
ABSTRACT
A significant number of requirements errors can be character-

ized as failures to adequately take into account the system context
of the software to be built. It has been shown that poor communi-
cation of domain knowledge pertaining to the system is a major
source of such errors. The pervasive medium for this communica-
tion, natural language, is widely accepted to be problematic for
high-precision communication because of its characteristic ambi-
guity and informality. However, it is nevertheless amenable to rig-
orous inspection and possesses its own body of research results.
We analyze the domain knowledge communication problem from
the perspective of current cognitive linguistic theory, and we
describe insights deriving from this analysis. These insights are
exploited to motivate a technique, the construction of a domain
map, which allows the recording and propagation of real-world
semantics essential to the production of software elements that
have validity within their system context. The domain map con-
struction and form help ensure the integrity of the recording and
the effectiveness of the propagation. Our technique is demon-
strated on parts of a real industrial requirements specification, and
an evaluation is presented which takes into account both quality
and cost.

1. INTRODUCTION
Mistakes in requirements are a significant source of software

defects. In one study, Lutz found that the majority of safety-related
errors that were found in the systems she studied derived from
poor requirements [10]. Results such as this suggest that substan-
tial reductions in software defects might be achieved if mistakes in
requirements could be reduced.

The problem is a subtle one in that there are many sources of
requirements errors including incompleteness, inconsistency,
ambiguity, and so on. The core of the problem lies in the fact that
the requirements specification for a software artifact is a statement
that has to convey information from the domain experts who want

the system built to software experts who will build it. The informa-
tion cannot be stated in the familiar language of either, since both
have to understand and work with it.

Software does not operate in a vacuum. It is meaningless out-
side the context of the complete system in which it operates, and
the requirements for a software system derive from that system
context. Domain experts have the domain knowledge that allows
them to understand the system context thoroughly, but it is bound
to be the case that software engineers usually do not. It is our
hypothesis that failure to effectively communicate essential
domain knowledge to software engineers is a major cause of
requirements errors.

In this paper we introduce a linguistic analysis of the domain
knowledge communication problem. We show that the way in
which humans innately use language is not conducive to effective
communication between domain experts and software engineers
(or any other pair of experts in different domains, for that matter),
and that this is a major source of requirements errors. It has been
shown, however, that no solution in which communication is based
entirely on formal notations is possible because natural language
is, in fact, essential to provide real-world meaning to any formal-
ism.

Using the analysis, we introduce a concept called the domain
map and we argue that it can be used to document and structure the
essential domain information in a requirements specification. We
describe some simple tools for building and using domain maps,
and we present a feasibility study of the use of a domain map.

2. LINGUISTIC ANALYSIS
We are concerned with maximizing the integrity of the com-

munication between experts in a given domain and developers
working on a unit of software that will function within that
domain. The root objective of any attempt at communication is to
recreate the particular semantics conceived of by one person in the
mind of another. We examine this process from a cognitive linguis-
tic perspective, with the goal of better understanding the problems
particular to communicating domain-specific semantics. This
yields a model of domain knowledge communication that explains
precisely the nature of communicative breakdowns between
domain experts and developers and that motivates particular tech-
niques expressly designed to address them.

In this section, we introduce the main elements of this model,

A Linguistic Analysis of Requirements Errors and Its
Application

Kimberly S. Hanks

ksh4q@cs.virginia.edu

John C. Knight
Department of Computer Science

University of Virginia
151 Engineer’s Way

Charlottesville, VA 22904-4740
+1 44 434 982 2216

knight@cs.virginia.edu

Elisabeth A. Strunk

eas9d@cs.virginia.edu

cognitive categories, their internal structuring mechanisms of pro-
totypicality, peripherality, and extension, as well as the principles
that they collectively obey, cognitive economy and hierarchical
organization. An understanding of these elements and the linguis-
tic model they comprise motivates insights allowing us to
approach the domain knowledge communication problem in con-
trolled and directed ways.

