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Abstract

The goal of Mentat is to provide easy-to-use parallelism -

to non computer-scientists, This paper presents the Men-
tat run-time system. The run-time system supports
medium-grain, object-oriented computation using a
data-driven computation model. Performance figures are
included.

1. Introduction

As we move toward the existence of tera-op
machines the need to cost-effectively build parallel appli-
cation software grows more pressing. Although research
tools have been built to assist in detecting or expressing
parallelism at a fine-grain, we need techniques and tools
io detect and express parallelism at a medium-grain size,
a size that better matches the substantial processing
power of the individual nodes in a MIMD style tera-op
machine. Without such tools the result will be manually-
created parallelism that is typically large-grain, or very
fine-grain parallelism produced by automatic compilers.

One approach to the parallel software problem is
Mentat[1-2]. Mentat combines a medium-grain, data-
driven computation model with the object-oriented pro-
gramming paradigm and provides automatic detection
and management of data dependencies. The data-driven
computation model supports high degrees of parallelism
and a simple decentralized control, while the use of the
object-oriented paradigm permits the hiding of much of
the parallel environment from the programmer. Because
Mentat uses a data-driven computation model, it is par-
ticularly well-suited for message passing, non-shared
memory architectures.

There are two primary aspects of Mentat: the Men-
tat Programming Language (MPL) [2] and the Mentat
run-time system, The MPL is an object-oriented pro-
gramming language based on C++ {3] that masks the
difficulty of the parailel environment from the program-
mer. The granule of computation is the Mentat class
instance, which consists of contained objects (local and

member variables), their procedures, and a thread of con-

trol. The programmer is responsibie for identifying those
object classes that are of sufficient computational com-
plexity to allow efficient parallel execution. Instances of
Mentat classes are used exactly like C++ classes, freeing
the programmer to concentrate on the algorithm, not on
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managing the environment. The data and control depen-
dencies between Mentat class instances involved in invo-
cation, communication, and synchronization are antomat-
ically detected and managed by the preprocessor and
run-time system withont further programmer interven-
tion. By splitting the responsibility between the compiler
and the programmer, we exploit the strengths and avoid
the weaknesses of each. The underlying assumption is
that the programmer can make better decisions regarding
granularity and partitioning, while the compiler can
better manage synchronization. This simplifies the task
of writing parallel programs, making parallel architec-
tures more accessible to non-computer scientist research-
ers. See [2] for a more complete description of the Men-
tat programming language design and implementation.

This paper is concemed with the run-time system
support required to execute Mentat programs. The run-
time system supports parallel object-oriented computing
on top of a data-driven, message-passing model. It sup-
ports more than just method invocation by remote pro-
cedure call (RPC). Instead the run-time system supports
a graph-based, data-driven computation model in which
the invoker of an object member function need not wait
for the result of the computation, or for that matter, ever
receive a copy of the result. The run-time system con-
structs program graphs, and allows selective message
reception. Furthermore, the run-time system is portable
across a wide variety of MIMD architectures and runs on
top of the existing host operating systert. The underlying
operating system must provide process support and some
form of inter-process communication. The run-time sys-
tem is currently ranning on two systems: the Intel Hyper-
cube using NX/2 {4], and a network of Sun workstations
using UDP packets and BSD Unix sockets {5-6].

The remainder of the paper is organized as fol-
lows. First, a brief overview of the run-time system
architecture is presented. Next, the macro data flow
maodel of computation is described. The macro daia flow
model is the model of computation underlying Mentat.
Then, the run-time libraries are presented. The salient
features of the MPL, as well as an example used
throughout the rest of the paper, are presented to
motivate the library features. The run-time system itself
is then described in detail, followed by performance
figures for the run-time system and two applications.
The performance figures are presented for both the Intel
Hypercube and the Sun workstation implementations.
We conclude the paper with some observations and plans
for future work.



2. Run-Time System Architecture Qverview

The Mentat run-time system supports the macro
data flow model. The run-time system presents a virtual
macro data-flow machine to Mentat appiications via the
provision of five basic services: Mentat object manage-
ment, token (message) matching, program graph support,
guarded statement (predicate) support, and communica-
tion services. The Mentat run-time system architecture
consists of a set of processors communiciting through
some interconnection network., Each processor has a
complete copy of the run-time system.

