry of

the Manhattan metric, and in order to apply it to FPGA routing it must first be generalized to

arbitrary weighted graphs.!

Before we extend the RSA heuristic to graphs, we first review how it operates in the Manhattan
plane (we assume that the source is located at the origin). A point p with coordinates (21,y1)

is said to dominate point s with coordinates (22,y2) if 21 > 22 and y; > ya, as shown in Figure

1Routing multiple nets on an FPGA causes congestion and blockages among the FPGA routing resources, and
these obstructions must be sidestepped by the routes of subsequent nets; thus, the underlying FPGA routing graph
structure cannot be modeled by the simple Manhattan plane geometry. This is also why the A-Tree method of
Cong et al. [12] is not applicable to arbitrary weighted graphs.

3(a). Define min(p, ¢) to be the farthest point from the source that is dominated by both p and
q (Figure 3(b)). The RSA construction iteratively replaces a pair of points {p, ¢} with the single
point min(p, ¢), where {p, ¢} are chosen as to maximize the distance from the source to min(p, ¢).
The algorithm terminates when only the origin remains, and the final Steiner arborescence solution

is formed by connecting each produced min(p, ¢) to both p and 4.

q
p B _Z} 5"
MaxDom (p,q) /] I |

|

| |

|
|

0 X l noO

& (b)

Figure 3: Example of rectilinear dominance: (a) p dominates s, and (b) the point
min(p, q).

Generalizing the RSA heuristic to graphs entails extending the concept of dominance to arbi-
trary weighted graphs. Given a weighted graph G = (V, F), and nodes {ng, p, s} C V, we say that

p dominates s if:

minpathe(ng,p) = minpathg(ne,s) + minpathg(s, p)

This is illustrated in Figure 4(a), where intuitively, p dominates s if a shortest path from the source
ng to p can pass through s. We define MaxzDom(p, q) as a node in V dominated by both p and
¢ which maximizes minpathg(no, Max Dom(p, q)) (see Figure 4(b)). MaxDom(p, q) is analogous
to min(p, q) in the RSA heuristic described above.

The above definitions enable the following GSA heuristic: starting with the set of nodes that
initially contains all sinks, we find a pair of nodes p and ¢ such that m = MaxDom(p,q) is
farthest away from the origin among all such pairs; then we replace p and ¢ by m and iterate
until only the source remains (see Figure 5). The GSA heuristic can be implemented within time
O(|N|-|E| + |V|-|N|?>-log|V|). The empirical results in Section 5 indicate that the GSA method
is highly effective in producing shortest-paths trees with low wirelength (i.e. wirelength on par

with the best existing graph Steiner heuristics).

minpath (s,p)

minpathG(nJ ,9)

@ (b)

Figure 4: Example of generalized dominance: (a) p dominates s when
minpathg(no,p) = minpathg(ng,s) + minpathg(s,p); (b) shows MaxzDom(p, q).

Graph Steiner Arborescence (GSA) algorithm
Input: Weighted graph G = (V,F) and net N CV
Output: A low-cost shortest-paths tree spanning N
M=N
While N # {ng} Do
Find a pair {p, ¢} C N such that m = MaxDom(p, q)
has maximum minpath(ng, m) over all {p,q} C N
N ={N—{p,¢}}u{m}
M= MuU{m}
Output the tree formed by connecting each node p € M
(using a path in) to the nearest node in M that p dominates

Figure 5: The generalized Graph Steiner Arborescence (GSA) heuristic.

4 A New Graph Steiner Tree Heuristic

Recall that in routing non-critical nets we seek to minimize total wirelength, which motivates
the graph Steiner tree (GMST) problem discussed in Section 2. A number of heuristics were
proposed over the years for the GMST problem [20], two of which have performance bounds of a
constant factor from optimal: (1) the heuristic of Kou, Markowsy and Berman [24] (KMB) with
performance bound of 2-(1— %) where L is the maximum number of leafs in any optimal solution,
and (2) the recent heuristic of Zelikovsky [38] (ZEL) with performance bound of Ll (these two
methods are described in detail in the Appendix). However, a constant bound from optimality
does not automatically imply a good average empirical behavior that is significantly better than
the bound itself; for example, it is possible that on most typical inputs, a heuristic without any
bounds on the solution cost could outperform a provably-good heuristic. Similarly, it is possible
for one heuristic to significantly outperform another heuristic in practice, even though they both

have the same theoretical performance bound.