2.1 Cognitive Categories
In order to understand how the semantics conceived of by one

person may be recreated in the mind of another, it is first useful to
have a notion of how these semantics are stored in a mind in the
first place. Much work in linguistics and cognitive psychology has
demonstrated that the universe of semantics understood by any
person is organized into highly structured categories possessing
certain properties [12, 11, 17, 7]. For our purposes, cognitive cate-
gories can be defined as follows:

Cognitive categories are collections of mental represen-
tations of entities encountered or imagined by an indi-
vidual that are judged by that individual to be
sufficiently similar to each other to count in some parti-
tioning of reality as being the same.
Since there are many possible partitionings that are useful to

us in our interaction with the world, an entity may be a member of
many categories depending on the factors considered to be salient
for the task or experience at hand. For example, a tree stump might
be what is left of the trunk of a tree that has been cut down, but it
may also be a welcome seat for a tired hiker.

Categories, in addition to being collections, have internal
structure (see Figure 1). They can be visualized as radial arrange-
ments of instances that bear degrees of resemblance to central pro-
totypes. Instances closely clustered around the prototype bear
stronger resemblances to it and instances further away are less pro-
totypical. The tree stump above may indeed be a member of the
seat category, but for most individuals it would be a non-prototypi-
cal member, whereas a chair such as is found in an office or at a
dining table would be more representative.

Determination of which instances are prototypical or periph-

eral for a given category is an individual judgement call, based on
accumulated past experience of the category possessor. In fact,
membership itself is an individual determination: peripheral mem-
bers of a category may be so much so that they might be judged as
in or out of the category inconsistently by different individuals or
even by the same individual as his experience changes. He may
even be unable to decide at a given instant, allowing categories to
overlap. Membership in cognitive categories, unlike membership
in formal sets, is not binary.

Another dimension of internal structure that some categories
may have is one or more layers representing semantic extensions
to the category. Extension is essentially the selective appropriation
of a subset of category semantics for use in classifying another
group of entities. For example, before computers existed, the cate-
gory memory was arguably restricted to representing a faculty of
sentient life forms; its use in computer terminology abstracts cer-
tain, but not all, of its prototypical properties and exploits their
commonality with aspects of human memory to allow an intuitive
understanding of what computer memory does. Computer memory
is not a peripheral member of the base category memory, rather, it
is more like a category in its own right with a prototype and
peripheral members (consider how core has gone from one to the
other over time), but with a semantic origin and continued map-
ping to a preexisting category. This is essentially the cognitive
view of metaphor. We will demonstrate that an understanding of
extension, as well as of prototypicality and peripherality, motivates
certain insights regarding domain knowledge communication.

2.2 Cognitive Economy
In addition to the internal structure that organizes each cate-

gory individually, the collective set of categories possessed by an
individual has been shown empirically to obey certain principles.
Among these is cognitive economy.

Cognitive economy is the ability of humans to quickly associ-
ate with an entity a large number of attributes that might not be
readily observable [12, 17]. This association is gained through the
linking of an entity with a category based on the category name
and possibly some prototypical attributes. This link leads to the
heuristic ascription to the entity of additional attributes highly cor-
related with other known instances of that category. For example, a
message receiver, upon receiving a message with the name nest in
it, would link that name to the category represented by it in his
inventory. Heuristically he would then ascribe to the instance
attributes that might not be apparent but are highly correlated with
other nests he has experienced, for instance that it is made of twigs
and dirt, and that it might contain eggs or baby birds. If the mes-
sage was, in fact, “Look at that bird’s nest!”, the receiver will
likely look up, possibly into a tree, because those locations highly
correlate with the locations of bird’s nests he has previously expe-
rienced. The receiver will already know what to look for and
where; the message originator need not have indicated any descrip-
tion or direction. In this way, the individual on the receiving end of
a message is able to conceive of rich and usually very accurate
semantics while the message size is kept much smaller than it
might otherwise need to be.

The heuristics used employ assumptions based on accumu-
lated past experience of the message originator and receiver. These
assumptions directly affect the structure of the categories that
those involved in the communication possess, and they have been

Figure 1. Cognitive categories.

PrototypeMore
Prototypical

Member

Less
Prototypical

Member

Non-
member

tuned through evolution to be effective in everyday communica-
tion.

2.3 Problematic Issues with Cognitive Econ-
omy

Since heuristic methods are the means by which the effi-
ciency of accurate semantic transfer is increased, there are of
course pathological cases that break them, i.e., that compromise
either the efficiency or the accuracy of the heuristics. Communica-
tion of requirements from domain experts to developers is rife with
such incidents.