The mun-time system can be split into two parts,
library routines that are linked with each Mentat object
(user application), and the external scheduler and token
matcher. The relationships between run-time system

components are illustrated in Figures 1 & 2. Figure 1.

shows the processor software architecture. Figure 2
shows the internal structure of a typical Mentat object.
Each of the five services is briefly described below, In
sections 4, 5, and 6, each will be described in detail,
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Object management: Mentat object management
consists of three sub-tasks: a scheduling service, a nam-
ing service, and an instantiation service. Although
scheduling of Mentat objects to nodes is automatic, the
algorithm is parameterizable and users may optionaily
~ supply hints to the scheduler to improve its decisions.
The name service function permits objects to find instan-

tiated objects of a particular class. The final service is to -

actually start an object once the location has been
decided, and to give the object a unique name. All three
of these tasks are performed by the instandation
manager, or i_m. (See Figure 1.)

Token matching: Mentat uses a data-driven model
based on data-flow. Each node in a program graph may
require more than one token (message) before it can
begin computation. When a message arrives at a node, it
must be determined whether the matching token(s) have

arrived yet. When a token destination is unbound the
message system delivers the message 1o the token match-
ing unit (TMU). The TMUs {one per processor)
cooperate with one another to match {okens for unbound
computations. When a complete set of tokens is matched,
the TMU forwards the tokens to an instance of the
appropriate Mentat object for execution.

Graph support: Program graph support in Mentat
is provided via the Mentat run-time library linked to each
Mentat object. (See Figure 2.) Graph support consists of
run-time construction of data flow subgraphs by detect-
ing data dependence in the program, and the manage-
ment of the interaction of an actor {node in a graph) with
its corresponding graph.

Predicate managemeni: The predicate manage-
ment support is in ¢ssence an extension of message pass-
ing. The user (via the compiler) may specify a predicate
to test or block upon. The predicates allow the user to
specify the characteristics of the messages it is interested
in receiving. All other messages are cached until needed.
Predicates facilitate the implementation of sophisticated
select/accept statements in which guards may depend not
only on local variables and constants, but on the argo-
ments to the functions as well.

Communication: Mentat communication is via
message-passing. Note though, that the user does not see
the message passing system; the compiler, the graph
management routines, and the predicate management
routines do. Basic message services are provided by
MMPS [7], a portable, customizable, message-passing
system.

3. Macro Data Flow Model

To better understand the run-time system, we first
present a brief description of the model of computation
used by Mentat, the macro data flow model {8-9], a
medivm-grain, data-driven model inspired by the data
flow model [10-11]. A data flow program is a directed
graph in which nodes are computation primitives called
actors. Tokens carry data and control information along
the arcs from actor to actor. When tokens are present on
all incoming arcs, an actor is ¢nabled and may execute.
Thus a high degree of paralielism can be achigved natur-
ally. Macro data flow has three principle differences
from traditional data flow. First, the granularity of the
actors is larger and under programmer control. This pro-
vides the flexibility to choose an appropriate degree of
parallelism. Second, some actors can maintain state
information between executions, These are called per-
sistent actors. Persistent actors provide an effective way
1o model side effects and to reduce communication,
Third, the structure of macro data-flow program graphs is
not fixed at compile time. Instead, program graphs grow
at run-time by elaborating actors into arbirary sub-
graphs. In the macro data flow model, program graphs
are represented by data structures called furures and
future lists, A future represents a subgraph rooted at an



outgoing arc from an actor. A future list is a List of
futures. An actor receives a future list with its argu-
ments, The future list represents the subgraph rooted at
the actor; each future in the future list corresponds to the
subgraph rooted at an outgoing arc from the actor. The
graph elaborations are completely local and do not affect
any other actor or arc in the graph. The locality has
important implications for distributed control. In Mentat,
actors correspond to Mental object member functions;
and each Mentat object implements a set of macro data
flow actors.

4, Run-Time Library Support

The Mentat nun-time library is linked to ail Mentat
applications. The run-time library provides support for
program graph construction via run-time data depen-
dency detection, select/accept statement execution, and
inter-object communication. Before discussing the
library, we introduce the MPL and present an example of
MPL code.

