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ABSTRACT 
 

Within the biomechanist community, there is a rhetorical hypothesis that both movement 

trajectory and joint torque are modulated or adapted to maintain dynamic stability in bipedal 

walking.  Not only are these two control variables intricately related, but such additional 

objectives as desired speed, stealth, endurance, etc. inevitably contribute to the complex behavior 

in animal locomotion.  As a consequence, any single objective function used to describe walking 

dynamics is necessarily limited.  We propose a bipedal walking control algorithm that 

simultaneously solves for movement trajectory and joint torque without relying on any a priori 

assumptions regarding one or the other.  The absence of such assumptions permits the study of 

pathologic movement dysfunctions where the desired movements and torques are unknown.  Our 

technique uses a constraint-based space-time optimization algorithm to compute optimal 

movements and torques.  Such pathologic constraints as leg-length discrepancy, range-of-motion 

limitations, or velocity constraints from spastic hypertonia may be added and this optimization 

technique will find non-homogeneous solutions.  When this technique is applied to a control task 

with a known optimal solution, two-segment downhill walking, it produces identical results to a 

torque-free forward-integration approach.  Solutions to pathologic behavior conditions were also 

demonstrated by limiting swing leg velocities to simulate the neuro-physiologic constraints of 

hamstring spasticity.   
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INTRODUCTION 
 

Criteria for successful bipedal walking include both periodicity and stability8,9.  Except for the 

constraints imposed by periodicity and stability, successful walking does not require specific 

movement trajectories or joint torques.  Hence, individuals whose joint torques are affected by 

neuromuscular pathology may be able to modify their movement trajectories to successfully 

achieve stable walking behavior in the presence of the kinematic or control constraints12,18.  To 

simulate the generalized nature of walking performance and to permit potential investigation of 

pathologic movement it is desirable to avoid establishing a priori the joint actuation behavior or 

movement trajectories.  Instead one might perform a simultaneous search for joint actuation and 

movement trajectories constrained by periodicity and stability.  The goal of the current study is 

to implement a simulation of bipedal walking that determines the movement trajectory 

simultaneously with the optimum activation torques, thereby allowing both the joint torques and 

movement trajectories to be modified as befitting the environmental constraints and objectives.   

 

A simple paradigm for investigating the stability criteria in bipedal walking is the passive 

dynamic walker wherein a two-segment knee-less walker is driven solely by gravitational 

potential energy as it walks downhill21.  Kinetic energy is lost with each foot-strike and is 

balanced by potential energy gained as the system moves downhill.  The remarkable aspect of 

the passive walkers is that they can generate stable walking behavior even in the presence of 

disturbing forces without need for explicit controlling actuators or active feedback9,21,23.  A 

natural behavior exists such that any movement trajectory within the basin of attraction 

representing the stability region will converge to the preferred movement pattern4,10.  However, 

existing locomotion optimization models search for open-ended movement trajectories.  These 

open-ended movement trajectories present technical limitations when attempting to identify 

stable movement trajectories. 

 

Stability of passive dynamic bipedal walkers has been studied under a variety of conditions.  

Stability analyses have been performed in these compass-gait models using effective two-mass4 

and three-mass systems11,23 as well as investigations into passive walking with knees5,22.  These 

seminal analyses investigate stability by means of post priori numerical computation.  For 
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example, during passive-dynamic walking the downhill ground slope and mass distribution of 

the walker completely dictate stable movement trajectory.  Governing equations for the 

movement dynamics include both non-linear differential equations to represent swing phase and 

algebraic discontinuities to represent foot-strike.  Hence, by means of forward-integration the full 

movement trajectory can be specified and evolve from initial conditions.  Upon completion of a 

complete gait cycle the trajectory can be tested for periodicity and stability15,16.  Consequently, 

when using standard methods of forward-integration it is difficult to identify the appropriate 

initial trajectory that will ultimately result in stability, i.e. it is unknown whether the initial 

conditions are appropriate until after the gait cycle is completed.  Identifying stable initial 

conditions has been achieved by trial-and-error estimation, by linear-approximation4 and by 

Newton search methods21.  Recognizing this limitation it is difficult to extend these models to 

active walking because one cannot determine the influence of an applied joint torque upon limit-

cycle stability until long after the gait cycle is completed.  Consequently most dynamic 

simulations of bipedal walking pre-specify either movement trajectories, i.e. inverse dynamic 

analyses, or joint actuation torques, i.e. forward-dynamic analyses.  In the case of passive-

dynamic walking the joint actuation torques are pre-specified as a value of zero throughout the 

entire gait cycle.  Nonetheless, the passive-dynamic walking presents an excellent paradigm for 

the investigation of dynamic stability. 