One form of pathological case that defeats the purpose of cog-
nitive economy is the event in which the original linking to a cate-
gory is invalid. This occurs when a name signifies more than one
category, i.e., there are name collisions. For example, a monitor
can refer to the display on one’s desk, a synchronization primitive,
a minimal operating system, or even the child elected to manage
traffic in the school hallway. While these are all distant extensions
of a general monitor base category, each independently possesses
internal categorical structure. If there is insufficient context to aid
the message receiver in discriminating the intended extension, or
worse, if he simply does not possess certain extensions, it is possi-
ble or even likely that he will ascribe to the entity in question a
whole host of attributes that do not match those that were intended.
The message receiver’s ensuing behavior will be conducted in the
context of this incorrect understanding, unless and until the error is
recognized and corrected. Decisions and actions dependent on cor-
rect communication of the message will be invalid.

Another form of pathological case that defeats the purpose of
cognitive economy is only subtly different than the above, but far
more insidious. In this case, the original linking to a category is
valid, that is, the name has the same basic referent for both inter-
locutors. But either the message originator or receiver has accumu-
lated past experience that renders his version of the category more
dense with features, and their relative correlations with the proto-
type more tempered and time worn, and therefore less open to
adaptive reinterpretation. This difference in quality and density of
experience causes the corresponding versions of the category pos-
sessed by two different people to have different topologies, i.e.,
different loci of prototypicality and peripherality, and different
relations and distances between members. Any time two such peo-
ple use this category, each assumes the topology and constellation
of attributes consistent with his experience. Depending on the
direction of the transfer, the result is that the message receiver con-
structs an understanding that is both qualitatively misaligned as
well as either over- or under-specified, relative to that which was
intended.

This phenomenon is a great danger to the accurate communi-
cation of domain specific requirements. Very many such categories
exist where the denser category is possessed by an expert in a
domain and a less constrained version is held by non-experts in the
domain, notably, software developers. Consider, for example, use
of the name energy: in physics, this category is constrained and
well defined, with a precise set of attributes, whereas in lay usage,
it is a rather amorphous thing. Context and other factors may or
may not allow one or both participants to realize that something is
amiss. Misunderstanding may or may not drive behavior that leads
to errors. Errors that are made may or may not be caught. And

since energy is only one of many thousands of such categories,
spread over very many domains with which software developers
interact, the probability that a very dangerous or expensive error
will make it into production software is quite unacceptably more
than zero.

2.4 Hierarchical Structure
Further complicating the state of affairs resulting from the

existence of pathological cases that flout the benefits of cognitive
economy is a second principle: hierarchical structure. This princi-
ple is also obeyed collectively by the set of categories possessed by
an individual.

Empirical evidence suggests that the categories we possess
are organized into a hierarchy of specificity, with more general cat-
egories at higher levels and very constrained categories at lower
levels. This hierarchy is one of inclusion, meaning that many low
level, highly constrained categories are collected under the
umbrella of a more general category, several of these more general
categories are collected into still more general categories, and so
on (see Figure 2).

Evidence also suggests that a particular level of this hierarchy
has a special salience in our perception of the world [13, 12, 17].
This level is intermediate; it is neither a very general way to
describe a thing nor very specific (for example, dog rather than
mammal or retriever), and its special role is evidenced by features
particular to it in our acquisition and use of categories. It has been
termed the basic level, although it is not at the base of the hierar-
chy. It represents the categories first acquired by children, the cate-
gories we call up first when classifying a newly encountered entity,
and the categories we use when introducing a new category into
conversation.

Importantly, analysis of empirical data has demonstrated a
further property of the basic level that supports its apparent
salience: the basic level is that level of the hierarchy at which ele-
ments of any given category share the most features with each
other and the fewest with members of other categories [13, 12, 17].
This property of the basic level further complicates the intact com-
munication of domain knowledge.

Figure 2. Hierarchical structure.