4.1. The MPL

The MPL was designed with four goals. First and
foremost, the MPL wouid be object-oriented {13-14].
We would extend the usual notions of data and method
encapsuiation to include parallelism encapsulation.
Parallelism encapsulation takes two forms that we call
intra-object encapsulation and inter-object encapsula-
ton. Intra-object encapsulation of parallelism means that
callers of a Meniat object member function would be
unaware of whether the implementation of the member
function is sequential or is parallel, i.e., whether its pro-
gram graph is a single node, or whether it is a parallel
graph. Inter-object encapsulation of parallelism means
that programmers of code fragments (e.g., a Mentat
object member function) need not concern themselves
with the parallel execution opportunities between the dif-
ferent Mentat object member functions they invoke.
Second, the language constructs should have a natural
mapping to the macro data flow model; and the responsi-
bility for performing the mapping should not be the
programmer’s. Third, the extensions should be applicable
to a broad class of imperative langnages. Fourth, the
syntax and semantics of the extensions should follow the
pattern set by the base language, maintaining its basic
structure and philosophy whenever possible,

These goals were met in the MPL by extending the
C++ language in five ways. The basic idea is to allow
the programmer to specify those C++ classes that are of
sufficient computational complexity to warrant parallel
execution. This is accomplished using the MENTAT
keyword in the class definition, Instances of Mentat
classes are called Mentat objects. The programimer uses
instances of Mentat classes like any other C++ class
instance. The compiler generates code to construct and

*Not to be confused with Multilisp futares[12].

execute macro data flow graphs (data dependency
graphs) in which the actors are Mentat object member
function invocations, and the arcs are the data dependen-
cies found in the program. Thus we generate inter-object
parallelism in a manner largely transparent to the pro-
grammer. All communication and synchronization is
managed by the compiler. Of course, any one of the
actors in a generated program graph may itself be tran-
sparently implemented in a similar manner by a macro
data flow subgraph. Thus we obtain intra-object parallel-
ism encapsulation; the caller only sees the member func-
tion invocation.

Briefly, the extensions to C++ are: MENTAT
classes (both persistent and regular), the Mentat class
member functions create() and destroy(), the
select/accept guarded statements, and the r#{} (return o
future) function.

Instances of Mentat objects are address space dis-
joint. All communication is via member function invoca-
tion. Parameter passing is by value. To instantiate and
destroy instances of Mentat objects, we have added two
new reserved member functions for all Mentat class
objects: creare() and destroy(). Create() allows the user
to specifly where the new instance is to be instantiated,
e.g., on a different processor or on the same Processor as
another Mentat object.

The function riff) is analogous to return in C++.
Its purpose is to allow Mentat member functions (actors)
to return a value to the successor nodes in the macro
data-flow graph in which the member function appears.
The "value" returned may be either a local variable or a
local variable that corresponds to a subgraph that com-
putes the result. These subgraphs are automaticaily gen-
erated as described below, and their use is transparent to
the programmer.

The Meniat programming language has a
select/accept statement that is similar to the ADA [15]
select/accept., Guards may be assigned priority and are
evaluated in the order of their priority. Like ADA guards,
Mentat guards may contain local variables and constants,
Mentat guards also may contain the formal parameters of
the member function being guarded, '

Example 1. Figure 3 illustrates both intra-object and
inter-object parallelism encapsulation. Assume that the
code fragment shown implements a node alpha that is
embedded in some program graph. The elaboration of
alpha into the subgraph shown in Figure 4 illustrates
transparent parallelism from alpha's perspective. Five
instances of the Mentat class bar are defined, as are four
integers. The class bar has two member functions, opl
and op2. Each member function requires some integer
parameters and returns an integer. Puring the course of
the execntion of the code fragment, alpha will be
replaced by one of two possible subgraphs depending on
whether expression{local_state) evaluates to tue or
false.



Mentat class bar {
public:
int opX(int,int);
int op2(int,int.int);
int wx,yz;
bar A,B,C,D.E;
w=A.opl(4,5);
if (expression(local_state))
x=B.opl{w,5);
else x=C.opl(w,10);
y=D.op1(7,w); '
z=E.op2(y,w,x);
rif(z);
Figure 3.

Figure 4.

If we assume that expression(local_state) is true, then the
subgraph shown in Figure 4 results from the execution of
the code fragment. The graph is constructed at run-time
by noting that B.op! and D.opl depend on w, the output
of A.opl, and that E.op2 depends on w, x, and y. The
final operation riffz) replaces the node executing this
code with the subgraph just generated.

