Toward a Steiner Engine:
Enhanced Serial and Parallel Implementations
of the Iterated 1-Steiner MRST Heuristic

Tim Barrera, Jeff Griffith, Sally A. McKee,
Gabriel Raobins, Tongtong Zhang

Technical Report No. CS-92-40
December 01, 1992

Toward a Steiner Engine:

Enhanced Serial and Parallel Implementations
of the Iterated 1-Steiner MRST Heuristic

Tim Barrera, Jeff Griffith, Sally A. McKee,
Gabriel Robins and Tongtong Zhang

Computer Science Department, Thornton Hall,
University of Virginia, Charlottesville, VA 22903-2442

Abstract

The minimum rectilinear Steiner tree (MRST) problem arises in global routing and
wiring estimation, as well as in many other areas. The MRST problem is known to be NP-
hard, and the best performing MRST heuristic to date is the Iterated 1-Steiner (I11S) method
recently proposed by Kahng and Robins [13]. T1S achieves significantly improved average-
case performance while avoiding the worst-case examples from which other approaches
suffer, yet the algorithm has heretofore lacked a practical implementation. In this paper we
develop a straightforward, efficient implementation of 115, achieving speedup factors of over
200 compared to previous implementations. We also propose a parallel implementation of
11S that achieves near-linear speedup on K processors. Extensive empirical testing confirms
the viability of our approaches, which allow for the first time the benchmarking of 11S on
nets containing several hundred pins.

1 Introduction

The minimum rectilinear Steiner tree problem is central to VLSI physical design phases such
as global routing and wiring estimation, where we seek low-cost topologies to interconnect the

pins of signal nets [17]:

The Minimum Rectilinear Steiner Tree (MRST) problem: Given a planar set P of n
points, find a set S of Steiner points such that the minimum spanning tree (MST) over PU S

has minimum cost.

The cost of a tree edge is the Manhattan distance between its endpoints, and the cost of a tree

is the sum of its edge costs. Figure 1 shows an MST and an MRST for the same four-pin net.

Figure 1: A minimum spanning tree (left) and MRST (right) for a set of 4 pins.

Several fundamental results have guided research on the MRST problem. First, Hanan [7]
has shown that there always exists an MRST with Steiner points chosen from the intersection
of all the horizontal and vertical lines passing through each point in P; indeed, this result
generalizes to higher dimensions [22]. Unfortunately, a second major result established that
despite this restriction on the solution space, the MRST problem remains NP-complete [4].

This has prompted a large number of heuristics for the MRST problem, as surveyed in [12].

In solving intractable problems, we often seek provably good heuristics having bounded
worst-case error from optimal. Thus, a third important result established that the rectilinear
MST is a fairly good approximation to the MRST, with a worst-case performance ratio of
% < % [10], implying that any MST-based strategy which improves upon an initial
MST topology will also enjoy a performance ratio of at most % This encouraged the development
of a number of Steiner tree heuristics which resemble classic MST construction methods [8] [9]
[11] [15] [16], all of which produce trees having average cost 7% to 9% smaller than MST cost
[19] [24]. However, Kahng and Robins [14] recently characterized the limitations of MST-based
MRST heuristics by giving a class of examples on which the % bound is tight, i.e. the MST can

be unimprovable.

This negative result has motivated research into alternate schemes for MRST approximation,
among which the one with best performance is the recently proposed Iterated 1-Steiner algorithm
[13]. The Tterated 1-Steiner method (T1S) is the first known MRST heuristic which always
performs better than % times optimal [20], and for which a uniform performance ratio of 18—1
has been shown [2] using the methods of [25]. T1S also performs very well in practice, achieving

11% average improvement over MST cost, which is within 0.5% of the average optimal cost [21].

This performance success was achieved at the expense of a high time complexity, and although
a variant of 11S can be implemented to run within time O(r - n?logn), the computational
geometric methods employed to achieve this time bound hide large constants and are difficult to
code. Thus, actual previous implementations of this variant use a naive approach, and require

time O(r - n*logn), where r < n corresponds to the number of “rounds”.