With this in mind, we propose a new class of greedy iterated heuristics for the GMST problem.
Recall that an instance of the GMST problem is < G, N >, where G = (V, F) is a weighted graph,
N C V 1s a net, and the objective is to find a minimum-cost tree in G that spans N. For any
existing graph Steiner tree heuristic H, let H(G, N) denote the solution that H produces with
input < G, N >, and let cost(H(G, N)) denote the cost of that solution.

Our basic algorithm template accepts as input an instance of the GMST problem and any
existing GMST heuristic H. It then repeatedly finds Steiner node candidates that reduce the
overall spanning cost with respect to H, and includes them into the growing set of Steiner nodes
S. More formally, given a set of Steiner candidate node S C V — N, we define the “cost savings”

of S with respect to H as follows:
AH(G,N,S) = cost(H(G, N)) — cost(H(G, N US))

Starting with an initially empty set of Steiner candidates S = (), our heuristic finds a node
t € V— N which maximizes AH(G, SU{t}) > 0 and repeats this procedure with S — SU{¢}. The
cost for H to span N U.S will decrease with each added node ¢, and the construction terminates
when there is no ¢ € (V — N) — S such that AH(G,SU {t}) > 0, with the final solution being
H(G,N US). This method, which we call the Tterated Graph Minimum Steiner Tree (IGMST)
approach, is formally described in Figure 6. Since any existing graph Steiner tree heuristic H may
be used in the discussion above, the IGMST method is actually an entire class of greedy iterated

constructions, one corresponding to each H.

The performance bound of the IGMST method is clearly no worse than the performance bound
of the heuristic H that it uses, since if no improving Steiner nodes can be found, the output of
IGMST will be identical to the output of H. For example, we may use the KMB graph Steiner
heuristic inside the IGMST template as H, to yield the Tterated KMB (TKMB) construction. Sim-
ilarly, we apply the ZEL heuristic as H inside the IGMST algorithm to produce the Iterated ZEL
(TZEL) method. Both the KMB and the ZEL heuristics are described in the Appendix. Since the
TKMB solution can be no worse than the KMB solution, the IKMB algorithm inherits the perfor-
mance bound of the KMB heuristic, namely < 2 times optimal. Similarly, our IZEL construction
inherits the theoretical performance bound < 16—1 times optimal of Zelikovsky’s heuristic. We also
note that the Tterated 1-Steiner heuristic of Kahng and Robins [22] is a special case of IGMST,
where H 1s an ordinary rectilinear minimum spanning tree algorithm. Experimental results in Sec-
tion 5 indicate that iterating a heuristic H in this fashion yields significantly improved solutions

as compared with the non-iterated version of H.

The time complexity of the IGMST heuristics depends on the particular GMST heuristic H
that is used. A naive implementation (which treats H as a “black box” subroutine) will have time

complexity O(|N| - |V|-t(H)), where t(H) is the time complexity of the given GMST heuristic.

Tterated Graph Minimum Steiner Tree (IGMST) Algorithm.
Input: A weighted graph G = (V, E), anet N C V, and a GMST heuristic H
Output: A low-cost tree 77 = (V’, E’) spanning N, where NC V' CV and B/ C F
S=10
Do Forever

T={teV—-N|AH(G,N,SuU{t}) > 0}

If T =0 Then Return H(G, N US)

Find ¢ € T with maximum AH(G, N, S U {t})

S=SuU{t}

Figure 6: The Tterated Graph Minimum Steiner Tree algorithm (IGMST) using a generic
GMST heuristic H.

In practice, this general time complexity may be substantially reduced by extracting out of H
common computations such as computing shortest-paths, thereby avoiding duplication of effort
among multiple calls to H. For example, IKMB may be implemented within time O(|N|- |[V|?).
Another way of reducing the time complexity follows from the observation that rather than adding
Steiner points one at a time, they may be added in “batches” based on a non-interference criterion
[22]. Tn practice, the number of such rounds tends to be very small (typically < 3), bringing the
practical time complexity of IKMB down to O(|V|?). 1ZEL may be implemented within time
O(|N|*-|V|+|N|?-|V|3), but this time bound may be reduced further using the batching idea.

