
Certification Of Reusable Software
Parts

Michael F. Dunn
John C. Knight

August 31, 1992

CERTIFICA TION OF REUSABLE SOFTWARE

PARTS†

Michael F. Dunn John C. Knight

Department of Computer Science
University of Virginia

Charlottesville
Virginia 22903

August, 31 1992

† This work was funded in part by the Software Productivity Consortium and in part by the
Virginia Center for Innovative Technology, grant number INF-92-001.

© Copyright University of Virginia, 1992. All rights reserved.This document is protected
by the copyright laws of the United States. It may not be copied in whole or in part without
the express, written permission of the authors.

Certification Of Reusable Software Parts Executive Summary

© 1992 University Of Virginia. All rights reserved

Executive Summary
Improved system quality is often cited as a benefit of software reuse, but little work has

been done to quantify this benefit. Thesoftware component certification strategy presented
in this report is a framework for such a quantification.

The main idea behind component certification can be stated quite simply:Having
guaranteed that a specific set of quality guidelines have been adhered to in a set of
components, it will then be much easier to verify the quality of a system composed of those
components. The main questions one must answer about a certification scheme are:

• How does one establish component quality guidelines for the various lifecycle
work products?

While reuse-oriented development is often thought of in terms of source code, it
is important to consider the benefits of reusing other work products as well, such
as specifications and designs. These are fundamentally different artifacts of the
software development process, and a comprehensive certification scheme must
be flexible enough to accommodate them.

• Once component quality guidelines have been established, how can they be used
to determine the quality of a system that incorporates them?

A point central to the strategy presented in this report is that in order to establish
component quality guidelines, one must first establish the quality requirements
of all systems within a particular problem domain, and then work backwards.
This underscores the importance of the domain analysis in the software process.

• How can a certification strategy be established that will suit the unique needs of
a variety of different organizations?

The strategy presented here is not a set of specific quality rules, it is a framework,
coupled with guidelines on how to derive such rules. The idea is to provide
guidance on how to determine what quality attributes are important, and then use
this knowledge to create certification criteria. As such, the strategy presented
should be useful to any software development group.

• How does an organization go about assessing the economic benefits of such a

Certification Of Reusable Software Parts Executive Summary

© 1992 University Of Virginia. All rights reserved

strategy?

The fundamental assumption is that an organization must build systems to
adhere to a set of quality standards, whether a component certification process is
used or not. The claim made here is that a certification process will lead to
reduced costs by encouraging component reuse, reducing quality assurance cost,
reducing the amount rework required, and easing the maintenance process. The
section of the report dealing with this issue provides a set of questions to help the
organization determine whether adopting a certification strategy is economically
appropriate.

Certification Of Reusable Software Parts Introduction

© 1992 University Of Virginia. All rights reserved. 1

1. Introduction

This report focuses on the development of high quality systems through the use of
rigorously certified reusable software components. While enhanced quality is often
mentioned as a benefit of reuse-oriented development processes, it has been difficult to
establish the nature of these enhancements in a convincing way. The techniques described
here are a step toward this establishment.

Intended for the member companies of the Software Productivity Consortium, this
report is designed to serve as both a detailed explanation of the framework underlying
component certification, and as a practical guide to the software practitioner. As such, the
organization is as follows:

• Chapter 2 provides definitions for the fundamental terms used throughout the
document, and provides a rationale for the certification framework itself.

• Chapter 3 describes the nature of certification properties, and gives a framework
for developing complete and consistent definitions for these properties.

• Chapter 4 presents a detailed look at how part certification fits into the context
of a reuse-oriented development process.

• Chapter 5 gives specific techniques for establishing relevant part properties.

• Chapter 6 is a follow-on to Chapter 5, and shows how a set of part properties can
be used to establish properties of the system comprised of those parts.

• Chapter 7 gives an economic justification to the component certification process.

As an appendix, the report includes two case studies showing example certification
definitions and their application.

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 2

2. Definitional Framework

As an old joke among computer scientists goes, on New Year’s Eve, 1999, all of the
computer programmers in the world will line up outside of their respective banks and
withdraw all of their money. The reason, of course, is because of the uncertainty over the
impact of the millennium on all of the computerized banking systems currently in use that
assume a two character year format, with ‘19’ being the implicit first two characters. The
fact that this joke is more frightening than it is humorous provides a motivating example
for the issue of software component certification.

As software development techniques begin to rely more and more on the use of reusable
components, the quality of these components will become an issue of increasing urgency.
The anecdote noted above is a fairly obvious example of component usage that has been
prevalent for years; namely, the use of standard date processing routines in business
applications. While the utility of such routines is obvious, no one can vouch for the
dependability of all such routines under all circumstances. The user of such a routine must
assume that it will provide reasonable results under such conditions as leap years and
century changes. For the user to have to examine the source code of the routine to verify its
correctness would defeat the purpose of having such a general routine in the first place.

Therein lies the problem of component certification: How to determine what quality
aspects of a component are truly important, and how to understand the impact these aspects
will have on the overall quality of systems built with such components.

2.1 Framework

Although no formal definition of certification exists in the context of reuse, it is
essential that such a definition be available to permit users to trust reusable parts and to
permit the exploitation of reuse in support of work-product quality. With no definition,
there can be no assurance that parts retrieved from a reuse library possess useful properties

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 3

nor that different parts possess the same properties. Given the informal notions of
certification that have appeared, it is tempting to think that a definition of certification
should be in terms of some test metric or similar. For example, certification might mean that
a source-code part has been tested to achieve some particular value of a coverage metric or
has a failure probability below some critical threshold.

The major difficulty with this approach, no matter how carefully applied, is that any
single definition that is offered cannot possibly meet the needs of all interested parties. In
practice, it will meet the needs of none. Knowing that source-code parts in a reuse library
have failure probabilities lower than some specific value is of no substantial merit if the
target application requires an even lower value. A second difficulty is that by focusing on
a testing-based definition, other important aspects of quality are omitted from
consideration. It is useful in many cases, for example, for parts to possess properties related
to efficient execution. Finally, note that testing is not an especially meaningful notion for
libraries other than source-code libraries.

2.1.1 Basic Definitions

With these difficulties in mind, it is clear that a different approach to certification is
required. The following are proposed as definitions for use in the context of reuse and are
used throughout the remainder of this report:

Definition: Part

A life-cycle work product out of which other, larger life-cycle work products can
be composed. In this report, the wordpart is used interchangeably with the word
component.

Definition: Property

A property is a true statement about some aspect of a reusable part. A property
might be an assumption that a part makes about its operating environment or a
specific quality that a part can have.

Definition: Certification Instance

A certification instance is a set of properties that can be possessed by the type of
part that will be certified according to that instance.

Definition: Certified Part

A part is certified according to a given certification instance if it possess the set
of properties prescribed by that instance.

Definition: Certification

 Certification is the process by which it is established that a part is certified.

In establishing a certified reuse library, the associated certification instance has to be

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 4

defined and the process by which these properties are demonstrated has to be created. When
developing a part for placement in the library, it is the developer’s responsibility to show
that the part has the properties required for that library. When using a part, it is the user’s
responsibility to enquire about the precise set of properties that the part has and ensure that
they meet his or her needs.

2.1.2 Framework Rationale

These definitions appear to be of only marginal value because the prescribed properties
are not included. However, it is precisely this aspect that makes the definitions useful. The
definitions have three very valuable characteristics:

• Flexibility.

As many different certification instances can be defined as are required,. and
different organizations can establish different sets of properties to meet their

Figure 1 - Multiple Certification Definitions

Project A

Certification

Part
Preparation

Reuse Library

.....

Project B

Certification

Part
Preparation

Reuse Library

Project N

Certification

Part
Preparation

Reuse Library

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 5

needs (see Figure 1). Although the ability to create different sets of properties is
essential, the communication that a single set facilitates within a single
organization or project is also essential. Within an organization, that
organization’s precise and unambiguous instance of certification is tailored to its
needs and provides the required assurance of quality in its libraries of certified
parts.

• Generality.

Nothing is assumed about the type of part to which the definitions apply. There
are important and useful properties for parts other than source code. For
example, a precise meaning for certification ofreusable specification parts could
be developed. This would permit the requirements specification for a new
product to be prepared from certified parts with the resulting specification
possessing useful properties, at least in part. Useful properties in this case might
be certain aspects of completeness or, for natural language specifications, simple
(but useful) properties such as compliance with rules of grammar and style.

• Precision.

Once the prescribed property list in the certification instance is established, there

Figure 2 - Communication By Certification

Project 1

Certification

Reuse Library

Part User

Instantiation of

Communication

Project N

Certification

Reuse Library

Instantiation of

Communication
Part User

Part
Preparation

Part
Preparation

Part Developer

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 6

is no doubt about the meaning of certification. The property list is not limited in
size nor restricted in precision. Thus certification can be made as broad and as
deep as needed to support the goals of the organization.

The utility of multiple definitions and the major benefit of communication between the
part developer and part user is illustrated in Figure 2. The developer of the part knows
exactly what qualities have to be present and the user of the part knows exactly what
qualities can be assumed.

The properties included in a specific instance of certification can be anything relevant
to the organization expecting to use the certified parts. The following are examples of
properties that might be used for source-code parts:

• Compliance with a detailed set of programming guidelines such as those
prepared for Ada [SPC89].

• Subjected to a rigorous but informal correctness argument.

• Tested to some standard such as achieving a certain level of a coverage metric.

• Compliance with certain performance standards such as efficient processor and
memory utilization or achieving some level of numeric accuracy.

Determining the properties to be included in a particular instantiation is discussed in the
next section and in Chapter 3.

2.2 Instantiating Certification

The definition of certification presented in the previous section provides the various
advantages cited, but, since no specific properties are mentioned, it offers no guidance on
what a particular instance of certification should be. This raises the issue of exactly which
properties should be included by an organization in the instance of certification for its own
reuse library or libraries.

Many properties come to mind as being desirable. However, since preparation of
reusable parts is a major capital undertaking, it is inappropriate to include properties that
are not essential. Consider, for example, requiring the existence of a formal proof that a
source-code component has some specific quality as part of a certification instance. This
means that each part in a certified library must be accompanied by such a proof. This is
likely to raise the cost of developing those parts considerably. Unless the existence of the
proofs can be exploited routinely to establish characteristics of systems built using those
parts, the proofs are of marginal value at best. In other words, it is not desirable to have parts
that are “too good”. This issue is a concern for all types of work products and all properties.

The opposite circumstance is also a factor. If establishing a necessary characteristic of
a work product is facilitated by incorporating reusable parts having a certain property, then

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 7

that property had better be included in the certification instance. In other words, it is
important to have parts that are “good enough”.

Precisely what determines the properties that should be included in a certification
instance for a given reuse library? The key to the definition of any specific instance is the
use to be made of the properties in the definition. The only justification for the inclusion of
a particular property in a certification instance is that possession of that property by parts
in a library contributes to the establishment of useful characteristics in work products built
from those parts. Thus a certification instance is developed from the characteristics desired
of work products built from the associated library, and the determination of these
characteristics is part ofdomain analysis [Pri90]. The sequence of events, therefore, is to
determine the desired domain properties and then from these determine the properties
required of reusable parts. These become the certification instance. Of course, this does not
preclude the possibility of a common instance being used for many libraries or “standard”
instances being developed for groups of domains or classes of application. These concepts
are illustrated in Figure 3.

This approach appears to shift the problem rather than solve it. The original problem
was the selection of properties in an instance of certification. The new problem is the
determination of domain properties from which the instance of certification is derived.
However, in practice, the domain properties are the ones of real concern, and they are very
likely to be defined by the domain analysis. If certification is an important facility for a
particular domain, then acquisition of the necessary domain properties will have to be a
well-defined aspect of the associated domain analysis. By adding the requirement for

Figure 3 - Instantiating Certification

Part
Certification

Process

Reusable
Part

Libraries

Part
Properties

Certified Reusable PartsReusable Parts

Domain
Properties

Work Products

Certification Instance

Domain
Analysis

Certification Of Reusable Software Parts Definitional Framework

© 1992 University Of Virginia. All rights reserved. 8

capturing certification properties to domain analysis, the concept ofextended domain
analysis is defined.

It is not the case that an identified domain property and the associated part property will
necessarily be the same, although they might be. What is required is that part properties
permit the demonstration of useful properties of work products built from them, and this
might require explicit manipulation of information about the parts Consider, for example,
a reuse library of source-code parts intended for developing real-time applications. The
certification instance in that case might require a determination of the absolute bound on
execution time for a certified part on a given host computer/compiler combination and
recording of that bound along with the part in the reuse library. Availability of the time
bounds does not permit anything to be concluded immediately about any system built using
the parts. However, analysis of the final system structure using knowledge of the time
bounds of the parts can facilitate the assurance of meeting required real-time deadlines for
some system structure

A simple example where the part property and the domain property are the same is
source-code programming standards. Clearly, if certified parts follow required
programming standards, then that portion of a complete system built from such parts will
follow the standards also. Showing that a complete system complies with required coding
standards is facilitated in this case since the source text derived from reusable parts need
not even be checked.