The primary contribution of this paper is a practical O(r - n®) time implementation of 1S,
establishing the practicality and viability of the iterated 1-Steiner method. For n = 100 our
new implementation is about 247 times faster than the previous, naive implementation. This

enables us for the first time to observe the behavior of I1S on several hundred points.

Since a typical CAD environment consists of a network of workstations, exploiting the avail-
able large-scale parallelism provides a natural and effective means of improving the performance
of CAD algorithms. A second contribution of our work is a parallel version of T1S that achieves
high parallel speedups. Since Steiner tree construction is a very computationally expensive part
of global routing, our parallel implementation may be viewed as an important first step toward
obtaining a “Steiner engine”, i.e. an efficient tool for producing near-optimal Steiner trees.
Finally, the 1-Steiner method generalizes to arbitrarily weighted graphs, and is thus suitable for

a basis of a global router, where obstruction and congestion considerations affect routing.

In Section 2 we review the I1S method. Section 3 outlines our enhanced implementation of
T1S. Section 4 discusses the parallel implementation, and Section 5 presents simulation results
regarding performance, running times and parallel speedups. We conclude in Section 6 with

directions for further research.

2 Overview of the Iterated 1-Steiner Approach

We begin with a review of the 1-Steiner method of [13]. For two pointsets P and S we define the
MST savings AMST(P,S) = cost(MST(P)) — cost(MST(PUS)). We use H(P) to denote the
set of Hanan Steiner point candidates. For a pointset P, a 1-Steiner point z € H(P) maximizes
AMST(P,{xz}) > 0. The T1S method repeatedly finds 1-Steiner points and includes them into

S. The cost of the MST over P U .S will decrease with each added point, and the construction

terminates when there is no x with AMST(P U S,{z}) > 0. Although a Steiner tree may
contain at most n — 2 Steiner points [6], I1S may add n — 1 Steiner points or more; thus we
eliminate any extraneous Steiner points having degree 2 or less in the MST. Figure 2 illustrates

a sample execution of 1S, and Figure 3 describes the algorithm formally.

Figure 2: Execution of Tterated 1-Steiner (T1S) on a 4-point example. Note that in
step (d) a degree-2 Steiner point is formed and is thus eliminated from the topology.

Algorithm Tterated 1-Steiner (I1S)
Input: A set P of n points
Output: A rectilinear Steiner tree over P
S=10
While T'= {x € H(P)|]AMST(P,{z}) > 0} # § Do
Find z € T with maximum AMST(P, {z})
S=8SU{z}
Remove from S points with degree < 2 in MST(P U S)
Output MST(P U S)

Figure 3: The Tterated 1-Steiner (T1S) algorithm.

Although a 1-Steiner point may be found in O(n?) time using complicated techniques from
computational geometry [5] [13] [18], such methods suffer from large constants in their time com-
plexities, and are notoriously difficult to implement. We therefore combine a “batched” version
of T1S with an incremental MST update scheme (described in Section 3 below) to efficiently add
an entire set of “independent” Steiner points in a single iteration, thereby obtaining a practical

algorithm with a reduced time complexity.

Following Hanan’s result, for each candidate Steiner point € H(P) the Batched 1-Steiner
(B1S) variant computes the induced MST savings AMST(P,{z}). Next we select a maximal

“Independent” set of Steiner points, where the criterion for independence is that no candidate

Steiner point is allowed to reduce the potential MST cost savings of any other candidate. For-
mally, candidate Steiner points # and y are independent (and thus may be added in the same

round) only if AMST(P,{z})+ AMST(P,{y}) < AMST(P,{z,y}).

Once a maximal set S of independent Steiner points has been determined, it is inserted into
P, and we iterate this process with P := P U .S until we reach a round that fails to induce
a Steiner point. Clearly, the total time required by B1S is O(n?) per round. In practice we
observed that the number of rounds is a small constant; for example, when n = 300, the average

number of rounds is about 2.5. The BI1S algorithm is summarized in Figure 4.