 

Recent advances in computational methods permit one to search for combinations of movement 

trajectories and joint actuation torques that satisfy the equations of motion, periodicity and limit-

cycle stability.  Conceptually, periodicity and momentum requirements describe the relation 

between the initial and final trajectory points for each step in symmetric gait behavior17 while the 

equations of motion describe the shape of the trajectory in between these initial and final points.  

Stability constrains the relation between joint torque and movement trajectory.  Asymmetric 

behaviors typical in pathologic gait can likewise be established albeit through greater model 

complexity to permit generality.  The specific aim of the current study was to determine whether 

these trajectory-searching algorithms allow the simulation to identify the optimum movement 

path that converges to stable bipedal dynamics.   
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A trajectory-searching algorithm known as “space-time constraints29” was employed to identify 

stable movement trajectories in passive bipedal walking.  We use a forward-dynamic simulation 

to generate a time-sequenced movement trajectory, which we evaluate in its entirety.  A force-

minimizing search algorithm identifies an optimal trajectory that implicitly establishes dynamic 

stability and converges to passive walking in downhill conditions.  Previous simulations have 

pre-specified movement trajectory and require the actuation torques to control maintain that 

movement pattern 2,26,28.  Others have pre-specified the actuation torques then solved for the 

resulting movement trajectory 7,13,19,24,25.  Some advanced models have derived input joint 

torques from measured EMG data27.  Passive –dynamic walking requires homogeneous behavior 

or zero torque actuation from which movement trajectories are determined3,4,20.   The goal of the 

current study was to implement a simulation determines the movement trajectory simultaneously 

with the optimum activation torques, thereby allowing both the joint torques and movement 

trajectory to be modified as befitting the environmental constraints and objectives.  To 

investigate the validity of the solutions results were compared with the natural behavior of 

passive bipedal walking.  Finally, active bipedal walking was investigated, using the trajectory 

search simulation of compass-gait to seek movement and torque solution to level-ground and 

uphill walking wherein passive bipedal gait cannot exist.  Significant insight into the control and 

stability of bipedal locomotion is established with potential applications for representing 

physically constrained or pathologic walking biomechanics.   

 

METHODS 
 
The simulation represents a 2-dimensional knee-less walker including two legs of mass mL, 

joined by a revolute joint at the point mass of the head-arms-trunk (HAT), MH and is based upon 

successful walking models published elsewhere3,4,21.  Leg masses, mL, are located at a distance 

dCM from the hip along a line joining the hip to the point-foot.  The walker moves along a plane 

of slope γ with respect to horizontal.  A time-dependent vector θ = [θS, θN]T represents the 

walker configuration where θS and θN are the angles of the stance-leg and non-stance-leg versus 

ground normal.  During walking only one foot is in contact with the ground at any time, i.e. 

single-stance.  Ground clearance of the swing-leg is ignored in this treatment because simple 

mechanisms such as prismatic joints11 are readily established that do not influence walker 

dynamics.  The governing equations of motion include the differential equations of movement 
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q-  

that model swing phase dynamics and the conservation of angular momentum that models foot-

strike transitions.  These models are implemented using classical homogeneous forward-

integration techniques.  

 

Governing Equations of Motion 

The collision at foot-strike is represented with no slip and no bounce and the transition stage at 

foot-strike is assumed instantaneous, i.e. no double-support period17.   The configuration after 

foot-strike θ+ it related to the pre-impact angles θ− by an anti-symmetric matrix, J, that 

establishes the new swing leg at the angle of the previous stance leg and the new stance leg with 

the configuration of the previous swing leg angle.  Angular velocities before and after foot strike 

are related by conservation of angular momentum,  

 Q+(θ) 
+  = Q−(θ) 

−  (1)  

The terms Q+(θ) and Q−(θ) represent the momentum matrices immediately before and after foot-

strike about the forward contact foot.   