5 Experimental Results

We have implemented the GSA and IGMST algorithms using C in the SUN Unix environment.
The code is available from the authors upon request. We have also implemented the KMB and
ZEL heuristics (see the Appendix for a detailed description of these), and used each of these as H
inside the inner loop of IGMST, yielding the IKMB and IZEL constructions. For comparison, we

have also implemented:

e DIJKA — This heuristic is an adaptation of Dijkstra’s shortest-paths tree algorithm [14] to
the GSA problem (Dijkstra’s algorith spans all of V| while the GSA problem seeks to span
only N C V). Tt first computes a shortest-paths tree rooted at the source using Dijkstra’s
algorithm, and then deletes edges from this tree which are not contained in any source-to-sink

path; and

e DOM — This heuristic is a restricted version of the GSA heuristic in Figure 5, where
Mazxzdom(p, q) is constrained to be only nodes from N, rather than an arbitrary node. In-

tuitively, an approximate arborescence is constructed by connecting each sink to the closest

node that it dominates. This is a graph spanning arborescence (as opposed to a Steiner

arborescence).

We compared all of these methods (i.e., DJKA, DOM, GSA, KMB, ZEL, IKMB, IZEL) on the
same inputs, both in terms of total wirelength as well as maximum source-sink pathlength. The
inputs consisted of channel intersection graphs [13] over uniformly distributed random nets in the
10000 x 10000 Manhattan grid. For each net size, 10000 random nets were generated and routed

using the seven algorithms above.

The data in Table 1 represents average values over 10000 cases per each net size. For each net,
we normalized the wirelength produced by each heuristic with respect to the wirelength of the
KMB algorithm; similarly, the maximum source-sink pathlength of each heuristic was normalized
with respect to that of GSA (i.e., the optimal radius). The table numbers represent average
percent improvement; a positive value represents an increase in the maximum wirelength (resp.

radius) with respect to KMB (resp. GSA), while a negative number represents a decrease (i.e.,

win).
Average Wirelength and Radius Statistics (in percent)
3-pin nets 4-pin nets 6-pin nets 8-pin nets 10-pin nets
Wire Max Wire Max Wire Max Wire Max Wire Max
Algorithm || Length | Radius Length | Radius Length | Radius Length | Radius Length | Radius
(w.r.t. (w.r.t. (w.r.t. (w.r.t. (w.r.t. (w.r.t. (w.r.t. (w.r.t. (w.r.t. (w.r.t.
KMB) | DJKA) KMB) | DJKA) KMB) | DJKA) KMB) | DJKA) KMB) | DJKA)
DJKA 10.75 0.00 17.33 0.00 26.70 0.00 34.62 0.00 41.13 0.00
DOM 6.94 0.00 11.03 0.00 16.33 0.00 20.58 0.00 23.48 0.00
GSA -3.29 0.00 -4.71 0.00 -5.27 0.00 -4.91 0.00 -4.21 0.00
KMB 0.00 707 0.00 15.77 0.00 26.67 0.00 37.21 0.00 44.02
ZEL -3.29 0.00 -4.47 4.30 -5.67 11.44 -6.01 19.10 -6.19 27.02
IKMB -3.29 0.00 -4.71 4.06 -6.11 9.83 -6.62 16.22 -6.87 23.33
IZEL -3.29 0.00 -4.71 3.41 -6.32 9.37 -6.93 15.42 -7.23 22.66

Table 1: The average wirelength and average maximum radius produced by the seven
algorithms for various net sizes. The wirelength values are normalized with respect to
KMB, while the maximum-radius values are normalized to the (optimal) values pro-
duced by GSA. Negative values represent improvement (i.e., savings), while positive

values represent disimprovement.

In terms of wirelength, we observe that across all net sizes, DJKA has the worst performance
since it uses up to 41% more wirelength than KMB. DOM performs somewhat better, losing up
to 23% wirelength to KMB. On the other hand, GSA outperforms KMB in term of wirelength by
up to 5%. This is a very significant observation, since KMB is designed to minimize wirelength
only, yet it consistently loses in terms of wirelength to GSA, a construction which also has optimal

radius.