Algorithm Batched 1-Steiner (B1S)
Input: A set P of n points
Output: A rectilinear Steiner tree over P
While T = {z € H(P)|[AMST(P,{z}) >0} # § Do
S=0
For z € {T in order of non-increasing AM ST} Do
If AMST(PUS,{z}) > AMST(P,{z}) Then S = SU{z}
P=PUS
Remove from P Steiner points with degree < 2 in MST(P)
Output MST(P)

Figure 4: The Batched 1-Steiner (B1S) algorithm.

3 An Enhanced Serial Implementation

We now describe an efficient yet simple incremental MST update algorithm. In computing
the MST savings of each of the n? Steiner candidates, a key observation is that once we have
computed an MST over the pointset P, the addition of a single new point z into P can only
induce a small constant number of changes between MST(P) and M ST(P U{z}). This follows
from the observation that each point can have at most 8 neighbors in a rectilinear MST, i.e. at

most one per octant.

This suggests the following linear-time algorithm for dynamic MST maintenance: connect
the new point to each of its potential neighbors, then delete the longest edge on each resulting

cycle. An example of this method is given in Figure 5, while Figure 6 describes it formally. Note

that dynamic MST maintenance may be achieved in sub-linear time [3], but such methods seem

impractical due to their complexity and large hidden constants.

/

longest
edgein
(@) (b) cycle © (d)

Figure 5: Dynamic MST maintenance: adding a point to an existing MST entails
connecting the point to its closest neighbor in each octant, and deleting the longest
edge on each resulting cycle (the Euclidean metric has been used for clarity in this
example).

Dynamic MST Maintenance (MSTM)
Input: A set P of n points, M.ST(P), a new point x
Output: MST(P U {z})
T = MST(P)
For i=1to 8 do
Find in octant i (with respect to z) the point p € P closest to x
Add to T edge (p,)
If T contains a cycle Then remove from 7' the longest edge on the cycle
Output T

Figure 6: Linear-time dynamic MST maintenance.

4 A Parallel Implementation

The T1S algorithm is highly parallelizable since each one of p processors can compute the MST
savings of ”?2 of the Steiner candidates. In our implementation, all processors send their best
candidate to a master processor, which selects the best of these candidates for inclusion into
the pointset. This procedure is iterated until no improving candidates can be found. The B1S

algorithm parallelizes similarly.

The Parallel Virtual Machine (PVM) system [1] [23] is used to control remote processors.

PVM is a software package that allows a heterogeneous network of parallel and serial computers
to be used as a single computational resource. The PVM system consists of two parts, a daemon
process and a user library, providing mechanisms for initiating processes on other machines and

for controlling synchronization and communication among processes.

Each of the processors in our implementation is a SUN4 workstation, communicating over
an ethernet. The master processor sends to the available processors equal sized subsets of of the
Hanan candidate set H(P), and the computation/response time of each processor is tracked. If
any individual processor is determined to be considerably slower than the rest, 1t is henceforth
given smaller tasks to perform. If a processor does not complete a task within reasonable time,
it is sent an abort message, and the task is reassigned to the fastest idle processor available. This

prevents individual slow processors from seriously impeding the speed of the overall computation.

5 Experimental Results

We have implemented both serial and parallel versions of the I1S and the B1S algorithms,
using C++ in the SUN workstation environment. The serial 1S and B1S heuristics have been
benchmarked for various pointset cardinalities: up to 1000 instances of each cardinality were
solved using both of the T1S and B1S algorithms. The instances were generated randomly by
choosing z and y coordinates from a uniform distribution in the 1000 x 1000 grid; such instances
are statistically similar to the pin locations of actual VLSI nets, and are the standard testbed
for Steiner tree heuristics [13] [12]. Performance results are summarized in Tables 1 and 2 in
the Appendix, and are illustrated in Figures 7 through 9. Both I1S and B1S yield Steiner trees
with cost averaging about 11% smaller than the MST cost; this is within 0.5% of the average

optimal Steiner tree cost[21].