Basic Level
Categories

Superordinate
Categories

Subordinate
Categories

Inclusion
Relation

Categories

This added complication derives from the nature of the
domain specific categories used by experts. Domain experts have
accumulated experience that results in their association of more
attributes with certain categories (specifically those in their
domain) than a non-expert would associate with the same catego-
ries. These attributes provide more dimensions along which poten-
tially to collect and differentiate entities. This results in certain of
these categories bearing the above mentioned mark of the basic
level: that level at which members of any given category share the
most features with each other and the fewest with members of
other categories.

The implication is that experts often tend to see, within their
domain, lower-level, more constrained categories as basic, and
therefore use them in ways that basic-level categories are used. On
being presented with a new entity to be classified, provided the
entity has some role within his domain, an expert is likely to asso-
ciate it with a more constrained category than would a non-expert.
Similarly, on introducing an entity into conversation, he is likely
also to invoke a more constrained category.

This means that in addition to experts and non-experts pos-
sessing more and less constrained versions, respectively, of certain
categories (as in the energy example above), the denser expert ver-
sions are more likely to come up in discussions relative to higher
level umbrella categories because, to the expert, they are at the
basic level. This translates to proportionally more opportunities for
misalignment between the categories passed between originators
and receivers than would occur because of the backfiring of cogni-
tive economy alone.

The two pathological cases flouting the benefits of cognitive
economy, name collisions and qualitative and density differentials,
combined with the added complications of the interaction of
domain knowledge and the basic level, in fact constitute the lin-
guistic aspect of domain specificity in general. Communication
across a domain boundary, communication that is essential in the
correct preparation of a requirements specification, embodies
exactly the properties that cause our natural machinery to fail. It is
not a part of human nature to get this right without serious and
explicit intervention.

2.5 Elicitation vs. Propagation
Finally, it must be noted that effective communication of

domain knowledge is an issue throughout the lifecycle. The trans-
fer of domain knowledge does not occur exclusively at one point in
the development process; rather, it is negotiated back and forth in
both directions at at least as many junctures as there are steps in an
industrial lifecycle. And like an analog recording, it is subject to
degradation at every transfer, as a specifier passes his best-effort,
but not perfect, understanding to a designer, and so on to program-
mers, testers, and maintainers, and through all of the loops and
switchbacks that an industrial development process follows.

The challenges provided by the domain-knowledge commu-
nication problem derive from far more than the goal of intact elici-
tation of domain knowledge. Elicitation is just the beginning. The
challenges provided by the domain-knowledge communication
problem derive at least as much from the goal of intact propaga-
tion of domain knowledge.

It is this recognition that drives this work. Although we are
also conducting a related line of research on the linguistic issues
involved in initial elicitation, we are concerned here with the

recording of acquired semantics such that they can be propagated
with the highest possible level of integrity, minimizing noise and
degradation of the message over the duration of the process. Our
linguistic analysis demonstrates the ways that a message can be
degraded, and our knowledge of industrial processes indicates that
the problem is recreated over and over in what are essentially new
elicitation rounds every time a message must be passed.

These insights dictate that the shape of a solution should be
one that enforces the placing of elicited information in a durable
and consistent form that is cognitively accessible to all those who
might have need to use it, and in so doing, does not recreate the
elicitation problem and multiply its attendant noise and degrada-
tion further along in the process. We now turn to the problem of
determining the medium of this recording.

3. ON THE NECESSITY OF NATURAL
LANGUAGE

Many approaches to removing ambiguity and increasing the
precision of a software specification advocate the practice of con-
verting its representation to a formal one. The motivation to do so
is correct for several reasons, the most familiar being that formal
languages are inherently and entirely rule-based, unambiguous,
and analyzable.

However, every software artifact to be built begins, by its
very nature, as an informal cognitive concept in the mind of a cli-
ent. Our assertion is that while any useful solution must eventually
be formalized in order to be executable, formalization that is
attempted too early or is overly relied upon as the exclusive or
main representation of a developing software artifact is flawed. We
assert that the dynamic representation of a software artifact, as it
develops from an informal cognitive concept into an executable
piece of code, must be accompanied by a complementary element
in natural language, which takes a certain form, and which records
the domain knowledge to be propagated. This recording then itself
becomes an inextricable component of the specification, providing
information that no formal specification can by itself confer, and
serving as genuinely useful documentation.