10

In terms of maximum source-sink pathlength, we consistently observe that KMB substantially
lags behind ZEL (by up to 44%); on the other hand, TKMB outperforms ZEL by up to 3%, and
IZEL has the best performance among all the heuristics, but only slightly better than that IKMB.
Interestingly, the relative performance ordering KMB < ZEL < IKMB < 1ZEL is consistent in

terms of both wirelength and maximum radius, across all net sizes.

For nets of size 4, GSA produces routings with optimal wirelength end optimal radius. This
1s significant because 1t is known that for typical VLSI designs most nets have four or less pins
[17]. Finally, we see that on average across all nets, GSA affords optimal radius (i.e., 10% average
radius reduction with respect to IZEL) at the expense of an average of only about 1% wirelength
penalty. We conclude from this that GSA affords a very favorable radius-wirelength tradeoff in
that it yields high-performance routings at a negligible wirelength penalty. Thus by using GSA
to route an FPGA| the routability of the design will not be significantly affected, while its overall

performance would be substantially improved.

A common criteria used to evaluate the quality of FPGA routing solutions is the maximum
channel width required to successfully route all nets of a design [6]. We have therefore imple-
mented a real FPGA router based on our algorithms, and used it to route several industrial
FPGA benchmark circuits (the underlying architecture we modeled was that of the XILIX parts,
and the benchmark circuits contained up to 352 nets each). For each of the circuits, we compared
the maximum channel width required by our router to that required by CGE [6]. Table 2 shows
the maximum channel width required by the CGE router [6], as well as the corresponding value
for our IGMST-based router. Note that our IGMST-based router is able to route all of the bench-
mark circuits using fewer routing resources than CGE, indicating that even when routing multiple
nets on an actual FPGA topology, IGMST uses substantially less wirelength to route all the nets.
Figure 7 illustrates the solution produced by IGMST for the smallest of the benchmark circuits.

Maximum channel width
Percentage of nets with 10 pins or less required for a feasible
routing of all nets
Circuit Total #nets | #nets with 10 | Percentage CGE IGMST
pins or less of Total
BUSC 151 143 94.7 10 8
DMA 213 191 89.7 10 9
BNRE 352 325 92.3 12 11

Table 2: Results for a set of industry FPGA benchmark circuits; note that the majority
of nets contain 10 or fewer pins. On the right, we see the maximum channel width
required to route all nets for the CGE router of [6], as well as our IGMST heuristic; for
all of the circuits IGMST requires a smaller channel width (i.e., fewerrouting resources).

11

*
'
'a
1
i
)
0

[i A —j

. i
N T i I_jl 1
:] |]

[/ \}w;nw = I 7
. I
i iy
|
| — 3 — A |

Figure 7: Solution produced by IGMST-based router for BUSC, the smallest of the
three benchmark circuits.

6 Conclusion

We have proposed a critical-net FPGA routing algorithm to mitigate the performance penalty
incurred by designers when using FPGAs. Our approach entails constructing shortest-paths trees
with minimum wirelength, based on a generalization to graphs of a rectilinear Steiner arborescence
heuristic. Our method produces routing trees with optimal source-sink pathlengths; while using
total wirelength that is competitive with the best existing graph Steiner tree heuristics. For non-
critical-net routing where the objective is exclusively wirelength minimization, we offer an effective

new class of iterative graph Steiner tree constructions that improve upon the performance of an

12

arbitrary given graph Steiner heuristic without sacrificing the theoretical performance bound of
the heuristic used. All of our methods are directly applicable to other routing regimes, e.g.,
building-block design, routing in the presence of obstacles, etc., as well as to non-CAD areas such

as multicasting in communication networks.

References

[1] M. J. ALEXANDER AND G. RoOBINS, A New Approach to FPGA Routing Based on Multi-
Weighted Graphs, in Proc. ACM/SIGDA International Workshop on Field-Programmable
Gate Arrays, Berkeley, CA, February 1994.

[2] C. J. ArpERT, T. C. Hu, J. H. HUANG, AND A. B. KAHNG, A Direct Combination of the
Prim and Duykstra Constructions for Improved Performance-Driven Global Routing, in Proc.
TEEE Intl. Symp. Circuits and Systems, Chicago, 1L, May 1993, pp. 1869-1872.