2.3 Summary

The concept of this framework is to define certification to be a set of properties
possessed by reusable components in a certified reuse library. The properties in question
are themselves inferred from the properties required of systems developed within the
domain. These latter system properties are determined during an extended domain analysis.

The key aspect of this framework is its flexibility. The idea is not to create a rigid set of
certification criteria that can be used by all organizations, but rather to create a framework
by which any organization can create its own set of certification criteria. One must not
regard certification as a process that takes place in a vacuum; properties one determines for
a set of components must be useful in deriving properties for a system built with these
components. It is also important to keep in mind the balance between having parts that are
“too good”, that is, over certified and thus expensive, and those that are “not good enough”,
and can lead to problems in deployed systems.

The following chapter refines the notion of certification properties, and how one should
go about defining them for a variety of work products.

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 9

3. Developing Certification Definitions

As mentioned in Chapter 2, certification instances will vary according to the needs of
the problem domain in question and according to the needs of the software development
organization. As is shown in this chapter, however, there is a structure underlying the
creation of certification instances; a structure that should remain constant regardless of the
characteristics of specific organizations or problem domains.

Briefly, certification property definitions are used to describe two attributes of a
component:

• Facts about the component itself. In other words,what the component is. These
are referred to here asstructural properties.

Properties of this sort are important because they determine how easily a
component can be used, modified, and reused, regardless of the application
domain. Some important factors affecting properties of this sort are:

- The lifecycle phase for which the component is intended.

- The notation or language in which the component is written.

- The size or complexity of the component.

• Facts about the intended use of the component. In other words,what the
component does. These are referred to asbehavioral properties.

Properties of this sort are important because they determine how useful the
component is. The important factors here are:

- The application domain for which the component is intended.

- The size or complexity of the component.

The next several sections refine this distinction by developing a framework that can be
used to organize the development process of a certification instance.

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 10

3.1 Three Major Certification Attributes

The previous chapter defined the rationale for a component certification scheme. The
next step is to determine the types of components to which one should apply the scheme.
This section considers this step by looking at three attributes:

• Thelifecycle phase in which the component was produced.

• Level of granularity of the component; that is, its size and complexity.

• Thedomain for which the component is intended.

3.1.1 Lifecycle Phase

Although reuse research has tended to focus on source code, numerous researchers have
stressed the economic benefits to be gained from reusing higher-level artifacts, such as
specifications and design parts. As reuse of these work products becomes more common, it
is reasonable to assume that the development of appropriate certification criteria will
become necessary. Like source code, these other work products can be categorized into a
variety of different components. When dealing with specifications, for example, we might
speak of parts such as module catalogs, lists of undesired events, or abstract interface
descriptions.

3.1.2 Level Of Granularity

Traditional reuse libraries have focused on source-code elements, such as Ada generics,
collections of C functions, and C++ classes. The certification instances of one such artifact
versus another are likely to be quite different, given their differing semantic content. In
certifying a generic, for example, one might be concerned about the number of different
data types used as parameters during testing, as well as the specific data values.

Granularity is also a concern for other lifecycle work products. In specifications for
entire subsystems, for example, a major problem is keeping the usage of names and their
definitions consistent. While this is true of any size specification, it is much easier to keep
track of this for small components.

3.1.3 Intended Domain

The type of application for which a component set is intended will also impact the
manner in which certification criteria are applied. One would expect a safety-critical
application domain, such as flight control, to have a much more rigorous set of certification
properties associated with it, than, for example, a domain such as warehouse inventory
control.

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 11

3.1.4 Graphical Model

These three major areas,level of granularity, lifecycle phase, andapplication domain,
constitute three majordimensions that can be used to help define certification instances for
a set of components. Figure 4 shows how these dimensions, arranged as a 3-space, can be
used to describe a source-code function of an embedded real-time system. The next several
sections discuss specific issues in work product certification definitions, namely:

• Notation used to define work products, and the impact various notations will
have on the definitions.

• The types of properties for which one will need definitions, and the partitioning
of these properties into property classes.

3.2 Notation Used To Define Work Products

To understand the problems posed in forming a general component certification
scheme, consider theLifecycle-Phase dimension. The labels that appear on that axis are, of
course, heterogenous. For example, one would not expect a code artifact to even remotely
resemble a requirements artifact. However, the language used to define the part also has a
major impact on the definition of its ultimate certification instance. This section describes
some of these differences for two of these part types, specifications and code. The influence
of these differences can be seen readily throughout the rest of this report.

Figure 4 - Certification Space

 Requirements

Design

Code

Test Plans

Lifecycle Phase

Real-Time
Embedded

SW Tools ...

Application Domain

Fragment

Function

ADT

Level Of Granularity

x

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 12

3.2.5 Choice of Language For Specifications

Various notations for capturing requirements specifications exist, ranging from
informal natural language to “semi-formal” methods such the A-7E technique [Hen80], to
formal methods such as ‘‘Z’ ’ [Spi89]. Given the ambiguity inherent in natural language,
one can make a strong case for favoring specifications captured using more formal methods
as lending themselves more easily to certification.

3.2.6 Choice of Language For Source Code

The ease with which source code parts can be certified depends to a large extent on the
language in which the parts are written. To complicate the issue, not only are there
variations between the features and facilities of different languages, but different
implementations of the same language will often yield semantically different object code
from typographically equivalent source code. An organization devising a certification
scheme will have to understand these differences in order to create truly useful certification
definitions.

The impact that language differences will have on certification will manifest itself in
the following areas:

• Concurrency semantics.

• Exception handling semantics.

• Mathematical precedence rules and order of evaluation in expressions.

• Type or class inheritance semantics.

• Abstraction and encapsulation mechanisms.

• Recursion semantics.

• Efficiency, for example, of numeric and string processing functions.

• Strength of type mechanism.

• Approach to evaluation, lazy or eager.

• Boolean expression semantics, short-circuit or non-short-circuit.

• Scoping (visibility) rules.

• Parameter transmission semantics.

3.3 The Definition of Certification Properties

The purpose of this section is to clarify what we mean by the term, certification
property. As defined earlier, aproperty is a true statement about some aspect of a reusable
part. More specifically, we can define a property as one of the following:

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 13

• An assumption that a component makes about its operating environment.

• A statement about an empirically verified aspect of the component. Quality
assurance can take the form of testing, static analysis, benchmarking, or
inspection.

• A statement about a formally proven aspect of the component.

As previously mentioned, a property can be a statement about what the partis or what
the partdoes. The following are examples of each type of property:

• What a part is:

“This function does not depend on parameter-passing implementation
semantics.”

• What a part does:

“For any given input integer n, where n is between -MAXINT and MAXINT,
this function will complete execution within 0.1 milliseconds.”

Extensive examples of part properties are included in section 3.6 and Appendix A.
From these examples, two issues arise:

• The number of properties one might want to certify for any given component is
potentially limitless.

• Determining which properties to certify is an unstructured, ad hoc process.

To address the first issue, consider once again observations made in Chapter 2. The only
significant interest that the development engineer has is the properties desired ofsystems in
the domain. Specific properties of the individual components are irrelevant except to the
extent that they contribute to the establishment of domain properties. Thus the certification
instantiation should include those properties and only those properties that contribute to
domain properties. Note that a domain property and the associated component property or
properties will often not be the same.

Precisely what should be in a certification instance may not be clear at first. This implies
a learning process via one or more iterations of developing similar versions of a particular
system. In determining certification properties for the initial set of components, one would
use previously developed systems to help establish a baseline set of properties, plus a
formal or informal domain analysis.This idea is expanded in Chapter 4.

The second issue refers to how the space of possible certification properties should be
conceptually partitioned. The next section introduces a mechanism to perform this
partitioning via the notion of establishingProperty Classes.

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 14

3.4 Property Classes

Part properties established as part of certification tend to influence the software
lifecycle either by improving the efficiency of the development process, by improving the
functional integrity of developed systems, or by reducing maintenance effort. By
organizing these properties into a set of classes, one can determine more easily the
completeness with which a certification instance has been specified for a component.

3.4.1 A Catalog Of Property Classes

The property classes we propose are specific to the following areas:

• Reusability Properties

Properties that influence the ease with which a component can be reused in a
variety of different systems.

• Maintainability Properties

Properties that influence the ease with which a system can be modified and
enhanced. This includes, for example, the usage of standard naming
conventions. It might also include an indication of how many other components
might need to be modified if a change is applied to a given component.

• Portability Properties

Properties related to machine dependencies or environmental requirements.
Examples include the assumed size of MAXINT, the availability of X-Windows
versus some other windowing system, and the usage of compiler-specific
language features.

• Performance Properties

Properties governing the speed with which a component executes, or the amount
of memory it uses while processing. For non-code work products, this might be
a measurement of algorithmic complexity rather than an empirical measurement.

• Safety Properties

Properties related to system qualities such as reliability, availability, safety, or
security. Such properties might include assured fail-stop computation, bounded
loops assuring termination, or a built-in restart capability.

• Completeness Properties

Properties related to how fully a set of items is covered. For example, does a
particular specification include actions for all anticipated undesired events.

• Precision Properties

Properties related to numeric precision.

• Presentation Properties

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 15

Properties dealing with the textual appearance of the work product. This includes
type faces and formats, and symbol usage.

Each lifecycle work product will have a set of property classes associated with it,
defining that work product’s certification instance. To fully state a property in a certification
instance, it is necessary to include a statement of the system property that can be determined
from the certified component property. Intuitively, a single system property will depend on
a set of one or more component properties.

3.4.2 Property Class Orthogonality

The idea of property classorthogonality is to determine which types of properties have
no influence on any other types of properties. For example, one might make the claim that
properties pertaining to numeric precision will have no influence on those pertaining to
concurrency. If so, one could make changes to the precision characteristics of a component,
and not have to worry about needing to go through a recertification process of the
component’s concurrency properties to ensure they still work properly. Other types of
properties, such as those pertaining to portability, might need to be recertified, but at least
the number of properties known to require such an effort has been narrowed down.

As an example of properties that could be in conflict with each other, consider
performance properties versus reusability properties. The additional programming often
required to make a component applicable to a variety of different circumstances is often
cited as a factor in decreasing the component’s execution speed. In such cases, the
developer has to make a conscious trade-off between speed of execution and speed of
development.

Within the scope of this report, it is not possible to define general rules for recognizing
which classes are orthogonal to which other classes, and characterize the trade-offs one
must make for those properties that are not orthogonal.

3.5 Notations For Expressing Properties

In this document, certification properties are conveyed in ordinary English. It should be
stressed that this is done for purposes of clarity only. Since component properties are
intended as a means for drawing inferences about domain properties, a more formal
notation is called for.

Formal specification methods have grown in usage in recent years, and there is strong
evidence that these techniques can be applied to other realms besides specification. One
might express a desired set of source-code properties using Z constructs, for example.

Another possibility is to express properties as a set of facts in the Prolog language. An

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 16

advantage to this is that one can then use the Prolog inferencing mechanism to check for
property completeness and consistency.

3.6 Examples Of Certification Properties

For illustrative purposes, this section provides some examples of certification
properties for four different types of lifecycle work products: specifications, canonical
designs, source code, and test cases. Examples of structural and behavioral properties are
given for each work product type.

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 17

3.6.1 Specifications

Behavioral-specification properties refer to how adequately the specification part
captures the functional requirements of the system. Structural-specification properties refer
to the typographical, format, and syntactic correctness characteristics of specification parts.

Property Class Property Definition
Certific’n
Method

Performance All appropriate real-time constraints defined. Inspection

Safety Specified ordering of events always leaves system in a safe state.Inspection

Precision All appropriate numeric accuracy requirements stated. Inspection

Completeness All I/O sources (human, sensor, network, other) identified. Inspection

Table 1: Behavioral Properties

Property Class Property Definition
Certific’n
Method

Reusability Text conforms to standard fonts and font sizes. Inspection

Maintainability Domain specific quantities defined via symbolic parameters. Inspection

Portability Free of references to or dependencies on a specific hardware
platform.

Inspection

Presentation All names bracketed by appropriate A-7E delimiters. Inspection

Table 2: Structural Properties

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 18

3.6.2 Canonical Design

Behavioral canonical-design properties refer to how adequately the design constrains
the number of design choices one can make about a particular system, without sacrificing
necessary flexibility. Structural properties refer to how easily one can insert code into the
design, and how well the skeleton conforms to an accepted set of standards.

Property Class Property Definition
Certific’n
Method

Performance No assumptions made about relative speeds of tasks to be
included in skeleton.

Proof

Safety Ensures correct sequence of task execution. Inspection

Precision No assumptions made about maximum relative error of floating-
point quantities.

Inspection

Completeness Correctness of parameter values and return values verified using
“interface model” functions.

Testing

Table 3: Behavioral Properties

Property Class Property Definition
Certific’n
Method

Reusability ‘‘Slots’’ for plug-in code clearly indicated with stylized com-
ments and function headers.

Inspection

Maintainability No common coupling (sharing of global data) assumed between
“plug-in” functions.

Inspection

Portability Complies with the Portability section (Chapter 7) of theSPC Ada
Style Guide.

Inspection

Presentation Includes machine-processable design documentation comment
headers.