This assertion begins from the recognition that the errors that
can be caught through analysis of a formal specification are only
those that are possible to catch within the closed world of the
model that is being analyzed. Analysis of formal specifications can
demonstrate internal inconsistency and faulty logic, but it cannot
demonstrate completeness of the model, or validity of the elements
represented. Formal representations carry and confer no
meaning [18]; they only represent symbolically entities and rela-
tionships that people have decided to model. Formal representa-
tions are therefore incapable of providing the recording format for
the propagation of access to essential domain specific semantics
that is sought.

To summarize, the following issues arise in choosing the
medium of the recording for domain knowledge:
• every representation starts informally in the domain,

• explicit and considered access to essential semantics must be
propagated to all those who might need it throughout the
development cycle,

• this explicit and considered access to essential semantics can-
not be passed with accuracy through a lossy channel of non-
expert relays, and

• formal language is not capable of carrying or conferring mean-
ing.

Therefore, the recording format for the propagation of explicit
and considered access to essential semantics must and can only be
natural language.

It is not an accident that natural language is the medium of
context for the entire process and the bootstrapping medium that
allows any other kind of representation to be negotiated and con-
structed. When the utility of any other kind of representation
breaks down, the discussion defaults to natural language for a rea-
son: “pretty good” heuristics that deliver are better than “perfect”
solutions that cannot be made to work. We know natural language
has weaknesses, but we also know that it is all we had before we
learned any formal representations, and we learned to manipulate
them through transfer of ideas carried by natural language. When
all else fails, return to first principles.

3.1 On Mental Models
Noteworthy at this point is a parallel that can be drawn with

the acquisition and use of mental models. Leveson discusses some
of the threats to safety that can arise when manual tasks are
automated [9]. Operators, who once accomplished these tasks
directly, are recast as outside monitors of the system that now per-
forms the labor algorithmically. She cites Brehmer, who argued
that this conversion of the operator’s role results in his comprehen-
sion of the system changing from a concrete to an abstract one,
increasing its complexity and reducing its intuitive tractability.
This was shown to lead to errors in system comprehension and the
decisions based on it [1].

In a similar way, a conversion from a natural representation to
a formal one, as we assert is often done too soon or relied upon too
exclusively, removes semantics and relegates all relationships to be
entirely syntactic and disconnected from the real world. Our tech-
niques have the potential to reinstate some concreteness and intui-
tive tractability to a system model by expressly providing a
mapping back to more common, familiar, and semantically acces-
sible entities.

In addition, the cognitive construction of mental models suf-
fers from the flaw that once an assumption motivates a particular
interpretation, this interpretation is difficult to change [9]. Users of
a model, correct or incorrect, are more likely to accept new infor-
mation that is consistent with the model they have constructed and
to discount information that is not. The implication is that it is in
the best interest of a project to provide access as soon as possible
to essential semantics that are as correct as possible. By doing so,
erroneous assumptions, such as those that can enter in ways
already discussed, are fended off, and incorrect mental models are
not allowed to become fixed. For example, it should not be possi-
ble for a developer to walk away believing that his notion of bear-
ing is what was intended by a client using the term with a very
narrow and specialized meaning within his domain. But, as we will
discuss, exactly this happened during our feasibility study before
the application of our technique, and it had cascading effects which
invalidated dependent aspects of the model.

3.2 Refining Ignorance
Several years ago, Berry advocated the inclusion in any

requirements team of a person to fulfill the role of a “smart
ignoramus” [3, 2]. This smart ignoramus is defined as someone

who is: (1) generally intelligent and, in particular, (2) has a demon-
strated facility with the use of language, but (3) who does not have
any knowledge of the domain of the system for which a piece of
software is being developed, and (4) is not afraid to ask questions.
The point of including such a person derives from Berry’s personal
experience. More valid system models resulted when he happened
to serve in roles where the above properties held, and less valid
requirements resulted when, for example, he knew more about the
domain but was still not an expert. The implication is that he had
flawed mental models that had become fixed, came up with fewer
questions because he assumed he knew more than he did, and
failed to probe for more information.