 
  −µ (1−β) β − {2µ (1−β)+1}{RN uN}×{R/

S uS} -µ (1−β) β (2) 
  −µ (1−β) 0 

 
 

  µ β2 + µ β {RN uN}×{R/
S uS} 2µ (1−β)+µ β2+1+µ β {RS uS}×{R/

N uN} (3) 
  µ β  µ {RS uS}×{R/

N uN} 
 

 
where RS and RN are the Euler rotation matrices for the stance leg and non-stance leg at angles θS 

and θN respectively and x represents the vector, or cross-product, operator.  The vectors uS and 

uN represent the unit vector directions of the stance leg and non-stance leg in a neutral 

configuration, µ = mL/MH is the mass ratio and β = dCM/L the mass-distribution ratio.  Hence, 

state of the system immediately prior to foot contact, q- = [θ−, −]T is related to the state 

immediately following foot-contact, q+ = [θ+, +]T by the relation, 

 
  J 0 (4) 
  0 inv(Q+) Q- 

 

q+ = 

Q-
 (θ) =  

Q+
 (θ) =  
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M (θ) =  

N (θ,θ ) =  

G (θ) = g  
L   

These conservation laws lead to discontinuous change in segment rotational velocities and 

associated kinetic energy loss at each foot-strike.  Goswami et al.10 illustrate that this energy loss 

is necessary to maintain dynamic stability through phase-space contraction. 

 

The equations of movement dynamics are described by classical rigid body mechanics.  Because 

the system is continually in swing-phase it is represented as a double-pendulum with pivot at the 

stance foot.  The dynamics are determined from two coupled, second-order differential equations 

of motion. 

 
  τγθθθθθθ =++ ),(),()( GNM  (5) 

 
µ    µ β {R/

S uS}•{R/
N uN} (6) 

µ β {R/
S uS}•{R/

N uN}  µ β2 
 

 
 
0 µ β {R/

S uS}•{R//
N uN} Nθ  (7) 

µ β {R/
S uS}•{R/

N uN} Sθ       0 
 
 

(2µ + µ β + 1) {R/
S uS}•{Rg ug}  (8) 

µ β {R/
N uN}•{Rg ug}  

 
 
where RS and RN are described above, Rg is the Euler rotation matrices for the ground slope at 

angle γ; and R/
S, R/

N the spatial derivatives of the rotation matrices.  The vector ug represents the 

unit vector directions of the gravity vectors and g the gravitational constant.  The actuation 

vector includes terms describing the joint torques from the ankle and hip, τ = [τA, τH]T.  To 

represent passive walking these joint torques must be zero.  Evaluation of the motion equations 

reveals that the passive movement trajectories are fully determined by the ground slope, γ, the 

mass ratio µ and the mass-distribution ratio of β 10 

 

Forward-Integration Model 

The equations of dynamics are implemented on a PC using an ordinary differential equation 

(ODE) solver in MATLAB.  Specifically, the movement trajectory is determined by means of 
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forward integration of the differential equations while assuming a homogeneous solution, i.e. τ = 

0 in the passive walker.  The trajectory is monitored to identify foot-strike events by zero-

crossing algorithms representing the time and state when the swing foot intersected the ground 

plane.  The swing-foot typically intersects the ground twice, once with the leg moving up-and-

forward and again as the pendulum behavior causes it to peak and swing back.  These have been 

described as the short-step and long-step behaviors5,6.  We investigate only the long-step solution 

as McGeer21 concludes the short-step is unstable.  At foot-strike, the transition equation (eqn 4) 

is applied to re-set the state vector, q.  With the new configuration and velocities, the forward-

dynamic ODE process is repeated to simulate the next step.  The process continues for as many 

walking steps as necessary.  Figure 1 illustrates a phase plane portrait of a typical behavior in 

passive downhill walking. 

 
Analysis of limit cycle stability for the forward-integration model is performed numerically as 

described in the literature9,23.  The initial state of the system at step k results from the dynamics 

following from the initial state at step k-1.  This relation has been called the “stride function” 1, 
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Figure 1:  Phase plane representation of the movement trajectory from the simulation of the 
passive bipedal walker.  Moving in a clockwise direction starting from the lower right 
quadrant, the stance leg moves from its initial state to opposite leg foot-strike occurring in the 
lower left quadrant.  A discontinuity in velocity (equation 4) is observed as the stance leg 
becomes the swing leg.  During swing phase the leg traversing from the left side of the plane 
returning to the lower left quadrant.  At foot-strike the discontinuity is again noted when the 
swing leg transitions back into stance.  
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  qk = f(qk-1)  (9) 

If the state is perturbed ∆q then a Taylor series representation of the response is described as  

  f(qk-1+ ∆q) = qk + ∇f ∆q  (10) 

where ∇f is the gradient of the stride function with respect to the system states9,23.  The resultant 

trajectory returns toward the stable behavior only if the eigenvalues of ∇f about qk are less than 

one.  By introducing a perturbation ∆q to each of the state variables at qk-1 and observing the 

response qk a numeric representation of ∇f is achieved4.  For example, eigenvalues of the system 

described in figure 2 were determined as 0.290 – i 0.623,  0.290 + i 0.623, 0.000, 0.068.  All are 

within the unit circle indicating a stable movement trajectory.  Stability analyses are performed 

in this manner for all conditions. 