Static Analysis

Table 4: Structural Properties

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 19

3.6.3 Source Code

Behavioral source-code properties refer to the code’s run-time characteristics.
Structural source-code properties refer to the code’s static textual properties, particularly
the ease with which code can be understood and modified.

Property Class Property Definition
Certific’n
Method

Performance For each target configuration worst-case CPU time established. Proof

Safety No anonymous exceptions raised. Static Analysis

Precision Maximum relative error of floating-point quantities and circum-
stances under which this error occurs are documented.

Proof

Completeness Selectable range checks implemented on all input parameters. Inspection

Table 5: Behavioral Properties

Property Class Property Definition
Certific’n
Method

Reusability Complies with the Reusability section (Chapter 8) of theSPC
Ada Style Guide.

Inspection

Maintainability Information hiding applied to hardware details. Inspection

Portability Part does not depend on parameter-passing implementation
semantics.

Inspection

Presentation Complies with relevant sections of Chapters 1-6 of theSPC Ada
Style Guide.

Inspection

Table 6: Structural Properties

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 20

3.6.4 Test Case

Behavioral test-case properties refer to the adequacy with which a set of test cases
exercise a set of functions. Structural test-case properties refer to the ease with which a set
of test cases can be understood and modified.

Property Class Property Definition
Certific’n
Method

Performance Entire test suite executes in five CPU seconds on an unloaded
SPARC IPC with source compiled using highest optimization
level available on standard compiler.

Benchmarking

Safety Tests absence of all unacceptable output combinations in all
operating modes.

Testing

Precision Test cases cover responses to all floating-point maximum relative
error situations.

Proof

Completeness Test cases cover all allowable parameter data types. Inspection

Table 7: Behavioral Properties

Property Class Property Definition
Certific’n
Method

Reusability Test cases partitioned into required subsets for all systems in
domain, and optional subsets.

Inspection

Maintainability Function of each test harness indicated by stylized comments. Inspection

Portability Executes correctly on all 386- and 68030-based machines. Testing

Presentation Test case output formatted to facilitate automatic verification. Testing

Table 8: Structural Properties

Certification Of Reusable Software Parts Developing Certification Definitions

© 1992 University Of Virginia. All rights reserved. 21

3.7 Specific Guidelines

The basic idea is to drive the enhanced domain analysis with questions from the
property classes. One then uses the quality properties of the domain to establish which
properties are needed in the various certification instantiations.

(1) Do an enhanced domain analysis; that is, determine not only the overall
functional characteristics of the problem domain, but also identify the quality
properties that need to be present in any system in this domain.

(2) Identify which lifecycle work products are to be built with reusable parts.

(3) Determine desired qualities of work products as they affect the lifecycle phases
in terms of certification. For example, if maintenance is a large cost item in this
domain, a number of properties pertaining to ease of enhancement and
modifiability will be needed.

(4) Derive part properties from necessary domain properties.

- Distinguish each property according to whether it is behavioral or structural.

- Identify the impact of the language used to express the work product on its
quality. A set of Z specification parts, for example, will require an entirely
different set of structural properties from a set of A-7E-style specification
parts.

- Identify the impact that the size or complexity of the work product has on its
quality. When one is dealing with the source code for an abstract data type,
for example, one needs to consider the interactions between the functions of
the ADT, a concern which is absent when dealing with individual functions.

(5) Organize the part properties according to a catalog of property classes, such as
that shown in section 3.4. This will help in the determination of whether there
are major gaps in the set of property definitions.

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 22

4. Reuse-Oriented Development

In this section, the role of certification in the overall software lifecycle is considered.
Certification as defined here is not dependent on any specific software process and can be
applied in any development activity employing reuse. However, we note here specifically
that certification can be used with the SPC’s Synthesis process.

4.1 Opportunities For Certification

To gain the greatest benefit from reuse, it is essential that it be applied to the
development of as many lifecycle products as possible. It is important, therefore, to seek
opportunities for reuse of specifications, designs, implementations, test plans, and all
relevant ancillary documentation. The same is true of reusable component certification. If
any work product is developed with reuse, the quality of the associated product can be
enhanced in a cost-effective manner by exploiting certification. Certification should be an
integral part of each and every reuse activity.

To exploit certification, a set of certification instances is developed and applied to a set
of reusable components. Once this is done, an engineer can begin to draw quality inferences
about the work products resulting from the development. With a little careful thought, this
simple idea can be applied to any work product. It is not essential that the certification
properties be in any sense complete in order to be useful. Properties can be added as
required as experience within the domain is gained.

As examples of simple certification properties in diverse work products, consider first
a set of reusable specification components written in English. If it is known that the set of
components is grammatically correct, has correct seplling, is in a form suitable for
inclusion in documents developed with a standard word processor, and has been reviewed
for correctness and completeness, then such components comply with a simple certification
definition and are immediately useful for the preparation of new specifications. Much of the

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 23

traditional proofreading and checking work (work that is tedious and error prone) can either
be eliminated or reduced because of the quality of the reused components. A good example
of this approach is presented in a case study of the SPC Synthesis process [SPC92].

As an example in a completely different work product (source code), if we know the
execution speed of a set of components and we have a single-thread system composed
entirely of those components, then we can deterministically show the execution bounds on
the entire system. It is quite simple to develop a tool to assist in this form of analysis so that
statements can be made immediately about the system’s quality.

The opportunities for reuse and correspondingly certification in the most abstract
development process are shown in Figure 5.

4.2 Certification And Synthesis

Synthesis is the reuse-oriented development process advocated by the Software
Productivity Consortium. It includes elements of traditional component reuse and
application generation technology. A basic description of the process can be found in the
SPC’s Synthesis documentation [SPC90]. There are two main aspects to Synthesis:

Figure 5 - Development Process

Certified Reuse Libraries
ALL PART TYPES

Spec. Design Code Verif

Domain
Analysis.

Part
Certification

Process

Parts

Part
Properties

Domain
Properties

Quality Assurance

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 24

• Domain Engineering, which involves performing a domain analysis, and then
creating an Application Engineering Environment to facilitate the creation of
families of systems in the domain. This environment includes software
components, and tools for composing those components.

• Application Engineering, which takes specific user requirements, and uses the
Application Engineering Environment to convert those requirements into
systems.

There are three steps in the Synthesis process where certification can play a role:

• Domain Analysis

In the Domain Analysis steps, the engineer must determine the quality
characteristics each system family in the domain should possess.

• Domain Implementation

In the Domain Implementation steps, the engineer creates a desired set of
components as part of the Application Engineering Environment. Once created,
these components must be certified according to the desired properties derived
in the Domain Analysis.

• Application Engineering

During the Application Engineering step, these properties are then used as part
of the validation and quality assurance of the system as a whole.

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 25

4.3 Using Certification In Development

Figure 6 shows in more detail how certification fits in a reuse-oriented development
process. As is shown, components supporting each lifecycle phase are subjected to a
certification process. In this process, it is determined whether the components conform to
a set of certification properties. These properties are established via the domain analysis.
Components that conform are placed in the organization’s reuse library or libraries. A
system developed using these components is then certified according to a set of domain
certification criteria. The properties of the components are used to establish that these
domain properties are present.

There are three important points to emphasize here:

• First, the arrow from theCertified Reuse Library symbol is to a generic phase of
the development lifecycle and this reinforces the point that reuse is appropriate
for all development work products, and certification criteria can be established
for each one.

• Second, the only input to thePart Properties symbol is from theDomain
Properties symbol. This stresses the fact that the only part properties that matter
in a certification definition are those that assist in showing the presence of the
domain properties in the various work products.

• Third, the arrows from theDomain Properties symbol to thePart Properties
symbol and theQuality Assurance Process symbol emphasize the iterative

Figure 6 - Development Process

Parts

Part
Properties

Any Lifecycle
Phase

Quality
Assurance Process

Part
Certification

Work Product
With Desired

Property

Domain Analysis

Domain
Properties

Certified Reuse Library
ANY PART TYPE

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 26

nature of certification. It is a learning process. Knowledge gained from deployed
systems can be used to further refine the domain analysis, which can then be used
to further refine the set of component and domain certification properties.

4.4 Roles

Figure 7 shows the key roles in a software development effort, and the information flow
relevant to software certification.

4.4.1 Role of the Customer / Client

The customer or client is responsible for understanding the requirements of the problem

Figure 7 - Roles Of Various Personnel

Customer

Software
Manager

Domain Analyst System Builder

Part Builder

Cost
Requirements

Domain
Reqs.

Affordable
Properties

Domain
Properties

Domain
Properties

Complete
System

Resource
History

Parts
Library

Parts
and

Properties

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 27

domain, and the constraints of the business environment. It is up to the customer to
communicate the domain requirements to the domain analyst, and work with the software
manager to establish cost projections that fit his budget.

4.4.2 Role of the Software Manager

The software manager works with the customer in agreeing to target costs for the final
system. The manager establishes targets partly with the use of historical data from previous
projects in this domain, including amount of human resource spent in each phase of the
development process, errors found during development, errors found after system
deployment, changes made to the system after the specification phase, and changes made
to the system after deployment. Given a target cost estimate, the manager must also
determine the allowable cost for a certification effort. He must be aware of the relative cost
for certifying a set of properties, and the trade-offs and risks involved in foregoing
certification.

4.4.3 Role of the Domain Analyst

The domain analyst receives functional and quality requirements about the domain
from the customer, and structures these into a formal domain analysis. The domain analyst
also enhances this analysis by analyzing previously-deployed systems in this domain.
Using this information, plus information about project cost constraints, the domain analyst
produces a set of certification properties for systems in this domain, as well as a set of
specifications for appropriate parts to be used by systems in this domain.

4.4.4 Role of the Part Builder

The part builder takes part specifications and domain certification properties from the
domain analyst, determines the properties that must be present in the parts to accommodate
the domain, and creates the parts. These certified parts are then made available to the
system builder.

4.4.5 Role of the System Builder

The system builder uses the parts created by the part builder to create new systems. The
system builder establishes that desired domain properties are present in the final system,
working to large extent with the properties certified in the parts. The system builder
communicates experiences gained from verifying the final system to the domain analyst, in
order to further refine the domain analysis. The system builder also communicates project
history data to the software manager, to assist in future cost estimation efforts.

Certification Of Reusable Software Parts Reuse-Oriented Development

© 1992 University Of Virginia. All rights reserved. 28

4.5 Summary

A component certification strategy fits comfortably into the SPC’s Synthesis process,
and manifests itself in both the Domain Engineering and Application Engineering phases.
Furthermore, a certification scheme must be regarded as an iterative process, where new
insights are gained at each iteration.

The following chapter revisits the discussion of certification properties, providing
details on methods by which component properties can be established.

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 29

5. Establishing Component Properties

While the previous chapters described some fundamental ideas underlying component
quality properties and where certification fits in the software development process, in this
chapter specific methods of establishing certified component properties are explored.

This chapter begins by enumerating the general issues in component quality assurance,
and then examines the issues of anticipated and unanticipated adaptation. Several quality-
assurance methods then discussed. However, because of its extreme importance, testing of
source-code components is then focused on as a separate topic.

5.1 Issues In Component Quality Assurance

In determining how to set about establishing the quality of a component, many issues
are raised by the fact that the components to which the techniques are applied will be
reused. It is important to keep in mind that a reuse-oriented development paradigm is vastly
different from traditional software development methods.

The general issues affecting the quality-assurance process for reusable components are:

• Component Use.

By definition, a component that is entered into a reuse library is being offered for
use by others and has to be prepared forevery possible use (or more accurately
reuse) [Rus87]. This is very different from the normal development situation in
which an artifact is intended for a single use and its quality is usually assessed
with that in mind.

Quality assurance under such circumstances must be undertaken with a higher
degree of generality than is normally encountered. Every possible variation in
use of the component must be identified if possible and the relevant certification

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 30

properties shown to hold under all possible usage scenarios.

• Component Type.

Quality assurance is complicated by the different types of work product and,
within each work-product type, the different types of component. For example,
very few reusable source-code components will be subprograms. Other
components might be skeleton systems (essentially canonical designs) in which
the overall structure of the program is present but the bulk of the detail is missing
since the detail is application-specific.

In practice, the certification property of interest might apply to many or all of the
types of components in a library, but the approach to establishing the property
might differ with different component types.

Abstractions employing symbolic constants and canonical designs are special
cases ofadaptable components. Adaptable components, which are discussed in
detail in the next section, present significant challenges for quality assurance.
The problem is that the certification property must hold for every possible
instantiation of the component, that is it must hold for every possible specific
instance of a deferred design decision.

5.2 Adaptable Components And Adaptation

A major complication in component quality assurance is introduced by the notion of
adaptable components, that is components designed to be modified before use. The
intention of making a component adaptable is to increase the opportunities for reuse by
isolating some of the design decisions and leaving them to be made by the user of the
component. Adaptable components range from the simple, such as an Ada subprogram in
which the size of an array is set by a symbolic parameter, to the complex, such as an Ada
generic unit in which generic parameters are used to set types and operations when the
component is selected for reuse. Figure 8 shows an adaptable component with two different
instantiations.