Berry’s approach is an excellent start, under which we place
linguistic foundations. Our hypothesis is that the smart ignoramus
is somewhat successful because he, through possession of certain
properties, is more able to attend intuitively to potential linguistic
breakdowns of the kind discussed earlier. The smart ignoramus is
more capable of stepping outside of the discussion proper and real-
izing when a name might be matched to the wrong category, or
have a denser or qualitatively different category topology for one
person than for another. The smart ignoramus does not, however,
know or understand this explicitly, and so his recognition of such
situations is incomplete and his handling of them is ad hoc. The
next step, based on the analysis we have provided of the cognitive
and linguistic phenomena involved, is to control and direct this
facility for comprehending and making available the intended
semantics with more consistency, integrity and precision.

3.3 On the Scope of Natural Language
Ryan argues essentially that approaches that seek to invoke

forms of natural language processing to automate understanding of
a client’s needs and thereby relieve the requirements bottleneck are
ill-conceived [14]. We do not disagree. However, he goes on to
conclude that because automated natural language understanding
is a feat not likely to be accomplished usefully, techniques exploit-
ing and focusing on natural language for requirements are of lim-
ited and peripheral use. One of his premises is that while the
syntax and specific semantics of a specialized (i.e., domain-spe-
cific) language are a factor in what he terms the communications
gap, there are issues outside of natural language which are of
greater significance, including “...unstated assumptions that reflect
the shared (‘common sense’) knowledge of people familiar with
the social, business, and technical contexts within which the pro-
posed system will operate” [14]. The implication is that these
issues are not approachable with natural-language techniques.

Our assertion is that these issues, rather, are very definitely
within the purview of potential natural-language techniques,
because linguistic and psychological research has generated results
demonstrating that all of this knowledge is tied up together in one
mental representational mechanism to which natural language is
the most transparent window. Language comprehension is far
deeper than the decoding of syntax and the mapping of explicit
semantics; the entire structure of categories and the governance of
their communication by cognitive economy demonstrates that
most of semantic transfer is actually implicit. Very much surround-
ing the issues of assumption and tacit knowledge can be
approached from a linguistic perspective, motivating the shape of
techniques employing natural language. Berry’s smart ignoramus
has demonstrated so informally, and our work has the goal of pro-

ducing something more refined, controlled, and directed. Lan-
guage is far more than explicit syntax and semantics—it is
pragmatics, and context, and assumption, and implicature. Armed
with results from linguistic research, we can absolutely attack
some of these issues linguistically and rigorously in the require-
ments realm.

So, having now: (1) an analysis pointing to breakdowns
deriving from the heuristic use of assumption in communicating
semantics; (2) an argument that explicit and considered access to
essential semantics must in fact be provided in natural language;
and (3) given some attention to some specific points of relation to
other work, we move next to specifying the form of the structure in
which essential semantics can be recorded and propagated without
degradation.

4. THE DOMAIN MAP
The domain map is a structure designed to allow explicit and

systematic access to essential semantics in a form that is meaning-
ful to those who do not possess expert knowledge of the domain in
question. The idea that domain knowledge needs to be documented
in a specification has been proposed by others, e.g., the text macros
of Heninger [4] and the designations of Zave and Jackson [18], but
without a theoretical basis.

We have demonstrated that developers, who are non-experts
with respect to the domain in question, are unable to access the
intended semantics directly from domain experts because the lexi-
con of the domain expert is partially incompatible with that of the
developers. Even if they could access the semantics this way, it
would be impractical for a developer to drop what he was doing to
find a domain expert every time he needed an explanation. This
itself might not be possible, because access to domain experts
might be limited or non-existent after a certain time. Furthermore,
since domain experts’ notions themselves might not be totally con-
sistent, a practice of finding an expert every time an explanation
was needed allows the possibility of inconsistent expert explana-
tions making their way into the model.

All of these issues demand that the information instead be put
in a centralized form that is both cognitively accessible to develop-
ers and agreed with and among domain experts. This need not pre-
clude dynamic requirements, which are a reality with which we
have to deal. Rather, it precludes inconsistency of the currency of
the description and unavailability of a mapping of that currency
into a form comprehensible to developers. A requirement might
change, but the language available to describe it should not, and
the description should be meaningful to all who need to use it. This
necessity is analogous to that of having common units in which to
compare measurements: a common representation allows the
detection and representation of possible changes to be more appar-
ent, and allows access to the semantics of the description whether
there are changes or not.