4.2. Graph Construction & Data-flow Detection

The MPL is supported in Meniat by translating
MPL programs to C++ programs with embedded Mentat
run-time library calls. This translation has three aspects.
First, code is generated to perform run-time data flow
detection. In general this requires expanding source
statements into calls to the Mentat run-time library to
construct program graphs and manage Mentat object
invocation. Second, the select/accept statements are
transformed into predicate manager calls, which in turn
operate on the message queue associated with the Mentat
object. Third, the implementation code of each Mentat

class is broken out and separately compiled. Of these,

the code generation for run-time data flow detection is
the most interesting,

The execution path of a macro data-flow program
is not known prior to execution [8-9]. Data flow must be
detected at run-time and the data-flow graph constructed.
Run-time data-flow detection is accomplished by detect- .
ing all uses of Mentat objects on the right-hand side of
assignment statements and then monitoring where the
left-hand side variable is used later. By carefully observ-
ing where the results of the Mentat object invocation are
used, we can construct data-flow arcs from the node
representing the Mentat object invocation to the nodes
that use the result. To understand how this is done, we
need some definitions.

Let A be a Mentat object with a member function
operationl(int,int). A Mentat expression is one in which
the outermost function invocation is an invocation of a
Mentat member function, e.g., the right-hand side of

x=A operationl(5.4);.

A Mentat expression may be nested inside of another
Mentat expression, e.g.,

x=A.operationl (5. A.operationl(4,4));.

The right-hand side of every Mentat assignment state-
ment is 2 Mentat expression, e.g.,

=A.operation(54),.

An instance of some type or class whose value is
immediately available is an actual value, All variables
and constants in standard C++ are considered actual
values,

A computation instance contains the name of the
Mentat object invoked, the computation rag that uniquely
identifies the computation, a list of the arguments (either
actual values or pointers to other computation instances
that will provide the values), and a successor list. Com-
putation instances are created by invoke fn({) when a
Mentat object is invoked. /nvoke fn() marshalls argu-
ments, creates the computation instance, and returns a
computation instance pointer (a CIP), A computation
instance contains sufficient information to acquire the
actual value that is the result of the operation. We call the
process of acquiring the actual value resolving the com-
putation instance. Computation instances correspond to
nodes in the data flow graph.

An element of the argument list of a computation
instance may point either 1o a message containing the
argument (marshalled by invoke_fn), or a pointer to
another computation instance. If it points to a computa-
tion instance, then that computation instance corresponds
to an immediate successor in the program graph being
constructed. The successor list is a list of pointers to
other computation instances that are dependent on the
result of the computation instance. Each computation
pointed to in the successor list will receive an identical
copy of the computation’s result. Sometimes the caller
also requires a copy of the result; this is handled as well.



Program graphs are constructed by linking compuiation
instances together via their argument lists and successor
lists. The links comespond 1o the data dependencies
observed at run-time.

A result variable (RV) is a variable that occurs on
the left-hand side of a Mentat assignment statement. A
resalt variable has a delayed value if the most recent
assignment statement to it was a computation instance
and the actual value for the computation instance has not
been resolved. A result variable has an actual value if it
has a value that may be used, i.e., it is not delayed. To
detect data-flow at run-time we must monitor all uses of
result variables, both on the left- and right-hand sides.

Each result variable X has a state designated
X.state that is either delayed or actual. We define the
result variable set (RVS) 1o be the set of all result vari-
ables that have a delayed value, Membership in RVS
varies during the course of object execution. We define
the potential result variable set (PRV) to be the set of all
result variables. A variable may be a member of PRV
and never be a2 member of RVS. Membership in PRV is
determined at compile time.

The run-titne library performs run-time data flow
detection by maintaining a table of the addresses of
delayed result variables called the RV _TABLE. The
RV_TABLE contains the RVS, and is shown in figure 6.
Each RV_TABLE entry contains the address of the result
variable, and a pointer to a computation insiance. If the
address of a result variable is not in the RV_TABLE,
then the result variable state is actual.

There are four functions of interest that operate on
the RV_TABLE:

SET_ME({char*) rv_address, CIP node),
RV_DELETE((char*) rv_address),
RESOLVE((char*) rv_address,int size), and
forcef).
SET_ME((char*) rv_address, CIP node) creates an entry
in the RV_TABLE with a CIP value of node for the
result variable pointed to by rv_address. If an entry
already existed for rv_address, the associated computa-
tion instance is decoupled; since we know it can never be

used again on the right-hand side, we can stop keeping
track of it and execute it at our leisure,

Invoke fn{arg_list) is an operator defined for Men-
tat objects. When invoke fn(} is called it creates a new
computation instance for the computation, a new pro-
gram graph node is created. invoke fn() marshalls the
arguments, both actual arguments (e.g., integers), and
arguments that are computation instances. When an argu-
ment is a computation instance, that tells invoke_fa(} that
an arc should be added from the argument (a computa-
tion instance), to the new computation instance
invoke_fn() is constructing.:

RV _DELETE((char*) rv_address) deletes the
RV_TABLE entry associated with rv_address if one
exists. Before the entry is deleted, its associated compu-
tation instance is decoupled.