[3] N. B. BHAT AND D. D. HiLL, Routable Technology Mapping for LUT FPGAs, in Proc. IEEE
Intl. Conf. Computer-Aided Design, 1992, pp. 95-98.

[4] K. D. BoEsE, A. B. Kaunag, B. A. McCovy, AND G. RoBINS, Fidelity and Near-Optimality
of Elmore-Based Routing Constructions, in Proc. IEEE Intl. Conf. Computer Design, Cam-
bridge, MA, October 1993, pp. 81-84.

[5] K. D. Boeske, A. B. Kauna, aAND G. RoOBINS, High-Performance Rouling Trees With
Identified Critical Sinks, in Proc. ACM/IEEE Design Automation Conf., Dallas, June 1993,
pp- 182-187.

[6] S. BRowN, J. RoSE, AND Z. G. VRANESIC, A Detailed Router for Field-Programmable Gate
Arrays, TEEE Trans. Computer-Aided Design, 11 (1992), pp. 620-628.

[7] S. D. BrRowN, R. J. Francis, J. Rosg, AND Z. G. VRANESIC, Field-Programmable Gate
Arrays, Kluwer Academic Publishers, Boston, MA, 1992.

[8] D. CHEN AND C. SECHEN, Mickey: A Macro Cell Global Router, in Proc. European Design
Automation Conf., Amsterdam, The Netherlands, February 1991, pp. 248-252.

[9] K. C. CHEN, J. Cong, Y. Ding, A. B. Kaunag, aAND P. TRAIMAR, DAG-Map: Graph-
Based FPGA Technology Mapping for Delay Optimization, IEEE Design & Test of Computers,
9 (1992), pp. 7-20.

[10] J. ConooN AND J. RANDALL, Critical Net Routing, in Proc. TEEE Intl. Conf. Computer
Design, Cambridge, MA| October 1991, pp. 174-177.

[11] J. Cona, A. B. KaunGg, G. RoBINS, M. SARRAFZADEH, AND C. K. WoNG, Provably
Good Performance-Driven Global Routing, TEEE Trans. Computer-Aided Design, 11 (1992),
pp- 739-752.

[12] J. Cong, K. S. LEUNG, AND D. ZHoU, Performance-Driven Interconnect Design Based on
Distributed RC Delay Model, in Proc. ACM/TEEE Design Automation Conf., Dallas, June
1993, pp. 606-611.

[13] W. M. Da1, T. Asano, aND E. S. KuH, Routing Region Definition and Ordering Scheme
for Building-Block Layout, TEEE Trans. Computer-Aided Design, 4 (1985), pp. 189-197.

13

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[26]

[27]

28]

[29]

[30]

E. W. DuKsTRA, A Note on Two Problems in Connection With Graphs, Numerische Math-
ematik, 1 (1959), pp. 269-271.

A. E. Dunropr, V. D. AcrawaL, D. DEuTscH, M. F. JukLr, P. KozaK, AND M. WIESEL,
Chip Layoul Optimization Using Critical Path Weighting, in Proc. ACM/TEEE Design Au-
tomation Conf., 1984, pp. 133—-136.

H. ESBENSEN AND P. MAZUMDER, A Genetic Algorithm for the Steiner Problem in a Graph,
in Proc. Furopean Design Automation Conf., Paris, France, February 1994, pp. 402-406.

J. L. GANLEY AND J. P. COHOON, Routing a Multi-Terminal Critical Net: Steiner Tree
Construction in the Presence of Obstacles, in Proc. IEEE Intl. Symp. Circuits and Systems
(to appear), London, England, May 1994.

T. Gao, K. C. CHEN, J. ConG, Y. DiNG, aAND C. L. L1u, Placement and Placement Driven
Technology Mapping for FPGA Synthesis, in Proc. IEEE Intl. ASIC Conf., Rochester, NY,
September 1993, pp. 87-91.

N. HasaN, G. Viavan, aNnD C. K. WonG, A Neighborhood Improvement Algorithm for
Rectilinear Steiner Trees, in Proc. IEEE Intl. Symp. Circuits and Systems, New Orleans, LA,
1990.