 
Constrained Trajectory Search Model 

We also implemented the two-legged walker using space-time constraints to solve for the 

movement trajectories and joint torques.  This model is identical to the system described above 

in terms of equations of dynamics and foot-strike transition, but a linear-search algorithm is used 

to identify the optimum trajectories of the entire movement rather than time incremental forward 

integration.  The advantage of the trajectory search method is 1) the solution is not limited by a 

priori assumptions regarding the initial state, 2) the objective function can be designed to seek 

intrinsically stable trajectories, and 3) the solution is not limited to homogenous solutions or a 

priori actuation or movement behaviors thereby permitting assessment of optimal movement 

trajectories and joint torques for uphill walking. 

 

The method of space-time constraint represents the movements and torques as a series of 

multiple piecewise linear trajectories.  This permits numeric representation of the velocity and 

acceleration as linear functions of position.  The technique for solution of forward-dynamic 

simulation has been described elsewhere for multi-segment reaching tasks29 but has never been 

applied to the compass-gait problem.  The entire movement trajectory is established with an 

angle vector θt = [θS t, θN t]T at every time increment t = 1…n.  Note that the full angle vector 

includes two legs at n time increments represented in a 1-by-2n vector.  The velocity and 

acceleration vectors are also 1-by-2n column matrices determined by multiplying the position 

vector θt by numeric differentiation matrices,  = V θt and  = A θt 
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  -1  0  1  0  0  0  … 
  0 -1  0 -1  0  0  … (11) 
  0  0 -1  0 -1  0  … 
 
 
  1 -2  1  0  0  0  … 
  0  1 -2 -1  0  0  … (12) 
  0  0  1 -2 -1  0  … 
 
where dt is the time increment.  The non-linear, second-order differential equations of motion are 

represented by expanding the terms M(θ), N(θ, ) and G(θ,γ) (eqns 5-8) into 2n-by-2n matrices 

with coefficients determined from the state vector at each time increment.  An arbitrary motion 

trajectory θt requires a set of actuation torques, τt = [τA t, τH t]T to satisfy the equations of motion 

(eqn 5), where τA t represents the ankle torque of the stance leg and τΗ t represents the hip torque 

at time t.  Additionally, the time-increment dt is implemented as a variable thereby allowing the 

swing period to approach an optimum.   

 

Using constrained optimization routines in MATLAB it is possible to solve for the movement 

trajectory θt that minimizes the sum of squares of actuation torques throughout the stride cycle. 

  min Στt
T

 * τt  (13) 

where a full stride cycle is the time between consecutive foot strikes. In the special case where 

passive walking is simulated, one expects this sum of squares to approach zero, i.e. no actuation 

torque is applied to generate passive dynamic walking.  Because the initial angles and step length 

trend toward zero as ground slope approaches horizontal6,11,21 we also investigate simulations 

using another objective function that minimizes the sum of torques while penalizing the behavior 

of short step lengths, 

  min Σ (τt
T

 * τt
T) / Step-Length (14) 

Recognizing that the objective functions will identify energy wells in the movement dynamics, 

the search algorithm will intrinsically seek stable behavior. 

 

Constraints to the solution space are imposed as part of the optimization routine in order to limit 

the solution space and to speed the convergence.  These include limitations on feasible joint 

angles ±90 degrees to prevent solutions wherein the walker performs flips and whirling gait 

V = .5 
dt 

A =  1  
dt2 
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behaviors14.  An upper bound on the time increment, dt, is also established to limit the total 

swing period less than 2π, i.e. the swing leg is not permitted to swing back-and-forth multiple 

times within a single step.  Finally, the system state at the initial and final time-points are 

constrained to assure periodicity and conservation of momentum (eqn 4). 

 
Output includes the movement trajectory, stance leg ankle torques, and inter-segment hip torques 

at each instant in time.  Stride period is calculated from the product of the time increment dt and 

the number of time increments n.  Step length is determined from the geometric relation 

involving the initial and final leg angles.  Recognizing that periodicity constraints require the 

angles are equal and opposite between legs and at the initial and final time points, the stride 

length is simply: 

 Stride Length = 2*L*sin(θSi) (15) 

where L is the leg length and θSi the angle of the stance leg at the initial data point. 

 

To assure the solution trajectories are stable according to the eigenvalue analyses, the results 

from the trajectory search are applied to the forward-integration model for comparison.  Using 

initial conditions predicted by the trajectory search solution, the forward-integration model is 

allowed to iterate forward in time to establish the full movement trajectory.  The trajectories 

predicted by these two models were compared and found to be identical for most downhill 

walking conditions.  Eigenvalue results were therefore representative of the limit-cycle stability 

of trajectory search solution. 