There are two forms of adaptation that need to be addressed,anticipated and
unanticipated:

• Anticipated adaptation occurs when a user exploits facilities for change that
were designed into the component intentionally by its author.

• Unanticipated adaptation occurs when a component is modified in a way that
was not planned by the developer, usually using a text editor. Unanticipated
adaptation changes a component in a way that is likely to invalidate many of the
certification properties. Since the certification must be viewed as lost,
unanticipated adaptation will be considered only briefly.

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 31

An important issue with adaptable components is the possibility ofadaptation
restrictions. In many cases there are restrictions inherent in the design of a component to
which any anticipated adaptation must adhere. In the simplest case, a symbolic constant
might be used to define a quantity such as the size of an array dimension. Adaptation then
consists of setting the symbolic constant prior to using the component. The design of the
component, however, might necessitate that certain restrictions be imposed, such as the size
being within prescribed limits, or having some property, such as the size being a power of
two.

In a language like Ada, many elements of the operational environment of a program can
be controlled by source-text parameters and the values required might be interrelated in
non-obvious ways. For example, representation clauses in Ada can be used to define record
formats, enumerated type representations, storage available for objects of a given type, and
the characteristics of numeric types, among other things. Parameterization of many of these
quantities is very likely in a component designed for reuse and the associated
interrelationships might be quite involved.

In a more general context, consider the parameters used with Ada generic units. They
are not merely numeric or symbolic but can be subprograms thereby allowing different
instances to function entirely differently. A restriction imposed on an adaptation might be,
therefore, a functional restriction on some piece of supplied program text. A procedure
parameter to an Ada generic unit, for example, might be required to meet certain functional
constraints inherent in the design of the generic unit. A more complex situation is likely to
arise if a component in a library is actually a canonical design. In that case, substantial
volumes of code will have to be added to the basic design. The code added might itself be
obtained from a reuse library, but will almost certainly have to meet many restrictions
imposed by the canonical design. This situation raises the question of exactly how
functional properties of adaptable components such as generic program units can be
verified in any useful way.

-- simple adaptable component

generic
type item is private;
with function “*” (U, V) : ITEM return ITEM is <>;

function SQUARING (X : ITEM) return ITEM;

-- two possible instantiations:

function SQUARE is new SQUARING (MATRIX, MATRIX_PRODUCT);
function SQUARE is new SQUARING (INTEGER, “*”)

-- these instantiations produce completely different code

Figure 8 - Specification Of An Adaptable Ada Components

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 32

5.3 Techniques For Component Quality Assurance

The general problem faced by the component certifier is that he has a component on the
one hand and a quality that has to be demonstrated for the component on the other. The
range of properties that can be expected to occur is enormous as is the range of component
sizes and types. In addition, the component might be adaptable and the adaptation (or
adaptations) might have significant restrictions placed upon them.

Establishing that a particular component has a given property is a quality-assurance
activity, and an arsenal of quality-assurance techniques can be used to achieve it. These
techniques can be loosely grouped into five main categories,static analysis, formal
inspections, testing, formal verification, andbenchmarking.

• Static Analysis.

Static analysis is the process of showing automatically that a work product has a
particular property without executing the work product (hence the termstatic).
Automated tools, called static analyzers, exist that can check various useful
properties of different types of work product, especially source code. Properties
that can be checked by static analysis include absence of set/use anomalies with
variables, absence of some forms of aliasing, and absence of unreachable code.

To support certification, existing tools can be applied to reusable components
and, where it is cost effective to do so, new static analyzers can be built to check
appropriate certification properties.

• Formal Inspections.

Formal inspection is a process in which a work product is examined in a
systematic manner by human inspectors in order to establish that the work
product possesses some useful property. Inspections can be applied to any
textual work product in order to establish properties that are difficult or
impossible to verify automatically. Properties that can be checked by inspection
include consistency of specifications, correctness of designs, and completeness
of test plans.

The term ‘‘Formal Inspections’’ was introduced by Fagan [Fag76] and
refinements of Fagan’s original idea have been suggested by Parnas and Weiss
[PaW85] and by Knight and Myers [KnM91].

Inspection can be applied to reusable components immediately and can be used
to establish a wide range of properties. Because formal inspection involves
human insight, it is the most general quality assurance technique.

• Testing.

Testing is an experimental approach to quality assurance that attempts to show
that a work product possesses some general property by example. All
programmers are familiar with software testing, although most approach it as

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 33

more of an art than a science.

Although testing is used primarily in the verification of source code, it can be
used to demonstrate properties of specifications or designs if they are expressed
in executable notations, such as VDM [HeI88].

Testing can be applied to any reusable component that is executable. Its use is
complicated by the fact that so many different types of testing are needed, and
all have a place in a certification scheme.

• Formal Verification.

Formal verification is the process of establishing a proof that a work product
possesses some property. If a proof is produced (and if the proof itself is correct)
then there is an absolute guarantee that the work product possesses the specific
property. This should be contrasted with testing which attempts to do the same
thing but by using examples.

Properties that can be established using formal verification range from relatively
simple, such as showing that a particular loop terminates, to extremely complex,
such as showing that an implementation is correct with respect to a particular
specification. The latter is often referred to informally as ‘‘proving correctness’’
although this informal term is extremely misleading since correctness cannot be
defined.

Establishing proofs in formal verification is usually tedious but the tedium can
be reduced by employing a mechanical theorem prover. The effort involved is
often questioned in any case, but, for a work product that will be reused, the
effort can be amortized and the whole technique immediately becomes more
attractive.

Formal verification can be applied to any reusable component. Useful properties
can be proved about specification components and design components as well as
traditional source-code components provided the former are prepared in a
notation that has a formal semantic definition.

• Benchmarking.

Benchmarking is the process of determining the value of some performance
measure associated with a work product. It is used primarily to measure
quantities such as execution speed on a specific hardware/software platform for
some standard application load.

In the case of certification, benchmarking can be used to measure such properties
as execution time, numeric precision, memory usage, and response time to
specific events (such as an exception) of individual reusable components.

Table 9 summarizes these quality-assurance techniques and documents their
advantages and disadvantages.

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 34

5.4 Testing Reusable Source-Code Components

In this section, a familiarity with the technology and terminology of software testing in
general is assumed. The specific issues of testing reusable components are addressed using
various existing techniques either directly or with appropriate modification.

The approach to testing of a reusable component depends on the type of the component.
Three different component types are addressed in this subsection, specificallyfunctional
abstractions such as procedures and functions,data abstractions such as Ada packages,
andcanonical designs in which an entire system or subsystem structure is present but much
of the application-specific detail is absent. Object-oriented abstractions such as C++ classes
are an important approach to reuse. However, the complexity of testing classes
incorporating multiple-inheritance semantics is beyond the scope of this report.

Any of these component types can be adaptable. Adaptable components usually cannot
be executed without adaptation. Each specific adaptation represents a degree of freedom
that has to be constrained in order to use the component, and the key question is whether
the component will work correctly once these constraints or selections are installed. The
problem of testing adaptable components amounts to ensuring that the adaptable
component will function correctly assuming that an adaptation complies with the
restrictions associated with design of the component.

Technique Advantages Disadvantages Typical Uses

Static Analysis Automated. Limited application. Lack
of available tools.

Simple design rule
checking.

Formal Inspection Widely applicable.
Exploits human skills.

Labor intensive. Check-
ing possibly incomplete.

Functional correctness
checking.

Testing Flexible. Gives confi-
dence in product.

Not rigorous. Resource
intensive.

Checking implementa-
tions.

Formal Verification High degree of assurance.Time consuming. Lack
of appropriate support
tools.

Safety-critical system
quality assurance.

Benchmarking Provides quantification. Limited application Time and space perfor-
mance measurement.

Table 9: Quality-Assurance Techniques

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 35

In considering the testing of reusable components, the framework of certification must
be kept in mind. The specific activities undertaken by the engineer responsible for testing
a reusable component are to ensure compliance with the required certification property or
properties. These in turn are determined solely by the associated domain analysis. No other
testing is required nor is it appropriate.

5.4.1 Functional Abstractions

The starting point for procedures and functions is the existing practice of unit testing.
Functions and procedures that are to become certified reusable components need to be
tested using unit-testing methods to demonstrate whatever properties are required. Typical
properties might be:

• Achieving a specific coverage metric such as statement or branch.

• Systematic demonstration of required functionality.

• Satisfactory processing of stress or extreme values.

• Demonstrated bound on failure probability.

• Any combination of the above.

Once properties such as these are established, properties derived from the reuse
development paradigm need to be addressed. The fact that a reusable component must be
prepared for every possible use dictates specialized testing in two major areas,portability
andsymbolic parameterization:

• Portability.

A reusable component might be reused on different target computers from those
for which the component was developed. Although attention to portability issues
is well-established software engineering practice, it is not a quality-assurance
check that is routinely applied at the unit level in non-reuse-based development.
Testing a component on the entire range of target computers upon which it might
execute is an essential element of component certification.

• Symbolic Parameterization.

Parameterization in the sense used here is a special case of adaptation, and that
topic is treated in more detail in section 5.4.4. Parameterization is discussed here
because it is the simplest form of adaptation and because of its extensive use in
components not otherwise adaptable.

Carefully engineered software will make extensive use of programming-
language parameterization facilities such as symbolic constants. The intent is to
localize and focus size and bound parameters so that they can be changed easily.
In non-reuse-based development, such parameters are usually set once and

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 36

forgotten until changes are dictated by maintenance. In a reuse-based
development, such parameters might be set for each reuse and the setting is
likely to be different in each case. It is important, therefore, that the existence of
a symbolic constant be ascertained during component certification and the value
of the parameter be treated as an additional input to the part. Thus testing needs
to include test cases in which the values of symbolic constants are varied in an
appropriate way.

5.4.2 Data Abstractions

Data abstractions such as Ada packages are a common form of reusable component.
The starting point for packages and similar forms of modularization is the existing
techniques of unit and integration testing. Certification of packages where some properties
are to be established by testing needs to begin by using unit-testing methods to demonstrate
whatever properties are required for each operation. Typical properties in this case will be
the same as those itemized above for functional abstractions. Similarly, the special topics
of portability and parameterization need to be addressed.

Once properties related to unit testing are established, the package can be assembled
and integration testing applied. As noted with functional abstractions above, integration test
plans must address the issues derived from the reuse development paradigm. Thus, for
example, integration test plans must deal with the ‘‘all possible uses’’ problem by
addressing the need to show that all possible sequences of uses of operations in the module
will work correctly.

A major issue raised by data abstraction is the problem of testingiterators. Special
problems that arise with iterators whose presence can be shown with testing are:

• Empty structures.

It is common for iterators to fail when applied to an empty data structure. Often
this possibility is eliminated in a specific use, but, when reusing a package
containing iterators, this might be overlooked.

• Large structures.

Because of their implementation, iterators sometimes have limits on the size of
the structure to which they can be applied. Once again, this possibility might be
eliminated in a single, specific use but this will not be the case if the component
is intended to be reusable.

• Operator interaction.

In some cases, iterators and other operators in a data abstraction interact. For
example, addition and deletion operations can easily disturb the state so as to
invalidate the information held by an iterator. Similarly, it is often the case that
an application requires several instances of the same iterator to be running at the
same time. This leads to subtle and hard-to-find faults unless the iterator is

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 37

designed and implemented correctly.

All of these issues with iterators occur in a non-reuse setting but are usually taken care
of in an ad hoc fashion by those developing the system. This is not an acceptable approach
in a reuse development environment and package test plans need to address the issues
explicitly.

5.4.3 Canonical Designs

The concept ofcanonical design is unique to software reuse. A canonical design
represent the framework or skeleton of a complete system or subsystem where this structure
is determined by the associated domain analysis. Since a canonical design is intended to act
as the basic structure of a whole family of systems within the domain, application-specific
detail is omitted.

With extensive parts of the system missing, a canonical design is, in principle, not
executable in any meaningful way. How then can a canonical design be tested if it cannot
be executed? The answer lies first in not executing the entire component during the initial
phases of testing, and second in providing specialized stubs termedinterface models during
the latter phases of testing.

An interface model is merely a stub with two unique properties. First it is able to absorb
all parameters supplied when the stub is called. These parameters might be passed
explicitly as traditional parameters or implicitly via shared variables. In either case, the
interface model will accept the values supplied, check their types and, if appropriate, check
the correctness of their values. The second unique property is the ability to generate all
possible responses (return parameters, for example) that the canonical design might receive
from the stub. Thus, for example, if a return parameter is an integer subtype, the interface
model will have the capability of generating all possible values in the subtype during a
comprehensive test of the canonical design.

The purpose of these two properties of interface models is to permit the suitability of
the canonical design for every possible use to be checked.

Testing of a canonical design proceeds in a manner akin to the way that a system is
tested:

• Unit Test.

A canonical design will be composed of units organized to provide the required
framework. These units do not depend in any significant way on the elements of
an application not present in the canonical design. Thus traditional unit-test
methods can be applied to them. Note that this might involve developing
specialized test harnesses just as in any unit-test situation.

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 38

• Integration Test.