RESOLVE({char*) rv_addressim size} is called
when the user program requires a value for a result vari-
able. If an entry in the RV_TABLE exists for
rv_address, RESOLVE forces the result, and blocks until
the result is available. Once the result is available,
RESOLVE places the result into the memory pointed to
by rv_address. The size field indicates the maximum
number of bytes to be copied into the result variable. If
size is negative, it tells resolve that rv_address points to a
pointer. In that case, RESOLVE mallocs enough space
for the result, and sets the result variable to point to the
allocated space. If the rv_address is not in the
RV_TABLE, then RESOL.VE does nothing.

Force() is used to begin the execution of any pro-
gram: graphs that have been constructed so far. It con-
structs the future lists from the program graphs and sends
messages with the appropriate future lists to the appropri-
ate ohjects.

The code in Example 1 has been expanded below
in Figuare 5 to show the library calls that are made to the
run-time library, After each line of C++ code is a brief
explanation of what is happening. The casis of address
10 char* have been removed for clanity. The
RV_TABLE that results from execution of this code
fragment is shown in figure 6. For more information on
the MPL compiler and its transformations, see [2].

4.3. Predicate Management

The predicate manager (PM) sits between the user
code and the token transport system. The PM receives
all tokens destined for an object and returns matched sets
of tokens to the user code. In the simple case the matched
set returned is the first set of arguments o a member
function invocation that have all arrived, In general, the
user may have specified guards that must evaluate 1o
TRUE before the corresponding member function can be
invoked. Guards may be functions of the local state of
the object and the contents of the messages. Guards may
also be prioritized. The job of the PM is therefore two-
fold. First, it matches the tokens by computation tags.
Second, it supports the MPL’s select/accept guarded
statement semantics and permits the user (really the com-
piler) 1o selectively accept only those messages, and
matched message sets that the user wants. The user
accomplishes this by blocking on {or esting) a predicate.
The implementation of each of the two subtasks is
described below.

The matching process is accomplished by first col-
lecting together complete sets of tokens that, in the
absence of guards, would enable an actor to fire, When a
message arrives at a Mentat object, the destination field
contains rot only the name of the object, but several
other fields as well. These fields are the operarion#, the



(*SET_ME((&w)))=A.invoke_fn(101,2,
ICON_TO_ARG(4),
ICON_TO_ARG(5));

f* Set up an RV_TABLE entry for w, pointing to
invocation of A. A has two integer constant
arguments, they are marshaled. */

if (local expression)

(*SET_ME((&x)))=B.invoke_fn(101,2,
PRV_TO _ARG((&w}4,0),
ICON_TO_ARG(S));

/* B has two arguments, a potential

result variable w, and an integer constant.
The PRV is delayed, so an arc is created. */
else

(*SET_ME((&x)))=C.invoke_fn(101,2,
PRV_TO_ARG{(&w}4,0),
ICON_TO_ARG(10));

(*SET_ME((&y)))=D.invoke_{n(101,2,
ICON_TO_ARG(T),
PRV_TO_ARG{(&w).4,0));

(*SET_ME({(&z2)))=E.invoke_fn(102.3,
PRV_TO_ARG((&y)4.0),
PRV_TO_ARG{(&w)4,0),
PRV_TO_ARG((&x)4,0));

f* Note that all three arguments are
PRVs, three arcs are added. %/

rf(PRV_TO_ARG({(&z)4.0));

Figure 5. Expanded code of example 1.

RV Table
RV addr P

&X
&w
&y
&z

Figure 6.
RV_TABLE and program graph for example 1,

argument#, and the compurtation tag. The operationt
specifies which member function is 10 be invoked. The
argument# specifies which argument the message sup-
plies. The computation tag is a unique identifier that
specifies a particular invocation of the object.

Before a member function can be executed, all of
its arguments must have arrived, i.e. there must exist a
set of messages with the same operation# and with the
same computation tag such that all of the arguments are
present. The process of finding such a set is called token
maiching. Once a set of tokens has been matched we say

that the operation is enabled and may fire.

The second part of the PM’s responsibility is to
implement the MPL’s select/accept statements. This is
accomplished using predicates. A predicate is a table,
each entry of which has five fields, an operation#, a
priority, the number of arguments e¢xpected, a pointer to
a guard function (possibly null), and a pointer to the head
of the guard function argument list (possibly null).

