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1.0  Background and Purpose

The placement of variables in the data space of a program can affect the program’s 
dynamic memory performance. In particular, a poor placement of data can reduce the spa-
tial locality of the data address references generated by the program. This experiment 
seeks to measure the range of effects of data placement on overall run-time performance. 
Since current compilers assign addresses to user-declared variables in the order in which 
the declarations were encountered in the source program text, it may be possible to 
improve run-time performance through memory-hierarchy-conscious data placement.

2.0  Hypothesis

Data placement can have a significant, measurable effect on the run-time performance of a 
program. Variable placements that maximize cache-line reuse and minimize cache con-
flicts yield programs that run measurably faster than those with variable placements that 
are suboptimal.

3.0  Proposed Experimental Procedure

• The data cache structure of the target machine, cobra.cs.virginia.edu, will be 
determined from Sun Microsystems documentation. Cache size, associativity, and line 
size are the key parameters to be determined.

• Using this cache information, a synthetic benchmark will be devised that exhibits high 
spatial locality. This will be accomplished by using user-declared variables that fill the 
data cache and exercise it thoroughly while maximizing reuse of loaded cache lines. 
Small arrays of exactly one cache line in size will be declared, each followed by a 
larger array that consumes the remaining lines in the first level data cache. This pattern 
of declarations will be repeated until there are enough small arrays to fill up all of the 
sets available for a given line. Then some scalar variables, collectively taking up one 
cache line in size, will be declared. This positions ensuing data placement on the next 
line after the cache line that has been filled with small arrays. Then more small and 
large arrays will be declared as in the first set of declarations. The program code will 
then heavily exercise the small arrays, which can all fit in the first level data cache at the 
same time. By avoiding references to the larger arrays (which just filled up cache lines) 
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and the scalars, we will avoid cache conflicts. Timing runs will be made in the evening 
when the machine is lightly loaded. Mean times will be computed from several timing 
runs for each form of the experiment.

• A copy of the benchmark program will be made with the variable declarations rear-
ranged to ruin the spatial locality and minimize the reuse of data cache lines. This can 
be easily accomplished by moving the scalar variable declarations down below the sec-
ond set of array declarations. This will cause the small arrays of the program to conflict 
with one another, and only half as many sets are available as would be required to avoid 
the conflicts. Loaded data cache lines will be flushed out of the cache by a deliberate 
reference sequence to create cache line conflicts. The total data space consumption of 
the program will remain the same as in the high-spatial-locality version, as will the total 
number of computations performed. Timing runs will be made immediately after the 
timing runs of the original program. (See the code samples in the Appendix for the 
actual data declarations and reference sequence.)

4.0  Expected Results

The run times will show the effects of lessened data cache hit rates, with a significant 
increase in run times for the second form of the program despite a constant number of 
computations performed. This will confirm the importance of data placement.

5.0  Results

Two versions of the experiment were run. The first version used global variables declared 
before the main() function of the test program. The second version used the same vari-
ables, but declared as locals to main(). Some tinkering with assembly code, and printing 
of resulting addresses of variables to confirm their placement, eventually produced test 
executables that produced similar results for both the global variable runs and the local 
variable runs. The gcc compiler was used for the first run (using globals) and vpo was 
used for the second run (using locals).

Using various sources, it was determined that the target machine, cobra.cs.vir-
ginia.edu, possesses a level-one data cache (L1 D-cache) of 16 KBytes, 4-way set asso-
ciative, with 32 byte lines, and hence has 128 lines (128 lines * 4 sets/line * 32 bytes/set = 
16KB). The code was written with these parameters in mind. (See the Appendix for code 
details.)

Results for the two runs of the experiment are shown in the tables on the next page, mea-
sured in elapsed and CPU seconds. (The Unix time command produces three time values 
for a program run. The real value is elapsed time, while the CPU time is split into user and 
system values. The CPU time shown in the charts below is the sum of user and system val-
ues, averaged over five runs of the programs.)
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Using the Unix time command, with an outer loop in the test program running enough iter-
ations (8,000,000) to get valid run times, the first (nonconflicting) form of the program 
showed 44% to 47% decrease in user time compared to the second (conflicting) form of 
the program. (Translating this reduction to the speedup measure, as used in the Hennessy 
and Patterson texts, gives the data shown in the bar chart above. Speedup is simply the 
ratio or original program run time (before an optimization) to the new program run time 
(after the optimization.) If a program optimization reduces its run time by 50%, for exam-
ple, it is said to be a speedup of 2.0. If a program change has no effect on run time, it has a 
speedup of 1.0. A speedup value of less than 1.0 would indicate that the performance actu-
ally worsened.)

Reducing the outer loop iteration count to 800 so that a cache simulator could be feasibly 
run (the cachesim5 simulator that is part of the Shade toolkit,) the pattern of cache hits and 
misses met expectations. The first form of the program had only a few (20) start-up data 
cache read misses, while the second form of the program showed the expected increase in 
data cache read misses (to more than 51,000, or almost 100% misses on data cache reads.) 
The numbers were obtained by determining the program start-up overhead using a null 
program (one that entered main() and then returned) that was measured using cachesim5. 
These overhead measurements were then subtracted from the measurements for the two 
forms of the test program, as shown below:
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These numbers for cache misses minus the null (base) program can be multiplied by 
10,000 to get the number of extra misses caused by unaligned arrays in the earlier CPU 
time results. Doing so reveals that more than 50,000,000 extra L1 D-cache read misses 
will only cause a little over 2 CPU seconds of additional time. This would seem to indicate 
that L1 D-cache misses that are hits in the L2 cache can be serviced quickly.