The construction of a conventional system proceeds by integrating the various
units and testing the resulting partial systems at each step, and a canonical design
can be developed in a similar way using conventional integration test methods.
Again, specialized test harnesses will probably be required.

• System Test.

It is at the level of system testing that the unique reuse characteristics of a
canonical design become evident and require special attention. It is not possible
to use any traditional system test techniques on a canonical design. Application-
specific functional testing is meaningless, for example, since there is no
functional specification.

The canonical design is not part of any system. It is essential that the canonical
design function correctly in every system in which it is reused. Thus system
testing in this context means testing the canonical design over all possible reuses
in contrast with traditional system testing for a single application.

This form of testing requires that data generators within the interface models be
programmed to test the canonical design for all possible data sequences. These
data sequences will be determined by the specification of the canonical design
itself.

5.4.4 Adaptable Components

The various adaptations that are provided with an adaptable component are similar in
many ways to inputs to the component. From the point of view of correct functionality,
setting a symbolic parameter, say, has some of the characteristics of reading an input of the
same type as the parameter. The component should, in principle, operate correctly for every
valid value of the parameter just as it should for every valid value of an input.
Unfortunately, this analogy breaks down when the adaptation provided by the component
requires the user to supply functional rather than merely parametric information. In that
case there is no notion of type that can be used to determine a valid set of values for the
parameter and no obvious selection mechanism for test cases.

The only workable approach at this stage to testing an adaptable component is to
instantiate the component with specific adaptations and then test it using some testing
approach suitable for a similar reusable component without adaptation. Complete testing
will then consist of repeating this test process with “systematic” settings of the various
adaptations. Systematic in this case is essentially equivalent to the conventional problem of
test-case selection.

A key issue that then remains is testing parts with adaptations that require functional
parameters to be supplied. An example of such a part is an Ada generic procedure for
sorting in which the element type and the comparison relation are supplied as generic
parameters. The comparison relation is a functional parameter.

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 39

Since any functionality might be supplied for a functional parameter, the testing that
can be done is limited by the need to cater to all possible functionality. It is essential to limit
this variability to the maximum extent possible, and this observation is the key to the first
step in testing this type of reusable component:

• Identify all necessary constraints on the functional parameter.

The intent is to ensure that it will be possible to identify valid and invalid values
for the functional adaptation parameter and to restrict the difficulties with
testing. In the example of a sort reusable component, the functional parameter
passed to define the comparison relation must impose a total ordering on the
elements being sorted.

Since the user of the component will have to comply with these constraints when
using the component, they must be documented.

Careful examination of adaptable components always reveals a separation of concerns
within the implementation in which some pieces depend on the functional adaptation and
others do not. In the sorting example, the basic control structure imposed by the
fundamental sort algorithm (Quicksort, insertion sort, etc) is independent of the type of the
elements being sorted and the associated comparison relation. Since this is the case, a
possible large fraction of the implementation of such components can be tested without
regard to the functional adaptation parameter. This observation leads to the second step in
testing this type of reusable component:

• Instantiate the adaptable component with a conforming value for its functional
parameter(s) and test the resulting instantiation as one would any non-
adaptable reusable component.

Any instantiation of the component will retain the fraction of the implementation
that is unaffected by the functional parameter, and testing the component after
such an instantiation will permit effective testing of this fraction of the
component.

The final step in testing such components is to ascertain the effect of the functional
parameter on the results of the previous step. The constraints determined in the first step
will reveal rules with which the functional parameter must comply, and these together with
knowledge of the separation of concerns within the implementation permit determination
of whether the results developed in the step above will apply to any valid functional
parameter. This observation leads to the final step in the testing of this type of component:

• Ascertain whether valid functional parameters affect the algorithm
implementation in such a way as to invalidate prior testing.

This step will usually be undertaken by inspection or formal verification rather
than conventional testing. It is not possible in general to test for the desired
property. In the sorting example, it is necessary to ensure that any comparison
relation that imposes the required total ordering does not affect the correct
operation of the remainder of the implementation. In the case of sorting, this is a
very simple result to establish.

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 40

Turning now to the specifics of testing adaptable, reusable, source-code components
written in Ada, the forms of adaptation in Ada are:

• Units containing symbolic parameters.

• Units depending on conditional compilation.

• Generic units.

Further complicating the task of testing are the different forms of generic parameters
that can be used in an Ada component, specifically:

• Generic formal objects.

• Generic formal types.

• Generic formal subprograms.

The advocated approach to testing an adaptable Ada component is as follows:

(1) Determine the type of component: functional abstraction, data abstraction, or
canonical design.

(2) Establish an appropriate test plan for the component based on its type using the
techniques discussed above assuming the component is not adaptable.

(3) Determine all forms of adaptation used by the component.

(4) For each form of adaptation, determine each instance of the adaptation used by
the component.

(5) For each symbolic parameter:

- Develop a suitable set of values for the symbolic parameter viewing it as an
input variable. Techniques to consider include (a) all possible values, (b)
statistical selection of values, and (c) extreme values. For each selected test
value of the symbolic parameter, perform the entire test plan for the
component that was established in step 2. In the sorting example, the size of
an array might be a symbolic parameter and values to consider for the size
might include 1, 1023, 1024, and the maximum permitted by the part design.

(6) For each instance of conditional compilation:

- Locate the condition used to control the compilation and instantiate the
component for each value of the condition. For each instantiation, perform the
entire test plan for the component developed in step 2. In the sorting example,
conditional compilation might be used to select different sort algorithms for
different ranges of file size to be sorted or different element types. In that case,
all possible combinations of selected compiled program need to be tested
completely.

(7) For each generic parameter:

- Instantiate the component with a specimen ‘‘value’’ for each generic
parameter. Perform the entire test plan for the component developed in step 2

Certification Of Reusable Software Parts Establishing Component Properties

© 1992 University Of Virginia. All rights reserved. 41

above. By inspection of proof, determine that the test results are independent
of the particular generic parameter value that was used.

The approach just outlined calls for the repetition of the entire basic test plan many
times. This is unavoidable. Consider, for example, an adaptable part that uses symbolic
parameters, conditional compilation and generic parameters to provide flexibility. It is
essential that the developer of this part assure himself that it will function correctly in every
possible reuse. This can only be done by careful, systematic testing of the various forms
that the adaptable component can take when instantiated. It is not sufficient to test a single
value of a symbolic parameter - others, especially special cases, might not work. It is not
sufficient to test a single set of conditional compilation instantiations - other combinations
might not work. Further, any difficulties that arise will be faced by the user of the part and
not the developer. These two individuals might not be able to communicate about the issues
so raised.

5.5 Specific Guidelines

Establishing part properties assumes the existence of two sets of items: a set of
components and a set of desired properties for those components. The goal is to ensure that
the components do in fact possess the desired properties. To do this, the following steps
should be followed:

(1) For each certification property, determine which quality-assurance technique
or techniques (static analysis, formal inspections, testing, formal verification,
benchmarking) can be used to establish the technique. Carefully document the
resulting list. Have the list checked by several engineers.

(2) Determine in which components these properties will be established.

(3) Create a checklist of certifiable properties for each component to be certified.
Ideally, this checklist will be in electronic, machine-processable form, and will
reside in the reuse library along with the component itself once it is completed.

(4) For each certification property, develop a plan for the application of the
associated quality-assurance technique. Pay particular attention to the issues
raised in section 5.2 - make sure that the technique addresses the goal of
certification for every possible use, that it is suitably applied for the different
component types, and that the special requirements of adaptable components
are dealt with.

(5) Apply the selected techniques, noting the results on the checklist.

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 42

6. Establishing Properties Of Systems

As complex as establishing component properties is, it is essentially an empty exercise
if inferences about component-based work products cannot be drawn from them. Except for
the software component industry itself, customers purchase systems, not the components
from which the systems are built. This chapter focuses on the issue of using certified
components and exploiting the certification properties to establish properties of complete
work products.

Recall that the basic goal is to exploit the variouscomponent properties established by
certification to permit the rapid demonstration ofdomain properties of work products. In

Figure 9 - Development Process

Parts

Part
Properties

Any Lifecycle
Phase

Quality
Assurance Process

Part
Certification

Work Product
With Desired

Property

Domain Analysis

Domain
Properties

Certified Reuse Library
ANY PART TYPE

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 43

this section, a system is defined to be all the work products associated with a particular
product development. The basic process for exploiting the properties of parts is repeated in
Figure 9.

6.1 Issues In System Quality Assurance

Once prepared and placed into a reuse library, taking advantage of the certification
properties of components raises several issues, specifically:

• Custom-built elements.

Even where reuse rates are high, no work product is ever likely to be comprised
completely of reusable components. The existence of custom-built elements in
the final work product detracts from the immediate exploitation of the
certification properties.

• Component use.

A reusable component will be used in many different circumstances. The
possibility exists, however, that a component may be selected that does not quite
meet the precise needs of a particular application. Where informal specification
techniques are used for components in reuse libraries and reliance is placed on
human insight for component selection and matching, it will be difficult to
ensure that a selected component does precisely what is required and that the
component is being used correctly [Gar87, Mey87, Ric89].

• Component revision.

As with any software, a reuse library will be the subject of revision. Components
will be enhanced to improve their performance in some way yet maintain their
existing interface. Systems built with such components are then faced with a
dilemma. Incorporating the revised components might produce useful
performance improvements but the resulting software will differ substantially
from that which was originally built and verified. Can revised components with
“identical” interfaces be trusted, and, if not, what verification needs to be
performed when revised components are incorporated?

• Part adaptation.

Adaptable components as targets of certification were discussed in the previous
section. If a work product incorporates adaptable components, then adaptation
was performed when the component was introduced into the work product. In
some cases, this affects the way that certification properties are exploited in
showing properties at the work-product level.

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 44

6.2 Techniques For System Quality Assurance

The general problem faced by the engineer performing system quality assurance is very
similar to the problem faced during component quality assurance: he has a work product
(or a work product under development) on the one hand and a quality that has to be
demonstrated for the final work product on the other. As is the case with individual
components, the range of properties that can be expected to occur is enormous as is the
range of work product sizes and types.

Establishing that a particular work product has a given property is again a quality-
assurance activity, but virtually no existing techniques can be used. The problem is
essentially one of inference rather than direct quality assessment. The required inference
techniques have to be developed as needed and fall into two main categories,immediate
inference andanalytic inference:

• Immediate Inference.

Many useful and important properties of a work products can be inferred
immediately from component properties.

As an example, consider stylistic issues. If all the reusable components used to
develop a work product (such as a specification in the A-7E style or an
implementation in Ada) follow desired stylistic rules, then the resulting work
product will also comply with these rules to the extent that it is built from
reusable components.

• Analytic Inference.

Some properties of a work product cannot be inferred from component
properties without performing some form of analysis. In such cases, the work
product property of interest might not be related in an obvious manner to the
associated component properties and might, in fact, depend upon several
component properties.

As an example, consider the problem of showing that an implementation in Ada
is free of deadlock. This can only be done after extensive analysis and will rely
on component properties such as component freedom from deadlock,
documented and verified component entry-call sequences, component
independence of the scheduling policy, component freedom from anomalous
exception propagation, component guaranteed termination, and verified guard
semantics in component select statements.

6.3 Using Adaptable Components

In Chapter 5, the nature of adaptable components was discussed and associated issues

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 45

in component quality assurance were addressed. In this section, the use of adaptable
components and their effect on system qualities are considered.

Components are made adaptable to enhance their reusability. Unfortunately,
introducing adaptability often brings with it important restrictions that the component
developer was unable to avoid. These adaptation restrictions must be adhered to if the
component is to operate correctly. The first task in system quality assurance is to ensure that
all adaptation restrictions have been identified and complied with.

6.3.1 Anticipated Adaptation

If an adaptable component has been tested as part of certification, then exploitation of
that testing is completely dependent on the adaptation in a particular case having been done
correctly. If they are documented at all, the various restrictions imposed on an adaptation
are usually documented as comments. No mechanism is provided in existing production
programming systems to permit such restrictions to be checked. Ada does provide static
expressions thereby permitting extensive computation to be performed at compile time.
Gargaro and Pappas present an example of checking this way in Ada [Gar87]. However,
checking restrictions is not the intent of such static expressions, they do not provide the
complete range of facilities needed, and there is no mechanism to permit signaling a
violation other than forcing a contrived, compile-time exception.

In general, the checking that is required amounts to ensuring that an implementation
(albeit often a small one) meets a specification. Checking an anticipated adaptation is,
therefore, a special case of verification. The restrictions correspond to the specification and
the adaptation itself corresponds to the implementation. It is important to note that the
specification in this case does not derive from, and is not related directly to, the original
specification for the application. The specification is a consequence of the design of the
reusable component.

In a non-reuse setting, this verification will be performed by the author of a component.
If the component is placed into a reuse library, however, the checks must be performed
being documented fully by the author, noticed by the user, and checked accurately by the
user. Achieving correct use on a regular basis seems unlikely given this almost total
reliance on human effort.

Anticipated adaptation can be dealt with using special-purpose variants of existing
techniques that are used for program verification. Just as with verification of complete
programs, certain properties of adaptation can be checked completely and others not. For
example, it is simple to check that a symbolic constant meets a range or special property
criteria. However, it is not possible, in general, to check that a subprogram supplied as a
generic parameter complies with required functional constraints.