A predicate corresponds to a set of member func-
tions to be accepted, and their associated guards and
priorities, that the user may wish o block on or test.
There is usually a one to one correspondence between
predicates and select/accept statements. The guard is a
boolean function that is applied against matching sets of
tokens that have an appropriate operation#. If the guard
function evaluates 0 TRUE the corresponding member
function is eligible for execution, If the guard function
evaluates to FALSE, the tokens did not satisfy the guard
and the matched tokens are not yet eligible for execution
under that guard. They may, however, match under
another guard or at some later time,

The priority field of the predicate table entries are
used to determine the order in which guards are
evaluated. This gives the user (via the compiler) the
ability to schedule the order in which requests (member
function invocations) are satisfied. In the event that two
entries have the same priority, the order of evaluation is
unspecified (non-deterministic).

There are four member functions defined for predi-
cates, enable operation, disable operation, block, and
test. Enable and disable set up and disable predicate
table entries respectively. Block tests the guards in order
of priority until a guard evaluates 1o TRUE or until there
are no more matched tokens to test. If a guard evaluates
to TRUE the predicate table entry number and pointers to
the matched messages are returned to the caller. If none
evaluates o true, block blocks on message recepiion, and
tries again once a new message has arrived. Test is simi-
Iar to block, except that the guards are only tested, the
message pointers are not returned, and test does not
block on failure.

The MPL compiler transforms select/accept state-
ments into: 1), the construction of appropriate guard
functions and a predicate, 2), the enabling of the member
functions corresponding to the accepis with the appropri-
ate guard pointers and priorities, 3), a call 1o block, and,
4), a switch siatement on the result of block, with the
appropriate code in the cases.

4.4, Communication

‘Mentat communication is via message passing.
Basic message services are provided by MMPS [7}, The
run-time system provides guaranteed delivery of mes-
sages of arbitrary size from one Mentat object to another.
Message reception is handled by the predicate manager
discussed above. Some messages may be destined for



unbound objects. Unbound object destinations are used
when it is not important which instance of an object class
receives the message, only that an instance receives it.
Unbound messages are sent to the TMU (described
below).

5. Object Management

Object management is performed by the i m.
Object management consists of three subtasks: a schedul-
ing service, a naming service, and an instantiation ser-
vice, Below we will concentrate on the most interesting,
scheduling,

The scheduler is built upon the scheduling research
of Eager, Lazowska and Zahorjan [16], who developed a
sender-initiated adaptive load sharing model for homo-
geneous distributed systems. It describes the way in
which the current load in the system is distributed among
its components using system state information. Mentat,
however, was designed to work on system architectures
and topologies in which processors do not necessarily
have equal performance characteristics. Furthermore,
the Mentat programming language (MPL) provides infor-
mation on process characteristics that can be used by the
scheduler to improve its decisions, This makes the pure
Eager, Lazowska and Zahorjan model insufficient. Cur
model accommodates these environmental differences.

Our model deals exclusively with global schedul-
ing, and is only concerned with deciding where to exe-
cute a process. Local scheduling, which assigns
processes to time-slices of a single processor, is left o
the host operating system of the processor to which the
process is ultimately allocated. A task scheduling
mechanism is used because, in the macro data flow
model, each actor, or object, is treated as an independent
task by the task scheduling mechanism.

We represent distributed systems as collections of
not necessarily identical nodes, each consisting of a sin-
gle processor. The nodes are connected by a local area
broadcast channel or by other communications medium.
There is one exact copy of the scheduler in each node,
and the schedulers perform an independent decentralized
function. Our scheduler has the following characteris-
tics:

1. Distributed: The scheduling decisions are disiri-
buted and independent among the systems.

2. Load Sharing: The i _m transparently distributes
the workload by transferring tasks from nodes that
are heavily loaded to nodes that are lightly loaded.

3.  Adaptive: The i_m employs information on the
current system state in making transfer decisions.

4. Sender-Initiated: Congested nodes search for
lightly loaded nodes to which work may be
transferred.

5. Static Assignment: Each task remains on the node
to which it is assigned untl completion; there is no

task migration.