What we seek, then, is ideally a one-time conversion of the
domain specific representation of essential semantics to a form
accessible to those with a common base set of representations.
This entity must in effect map domain specific representations to
representations built out of common terms and phrases. For these
purposes, we define common and domain narrowly as follows.
Common refers to that set of terms for which the association
between a particular term and its semantics is sufficiently similar
among interlocutors that relevant miscommunication is highly

unlikely. In other words, a term is common if the associated cogni-
tive categories possessed by any two people within a project have
essentially the same internal structure with regard to prototypes,
peripheral members, and extensions. Domain, then, refers simply
to all terms which are not common, indicating that if a term has a
domain specific meaning, it is associated with a category that is
potentially denser, claims a different prototype, variations in the
choice of peripheral members, or one or more extensions not
included in the category organization of a non-expert. This situa-
tion is the basis for all miscommunication as analyzed in section 2.

These definitions and overview of purpose motivate a struc-
ture, which we call the domain map, having the following proper-
ties:
• A specification for a software system includes a domain map.

• All domain specific terms that are relevant to the development
of the specified software system are associated directly or indi-
rectly with definitions consisting of exclusively common
terms.

• No cycles are permitted in the use of definitions within defini-
tions.

• The domain map and the documents to which it points are the
only sources of domain-specific definitions to which develop-
ers can refer.

The original sources of information for the domain map are a
wide variety of domain-specific documents. Many will be natural
language statements of requirements for a software artifact that is
to function in some greater system. Such statements are of flexible
form. Ideally, a considered written statement is desired, as it is
more likely that certain issues have been given attention simply by
virtue of its construction. However, a tape recording or even just
notes from a requirements interview would be useful in generating
an analyzable lexicon, and further, this flexibility of source can be
customized to suit the needs and resources of the client and the
development organization.

Along with a statement of requirements for a software ele-
ment, the greater system in which the element is to function must
receive particular attention, since it determines the domain from
which the correct, though still largely inaccessible, semantics
derive. Some parts of the natural language statement will therefore
have meaning only well understood by domain experts, but which
must be communicated effectively to developers so that the impli-
cations of this meaning can be preserved in the model under con-
struction.

Thus the technique first calls for a way of indicating terms
and phrases in the natural-language statement that might have
meanings unclear to developers. This is a hard problem in its own
right. We defer specifically the issue of determining what is within
the boundary of domain knowledge and what is not, i.e., determin-
ing whether the semantic organization of the categories in question
are sufficiently similar between potential interlocutors, to a later
discussion. We are researching this issue as well from a linguistic
perspective.

An intuition-driven decision at this point, however, allows us
to move forward to describe the rest of the technique. We elect,
then, to first have a developer make a pass through the require-
ments statement, indicating words and phrases that he either out-
right does not understand, or has reason to believe might have a
domain specific meaning of which he is unaware.

Next, a domain expert makes a pass through the same require-
ments statement, annotated with the developer’s indications. The
purpose here is for the domain expert to have a chance to validate
the developer’s indications as well as to add to them, without hav-
ing to bear the entire time burden of doing it all himself from the
beginning (since this is impractical and unlikely).

This trade of active role can be iterated as necessary for the
domain expert, or several, and the developer, or several, to con-
verge on a set of terms in need of semantic accessibility from out-
side of the domain. The choice of the number of experts and
developers who have input at this point provides another dimen-
sion of flexibility along which the technique can be tailored to the
needs and resources of the client and development organization.
Furthermore, in practice, the number of iterations needed is small
though it will be affected by the number of experts and developers
who have input.

Next, each entry in the list of problematic terms and phrases
is defined in a manner that paraphrases domain specific terms and

phrases using, where possible, terms that are common1. It is recog-
nized that this is not always directly possible, i.e., that a definition
for a given domain specific term may itself contain domain spe-
cific terms. Thus the construction of the domain map is another
iterative process in which each member of the set of definitions
associated with the initial set of domain specific terms and phrases
is itself subjected to an analogous inspection. Iterations beyond the
first might in addition add terms to either the domain or common
sets, according to determinations like those used in the original set
construction.

A rule is defined by the technique whereby every term to be
defined be mapped, indirectly if necessary, to a definition com-
prised of exclusively common terms. The definition of any term or

phrase in the original set therefore describes a tree2 in which the
root and all of the remaining non-terminal nodes are domain terms,
and all of the terminal nodes are common terms.