We timed the execution of the serial and parallel versions of T1S and B1S, using both the
naive O(r - n*logn) implementation [13] and our new implementation which incorporates the
efficient, dynamic MST maintenance as described in Section 3. The parallel implementation
uses 9 SUN 4/40 (TPC) workstations, with a SUN 4/75 (Sparc2) as the master processor. The

improvements in running time are dramatic: for n = 100 our serial implementation is 247 times

=
N
|

-
=
P S S R

B1S: Ave Savings (% | mprovement Over MST)

©

od——
§.

N

o

o

w

(=]

o

Pointset Sizes

Figure 7: Average performance of the Batched 1-Steiner algorithm, shown as per-
cent improvement over MST cost.

faster than the naive implementation, and our parallel implementation running on 10 processors
is 1163 times faster. Detailed execution timings for various cardinalities are given in Tables
3 and 4 in the Appendix, and are illustrated in Figure 10. Even for small pointsets, our new
implementations are considerably faster than the previous, naive ones: for example, for n = 5
the new serial B1S is on average 2 times faster than the naive implementation, while for n = 10
the serial speedup factor approaches 12. The speedup of course increases with the pointset
cardinality. The parallel speedup we achieve also increases with the problem size, reaching

about 7.2 for n = 250 on 10 processors.

6 Conclusion

We have proposed an enhanced implementation of the Tterated 1-Steiner and Batched 1-Steiner

heuristics of [13], and have achieved execution speeds about 250 times faster than previous

B1S: Average Number of Rounds

Pointset Sizes

Figure 8: Average number of rounds for the Batched 1-Steiner algorithm.

implementations. This speedup has enabled the testing of I1S and B1S on several hundred
points for the first time, and for these large pointsets the average performance of the 1-Steiner

method consistently achieves around 11% improvement over MST cost.

We have also implemented parallel versions of both 11S and B1S that achieve high parallel
speedups, confirming that the 1-Steiner approach is highly suitable for parallelization. The
1-Steiner approach generalizes to arbitrary weighted graphs, and is thus suitable to support a
global router, where obstructions and congestion must also be considered while routing. Since
Steiner tree construction is a very computationally expensive component of global routing, our
implementations suggest the feasibility of a “Steiner engine” for efficiently computing near-

optimal Steiner trees.

One obvious future research direction would be to reduce even further the time complexity

of the 1-Steiner approach. Another extension is to investigate Iterated 1-Steiner performance

150

100

50

B1S: Min/Ave/lM ax # of Steiner Points

Pointset Sizes

Figure 9: Average number of Steiner points induced by the Batched 1-Steiner algo-
rithm; vertical bars indicate for each pointset cardinality the range of the minimum
and maximum number of Steiner points.

in higher dimensions, since both T1S and B1S readily generalize to all dimensions. Finally, our
new code can be used to examine the asymptotics of the MST/Steiner ratio for much larger

pointsets than was previously possible (see Figure 11).

References

[1] A. BEGUELIN, J. J. DONGARRA, G. A. GEIST, R. MANCHEK, AND V. S. SUNDERAM, A
User’s Guide to PVM: Parallel Virtual Machine, Tech. Rep. ORNL/TR-11826, Oak Ridge
National Laboratory, 1991.

[2] P. BERMAN AND V. RAMAIYER, Improved Approzimations for the Steiner Tree Problem,
in Proc. ACM/STAM Simposium on Discrete Algorithms, San Francisco, CA, January 1992,
pP- 325-334.

[3] G. N. FREDRICKSON, Data Structures for On-Line Updating of Minimum Spanning Trees,
STAM J. Comput., 14 (1985), pp. 781-798.