 
RESULTS 
 
The forward-integration two-legged walker simulation generates steady state behavior and 

demonstrates notable trends in association with ground slope.  To confirm steady state behavior, 

the forward-integration model is simulated 100 consecutive steps.  The model is initialized with 

leg angles of ±15º, stance leg velocity of 60 deg/sec and swing leg velocity of 0 deg/sec.  

Because this initial state is within the limit-cycle basin of attraction the behavior undergoes 

transient state changes in the first few steps but quickly converges within four decimal places to 

the steady state behavior describing the natural dynamics of the system (see figure 2).  The 
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behavior of the system is indicated by the mean steady state value sampled at the beginning of 

each step, i.e. the state immediately following foot-strike.   

 
 
 
Steady state movement trajectories (see figure 1) are comparable to phase-plane portraits of 

similar systems reported in the literature6,11,21.  The illustrated phase-path describes the complete 

step trajectory of one leg.  The cycle begins in stance-phase with positive stance-leg angle and 

negative stance-leg velocity, i.e. lower-left quadrant of the phase plane.  Moving clockwise in the 

phase plane the stance leg reaches an angle at opposite leg foot-strike equal and opposite to the 

initial angle to assure periodicity.  At foot-strike an instantaneous change in velocity occurs to 

transition the swing leg to become the swing leg.  This instantaneous state change results from 

the conservation of momentum during the foot-strike collision and is similar to published 

results6,11,21.  The leg continues its clockwise path through the phase plane during swing phase, 

achieving large positive velocities until foot-strike.  At ipsilateral foot-strike a second 

momentum-dependent velocity shift occurs to return the system to its original configuration. 
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Figure 2:  Transient behavior of the passive bipedal walker determined from the forward-
integration model.  Angle (dashed line) and velocity of the leg segments demonstrate transient 
changes in the first few steps but quickly converge to a stable walking behavior.  Steady state 
behavior at each ground slope is determined by allowing the simulation to walk for 100 steps. 
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The natural dynamics of the walker are strongly influenced by ground slope (see figure 2).  Leg 

angle at foot-strike and the associated stride length increase with steeper downhill ground slope.  

Note that the stride length approaches zero as ground slope approaches zero.  Recall that the 

system behaves as a pendulum and the period of a pendulum is minimally influenced by swing 

amplitude at the angles observed here.  Hence, stride period is generally independent of ground 

slope, declining less than 3% as slope changes from 0.25° to 8.0°.  Because step angle increases 

with ground slopes and stride period remains largely unchanged it is necessary for stance-leg 

velocity to increase with ground slope.  Swing-leg velocity is negative at shallow slopes 

indicating the initial movement of this limb is backward or opposite the walker’s direction of 

progression.  As downhill slope increases the swing-leg velocity becomes positive, i.e. initial 

velocity of the swing leg is forward.  As a result, the swing leg completes nearly a full pendulum 

cycle at shallow downhill slopes while the percent of completed cycle declines in sigmoidal 

fashion as with steeper slopes.  Velocity of forward progression is defined as the quotient of 

stride length over stride period and increases with steeper downhill slopes in proportion to leg 

angle at foot strike.   Hence, the passive walker slows and eventually stops at shallow ground 

slope.  Clearly, the passive walker described by the forward-integration model cannot walk 

uphill.  In fact, the maximum eigenvalue amplitude abruptly increases to unstable values as the 

ground slope approaches zero. 

 
The space-time trajectory search model successfully estimates the movement trajectories for 

passive walking.  Walker configuration is initialized at leg angles of ±1° with initial and final 

stance and swing leg velocities of ±3 deg/sec and linear trajectories in between.  In independent 

analyses the configuration is initialized at leg angles of ±30° with initial and final stance and 

swing leg velocities of ±90 deg/sec and linear trajectories in between.  These are selected to 

assure the initial conditions are well outside of the basin of attraction for the natural dynamics 

thereby requiring the simulation to seek a stable trajectory.  Nonetheless, the simulation 

converges on movement trajectories that are similar to the forward-integration results.  When the 

model solves for a trajectory that minimizes the sum of squares of the actuation torques (eqn 13), 

results are identical to the behavior exhibited by the forward-integration model.  The trajectory 

successfully identifies the passive walking behavior illustrated by the fact that the sum of 

actuation torques approaches zero, indicating a homogeneous solution.  The leg angles and 
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velocities are identical to the forward-integration results and therefore will not be discussed 

further.  When the model solves for a trajectory that minimizes the sum of squares of the 

actuation torques per stride-length (eqn 14), results are again similar to the behavior exhibited by 

the forward-integration model as illustrated in the phase-portrait representation of the movement 

trajectories (see figure 1).  In downhill walking the actuation torques approach zero, indicating 

the solution approximates passive walking while leg angle at foot-strike, stance-leg initial 

velocity and forward walking velocity increase with steeper downhill slopes as described in the 

forward-integration model.    