6.  Stable: A task can only be transferred a fixed

number of times between the nodes of the system.
Transfers can only occur before task execution.
Hence, processor thrashing is avoided.,

The i_m divides the scheduling decision into two
components: theé trangfer policy, which determines
whether to process a task locally or remotely, and the
location policy, that determines the processor to which a
task is sent. The i_m can base its transfer decisions not
only in the run queue length of the processors, but also
on other information about the system state such as avail-
able memory and CPU utilization. The i_m uses a thres-
hold transfer policy that supports several different loca-
tion policy algorithms with a static transfer limit, There
are currently three algorithms for the location policy pro-
cess. They are random, round-robin and best-most-
recently. The division of the scheduling decision into two
components makes it easy to incorporate additional algo-
rithms into the location policy component. The static
wransfer limit makes our model stable and prevems pro-
cessor thrashing.

The i_m may be configured for different architec-
tures. A configuration is based on the state information
that the host operating system supplies to the scheduler.
Some systems offer easy and quick access to their state
information (SunOS8 [51), whereas others (Intel’s NX/2
{4} do not provide an easy way to collect this informa-
tion. Thus, different forms of state information are used
in different architectures. The i m supports different
system topologies and processor power heterogeneities
by the creation of logical sub-networks of homogeneous
processors. These logical sub-networks also give a
separation between physical sub-networks,

Our model uses the location hints specified by the
programmer to improve the scheduling decisions. There
are currently three types of location hints which can be
specified using MPL. They are: CO-LOCATE, DISJOINT
and HIGH-COMPUTATION-RATIO. CO-LOCATE tells
the scheduler to locate the object being instantiated close
enough to another object so that communication between
the two is inexpensive. DISJOINT tells the scheduler
that an object should be instantiated far away from any
object in a given list because it will usually be executed
in parallel with those in the list. HIGH-
COMPUTATION-RATIO tells the scheduler that the
object to be instantiated has a particularly high computa-
tion ratio. The scheduler uses this information to ensure
that it is placed on a lightly loaded or powerful proces-
sor, even if the processor is very far away.

Due o space restrictions a full discussion of the
location policies and parameters is not possible. The
scheduler, and our scheduling results, are the topic of a
future paper. For more information on the i_m and the
on performance of different location and transfer policies
using various parameters and work loads see [17].



6. Token Matching

When a member function of a regular object (or an
uninstantiated object) is invoked the run-time system is
responsibie for maiching the tokens when they become
available and for instantiating an instance of the class to
execute the member function. Recall that regular object
member functions are pure functions; thus all instances
of regular objects are equivalent, and we may use any
instance to execute the member function.

Token matching for uninstantiated objects is com-
plicated by the distributed nature of the matching prob-
lem: how can we know where the tokens we are trying (0
match reside, or whether all of the tokens to be maiched
have even been generated yet? Our solution to this prob-
lem is to send all tokens that are destined for uninstan-
tiated objects (regular objects) to the local token match-
ing unit {TMU). Each host in a Mentat system has a
TMU that is responsible for collecting all of the tokens
together in one place and then executing the member
function.

To coilect the tokens together, the TMUs must
cooperate. One of the TMUs is specified as the coording-
tor of each computation. The coordinator is that TMU
“which receives the token containing the last argument of
the member function, ("Last" here refers to the order in
which the formal parameters are defined, not the order in
which the arguments are generated.) All other TMUs
that receive tokens containing the other arguments are
known as assistants. A TMU may be both a coordinator
and an assistant for different computations.

The coordinator is responsible for gathering all of
the tokens (messages) for a particular computation. If
the member function requires only one argument, this is
trivial. If there is more than one argument, the coordina-
tor sends out probes to its fellow TMUs requesting all
maiching tokens they may have. When the coordinator
has received all of the required tokens, it first requests an
instance of the desired class from the i_m and then sends
messages w other TMUs canceling the request for
matching tokens., When the i_m provides an instance
name, all of the tokens are forwarded to the named
object, This object performs the requested computation.
The problem with this solution is the message complex-
ity, O(2n), where n is the number of hosts in the system,
A more efficient algorithm based on hashing is being
investigated.

7. Performance Results

7.1, Primitive Operations

The performance of Mentat, and of the Mentat
approach, hinges on the speed with which primitive
operations can be performed. In particular, message
operations, computation instance operations, and predi-
cate operations must all incur little cost, or overhead will
swamp the gains from parallelism. If the cost © con-
struct program graphs dynamically is too high, then static

graph methods, with the resulting increase in the number
of actors, must be used. In Tables T-1 and T-2 below,
the execution times for the primitive operations are given
for a Sun 3/60 and a node on the Intel iPSC/2 respec-
tively. The time to execuic a nuli RPC is also given, as it
represents the time to construct a simple graph, send the
parameter, schedule and execute the RPC, and reply to
the call. Note that the message transport cost includes
the host operating system scheduling and task swiich
overhead. For more information on the communication
times see [7].