F. K. HwanG, D. S. RiIcHARDS, AND P. WINTER, The Steiner Tree Problem, North-Holland,
1992.

M. A. B. Jackson, E. S. KuH, AND M. MAREK-SADOWSKA, Timing-Driven Routing for
Building Block Layout, in Proc. IEEE Intl. Symp. Circuits and Systems, 1987, pp. 518-519.

A. B. KauNG AND G. RoOBINS, A New Class of Iterative Steiner Tree Heuristics With Good
Performance, TEEE Trans. Computer-Aided Design, 11 (1992), pp. 893-902.

K. KARPLUS, Xmap: a Technology Mapper for Table-lookup Field- Programmable Gate Arrays,
in Proc. ACM/IEEE Design Automation Conf., 1991, pp. 240-243.

L. Kou, G. MARKOWSKY, AND L. BERMAN, A Fast Algorithm for Steiner Trees, Acta
Informatica, 15 (1981), pp. 141-145.

Y. LAN, A. H. ESFAHANIAN, AND L. M. N1, Distributed Multi- Destination Routing in Hyper-
cube Multiprocessors, in Proc. 3rd Conf. Hypercube Computers and Concurrent Applications,

January 1988, pp. 631-639.

K. W. LEE AND C. SECHEN, A Global Router for Sea-of-Gates Circuits, in Proc. European
Design Automation Conf., Amsterdam, The Netherlands, February 1991, pp. 242-247.

G. G. LEMIEUX AND S. D. BROWN, A Detailed Routing Algorithm for Allocating Wire Seg-
ments in Field-Programmable Gate Arrays,in Proc. ACM/SIGDA Physical Design Workshop,
Lake Arrowhead, CA, April 1993.

F. D. LEwis AND W. C. PoNG, A Negative Reinforcement Method of PGA Routing, in Proc.
ACM/IEEE Design Automation Conf., 1993, pp. 601-605.

X. LIN aND L. M. N1, Multicast Communication in Multicomputer Networks, IEEE Trans.
Parallel and Distributed Systems, 4 (1993), pp. 1105-1117.

S. PRASITIUTRAKUL AND W. J. KuBIiTZ, A Timing-Driven Global Router for Custom Chip
Design, in Proc. IEEE Intl. Conf. Computer-Aided Design, Santa Clara, CA, November 1990,
pp. 48-51.

14

[31] S. K. Rao, P. SapavaprpaN, F. K. HwanG, aND P. W. SHOR, The Rectilinear Steiner
Arborescence Problem, Algorithmica, (1992), pp. 277-288.

[32] K. Roy, B. Guan, anD C. SECHEN, FPGA MCM Partitioning and Placement, in Proc.
ACM/SIGDA Physical Design Workshop, Lake Arrowhead, CA, April 1993, pp. 211-212.

[33] Y. Sun, T. C. Wang, C. K. Wong, anxD C. L. Liu, Routing for Symmetric FPGAs and
FPICs,in Proc. IEEE Intl. Conf. Computer-Aided Design, Santa Clara, CA, November 1993,
pp- 486-490.

[34] S. Trimberger, Manager of Advanced Development, Xilinx Inc., private communication,
February, 1994.

[35] S. TRIMBERGER, Field-Programmable Gate Arrays, IEEE Design & Test of Computers, 9
(1992), pp. 3-5.

[36] Y. F. Wu, P. WIDMAYER, AND C. K. WoNG, A Faster Approzimation Algorithm for the
Steiner Problem in Graphs, Acta Informatica, 23 (1986), pp. 223-229.

[37] XiuINX, The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, California, 1991.

[38] A. Z. ZELIKOVSKY, An 11/6 Approzimation Algorithm for the Network Steiner Problem,
Algorithmica, 9 (1993), pp. 463-470.

15

7 Appendix: Two Existing Graph Steiner Heuristics

This appendix summarizes the graph Steiner heuristics of (1) Kou, Markowsky, and Berman
(KMB) [24], and (2) Zelikovsky (ZEL) [38], the currently best known Graph Steiner heuristics.
KMB has a theoretical performance ratio? of 2-(1— %), where L is the maximum number of leaves
in any optimal (Steiner tree) solution to the input instance. The ZEL heuristic has performance

ratio of 16—1, and thus on worst-case instances ZEL will outperform KMB.3

Any graph Steiner heuristic H may be used inside the IGMST template of Section 4 to yield an
improved approximation algorithm for the IGMST problem. The theoretical performance bound of
the composite construction is guaranteed to be no worse than that of the heuristic H that was used
in the iterated construction. Thus, the performance bound of the TKMB algorithm is 2 - (1 — %),
where L is the maximum number of leaves in any optimal solution, while the performance bound
of IZEL is 4.

