
Experiments in Data Placement June 30, 1998 1

Experiments in Data Placement

Clark L. Coleman
Jack W. Davidson

University of Virginia Computer Science Department
Research Memorandum RM-98-02

1.0 Background and Purpose

The placement of variables in the data space of a program can affect the program’s
dynamic memory performance. In particular, a poor placement of data can reduce the spa-
tial locality of the data address references generated by the program. This experiment
seeks to measure the range of effects of data placement on overall run-time performance.
Since current compilers assign addresses to user-declared variables in the order in which
the declarations were encountered in the source program text, it may be possible to
improve run-time performance through memory-hierarchy-conscious data placement.

2.0 Hypothesis

Data placement can have a significant, measurable effect on the run-time performance of a
program. Variable placements that maximize cache-line reuse and minimize cache con-
flicts yield programs that run measurably faster than those with variable placements that
are suboptimal.

3.0 Proposed Experimental Procedure

• The data cache structure of the target machine, cobra.cs.virginia.edu, will be
determined from Sun Microsystems documentation. Cache size, associativity, and line
size are the key parameters to be determined.

• Using this cache information, a synthetic benchmark will be devised that exhibits high
spatial locality. This will be accomplished by using user-declared variables that fill the
data cache and exercise it thoroughly while maximizing reuse of loaded cache lines.
Small arrays of exactly one cache line in size will be declared, each followed by a
larger array that consumes the remaining lines in the first level data cache. This pattern
of declarations will be repeated until there are enough small arrays to fill up all of the
sets available for a given line. Then some scalar variables, collectively taking up one
cache line in size, will be declared. This positions ensuing data placement on the next
line after the cache line that has been filled with small arrays. Then more small and
large arrays will be declared as in the first set of declarations. The program code will
then heavily exercise the small arrays, which can all fit in the first level data cache at the
same time. By avoiding references to the larger arrays (which just filled up cache lines)

Experiments in Data Placement June 30, 1998 2

and the scalars, we will avoid cache conflicts. Timing runs will be made in the evening
when the machine is lightly loaded. Mean times will be computed from several timing
runs for each form of the experiment.

• A copy of the benchmark program will be made with the variable declarations rear-
ranged to ruin the spatial locality and minimize the reuse of data cache lines. This can
be easily accomplished by moving the scalar variable declarations down below the sec-
ond set of array declarations. This will cause the small arrays of the program to conflict
with one another, and only half as many sets are available as would be required to avoid
the conflicts. Loaded data cache lines will be flushed out of the cache by a deliberate
reference sequence to create cache line conflicts. The total data space consumption of
the program will remain the same as in the high-spatial-locality version, as will the total
number of computations performed. Timing runs will be made immediately after the
timing runs of the original program. (See the code samples in the Appendix for the
actual data declarations and reference sequence.)

4.0 Expected Results

The run times will show the effects of lessened data cache hit rates, with a significant
increase in run times for the second form of the program despite a constant number of
computations performed. This will confirm the importance of data placement.

5.0 Results

Two versions of the experiment were run. The first version used global variables declared
before the main() function of the test program. The second version used the same vari-
ables, but declared as locals to main(). Some tinkering with assembly code, and printing
of resulting addresses of variables to confirm their placement, eventually produced test
executables that produced similar results for both the global variable runs and the local
variable runs. The gcc compiler was used for the first run (using globals) and vpo was
used for the second run (using locals).

Using various sources, it was determined that the target machine, cobra.cs.vir-
ginia.edu, possesses a level-one data cache (L1 D-cache) of 16 KBytes, 4-way set asso-
ciative, with 32 byte lines, and hence has 128 lines (128 lines * 4 sets/line * 32 bytes/set =
16KB). The code was written with these parameters in mind. (See the Appendix for code
details.)

Results for the two runs of the experiment are shown in the tables on the next page, mea-
sured in elapsed and CPU seconds. (The Unix time command produces three time values
for a program run. The real value is elapsed time, while the CPU time is split into user and
system values. The CPU time shown in the charts below is the sum of user and system val-
ues, averaged over five runs of the programs.)

Experiments in Data Placement June 30, 1998 3

Using the Unix time command, with an outer loop in the test program running enough iter-
ations (8,000,000) to get valid run times, the first (nonconflicting) form of the program
showed 44% to 47% decrease in user time compared to the second (conflicting) form of
the program. (Translating this reduction to the speedup measure, as used in the Hennessy
and Patterson texts, gives the data shown in the bar chart above. Speedup is simply the
ratio or original program run time (before an optimization) to the new program run time
(after the optimization.) If a program optimization reduces its run time by 50%, for exam-
ple, it is said to be a speedup of 2.0. If a program change has no effect on run time, it has a
speedup of 1.0. A speedup value of less than 1.0 would indicate that the performance actu-
ally worsened.)

Reducing the outer loop iteration count to 800 so that a cache simulator could be feasibly
run (the cachesim5 simulator that is part of the Shade toolkit,) the pattern of cache hits and
misses met expectations. The first form of the program had only a few (20) start-up data
cache read misses, while the second form of the program showed the expected increase in
data cache read misses (to more than 51,000, or almost 100% misses on data cache reads.)
The numbers were obtained by determining the program start-up overhead using a null
program (one that entered main() and then returned) that was measured using cachesim5.
These overhead measurements were then subtracted from the measurements for the two
forms of the test program, as shown below:

Speedup:SuperSparc-I L1 D-Cache

0.00

0.50

1.00

1.50

2.00

2.50

Time Category

S
p

ee
d

u
p

Global Arrays

Local Arrays

Global Arrays 1.00 1.84 1.80

Local Arrays 1.00 1.91 1.90

Base Elapsed CPU

Experiments in Data Placement June 30, 1998 4

These numbers for cache misses minus the null (base) program can be multiplied by
10,000 to get the number of extra misses caused by unaligned arrays in the earlier CPU
time results. Doing so reveals that more than 50,000,000 extra L1 D-cache read misses
will only cause a little over 2 CPU seconds of additional time. This would seem to indicate
that L1 D-cache misses that are hits in the L2 cache can be serviced quickly.