Checking beyond that inherent in most programming languages is possible using some
form of supplementary notation. For example, Anna [Luc85] is a notation designed to
permit specifications to be added to Ada source programs. Anna, however, is not designed

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 46

to perform the kind of verification described here, and although some of the required
checking can be specified in Anna, it is not possible to distinguish easily the checks that
Anna will perform before execution time. For checks that are delayed by the Anna system
until execution time, the verification of the various adaptations becomes confused with the
verification of the entire program unit that is being executed. Also, such checks require
processor and memory resources at execution time, and may not be checked at all unless
the assertion is carefully placed. Checking restrictions that derive from the design of a
component is an activity that is best performed as a fundamental element of the adaptation
process.

A far better approach to checking the constraints required in an anticipated adaptation
is to incorporate machine-processable statements of the required restrictions within the
source text of the component. Checking for compliance is then performed after adaptation
but before traditional compilation. Such a notation can be thought of as an assertion
mechanism that operates prior to compilation rather than during execution.

This mechanism will not support the checking of all restrictions, for example many
forms of required functionality. Using the analogy with program verification once again,
adaptation restrictions that cannot be checked with a pre-compilation assertion mechanism
can be dealt with by testing the adapted component but again prior to conventional
compilation. The concept is to associate with a reusable component a set of test cases that
must be executed satisfactorily by any user-specific code supplied during adaptation. The
tests will be defined by the author of the component and executed by the user of the
component. In the same sense that software testing is an informal approach to verification,
this approach is an informal way of assuring that adaptation constraints are met. The overall
flow of activities that permit adaptable components to be used and the associated
constraints machine checked is shown in Figure 10.

Figure 10 - Checking Anticipated Adaptation

Reuse

Library

Adaptation Test Cases

Adaptable

Software Component

Adaptation Assertions

Adapt Part

Check Assertions

Test Adaptations

Conventional
Compilation

--- Adaptable Part ---

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 47

6.3.2 Unanticipated Adaptation

On occasion, arbitrary changes made using an editor might be required when
attempting to reuse an existing component even if the component was designed for reuse.
Such unanticipated adaptation is far harder to deal with than anticipated adaptation because
its effect on the software is unpredictable. There is still the desire, however, to limit the
amount of retesting that is needed if a certified component is changed. If all the testing
carried out previously has to be repeated after adaptation, the economic impact will be
severe and could even be a deterrent to reuse.

The problem that has to be dealt with in this case is precisely that of conventional
program verification. Note, however, that the verification required in this case is quite
different from the verification required with anticipated adaptation. A modified component
is different from the original component and obviously satisfies different specifications
after unanticipated adaptation. If the specifications were not different after unanticipated
adaptation, there would be no point in modifying the component in the first place.

Storing the specification of a component in machine-processable form and modifying
the specification along with the component with extensive automated checking and support
is the best way to deal with unanticipated adaptation. Unfortunately, in general, this is
probably not a practical approach to the problem at this point in the present embryonic state
of reuse technology.

A promising first approach to dealing with many of the issues, at least partially, is the
instrumentation of reusable components with executable assertions [And81, Luc85,
Mey87]. In fact, Anna [Luc85] is described as a notation for specification although it does
not have the completeness characteristics of a rigorous approach such as VDM [Jon86].
However, Anna does provide a rich notation for writing executable assertions.

The role of instrumentation using assertions is to include design information with the
component, in particular to permit design assumptions to be documented in a machine-
processable way. The effects of arbitrary changes cannot be checked with any degree of
certainty in this way. However, there is some empirical evidence that executable assertions
provide a useful degree of error detection when properly installed [Lev87]. Executable
assertions can be used therefore as part of a system for checking components subjected to
unanticipated adaptation.

6.4 Examples Of Domain Properties

In this section, some specific examples of the use of component properties to establish,
at least in part, significant domain properties in developed systems are presented. The
examples given are for source programs written in Ada since they are considered to be of
the most immediate use.

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 48

Many significant opportunities exist for exploiting certification in Ada source-code
development. Simple though very useful properties, such as presentation, maintenance, and
adherence to some set of programming standards are in the category of immediate-
inference properties. Such component properties map fairly obviously into useful domain
properties and are not discussed further.

6.4.1 Exception Handling In Ada

 Consider the treatment of exceptions in Ada. If an Ada program unit raises an
exception, a handler is sought within the unit. If one exists, it is executed and the unit is
completed, but otherwise the exception is raised again in the caller at the point of the call
in a process calledpropagation.

This approach associates handlers for exceptions with program scope dynamically, and
leads to a variety of problems [How91]. For example, an exception might be propagated an
arbitrary distance up the stack of active subprogram calls thereby terminating all of the
active subprograms in which a handler was not located. Worse is the possibility that a
programmer-defined exception might be propagated out of the name scope for the
exception into a region where the name of the exception is not known but a handler is still
being sought. In that case, a handler can only invoked if it is for the catch-all exception
nameothers. It is unlikely that programmers ever intend such situations to arise but,
because of the dynamic association of handlers, it is very difficult to show that such
situations will not arise unless great care is taken with system design. By following some
fairly elaborate design rules, systems can be built that are free of these and other exception-
related difficulties but following such rules and confirming their correct implementation is
complex.

Reuse of certified components can help to deal with this problem. The correct use of the
design rules is set as a domain property and suitable part properties derived to support
establishment of the domain property in systems built from the associated reuse library. In
practice, there are several different sets of component properties that will permit the domain
property to be inferred. The following is a simple example set of behavioral properties:

• For leaf components, the following properties are known to hold:

- Handlers exist within the component for all exceptions that are declared
within the component. No such exceptions can be propagated out of the
component thereby becoming anonymous.

- Handlers exist within the component for all predefined exceptions. No
predefined exceptions can be propagated out of the component.

- All possible subprogram call sequences have been generated during testing of
the component and no path exists in which an exception becomes anonymous
or in which propagation is unexpected

- All cases in which the component could raise an exception are fully
documented as to exception name and circumstances.

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 49

• For subsystems or canonical designs:

- Within the call structure, handlers forothers have been included in a
“firewall” structure to ensure that no unbounded exception propagation can
occur at the subsystem or system level. If the subsystem is terminated by an
unanticipated exception propagation, provision is made within the
component to restart in a meaningful way.

Suitable combinations of such properties would permit the known difficulties with Ada
exception handling to be dealt with very effectively. It could be shown with a high degree
of assurance that these known difficulties would not occur in systems built with reusable
components, at least not because of defects in the reusable components.

6.4.2 Ada Task Synchronization

A second example of a significant certification benefit is in the area of tasking
performance. Building concurrent systems is always difficult. Actually developing the
algorithms is much harder than developing sequential algorithms but concurrent systems
also introduce new classes of faults such asrace conditions, deadlock, andstarvation. Ada
software is affected, in addition, bypriority inversion.

Once again, if reusable components are known to possess suitable properties, some of
these difficulties can be alleviated. In this case, reusable components might be required to
comply with one or more of the following properties:

• No shared variables are referenced within the component.

• There is no internal concurrency within the component.

• No execution conditions with the component can lead to tasking error.

• Correct operation of the component has been shown not to depend on specific
priority values nor on specific system scheduling algorithms.

• All entry calls made by the component and its entry definitions are documented
correctly and in a machine-processable notation.

The use of most of these properties in establishing system properties is fairly obvious.
The last property in the list is intended to permit automatic or semi-automatic analysis of
deadlock potential and priority inversion. Freedom from deadlock can be shown easily for
tasking structures that follow simple rules, and a certification instance can include
properties that facilitate building systems that do follow the appropriate rules. If the rules
are followed, all that is required is that the interactions undertaken by the constituent tasks
be available for analysis. Where the tasks are derived from reusable components, the
certification instance can ensure that the requisite information is available for deadlock
analysis of the system.

Certification Of Reusable Software Parts Establishing Properties Of Systems

© 1992 University Of Virginia. All rights reserved. 50

A similar analysis can be undertaken to seek possible cases of priority inversion in Ada
task structures. Once again, a certification instance can be developed that ensures the
necessary information is available for analysis.

6.5 Specific Guidelines

To establish a set of work product properties from a set of component properties, these
sets of items must be available: the set of properties of the components used to build the
work product, the work product itself, and the domain properties created during the
enhanced domain analysis. The specific steps are as follows:

(1) Determine which pieces of the work product are composed entirely of reusable
parts, and which are composed of custom-built elements. Realistic quality
inferences can only be drawn about those areas of the system consisting of
certified components.

(2) Determine which domain properties can be drawn by means of immediate
inference from the component properties. This will often include simple but
useful properties such as “adheres to stylistic guidelines”.

(3) Determine which domain properties must be drawn by means of analytic
inference from the component properties. It is useful to think of the system
property as a logical assertion whose truth can be shown by ANDing and
ORing together an appropriate set of component properties. For example,
“System property SP is true if component properties CP1 AND CP2 AND CPn
are true”.

(4) Apply traditional quality assurance techniques to the parts of the system not
comprised of certified components.

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 51

7. Economics Of Certification

The primary motivation for any reuse scheme is economic. The goal of certification
according to the detailed structure developed here is to enhance the expected economic
benefits of reuse. The system properties facilitated by certification are usually expensive to
establish, so economic benefit accrues directly when certification is exploited.

While beneficial, a component certification process is not without costs. Any
organization considering certification must weigh the trade-offs and decide whether the
benefits are truly worthwhile. This chapter summarizes the economic trade-offs to consider
in a certification program, and provides guidelines by which an organization can determine
the potential payback of implementing such a program.

7.1 Economic Trade-off

 The benefits of a certification strategy are realized in the following areas:

• Reduced development effort.

Use of high-quality parts should result in reduced quality-assurance and rework
costs for the work products that include these parts.

• Reduced maintenance effort.

Parts that conform to a clear and accepted set of standards yield work products
that contain fewer format and usage deficiencies and contain fewer errors
requiring correction.

• Higher reuse levels.

Software engineers are more likely to use high quality parts.

These are significant benefits. But what are the costs of realizing them? The following

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 52

recurring costs are generated by certification:

• Extended domain analysis.

Quality-assurance properties required of products within the domain have to be
determined.

• Certification instantiation.

An instantiation of certification has to be generated.

• Establishing component properties.

Components that are useful but lack properties might have to be reengineered to
comply with desired properties.

• Checking compliance with component properties.

For each component in a reuse library, all the relevant certification properties
must be shown to hold.

• Exploiting component properties.

For each work product developed with certified parts, the desired properties of
the work product have to be established.

• Dealing with custom-built elements.

All realistic work products will contain custom-built elements and these
contribute to the properties of the overall work product.

It is easy to be misled into thinking of certification as something an organization does
in addition to its normal software development process. In the model presented in this
report, an organization will identify quality properties that systems within a domain will
have to possess by means of an extended domain analysis. An organization not using
certification will still need to have an established set of quality criteria for deployed
systems. In either case, these properties will have to be shown to hold before the system is
deployed. The difference is that if certification is used, then the properties of the system’s
components can be used to help establish the system’s properties. If component
certification is not used, these properties will have to be established “from scratch” at a
potentially higher cost as part of the normal quality assurance process.

The following two sections describe these costs and benefits in more detail.

7.2 Benefits

7.2.1 Reduced Development Effort

Development costs are reduced in a number of ways if properly certified reusable parts
are used during development. Specifically:

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 53

• Improved initial quality.

The initial quality of work products will be higher because they will have been
composed of high quality components.

• Simpler quality assurance.

Demonstration of the quality of work products will be simpler because the
exploitation of certification properties deals with work-product qualities at a
higher level than is usually the case. For example, a property definition for a
source-code function will be expressed as a single statement about the entire
function rather than as a set of statements about individual lines of code within
the function.

• Easier defect location.

Correcting defects in a work product detected during development will require
less effort because locating the defect will be simpler. Consider, for example, a
subsystem consisting of custom elements together with a set of certified
components. If flaws are found during quality assurance and the components are
certified to be free of these types of flaws, then the number of places in the
subsystem that need to be investigated has been reduced.

• Reduced rework.

The total amount of rework that has to be undertaken is reduced. Figure 11
illustrates the development and rework relationships that occur in the software
creation process. Since all lifecycle work products are subject to some form of
verification, flaws found during verification require correction, and in so doing,
might result in the modification of subsequent lifecycle work products. For

Figure 11 - Software Development Versus Rework

Specs Design Code Test / Maintenance

Rework

Development / Modification

Verification

Deployment

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 54

example, a problem uncovered while testing a program might be traced back to
a fundamental misunderstanding during the specification phase. As shown by the
small semicircular arcs in Figure 11, reworking the specification would also
imply reworking the design, which implies reworking the source code. Building
higher-quality work products throughout the lifecycle will provide an overall
reduction in rework activities and hence a reduction in development costs.

7.2.2 Reduced Maintenance Costs

The so-called maintenance phase of the software lifecycle is usually the most expensive
phase of all. Clearly, during the deployed life of the system, changes will need to be
introduced periodically to account for new requirements, changes in the operating
environment, or to repair defects. Maintenance is expensive because of the number of
modifications and enhancements required by most long-lived systems and because of the
often formidable difficult of making these changes.