 
Small differences are observed between the natural dynamics and the trajectories obtained from 

optimized joint torque per stride-length.  None of these differences are statistically significant in 

pairwise comparisons.  The leg angles at foot-strike predicted by the two methods are 

remarkably similar, with the trajectory search solution generating leg angles and stride lengths 

that are greater than the natural-dynamic behaviors by an average (±std) of less than 0.35° ±0.15.  

This results from the objective function that attempts to increase step length while 

simultaneously minimizing actuation torques.  Stride lengths are 1.1% ±0.5 longer than the 

passive results.  Deviation from the passive dynamics requires active joint torques.  However, 

because of the close agreement between predicted and passive trajectories these actuation torques 

are quite small, with mean downhill levels of 0.004 rad/sec2.  (N.B. actuation torques were 

normalized by system inertia thereby representing torque as applied acceleration generated by 

the muscles or motor actuators.)  Compared to a mean natural dynamics, passive trajectories 

produce a stride period of 648 msec whereas the trajectory search solution produces a period that 

is 22 ±18 msec slower.  Consequently, the initial state velocities of the swing-leg are slightly 

faster in both the positive and negative directions resulting in a compensation velocity of the 

stance leg, with a difference of 2.7 deg/sec and 1.1 deg/sec respectively.  The goal of the 

trajectory search simulation is to identify stable movement trajectories and actuation torques for 

the bipedal walker.  To test the solution stability, predicted initial conditions are applied to the 

forward-integration model and the eigenvalue stability determined.  In all downhill conditions 

the trajectory search model identified stable movements with eigenvalue amplitudes less than 

one.  This is not surprising considering the initial conditions of the two models are nearly 

identical.  
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The system successfully achieves uphill walking because the objective function encourages non-

zero step lengths (eqn 14).  As indicated above, a homogeneous system requires the solution 

must approach zero step length at shallow ground slopes.  Both the forward-integration model 

and the simulations that minimize sum of squared torques demonstrate this behavior.  

Conversely, since the objective function of the last model resists zero step lengths, the movement 

trajectory continues to represent forward walking on uphill slopes but clearly could not achieve a 

homogeneous solution when walking uphill.  The result is a set of time-dependent joint torques 

necessary to converge on the optimal trajectory (see figure 3).  It is important to note that the 

optimal movement trajectory and joint torques are determined simultaneously.  These torques 

represent muscle force or robotic motor load required to walk on shallow downhill or uphill 

grades.  Leg angles at foot-strike and associated stride-lengths increase monotonically with 

uphill slope.  During downhill walking a passive stability has been observed.  However in uphill 

walking there is no longer passive stability so system resonance disappears.  Consequently, 

during uphill bipedal locomotion there is no natural period to optimize joint torques and the 

stride period increases to the upper bound allowed by the simulation.  Curiously, during level 
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Figure 3:  Walking behavior accomplished for a 2.0º uphill slope.  Both the ankle and hip 
muscles must apply torques . 
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ground walking and at shallow uphill slopes, i.e. 0.5 deg, the simulation converges upon a 

bounded stride period.  The stance-leg velocity increases monotonically with uphill slope 

because leg angle increases while stride period was bounded.  Swing-leg velocity becomes 

increasingly negative with slope in response to the hip torque actuation necessary to push the 

system uphill.  Thus, results illustrate that simultaneous solution of movement trajectories and 

joint actuation in bipedal walking provides sufficient freedom to accurately represent passive 

dynamic downhill walking or active uphill walking with the a single model. 

 
DISCUSSION 
 
The goal of this effort was to investigate bipedal walking wherein the solution simultaneously 

established movement trajectories and joint actuation torques to satisfy limit-cycle stability.  

Most models of biomechanical movement dynamics fully restrict either the movement trajectory 

or the joint torque actuation.  Many biomechanical models of walking employ inverse-dynamic 

analyses to determine joint torques that strictly describe a-priori movement trajectories.  This 

category of movement simulation is widely used in clinical assessments because modern 

technology permits easy measurement of multi-segment kinematics.  Forward-dynamic 

simulations represent a second category of simulation wherein movement dynamics are 

computed based upon pre-specified joint torque profiles.  Passive dynamic walkers are a subclass 

of forward-dynamic models wherein the input torques are assigned to a value of zero.  Both 

forward-dynamic and inverse-dynamic analyses have been used to study walking stability.  