10

1 Serid
3000 |
4 | |
Vo
| |
Lo
g .
9] ro
g o
£ o
= Vo
c |
k=) po!
gloooi o New B1S
x 1 Serial New B1S
.] Parallel
)
[
] ,/
rl/./ ___________
0 e e e |"'.".”.-- ————————— 1
0 100 200 300
Pointset Sizes

Figure 10: Average execution times (in seconds) for the serial and parallel B1S, using
both the naive MST implementation and our new incremental MST maintenance

scheme.

[4] M. GAREY AND D. S. JoHNSON, The Rectilinear Steiner Problem is NP-Complete, STAM
J. Applied Math., 32 (1977), pp. 826-834.

[5] G. GEORGAKOPOULOS AND C. H. PAPADIMITRIOU, The I-Steiner Tree Problem, J. Algo-
rithms, 8 (1987), pp. 122-130.

[6] E. N. GILBERT AND H. O. PoLLAK, Steiner Minimal Trees, STAM J. Applied Math., 16

(1968), pp. 1-29.
[7] M. HaNAN, On Steiner’s Problem With Rectilinear Distance, STAM J. Applied Math., 14

(1966), pp. 255-265.
[8] N. HasaN, G. Visayan, anp C. K. Wona, A Neighborhood Improvement Algorithm for
Rectilinear Steiner Trees, in Proc. IEEE Intl. Symp. on Circuits and Systems, New Orleans,

LA, 1990.
[9] J.-M. Ho, G. Vijavan, anD C. K. Wona, New Algorithms for the Rectilinear Steiner
Tree Problem, IEEE Trans. on Computer-Aided Design, 9 (1990), pp. 185-193.

[10] F. K. HWANG, On Steiner Minimal Trees with Rectilinear Distance, STAM J. Applied
Math., 30 (1976), pp. 104-114.

11

O @ o)
8 D o o
o
Q a ©
o 8 3 o))} Q o)
D o D
o) & o)
80 S o) o
o)
O Q
o
o) o)
o)
Q ? o
O o
o) o
o D, o O
e o
o 0
o
o)
0o 0 O o
o Oo Q o) o $ O
o
Q o o
a 0 Q
O
o) o) 2 O o
o O
o
O O a
o) O O o) O
o O
o O
O S O oO—&0
o)
o O O
o) o
o) o
RO 5 o—
o) o)

Figure 11: An example of the output of B1S on a random 300-point set (hollow
dots). The Steiner points produced by our algorithm are denoted by dark solid
dots.

[11] ——, An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees, J. ACM, 26 (1979),

pp. 177-182.

[12] F. K. HwaNG, D. S. RicHARDS, AND P. WINTER, The Steiner Tree Problem, North-

Holland, 1992.

[13] A. B. KauNG AND G. RoOBINS, A New Class of Ierative Steiner Tree Heuristics With

Good Performance, TEEE Trans. on Computer-Aided Design, 11 (1992), pp. 893-902.

[14] ——, On Performance Bounds for a Class of Rectilinear Steiner Tree Heuristics in Arbi-

trary Dimension, IEEE Trans. on Computer-Aided Design (to appear), (1992).

[15] J. H. LEE, N. K. Boske, aND F. K. HwaNG, Use of Steiner’s Problem in Sub-Optimal

Routing in Rectilinear Metric, TEEE Trans. on Circuits and Systems, 23 (1976), pp. 470—
476.

12

[16] K. W. LEE aAND C. SECHEN, A New Global Router for Row-Based Layout, in Proc. IEEE
Intl. Conf. on Computer-Aided Design, Santa Clara, CA, November 1990, pp. 180-183.

[17] B. T. PrEAS AND M. J. LORENZETTI, Physical Design Automation of VLSI Systems,
Benjamin/Cummings, Menlo Park, CA, 1988.

[18] F. P. PREPARATA AND M. 1. SHAaMOS, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

[19] D. RICHARDS, Fast Heuristic Algorithms for Rectilinear Steiner Trees, Algorithmica, 4
(1989), pp. 191-207.

[20] G. RoBINS, On Optimal Interconnections, Ph.D. dissertation, Department of Computer
Science, UCLA, 1992.