The same benefits cited for development hold true for maintenance, and both cost
elements of maintenance are addressed by a reuse development process utilizing certified
reusable parts. Components guaranteed to conform to a set of quality standards will
contribute to the development of work products that are initially of higher quality than is
typical, and secondly will yield work products that are easier to comprehend, modify, and
enhance than is typical.

7.2.3 Higher Reuse Levels

As indicated earlier, wariness about part quality by software engineers tends to inhibit
the acceptance of reuse-oriented development processes. It is hypothesized that the rate will
of reuse will increase with the introduction of certified reuse libraries for two reasons:

• Higher part uniformity.

Most certification instances are likely to include a number of properties
pertaining to conformance to a set of standards. As a simple example, consider
a set of natural-language specification parts that conform to the same set of text
formatting standards. Analysts who know that these parts can be combined to
form a seamless document are more likely to use them than they would a set of
parts with wildly different font sizes, typefaces, and layouts even if the parts had
useful content.

• Higher confidence in parts by programmers.

This is an extension of the first point. Engineers who know that a set of parts
conform to a rigorous set of quality standards are more likely to use them than
build their own. The cost of rebuilding rather than reusing goes up dramatically
once quality aspects are considered. The engineer is faced with not only having
to develop an artifact to match his functional needs but also to show that the
artifact possesses all the required non-functional characteristics. Most engineers

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 55

realize that the bulk of the effort is in this latter process, and the benefit of reusing
a certified part is very clear.

7.3 Costs

7.3.1 Extended Domain Analysis

Since a domain analysis will have to be undertaken anyway, this is an increment on an
existing cost. The additional effort involved is likely to be quite small and this cost category
is probably insignificant.

7.3.2 Instantiating Certification

The major cost of instantiating a certification definition is in the analysis necessary to
determine the component properties that are required to support the work-product
properties that are identified in the extended domain analysis.

If the staff undertaking this stage of the process are familiar with the technology, then
the total cost incurred is once again small. The first time that a certification instance is
developed, there will be a steep learning curve and an inevitable need to adjust the instance
as experience is gained.

7.3.3 Establishing Part Properties

This is a highly variable and possibly substantial cost. It is, however, a capital
investment rather than a non-recurring cost in the same sense as the creation of a reusable
component is. Thus this cost is amortized over the various reuses of the component that
occur.

Where cost benefit analysis is undertaken to evaluate the merit of a certification
program, the costs of establishing part properties can be estimated using simple variations
of software economic models such as the COCOMO model.

7.3.4 Checking Compliance With Certification Properties

Once again, this is a highly variable but non-recurring cost. The cost will be determined
to a large extent by the properties included in the certification instantiation and the
techniques available for checking compliance. The cost will be higher for specification
components written in an unusual notation because few tools are likely to be available for
the notation. In contrast, where a property can be checked by static analysis, the cost in this
area is essentially negligible.

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 56

In undertaking a cost/benefit analysis for certification, each property in the instantiation
has to be examined in isolation and a domain-specific cost model developed.

If new software tools are deemed necessary to support the checking of component
compliance with certification properties, major costs will be incurred in tool development.
This is a highly variable and hard-to-quantify cost area.

7.3.5 Exploiting Certification Properties

For properties resulting from direct inference this cost is negligible but the cost
associated with analytic inference might be quite high. The specific costs will depend
entirely on the system property to be inferred and the techniques to be employed.

If the technical approach involves human effort, the cost will necessarily be high.
Software tools can be developed to facilitate exploitation of certification but their creation
is a capital investment. Once again, this is a highly variable and hard-to-quantify cost area.

7.3.6 Custom-Built Elements

The cost of dealing with custom-built elements included in a work product is largely
unaffected by certification. The effort involved in dealing with the custom-built elements
might overwhelm the gain from certification though this is unlikely.

7.3.7 Other Cost Factors

There are other factors that affect the cost incurred in certification and hence the
decision about whether to undertake certification, in particular:

• Size and number of components.

As indicated in Chapter 3, a component can range in size and complexity from a
one or two line fragment to a multi-module subsystem. The trade-off here is that
small components are generally easy to certify, but one might have a large
number of them to deal with. Conversely, one might be faced with a small
number of large, difficult to certify components. The benefit to the organization
of having certified parts that are large is, however, very substantial.

• Variation in properties.

Certification can be either inexpensive or expensive depending on the types of
properties the organization chooses to certify. The fact that some properties are
easier to certify than others means that the organization can optimize the way it
uses its resources. One would expect such properties as compliance with
formatting standards to be checked automatically, virtually for free. For those
properties that require human intervention, the organization can determine
which ones can be certified by junior-level people, and which would require

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 57

highly skilled, senior-level people.

7.4 Specific Guidelines

In this section, specific guidelines are presented that can be followed by an organization
in order to perform the necessary cost/benefit analysis associated with certification. The
results of the analysis will facilitate subsequent decisions about a certification program.
Three main areas are touched upon: determining whether a process will be accepted by the
engineering community, determining the cost versus quality impact a process will have on
systems developed by the organization, and determining the cost of implementing the
process throughout the organization.

(1) Determine where resources currently are being spent.

A number of organizations keep track of this information by using weekly
timesheets or other labor claiming methods. Those that do not will probably
have to resort to surveys. The key pieces of information are the amount of time
being spent up front in each phase of the software lifecycle, and how much time
is being spent in rework.

(2) Determine the level of reuse that is currently occurring in the organization.

Those organizations that already have an organized reuse process in place
should be able to gauge this by the amount of activity against their reuse
libraries.

(3) Determine the perception among the engineering community of factors
inhibiting reuse.

This information is often best determined in face-to-face meetings with groups
of engineers.

(4) Determine whether the engineering community will accept the notion of a
rigorous certification process.

If the people who are supposed to use the certification process do not see the
value of it and refuse to go along with it, the process will fail. Introducing new
processes to large organizations can be a source of bitter political battles and
endless frustration if everyone involved is not committed to making it work.

(5) Determine the cost of establishing each certification property.

Fairly trivial properties, such as “Conforms to local formatting / typesetting
standards”, can be verified and enforced automatically. Complex properties
such as “Guaranteed free of deadlock” can involve exhaustive inspection by
experienced engineers.

(6) Determine the benefit gained in each work product as a result of each
certification property.

Certification Of Reusable Software Parts Economics Of Certification

© 1992 University Of Virginia. All rights reserved. 58

The benefits are likely to be both tangible and intangible, and must be judged
by these attributes:

- The context in which the system will be used.

- The functional requirements of the domain.

- The lifecycle characteristics for this type of system.

- Specialized requirements of the customer.

For example, certifying that a part conforms to local formatting standards
might appear on the surface to be a nicety with little or no payoff, but if it is
known that systems using the part are subject to high maintenance activity, then
this property might become quite important. On the other hand, exhaustively
certifying the functional correctness of a part of the system that the customer
knows is of minor importance might be overkill.

(7) Determine the risk associated with not establishing each certification property.

Again, this depends on the same factors as the previous step. For example,
guaranteeing freedom from deadlocks might appear to be important for all real-
time systems. For an avionics system, the risk of deadlock might be a
catastrophic crash. However, if the system in question is a video game, the risk
might be that the user has to hit a function key to restart, and certifying such a
property might not be cost justified. One sees, then, how intimately entwined
the assessment of benefits must be with the domain analysis.

(8) Identify a set of projects to serve as “pilot projects” for the organization.

A complete certification process cannot be implemented all at once in any
software organization; it must be phased in gradually. A set of small pilot
projects will give members of the organization time to become familiar with
the methods and technology, and provide insight into the best way of rolling the
process out to the rest of the organization. Most pilot projects, if done well, take
at least six months to a year, so this is an important element of a cost
justification.

(9) Devise an implementation plan for the organization.

This plan will include time frames for programmer education, creation and
evaluation of certification instantiations, and installation of necessary support
tools. For a large (one hundred or more programmers) organization, fully
integrating a complex process can take at least a year.

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 59

Appendix A: Case Studies
This appendix contains case studies of two certification instantiations. The first is an

instantiation for specification components, and the second is for source-code components.
They are intended to serve as terse certification “cookbook” examples for the software
practitioner. A sample application domain is presented, along with typical certification
instances. It is shown how the properties in the certification instances can be applied to the
quality assurance of a system built with a set of certified parts.

The instantiation for specifications is based loosely on the assumption that the A-7E
technique and notation will be used for the specification components since this technique
is reasonably rigorous, yet well-known. The instantiation for source-code components is
based on the assumption that the components will be written in Ada.

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 60

A.1 Example Application Domain

A.1.1 Application Overview

The application domain of interest is that of nautical navigation for ships [DuK91].
Computers are being used increasingly to help navigators plot their ship’s course, monitor
their progress, track voyage history, and so on. Many modern bridges feature graphics
terminals displaying the ship’s current position relative to features of the coastline,
navigation channels, and other ships in the area picked up by radar. In addition, ship control
itself can be integrated into such systems.

A.1.2 Domain Analysis Overview

The main functional aspects of this hypothetical example domain are:

• A digitized navigation chart is displayed to scale on a bitmapped graphics
display.

• Highlighted icons are superimposed on this chart representing radar images of
other ships in the area.

• Also superimposed on this chart is a highlighted icon representing the
navigator’s own ship.

• Navigation directions are entered via this display and ship control is automatic
thereafter.

• The system operates in real time and is written in Ada.

A.1.3 Extended Domain Analysis

The quality properties required of products built using certified, reusable components
are determined in an extended domain analysis.

In this hypothetical example, the main quality features of interest for complete
specifications are:

• Portability: Assuming Interleaf as the desktop publishing platform, it should be
possible to create a complete specification document without regard to Interleaf
release level, and it should be possible to print the complete document on any
laser printer attached to the system.

• Safety: Systems built using the specifications should account for all domain-
specific hazards, and adhere to guidelines set forth by the appropriate regulating
agencies.

• Maintainability: It should be a straightforward matter to modify the
specifications to account for changes to the domain, error corrections, and

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 61

version upgrades.

• Completeness: The resulting specification should be functionally complete and
complete in its statement of processing requirements for each possible input
value and value combination.

• Consistency: The resulting specification should be consistent in its meaning such
that conflicting requirements do not appear.

In this hypothetical example, the main quality features of interest for delivered software
are:

• Portability: It should be reasonably easy to port the software to new hardware
and operating system platforms.

• Safety: The display must give an accurate portrayal of where the ship is, or
collisions or groundings might result. Also, highly available software is
required; the need to reload the system because of a software fault must not take
too long or the vessel could be endangered. Systems incorporating real-time
control functions must ensure that effective and safe control is maintained under
all operating conditions.

• Performance: The display of moving objects must happen in real time.

• Extensibility: It should be reasonably easy to extend the software’s functionality.
For example, it might be desirable to display new navigation features. Or it
might be desirable to sound an audible alarm if the ship passes within a certain
number of meters of a known hazard or another ship.

• Maintainability: It must be easy to dispatch fixes and updates to the software,
since it will be deployed on a moving platform that will often be located in
remote parts of the globe.

• Functional Correctness: Systems must demonstrate very high levels of
functional correctness.

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 62

A.2 Case Study 1 - Specifications

This case study examines the preparation of specifications from certified reusable
components. The components are written in stylized English using the A-7E techniques.

A.2.1 Contents Of Reuse Library

From the domain analysis, it is determined that the following reusable specification
components are needed:

• Background map layout specification. Adaptations permit content, symbol, and
graphic variations.

• Map overlay specification. Adaptations permit content, symbol, graphic, and
motion variations.

• Menu-panel specification. Adaptations permit menu graphics, button text, and
button actions to be varied.

• Image manipulation specification including zooming, offsetting, centering, and
decluttering.

• Sensor input interface and actuator output interface specifications including data
formats, data types, data rates, and data transmission protocols. Adaptations
permit all data characteristics to be varied.

• Coordinate systems and appropriate transformations between them.

• Course planning, navigation, distance, and guidance algorithms. Adaptations
permit the use of all available coordinate systems.

• Real-time and associated scheduling specifications to permit all necessary
timing requirements to be specified.

• Templates for control subsystem, graphic subsystem, and navigation subsystem
specification documents. Used as ‘‘chapters’’ in complete application
specifications.

• Templates for basic document formats.

The next section shows a sample certification definition for specification components
in this reuse library.

A.2.2 Certification Instantiation

To uphold the desired properties of the domain, the following properties need to be
certified in the specification components. The definitions are partitioned according to
whether the property refers to an aspect of the component itself (structural properties), or
an aspect of what the component does (behavioral properties).

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 63

Property Class Property Definition
Certific’n
Method

Performance All appropriate real-time constraints defined. Inspection

All appropriate main-memory constraints defined. Inspection

All appropriate I/O performance constraints defined. Inspection

Safety Specified inputs are necessary and sufficient for producing the
specified outputs.