6.0 Conclusions

The conclusions from this experiment are listed below:

• Level 1 Data cache conflicts among heavily used arrays can have a significant effect on
the run times of programs.

• Such data cache conflicts can be avoided by efficient data placement.

• While such data placement was done manually in this experiment, it appears that a
compiler should be able to accomplish the same result.

• The cache effects of data placement can be measured easily with a cache simulator.
Care must be taken to factor out the start-up costs of the program, such as copying the
values of environment variables into the C language parameter *argp.

• The experiment’s hypothesis, as stated in section 2.0 above, is confirmed.

L1 D-Cache Misses

0

10000

20000

30000

40000

50000

60000

Program

M
is

se
s

 Write

 Read

 Write 1542 1611 1611

 Read 2822 2842 54033

Base Nonconfl. Conflicting

Experiments in Data Placement June 30, 1998 5

7.0 Follow-up Work

• In order to gain experience with the profiling tool Shade, a single run of each program
can be made with data address tracing enabled in the Shade tool. The data address
traces can be analyzed to determine the data cache hits and misses for the two pro-
grams.

• The vpo compilation system can be modified to use the static register dependency
graph to optimize data placement. Ignoring graph nodes corresponding to temporary
variables that were not declared by the user and which will reside only in registers, and
taking advantage of the live-range analysis already performed by the register allocation
code in vpo, a graph-coloring approach to data placement could be implemented, with
cache lines, rather than registers, being the scarce resource that we are allocating. The
timing runs could then be repeated, with the expectation that the two programs would
have the same performance. Examination of the assembly code produced could deter-
mine how closely the two data placements resemble each other.

Experiments in Data Placement June 30, 1998 6

Appendix: Code Used in Experiments.

Below is the aligned (“good”) version of the code using global variables.

#include <stdlib.h>
#include <stdio.h>

 /* This program exercises the SuperSPARC data cache with high spatial
 and temporal locality. It serves as an ideal benchmark. A permutation
 of this code, dpbadcode.c, will rearrange the data declarations to
 damage the spatial locality with respect to the 32-byte data cache
 lines of the SuperSPARC.

 NOTE: The SuperSPARC has 16KB of on-chip, L1 data cache, arranged
 with 4-way set associativity and 32-byte lines, for a total of 512
 lines (128 per set.) Data items with the same least significant 7 bits
 of their (byte) addresses will fall into the same set.
 */

 /* We will name some arrays as follows: arr##?, where ## = cache line
 number from 0 to 127, and ? is the set (arbitrarily called A,B,C,D). */

 float arr00A[8], arrRestA[1016];
 float arr00B[8], arrRestB[1016];
 float arr00C[8], arrRestC[1016];
 float arr00D[8], arrRestD[1016];

 /* Let’s set up some scalar variables that will get us out of the
 cache lines 0/32/64/96 to avoid conflicts. */

 float scalar1, scalar2, scalar3, scalar4;
 float scalar5, scalar6, scalar7, scalar8;

 /* Let’s set up some more arrays that will not cause conflict in
 dpgoodcode.c, but will cause conflict in dpbadcode.c when we
 move the above scalars down below these arrays. */

 float arr01A[8], arrRest1A[1016];
 float arr01B[8], arrRest1B[1016];
 float arr01C[8], arrRest1C[1016];
 float arr01D[8], arrRest1D[1000]; /* save room for loop counters */

 /* Some loop counters. */
 long k, l;

int main() {

 /* Put some values in both arrays */
 for (k = 0; k < 8; ++k) {
 arr00A[k] = (float) k;
 arr00B[k] = (float) (k + 1);
 arr00C[k] = (float) (k + 2);
 arr00D[k] = (float) (k + 3);
 arr01A[k] = (float) k;
 arr01B[k] = (float) (k + 1);
 arr01C[k] = (float) (k + 2);
 arr01D[k] = (float) (k + 3);
 } /* end for k = 0 ... */

Experiments in Data Placement June 30, 1998 7

 for (l = 0; l < 800000L; ++l) {
 /* Use both groups of arrays at once. */
 for (k = 0; k < 8; ++k) {
 if ((arr00A[k] < arr00B[k]) &&
 (arr00C[k] < arr00D[k]) &&
 (arr01A[k] < arr01B[k]) &&
 (arr01C[k] > arr01D[k])) {
 arrRestA[k + 32] = 0.0; /* never executed */
 }
 } /* end for k = 0 ... */
 } /* end for l = 0 ... */
 :
 :
 return EXIT_SUCCESS;
} /* end of main() */

To create the local version of this code, we simply move the data declarations for all arrays
and scalars inside function main().

To create the unaligned versions of the code, we simply move the declarations of variables
scalar1 through scalar8 down below the second group of arrays. This causes the sec-
ond group of arrays to exactly overlay the first group in the L1 data cache, creating con-
flicts among eight heavily used arrays of size on cache line each: arr00A[8],
arr00B[8], through arr01D[8]. With only 4 sets, the D-cache cannot handle eight
heavily used lines in conflict with one another. In the aligned code, the scalars are used to
push the second group of arrays down one line, just as we would expect a data-placement
conscious compiler to do.