[21] J. S. SALOWE, On FEzact Algorithms for Rectilinear Steiner Minimal Trees. manuscript,
November 1992.

[22] T. L. SNYDER, On the Ezact Location of Steiner Points in General Dimension, STAM J.
Comput., 21 (1992), pp. 163-180.

[23] V. S. SUNDERAM, PVM: A Framework for Parallel Distributed Computing, Concurrency:
Practice and Experience, 2 (1990), pp. 315-339.

[24] P. WINTER, Steiner Problem in Networks: A Survey, Networks, 17 (1987), pp. 129-167.

[25] A. Z. ZELIKOVSKY, The 11/6 Approzimation Algorithm for the Steiner Problem on Nel-
works, Information and Computation (to appear), (1992).

13

7 Appendix: Performance Data

Tterated 1-Steiner
Performance Number of SPs

|P| | Min Ave Max | Min Ave Max
4 |0.00 877 26.06| 0 1.08 3
5 10.00 925 2433] 0 1.56 4
6 |0.00 992 2567 | 0 2.16 4
7 1.31 981 22.12 1 2.49 5
8 |1.65 10.05 2337 | 1 2.96 5
9 0.44 10.16 20.46 1 3.43 6
10 | 1.01 10.15 20.86 | 2 3.86 7
12 | 1.37 10.28 18.66 2 4.77 8
14 | 3.01 10.27 17.66 | 2 5.66 9
16 | 3.08 10.48 18.21 4 6.64 10
18 | 4.26 1045 16.69 4 7.55 11
20 | 3.66 10.48 16.62 4 8.36 12
30 | 497 10.65 1567 | 8 12.88 19

40 | 6.54 10.81 1563 | 12 1742 24
50 | 7.31 10.78 14.90 | 15 21.85 27
60 | 8.10 10.84 13.52 | 21 26.29 32
70 | 836 10.69 12.73 | 24 30.49 39
80 | 8.58 10.79 12.72 | 30 34.55 42
90 | 8.38 11.02 13.60 | 33 40.08 45
100 | 9.33 1098 13.90 | 39 4483 49

Table 1: Tterated 1-Steiner statistics: the performance figures denote percent improvement over
MST cost. Also given are statistics regarding the number of Steiner points produced.