Table T-1
Component Timing Resuits (Sun 3/60)
Furnction Time |
Create/Destroy computation instance 6518
| Add Arg 32u8
. | Create/Destroy Message 26018
Per node overhead 357uS
_Transport Message (Send) 9.8ms
| Null RPC 22mS
Table T-2
Component Timing Results (iPSC/2)
Function Time
| Create/Destroy computation jnstance | S6uS
Add Arc 32uS8
| Create/Destroy Message 9418
Per node overhead 357uS
Transport Message (Send) 800uS
: Nyl! RPC 2.8mS

The largest cost operation is communication. The use of
control actors (as required for static graphs) would
dramatically increase the number of messages. By con-
structing the graphs at run-time, thereby avoiding the use
of control actors, significant savings in time can be real-
ized.

1.2, Applications

Nice computation and programming models aside,

" the bottom line for parallel systems is performance. As

of this writing we have implemented the Mentat run-time
system on two different architectures: a network of Sun
workstations, and a sixteen node Intel iPSC/2 Hypercube.
This version is our first and has not been optimized.
Rather than concentrating on speed, our efforis have
been spent on getting it right. We believe that substantial
performance improvements are possible as the com-
ponents of Mentat become faster, reducing overhead.
Speed-ups for two benchmarks on each of the supported
architectures are given below. In each case the speed-up
shown is relative to an equivalent C program, not rela-
tive o the Mentat implementation running on one pro-
cessor. The two benchmarks are matrix multiply and
Gaussian elimination. Each benchmark was executed for
several matrix dimensions., e.g., 100x100, 200x200.



Matrix multiply and Gaussian elimination are used
because they are de facto parallel processing bench-
marks.

7.3. Execution Environment

The data were collected in two different environ-
ments: a network of Sun workstations and a Hypercube.
The network of Suns consists of 10 Sun 3/60’s serviced
by a Sun 3/280 file server running NFS connected by thin
Ethernet. All of the workstations have eight megabytes
of memory. The run-times used 1o compute the speed-
ups for the Suns were obtained late at night.

The Intel iPSC/2 is configured with sixteen nodes.
Each node has one megabyte of physical memory and an
80387 math co-processor. The nodes were NOT
equipped with either the VX vector processor or the SX
scalar processor. The NX/2 operating system provided
with the iPSC/2 does not support virtual memory. The
lack of VM, coupled with the amount of memory con-
sumed by the OS, limited the problem sizes we could run
on the iPSC/2. '

Matrix Multiply

The speed-ups for matrix multiply are shown in
Figures 7 and 8 below. The algorithm (and application
source) is the same for both systems. Suppose the
matrices A and B are to be multiplied. Suppose A is the
larger of the two. A is divided up into n pieces Ai...A .
where n is the number of processes to use. A copy of B
and one of the A.’s are used as parameters to Mentat
object invocations. The results of the invocations are
merged together and sent to computations that are depen-
dent on the result of the A*B operation,
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Figure 8. Hypercube matrix multiply

Gaussian Elimination

In our algorithm the controlling object partitions
the matrix into n strips and places each strip into an
instance of an sblock, a Mentat class. Then, for each row,
call the reduce operator for each sblock using the partial
pivot calculated at the end of the last iteration. The
reduce operation of the sblocks both reduces the sblock
by the vector and selects a new candidate pantial pivot
amd forwards the candidate row to the controlling object
for use in the next iteration. This algorithm requires fre-
guent communication and synchronization. The effect of
frequent synchronization can be clearly seen when the
.speed-up results for Gaussian elimination in Figures 9 &
10 are compared to the resuits for matrix multiply.
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8. Summary

The goal of Mentat is to provide easy-to-use paral-
lelism to non computer-scientists. Mentat meets the
goals by providing an easy-to-use, parallel, object-
oriented programming language, the MPL, and by pro-
viding run-time support for the MPL on a wide variety of
architectures. This paper describes the run-time system
architecture. Mentat has been ported to the Intel Hyper-
cube, and a network of BSD Unix hosts. Performance
figures for both systems are encouraging. A port to Mach
is underway, with completion expected in the summer of
1990. Future work on the run-time system will concen-
trate on optimizing the run-time system (o improve



application performance, and on fault-tolerance. We are
currently impiementing two real-world applications in
Mentat to test our "easy-to-use” claim, Results are
expected in the fall of 1990,
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