Inspection

For every possible input value an action is specified. Inspection

All undesired events and appropriate responses identified. Inspection

Complies with standards of appropriate regulatory agency. Inspection

Precision All appropriate numeric accuracy requirements stated. Inspection

Completeness All I/O sources (human, sensor, network, other) identified. Inspection

All allowable I/O data types defined and correctly parameterized.Inspection

All allowable specific data values identified. Inspection

All assumptions about platform hardware stated. Inspection

All assumptions about platform system environment stated. Inspection

No assumptions made about specific implementation algorithms.Inspection

No assumptions made about specific programming languages. Inspection

All modes of operation have been identified. Inspection

All transitions between modes identified. Inspection

All major periodic and demand functions identified. Inspection

Initiation and termination events for functions identified. Inspection

All expected changes to the system documented. Inspection

Removable subsets identified. Inspection

Table 10: Behavioral Properties - Specifications

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 64

A.2.3 Certification Exploitation

Certification exploitation is the process by which the certification properties known to
hold for the reusable components used to build a work product are used to demonstrate
useful properties of the entire work product. For the sample domain studied here, the goal
is to produce high-quality specifications in the A-7E style for products relating to nautical
navigation for ships.

Suppose a comprehensive control system for a new vessel is required. A complete and
accurate specification can be built quickly and efficiently using certified parts from the
hypothetical library of specification parts. The starting point is an appropriate basic
document template and development continues with the selection of appropriate subsystem
templates and lower-level detailed specifications.

The preparation of the specification through reuse would proceed according to some
standard development process. In this section, some example properties of the complete

Property Class Property Definition
Certific’n
Method

Reusability All data items are associated with meaningful symbolic names. Inspection

All likely-to-change text elements parameterized. Inspection

Maintainability Complete cross-reference of symbols and symbol uses. Static Analysis

Meaningful symbolic names for paragraph types. Inspection

Consistent and systematic use of paragraph types. Inspection

Portability Prints correctly with Interleaf running on all available platforms.Benchmark

Compatible with current and future Interleaf releases. Inspection

Presentation Paragraphs appear in 12 point plain Roman. Inspection

Template keywords appear in 12 point boldface Helvetica. Inspection

All step and bullet symbols are followed by 0.25” space. Inspection

Correct spelling used. Static analysis

Correct grammar and style used. Inspection

All names bracketed by appropriate A-7E delimiters. Inspection

Table 11: Structural Properties - Specifications

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 65

specification that can be derived from the certification properties of the reusable
components are shown. Many useful properties both simple and complex can be
established using certification technology. Other examples will no doubt suggest
themselves to the reader.

Table 12 shows several work product properties and the certification properties from
which they are derived. See also Chapter 6.

Domain Property Component Property
Inference

Mechanism

Portability across publishing platforms. All portability properties. Immediate

Upward compatibility with Interleaf. Component compatibility with Interleaf. Immediate

Correctly formatted document. Component presentation properties. Immediate

Easily modified document text. Presentation, maintainability, and reus-
ability properties.

Immediate

Easily modified document content. Completeness and safety properties. Analytic

I/O subsystem functional completeness Completeness and safety properties. Analytic

Table 12: Exploiting Specification Certification

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 66

A.3 Case Study 2 - Source Code

This case study examines the preparation of source-code from certified reusable
components. The components are written in Ada.

A.3.1 Contents Of Reuse Library

From the domain analysis, it is determined that the following reusable source-code
parts are needed:

• Primary map element abstract data types including land masses, shoals, buoys,
ships, navigation channels, and hazards. Adaptations permit control of symbol,
color, shape, location, and size.

• Background map abstract data type. Adaptations permit control of view,
orientation, position, motion, and background.

• Map overlay abstract data type. Adaptations permit content, symbol, graphic,
and motion variations.

• Menu-panel abstract data type. Adaptations permit menu graphics, button text,
and button actions to be varied.

• Window abstract data type with operators providing zooming, offsetting,
centering, and decluttering.

• Sensor and actuator device drivers. Adaptations permit various data formats,
data types, data rates, and data transmission protocols.

• Functional abstractions providing transformations between coordinate systems.

• Canonical designs for subsystems that implement course planning, navigation,
distance, and guidance algorithms. Adaptations permit the use of all available
coordinate systems.

• Canonical designs for general synchronous and asynchronous real-time systems.

• A general-purpose graphics package.

• A general-purpose matrix manipulation package.

• Low-level timing, scheduling, interrupt handling, and associated real-time
components.

The next section shows a sample certification definition for source-code components in
this reuse library.

A.3.2 Certification Instantiation

To uphold the desired properties of the domain, the following properties need to be
certified in the source-code parts. The definitions are partitioned according to whether the

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 67

property refers to an aspect of the code itself (structural properties), or an aspect of what
the code does (behavioral properties).

Property Class Property Definition
Certific’n
Method

Performance For each target configuration worst-case CPU time established. Proof

For each target configuration average elapsed time established.Benchmarking

For each target configuration size of the code segment and maxi-
mum heap space established.

Testing

All heap space acquired is explicitly freed. Inspection

Screen updates take less than 5 ms. on all target configurations. Benchmarking

Safety Demonstrated freedom from numeric exceptions, or complete
documentation of circumstances leading to such exceptions.

Inspection

Handlers are present in every block within the component for all
declared exceptions.

Static Analysis

No anonymous exceptions raised. Static Analysis

No unexpected propagation of exceptions out of the part. Static Analysis

Exceptions and conditions under which they can be raised are
fully documented.

Inspection

Dynamically-allocated objects are destroyed when all references
to them are destroyed.

Inspection

Pointers never refer to released storage. Inspection

All finite loops shown to terminate. Proof

No internal concurrency, or internal concurrency deadlock free. Inspection

Verified guard semantics in all select statements. Inspection

No internal references to shared data objects. Static Analysis

Functionality independent of scheduling algorithm. Inspection

No execution conditions lead to tasking error. Inspection

Correct operation not dependent on specific priorities used. Inspection

All entry calls documented to facilitate demonstration of free-
dom from deadlock and priority inversion.

Inspection

Precision Maximum relative error of floating-point quantities and circum-
stances under which this error occurs are documented.

Proof

Table 13: Behavioral Properties - Source Code

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 68

Completeness Selectable range checks implemented on all input parameters. Inspection

Parm. value or parm. interrelationship assumptions documented.Inspection

Non-generics tested to 90% branch & 100% functional coverage.Testing

Property Class Property Definition
Certific’n
Method

Table 13: Behavioral Properties - Source Code

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 69

A.3.3 Certification Exploitation

Certification exploitation is the process by which the certification properties known to
hold for the reusable components used to build a work product are used to demonstrate
useful properties of the entire work product. For the sample domain studied here, the goal
is to produce high-quality implementations in Ada for products relating to nautical
navigation for ships.

Suppose a comprehensive control system for a new vessel is required and that a
complete and accurate specification is available (see Section A.2). An implementation in
Ada can be built quickly and efficiently using certified parts from the hypothetical library
of source-code parts. The starting point is an appropriate canonical design and development
continues with the selection of appropriate subsystem implementations and lower-level,
leaf-node implementations.

The preparation of the implementation through reuse would proceed according to some
standard development process. In this section, some example properties of the complete
implementation that can be derived from the certification properties of the reusable

Property Class Property Definition
Certific’n
Method

Reusability Complies with the Reusability section (Chapter 8) of theSPC
Ada Style Guide.

Inspection

Maintainability Complies with relevant sections of Chapters 1-6 of theSPC Ada
Style Guide.

Inspection

Information hiding applied to hardware details. Inspection

Portability Complies with the Portability section (Chapter 7) of theSPC Ada
Style Guide.

Inspection

Part does not depend on parameter passing implementation
semantics.

Inspection

No dependencies on implementation-specific Ada features. Static Analysis

Presentation Complies with relevant sections of Chapters 1-6 of theSPC Ada
Style Guide.

Inspection

Includes corporate copyright notice. Static Analysis

Include machine-processable design documentation comment
headers.

Static Analysis

Table 14: Structural Properties - Source Code

Certification Of Reusable Software Parts Case Studies

© 1992 University Of Virginia. All rights reserved. 70

components are shown. Many useful properties both simple and complex can be
established using certification technology. Other examples will no doubt suggest
themselves to the reader.

Table 15 shows several work product properties and the certification properties from
which they are derived. See also Chapter 6.

Exploitation of part properties will be done by the system builder. The steps to follow
are:

• Establish system quality criteria. Focus especially on the qualities specified in
the extended domain analysis.

• Determine which system quality criteria can be derived from the parts used. A
system will almost never be comprised entirely of library parts, so quality
inferences cannot be drawn about the entire system. However, inferences can be
drawn about large parts of the system, for example:

- The areas of the system using the certified parts will be free of memory
leakage.

- If processing is assumed to be sequential, then worst-case time to update the
display screen is a function of the number of targets in the area, and can be
calculated deterministically.

- No non-termination problems in the final system will be the result of
inadvertent infinite loops in these parts.

- Checks for adherence to formatting standards will not need to be applied to
these parts.

Domain Property Component Property
Inference

Mechanism

Conforms to real-time deadlines. Performance. Analytic

No inadvertent non-terminating loops. Safety. Immediate

Free of anomalous exception handling Safety. Analytic

Free of memory leakage. Performance and safety. Analytic

Free of invalid memory references. Safety. Analytic

Source format and programming tech-
niques comply with standard.

Presentation and maintainability. Immediate

System portable across all expected plat-
forms.

Portability. Immediate

Simple to add new I/O device. Maintainability. Immediate

Table 15: Exploiting Source-Code Certification

Certification Of Reusable Software Parts References

© 1992 University Of Virginia. All rights reserved. 71

References
[And81] Andrews, D.M. and J.P. Benson, “An Automated Program Testing Methodology

and Its Implementation”,Proceedings of the Fifth International Conference on
Software Engineering, San Diego, CA, March 1981.

[DuK91] Dunn, M.F., and J.C. Knight, “Software Reuse In An Industrial Setting: A Case
Study”, Proceedings of the Thirteenth International Conference on Software
Engineering, Austin, TX, May 1991.

[Fag86] Fagan, M.E., “Advances in Software Inspections”,IEEE Transactions On
Software Engineering, Vol. SE-12, No. 7, July 1986.

[Gar87] Gargaro, A. and T.L. Pappas, “Reusability Issues and Ada”,IEEE Software, July
1987.

[HeI88] Hekmatpour, S and D. Ince,Software Prototyping, Formal Methods, and VDM,
Addison Wesley, 1988.

[Hen80] Heninger, K.L., “Specifying Software Requirements for Complex Systems: New
Techniques and Their Application”,IEEE Transactions On Software
Engineering, Vol. SE-6, No. 1, January 1980, pp. 2-13.

[How91] Howell, C., and D. Mularz, “Exception Handling in Large Ada Systems”,
Technical Report, MITRE Corporation, McLean, VA, 1991.

[Jon86] Jones, C.B.,Systematic Software Development Using VDM, Prentice Hall
International, 1986.

[KnM91] Knight, J.C., and E.A. Myers, “Phased Inspections”,ACM SIGSOFT, Vol. 16,
No. 3, July 1991, pp. 29-35.

[Lev87] Leveson, N.G., S.S. Cha, T.J. Shimeall, and J.C. Knight, “The Use Of Self
Checks And Voting In Software Error Detection: An Empirical Study”,IEEE
Transactions on Software Engineering, Vol. 16, No. 4, April 1990.

Certification Of Reusable Software Parts References

© 1992 University Of Virginia. All rights reserved. 72

[Luc85] Luckham, D.C. and F.W. von Henke, “An Overview of Anna, a Specification
Language For Ada”,IEEE Computer, March, 1985.

[Mey88] Meyer, B., “EIFFEL: Reusability and Reliability”, inSoftware Reuse: Emerging
Technology, Tracz, W., (editor), IEEE Computer Society Press, 1988.

[PaW85] Parnas, D.L. and D.M. Weiss. ‘‘Active Design Reviews: Principles and
Practices’’, Proceedings of theEighth International Conference on Software
Engineering, London, England, August 1985.

[Pri90] Prieto-Diaz, R., “Domain Analysis: An Introduction”,ACM SIGSOFT, Vol. 15,
No. 2, April 1990, pp. 47-54.

[Ric89] Rice, J. and H. Schwetman, “Interface Issues In A Software Parts Technology”,
in Software Reusability, edited by Biggerstaff and Perlis, Addison Wesley, 1989.

[Rus87] Russell, G., “Experiences Using A Reusable Data Structure Taxonomy”,
Proceedings of theFifth Annual Joint Conference On Ada Technology and
Washington Ada Symposium, April 1987.

[SPC89] Software Productivity Consortium,Ada Quality And Style: Guidelines for
Professional Programmers, Van Nostrand Reinhold, 1989.

[SPC90] Software Productivity Consortium, “Introduction to Synthesis”, TR
INTRO_SYNTHESIS-90019-N, June 1990.

[SPC92] Software Productivity Consortium, “Introducing Systematic Reuse To The
Command and Control Systems Division of Rockwell International”, TR SPC-
92020-N, May 1992.

[Spi89] Spivey, J.M.,The Z Notation: A Reference Manual, Prentice Hall, 1989.