14

Batched 1-Steiner

Performance Number of SPs Number of rounds Ave #SPs per round

|[P| | Min Ave Max | Min Ave Max | Min Ave Max 1 2 3 4

4 0.00 8.83 27.19 0 2.10 4 0 0.97 2 1.14 0.37 0.00 0.00
5 0.00 9.35 23.59 0 2.59 5 0 1.08 3 1.51 0.46 0.06 0.00
6 0.00 9.83 25.99 0 3.09 6 0 1.15 3 1.91 1.42 0.03 0.00
7 0.41 9.82 2344 | 2 3.52 7 1 1.17 3 2.32 0.59 0.02 0.00
8 0.00 9.92 20.93 0 3.99 8 0 1.23 3 2.73 0.96 0.17 0.00
9 1.04 10.07 20.62 2 4.48 7 1 1.31 3 3.12 1.16 0.19 0.00
10 | 1.26 10.24 20.03 3 4.95 8 1 1.34 4 3.56 1.11 0.10 0.01
11 | 2.01 10.32 20.81 3 5.42 10 1 1.33 3 4.01 1.01 0.03 0.00
12 | 1.85 10.32 18.83 2 5.88 10 1 1.43 4 4.31 1.28 0.09 0.00
13 | 2.06 1027 19.74 | 3 6.39 11 1 1.46 4 4.80 1.23 0.09 0.04
14 | 3.01 10.28 19.56 3 6.82 11 1 1.48 4 5.18 1.25 0.14 0.07
15 | 2.78 1041 18.10 | 4 7.27 12 1 1.49 4 5.59 1.33 0.12 0.00
16 | 247 1042 1845 | 4 7.76 13 1 1.52 4 6.01 1.33 0.13 0.00
17 | 3.00 1058 1794 | 5 8.33 14 1 1.56 3 6.50 1.38 0.27 0.00
18 | 3.62 10.46 18.19 5 8.70 14 1 1.58 4 6.85 1,52 0.26 0.01
19 | 3.71 10.37 18.05 5 9.14 14 1 1.61 5 7.21 1.58 0.10 0.01
20 | 435 10.39 17.90 5 9.63 15 1 1.60 4 7.68 1.58 1.00 0.00
30 | 6.49 10.64 14.73 9 13.47 20 1 1.85 4 11.61 175 021 0.01
40 | 6.28 10.68 14.55 | 12 18.10 26 1 1.98 5 15.95 247 0.23 0.00
50 | 7.25 1072 1528 | 15 23.70 33 1 2.04 4 19.97 278 0.56 0.00
60 | 8.67 10.77 14.29 | 19 27.53 37 1 2.12 5 23.88 3.81 0.58 0.00
70 | 7.80 10.82 13,55 | 23 32.26 42 1 2.17 4 28.02 3.52 0.62 0.00
80 | 7.34 10.83 12.88 | 28 36.99 50 1 2.20 4 32.07 466 0.64 0.01
90 | 7.99 10.84 1352 | 32 41.61 56 1 2.24 4 36.18 5.14 1.17 0.04
100 | 8.78 10.86 13.60 | 35 46.30 59 1 2.25 4 40.21 555 1.31 0.01
110 | 8.04 10.86 12.86 | 40 50.98 67 1 2.28 4 4496 577 0.53 0.08
120 | 7.83 10.86 12.62 | 44 55.59 68 1 2.29 5 48.64 7.15 1.02 0.00
130 | 8.25 10.85 12.63 | 47 60.03 73 1 2.34 4 52.87 7.22 0.82 0.00
140 | 8.45 10.84 12.57 | 51 64.97 79 1 2.38 5 56.94 8.12 1.07 0.22
150 | 9.07 10.92 12.63 | 57 69.85 87 1 2.39 4 59.92 8.28 1.13 0.00
200 | 9.39 1097 1232 | 79 93.10 107 2 2.47 4 80.04 11.68 1.48 0.50
250 | 10.26 10.98 11.68 | 103 116.32 131 2 2.57 4 100.00 14.53 0.82 0.00
300 | 9.76 10.97 12.18 | 131 137.67 145 2 2.50 4 121.85 16.85 1.33 0.00

Table 2: Batched 1-Steiner statistics: the performance figures denote percent improvement over
MST cost. Also given are statistics regarding the number of Steiner points produced, the number
of rounds, the the number of Steiner points induced per round.

15

Tterated 1-Steiner Average Execution Speeds

Serial Parallel Speedup overall
old new ratio old new ratio | old new gain
|P| A B A/B C D Cc/D | A/C B/D| A/D
4 0.01 0.01 1.00 0.14 0.18 0.78 | 0.07 0.06 0.06
5 0.05 0.03 1.67 0.21 025 084 | 0.24 0.12 0.20
6 0.12 0.05 240 0.30 0.38 0.79 | 0.40 0.13 0.32
7 0.27 0.09 3.00 0.50 040 1.25 | 0.54 0.22 0.68
8 0.56 0.13 4.31 0.46 049 094 | 1.22 0.27 1.14
9 1.03 0.20 5.15 0.60 056 1.07 | 1.72 0.36 1.84
10 1.8 0.27 6.7 1.08 0.64 1.69 | 1.67 042 2.81
12 | 4.76 057 835 1.66 092 1.80 | 2.87 0.61 5.17
14 | 10.82 0.97 11.15 | 2.87 1.14 252 | 3.77 0.85 9.49
16 | 21.78 1.54 14.14 | 4.11 1,55 265 | 5.30 099 | 14.05
18 | 40.37 231 1748 | 6.93 225 3.08 | 597 1.03 | 17.94
20 | 69.11 342 20.21 | 13.51 3.42 395 | 5.12 1.00 | 20.21
30 573 16.4 34.94 108 7.03 15.36 | 5.31 2.33 | 81.51
40 | 2147 47 45.68 348 195 17.85 | 6.17 2.41 | 110.10
50 | 9542 102 93.55 | 1166 42 27.76 | 8.18 2.43 | 227.19
60 | 27083 206 131.47 | 2949 59 49.98 | 9.18 3.49 | 459.03
70 405 94 4.31
80 547 146 3.75
90 886 221 4.01
100 1283 277 4.63