7.1 The KMB Heuristic [24]

The graph Steiner tree heuristic of Kou, Markowsky and Berman (KMB) [24] is described as
follows (see Figure 8):

e Construct the distance graph G over N as follows: form the complete graph G’ over N with
the weight of each edge e;; equal to diste(ni, n;), i.e., the cost of the corresponding shortest

path in G between n; and n;.

o Compute M ST(G”), the minimum spanning tree of G/, and expand each edge e;; of M ST(G’)
into the corresponding shortest path, denoted path(n;, n;), yielding a subgraph G” that spans
N.

e Finally, compute the minimum spanning tree MST(G"), and delete pendant edges from
MST(G") until all leaves are members of N.

The time complexity of the KMB heuristic in Figure 8 is O(|N| - |V|?); recently, this has been
reduced to O(|E| - log|V]) using an alternative implementation [36].

7.2 The ZEL Heuristic [3§]

Define a triple to be a set of three nodes in N; we can contract a graph around a triple z by setting
to zero the edge weights of two of the three edges connecting nodes of the triple (the contracted
graph is denoted by G’[z]). The ZEL heuristic of Zelikovsky [38] is described as follows:

2The performance ratio of a heuristic is the worst-case ratio of its solution with respect to the optimal solution;
for example, a heuristic having performance ratio of % is guaranteed to produce solutions with cost never more
than 50% more than the optimal.

3Note that in a practical setting, the performance ratios of KMB and ZEL are incomparable, since although
KMB can produce solutions with cost arbitrarily close to twice the optimal, for some inputs it can produce solutions
that are much better than twice the optimal (i.e., on inputs where L is small). Thus it is not clear a priori from
these theoretical bounds that KMB will consistently lose to ZEL on typical nets (although the empirical data in
Section 5 indicates that this is indeed the case).

16

The Kou, Markowsky and Berman (KMB) Algorithm [24]

Input: A graph G = (V, E) with edge weights w;; and anet N CV

Output: A low-cost tree 77 = (V’, E’) spanning N (i.e. NCV' CV and E' C F)
G’ = (N, N x N), with edge weights ng = dista(n;, ny)

Compute T = (N, E"”) = MST(G)

G// = Ue,jEE” pathg(ni, n]')

Compute 7" = MST(G")

Delete pendant from 7” until all leaf nodes that are not in NV

Output 7"

Figure 8: The KMB heuristic for the GMST problem [24].

e Construct the distance graph G’ over N (See the first bullet of Section 7.1).

e For every triple z € N, find v € V which minimizes) _,_, distg(s, v); (i-e., the Steiner point

S€Ez
which will produce the greatest savings for each triple). Record these values as v, = v and

dist,, respectively.

e Find z € N which maximizes win, where 0 < win = MST(G') — MST(G'[z]) — dist.,
and contract G’ around z to get a new G/ — G’[z]. The Steiner point associated with the
contracting triple, v,, becomes a Steiner point in the solution. Repeat this greedy contraction

step while win > 0.

e Construct a solution using the KMB algorithm where the nodes to be spanned are the original

nodes N plus the v, associated with the G'[z] contractions above.

The time complexity of the ZEL heuristic is O(|V| - |E| + [N |*).

The Zelikovsky (ZEL) Algorithm [38]
Input: A graph G = (V, E) with edge weights w;; and anet N CV
Output: A low-cost tree 77 = (V’, E’) spanning N (i.e. NCV' CV and E' C F)
G' = (N, N x N), with edge weights wj; = distg(n;, n;),
W =0, Triples={z C N :|z| = 3}
For every z € Triples Do
Find v which maximizes) .. distg(s,v).
v, = v and dist, = Zséz distg(s,v)
Repeat Forever
Find z € Triples which maximizes win = MST(G') — MST(G'[z]) — dist,
If win < 0 Then Return KMBg(N U W)
G' =G
W =WUuv,

Figure 9: The ZEL heuristic for the GMST problem [38].

17