However, biologic locomotion is rarely limited to fixed behaviors in either movement or joint 

torque.   Instead, both torque and movement are modified and/or compromised to establish a 

balance in performance.  In the trajectory search simulations, the bipedal walking behavior 

achieved movement trajectories subject to periodicity constraints while joint torque was 

optimized for minimum input activation and the balance between the two was established 

through the governing equations of motion.  Permitting flexible balance between movement 

trajectories and actuation torques is necessary to understand potential compensation mechanisms 

that often occur with pathological disorders in human locomotion. 

 

During downhill walking the movement trajectories converge toward natural passive dynamics 

to satisfy the energy minimizing objective function.  In passive compass-gait, the ground slope 
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dictates the stable dynamics of the system.  Results demonstrate that the forward-integration 

model and both of the trajectory search simulations generate nearly identical leg angle and 

velocity profiles that decreased as ground slope approached zero (see figure 2).  Simulation 

output agreed with published simulations of passive dynamic bipedal walking6,11,21.  The cause of 

this behavior can be understood from analyses of system energy.  The total energy at the initial 

time, i.e. immediately following foot-strike of step k, can be represented as 

 γθθ sinsin2
2
1 22

kHkHk gLMLME +=  (16) 

The first term represents the initial kinetic energy and the second term the potential energy where 

is the elevation, L sinθk sinγ, represents the location of the system mass above the final position.  

Although the computer simulation results include both leg mass and HAT mass; for purposes of 

simplicity equation 16 assumes the leg masses are negligible when compared to the HAT mass.  

Therefore, at step k+1 the initial energy is 

 2
1

2
1 2

1
++ = kHk LME θ  (17) 

According to McGeer21, as well as equations 1-3 above, the energy transferred from step k (eqn 

16) to step k+1 (eqn 17) is decremented by cos2(2θk).  To assure stability the total initial energy 

at step k+1 must be identical to the initial energy at step k scaled by the energy loss term at foot 

strike.  Periodicity requires the initial angles and velocities at step k must be equal to step k+1, 

i.e. θk = θk+1 = θI, for period-one gait11.  

 

 iiHiHiH gLMLMLM θγθθθ 2cossinsin2
2
1

2
1 22222 +=  (18) 

Note that energy loss at foot strike is absolutely necessary to achieve stability in passive 

downhill walking, described by Goswami in terms of the phase-space contraction11.  The relation 

between initial angular velocity and initial leg angle is readily determined.  The pendulum 

frequency of the swing-leg in relation to the range-of motion, ±θi, describes the stride period21.  

The stance-leg must similarly move through a range of 2θi in the time period between the swing-

leg lift-off and foot-contact.  Hence, using small angle approximation, the initial stance-leg 

velocity is readily determined from the initial leg angle, θi, and ground slope, γ. 
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 )( iii L
g θγθ

β
θ −=  (19) 

where β is the mass distribution ratio, L the leg length, g the gravitational constant.  Combining 

equations 18 and 19, the relation between ground slope and initial leg angle is determined, 

 
βθ

θγ
−

= 2

3

i

i  (20) 

This theoretical relationship demonstrates excellent agreement with the more complex computer 

models that include leg mass.  Because energy gain is proportional to ground slope and energy 

loss is related to the inter-leg angle the initial angle must increase monotonically with steeper 

ground slope (eqn 20).  Substituting this relation into equation 19 it is clear the stance velocity 

must also increase monotonically with steeper ground slope.  Both the forward-integration and 

trajectory search approaches generated results that agree with these theoretical trends. 

 

Stride period predicted by the simulations demonstrated very little change with ground slope. 

Stride period at 8° ground slope was only 20 to 25 msec greater than the 0.25° ground slope; a 

3% increase.  Goswami10 similarly observed small increases in stride period, approximately 6%, 

whereas McGeer22 reported a small decrease in stride period with steeper ground slope.  Linear 

approximation from the theoretical analyses (eqns 18-20) suggests the stride period must 

increase approximately 19 msec over this range of ground slopes, but predict a mean stride 

period of 784 msec compared with simulation results that averaged 647 to 669 msec depending 

upon the model design and objective function.  This difference in theoretical versus numeric 

simulation periods is attributable to the simplifying assumptions and linearized representation of 

the theoretical analyses.  Nonetheless, the trajectory search results identified stride periods that 

were nearly identical to the steady state behavior from forward-integration passive dynamic 

walking.  This natural period represents the resonant frequency of the stable dynamic system.  A 

natural period can also exist during uphill walking but only at very shallow uphill slopes 

providing the mass distribution ratio, β, in equation 20 is sufficiently large.  Otherwise there is 

no natural period during uphill walking. As a consequence, the solution for uphill walking 

resulted in stride periods that were bounded by the explicit numeric constraint imposed by the 

simulation.   
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During uphill walking there is a clear need for joint torque as a form of input energy (see figure 