Table 3: Execution times for Tterated 1-Steiner: the serial execution times are given in CPU
seconds, while the parallel execution times are elapsed wall-clock times. Both the serial and
parallel versions were tested with the old MST routine (naive implementation) as well as the
new MST routine (our implementation). The overall gain is the ratio of the old serial time to
the new parallel time. The parallel implementation uses 9 SUN 4/40 (TPC) workstations, with

a SUN 4/75 (Sparc2) as the master processor.

16

Batched 1-Steiner Average Execution Speeds

Serial Parallel Speedup overall
old new ratio old new ratio old new gain
| A B A/B C D c/D | A/C B/D A/D
0.01 0.01 1.00 | 0.16 0.15 1.07 | 0.06 0.07 0.07
0.04 0.02 200 | 0.20 0.19 1.05 | 0.20 0.11 0.27
0.10 0.04 250 | 0.21 0.20 1.05 | 0.48 0.20 0.53
0.20 0.06 3.33 | 0.24 0.22 1.09 | 0.83 0.27 0.91
0.37 0.09 4.11 0.27 0.24 1.13 1.37 0.38 1.54
0.63 0.12 525 | 0.39 0.27 1.44 1.62 0.44 2.33
10 1.02 0.16 6.38 | 0.51 0.29 1.76 | 2.00 0.55 3.52
12 2.28 0.26 8.77 1.06 0.35 3.03 | 2.15 0.74 6.51
14 | 4.69 044 10.66 | 1.57 0.41 3.83 | 299 1.07 11.44
16 8.40 0.61 13.77 | 2.07 0.47 440 | 4.06 1.30 17.87
18 | 14.67 0.81 18.11 | 4.14 0.57 7.26 | 354 142 | 25.73
20 | 24.07 1.09 22.08 | 557 0.61 9.13 | 432 1.79 | 39.46
30 151 3.80 39.74 | 402 179 2246 | 3.75 2.12 | 84.36
40 522 859 60.77 | 126 3.23 39.01 | 4.14 2.66 | 161.61
50 | 1130 16.1 70.19 | 200 5.03 39.76 | 5.65 3.20 | 224.65
60 | 2745 28.1 97.69 | 753 8.03 93.77 | 3.65 3.50 | 341.84
70 | 5520 41.9 131.74 | 1002 12.1 82.81 | 5.51 3.46 | 456.20
80 | 10350 62.2 166.40 | 2084 17.1 121.87 | 4.97 3.64 | 605.26
90 | 15450 87.5 176.57 | 2582 16.5 156.48 | 4.97 5.30 | 936.36
100 | 28140 114 246.84 | 4748 24.2 196.20 | 5.93 4.71 | 1162.81

RolNo NN I N IS R |

120 232 40.5 5.73
140 344 58.6 5.87
160 376 79.67 4.72
180 571 103 5.54
200 801 129 6.21
250 1528 212 7.21
300 1800 447 4.03

Table 4: Execution times for Batched 1-Steiner: the serial execution times are given in CPU
seconds, while the parallel execution times are elapsed wall-clock times. Both the serial and
parallel versions were tested with the old MST routine (naive implementation) as well as the
new MST routine (our implementation). The overall gain is the ratio of the old serial time to
the new parallel time. The parallel implementation uses 9 SUN 4/40 (TPC) workstations, with
a SUN 4/75 (Sparc2) as the master processor.

17