6.0  Conclusions

The conclusions from this experiment are listed below:

• Level 1 Data cache conflicts among heavily used arrays can have a significant effect on 
the run times of programs.

• Such data cache conflicts can be avoided by efficient data placement.

• While such data placement was done manually in this experiment, it appears that a 
compiler should be able to accomplish the same result.

• The cache effects of data placement can be measured easily with a cache simulator. 
Care must be taken to factor out the start-up costs of the program, such as copying the 
values of environment variables into the C language parameter *argp.

• The experiment’s hypothesis, as stated in section 2.0 above, is confirmed.
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7.0  Follow-up Work

• In order to gain experience with the profiling tool Shade, a single run of each program 
can be made with data address tracing enabled in the Shade tool. The data address 
traces can be analyzed to determine the data cache hits and misses for the two pro-
grams.

• The vpo compilation system can be modified to use the static register dependency 
graph to optimize data placement. Ignoring graph nodes corresponding to temporary 
variables that were not declared by the user and which will reside only in registers, and 
taking advantage of the live-range analysis already performed by the register allocation 
code in vpo, a graph-coloring approach to data placement could be implemented, with 
cache lines, rather than registers, being the scarce resource that we are allocating. The 
timing runs could then be repeated, with the expectation that the two programs would 
have the same performance. Examination of the assembly code produced could deter-
mine how closely the two data placements resemble each other.
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Appendix: Code Used in Experiments. 

Below is the aligned (“good”) version of the code using global variables.

#include <stdlib.h>
#include <stdio.h>

  /* This program exercises the SuperSPARC data cache with high spatial
     and temporal locality. It serves as an ideal benchmark. A permutation
     of this code, dpbadcode.c, will rearrange the data declarations to
     damage the spatial locality with respect to the 32-byte data cache
     lines of the SuperSPARC.

     NOTE: The SuperSPARC has 16KB of on-chip, L1 data cache, arranged
     with 4-way set associativity and 32-byte lines, for a total of 512
     lines (128 per set.) Data items with the same least significant 7 bits
     of their (byte) addresses will fall into the same set. 
  */

  /* We will name some arrays as follows: arr##?, where ## = cache line
     number from 0 to 127, and ? is the set (arbitrarily called A,B,C,D). */

  float arr00A[8], arrRestA[1016];
  float arr00B[8], arrRestB[1016];
  float arr00C[8], arrRestC[1016];
  float arr00D[8], arrRestD[1016];

  /* Let’s set up some scalar variables that will get us out of the
     cache lines 0/32/64/96 to avoid conflicts. */

  float scalar1, scalar2, scalar3, scalar4;
  float scalar5, scalar6, scalar7, scalar8;

  /* Let’s set up some more arrays that will not cause conflict in
     dpgoodcode.c, but will cause conflict in dpbadcode.c when we
     move the above scalars down below these arrays.  */

  float arr01A[8], arrRest1A[1016];
  float arr01B[8], arrRest1B[1016];
  float arr01C[8], arrRest1C[1016];
  float arr01D[8], arrRest1D[1000]; /* save room for loop counters */

  /* Some loop counters. */
  long k, l;

int main() {

  /* Put some values in both arrays */
  for (k = 0; k < 8; ++k) {
    arr00A[k] = (float) k;
    arr00B[k] = (float) (k + 1);
    arr00C[k] = (float) (k + 2);
    arr00D[k] = (float) (k + 3);
    arr01A[k] = (float) k;
    arr01B[k] = (float) (k + 1);
    arr01C[k] = (float) (k + 2);
    arr01D[k] = (float) (k + 3);
  } /* end for k = 0 ... */
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  for (l = 0; l < 800000L; ++l) {
    /* Use both groups of arrays at once. */
    for (k = 0; k < 8; ++k) {
      if ((arr00A[k] < arr00B[k]) &&
          (arr00C[k] < arr00D[k]) &&
          (arr01A[k] < arr01B[k]) &&
          (arr01C[k] > arr01D[k])) {
        arrRestA[k + 32] = 0.0; /* never executed */
      }
    } /* end for k = 0 ... */
  } /* end for l = 0 ... */
 :
 :
  return EXIT_SUCCESS;
}  /* end of main() */

To create the local version of this code, we simply move the data declarations for all arrays 
and scalars inside function main().

To create the unaligned versions of the code, we simply move the declarations of variables 
scalar1 through scalar8 down below the second group of arrays. This causes the sec-
ond group of arrays to exactly overlay the first group in the L1 data cache, creating con-
flicts among eight heavily used arrays of size on cache line each: arr00A[8], 
arr00B[8], through arr01D[8]. With only 4 sets, the D-cache cannot handle eight 
heavily used lines in conflict with one another. In the aligned code, the scalars are used to 
push the second group of arrays down one line, just as we would expect a data-placement 
conscious compiler to do.