3).  This input torque determined by the objective function and resulted in actuation of both the 

ankle and hip muscles.  However, results demonstrate a clear need for a knee or some other leg 

lengthening mechanism for uphill walking.  To minimize the sum of squared joint torques, both 

the hip and ankle actuation must be of similar mean amplitude.  The difference in average 

activation between the hip and knee in figure 3 is less than 14%.  Recall that hip torques that 

rotate the stance leg forward have a reaction that will drive the swing leg backward.  

Consequently, the swing leg demonstrates a large posterior movement early in swing phase.  An 

added degree-of-freedom to permit stance leg extension would allow input energy to the system 

without introducing this unnatural swing phase behavior.  Hopping simulations rely solely upon 

leg extension energy and may readily travel uphill.  Bipedal walking simulations have 

implemented leg extension mechanisms with success.  Camp added powered eccentrically 

curved feet that worked to actively lift the bipedal walker smoothly throughout stance phase in 

level ground walking.  This inputted potential energy by extending the effective leg length 

thereby mimicking downhill walking and successfully achieved limit-cycle stability.  McGeer23 

examined instantaneous leg lengthening for uphill climbing via analytically methods and 

concluded that it is most effective when combined with well-timed ankle torque impulses.  

Future models designed to study dynamic stability in powered bipedal walking must investigate 

systems with higher degrees-of-freedom. 

 

The trajectory search simulations were constrained to period-one gait behavior.  It has been 

observed that stable passive walking can occur despite stride-to-stride asymmetry.  Bifurcation 

of the natural dynamics may occur, particularly at steep downhill slopes, such that the periodic 

pattern repeats every second step6,11.  Higher-order gait asymmetries may also develop wherein 

the period repeats every 4 steps, 8 steps, etc.  This behavior is strongly influenced by mass 

distribution of the walker11.  For the walker implemented in the current study, 2-period gait 

patterns were observed at ground slopes in excess of 11°.  It remains unknown whether n-period 

gaits exist during powered or uphill walking.  In the trajectory search implementation the 

periodic behavior was constrained to one-period gait.  However, this is not a necessary limitation 

as advanced simulations could implement these techniques to higher-period behaviors.  The 

search technique was also limited by linear methods requiring a monotonic solution space.  
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Movement trajectories were seeded at initial leg angles of ±1° and separately analyses seeded at 

±30°.  Both converged upon similar solution trajectories that agreed with the natural dynamics of 

the system.  Nonetheless it is clear that including the time increment, dt, as a variable produced a 

nonlinear search space.  More advanced trajectory search methods will be required for 

increasingly complex simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impetus for this study is the rhetorical hypothesis that both movement trajectory and joint torque 

are modulated or adapted to maintain dynamic stability in bipedal walking.  Our results with this 

space-time constraints trajectory search algorithm indicate effective movements and joint torques 

can be computed for inclined and declined walking tasks.  The results of downhill walking are 

identical to the optimal trajectories specified by the forward-integration approach and the 

freedom to add constraints permits exploring other tasks.  We have investigated uphill walking 

and pathologic constraints that require non-homogeneous solutions.  For example, pathologic 

behavior was investigated by limiting swing leg velocities below 50 deg/sec to represent the 

neuro-physiologic constraints of hamstring spasticity12.  The trajectory search walker (see figure 
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Figure 4:  Graphs comparing the leg trajectories in two conditions.  The solid lines indicate 
limb trajectories when both legs swing freely.  The dashed lines demonstrate the effect of 
limiting swing leg velocities below 50 deg/sec to represent the neuro-physiologic constraints 
of hamstring spasticity. 
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4) produced results that match observations of  patients with spastic cerebral palsy, namely 

increased joint torque was required and stride period was slower thereby modulating both 

movement trajectory and joint torque in a compensation behavior.  To understand pathologic 

movement dysfunctions the solution set must avoid a priori specification of movement dynamics.  

Results illustrate that this trajectory search approach to dynamic walking simulation can be 

implemented to achieve freedom from prespecified motion or torque trajectories yet converge to 

well-known behaviors of natural dynamics in downhill walking. 
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