This domain-map tree structure can be subjected to analysis.
In particular, we would like to know about several properties of the
tree, and collectively about the set of trees resulting from the origi-
nal term set. A simple check to determine whether the terminal
condition has been reached, i.e., whether every domain specific
term can be paraphrased directly or indirectly by exclusively com-
mon terms, indicates to the experts and developers whether the
process is complete for a given term, i.e., whether there is a defini-
tion completely accessible to a non-expert. The depth of the tree
gives some idea of the semantic complexity of a given term, and
the maximum and average depths give an idea of the overall com-
plexity of the domain lexicon, i.e., a measure of how far removed it
is from everyday common language. These measures can be used
to flag concepts at high risk for miscommunication, and to drive
the amount of rigor applied in maximizing the validity of a model.

What the domain map provides is an organized and structured

entity that documents essential domain knowledge. The procedure
for building it accomplishes by design the goals set out in the ear-
lier problem analysis. The domain map provides explicit and con-
sidered common access to the intended semantics, it remains in
natural language, and it has permanence enabling it to become an
element of the documentation for use later in the process by those
even further removed from the domain experts. This mitigates the
need for additional independent and potentially inconsistent elici-
tation rounds. It provides as well the flexibility to be adapted to the
needs and resources of the client and development organization,
through selective application to the areas at highest risk for mis-
communication, and by allowing applications of various levels of
rigor.

5. TOOL SUPPORT
The domain map is a large and complex structure, but it is

also an essential structure. Creating this map for any given applica-
tion is both time consuming and difficult. The developers must
ensure that all of the domain terms requiring definitions have been
identified, that the definitions are correct, and that all the defini-
tions are eventually grounded in common terms. For a large speci-
fication in a complex domain there might be a large number of
terms with many definitions far removed from common terms.

Clearly, tools to support the initial creation of the domain map
and to undertake the various forms of analysis that are possible is
an attractive idea. To investigate the potential of tool support, we
have enhanced an existing toolset, Zeus [6], to provide facilities
for domain map creation and analysis. The tools and their relation-
ship to the various artifacts is shown in Figure 3.

Zeus is based on the FrameMaker desktop publishing system

1. This strategy differs from that of Leite [8]. His Language Extended
Lexicon (LEL) technique instead encourages defining domain specific
terms in terms of each other. The problem with this is that definitions can be
circular and thus there is no assurance that semantics can ever be accessed,
i.e., the symbol-grounding problem is not addressed.
2. Technically, it describes a directed acyclic graph since some definitions
will include the same terms, but, for our purposes, conceiving of the domain
map as a tree is equally valid.

Figure 3. Support toolset.

Domain Source
Documents

Collection Tool

FrameMaker

Domain Terms

Domain Map

Reference ToolSymbol Tool

Formal
Specification

and the Z/EVES verification system [15]. It provides comprehen-
sive facilities for manipulation of both natural language and
Z [16]. Its support for natural language is used in two ways. The
first and primary use is to create and modify formal specifications
that integrate formal elements written in Z with natural language.
The second use is to manipulate project and domain-related docu-
ments in whatever format domain experts and developers require
using all of the facilities of unmodified FrameMaker.

5.1 Collection Tool
In order to support the creation of domain maps, Zeus has

been extended with a facility that collects domain-specific terms
and phrases. As discussed above, the creation of the list of domain
terms and phrases is undertaken by the developers and domain
experts making various passes through source documents.

For natural language source documents, the analyst can
invoke a collection tool that captures terms and phrases and stores
the list in a file. Selection of a term by the analyst merely requires
the text of the term be highlighted and a key struck.

The list can be manipulated as different passes are made over
the source materials. The list is then formatted as needed for the
domain map in preparation for the addition of the definitions. Nat-
ural language definitions are entered using the text manipulation
facilities of FrameMaker.

5.2 Reference Tool
Use of the domain map is effected by a reference tool. The

reference tool creates a graphic display of the domain map that
shows all of the defined terms in alphabetical order. An example of
the reference tool’s display when applied to a sample specification
is shown in Figure 4.

Since definitions are stated frequently using other domain
terms or phrases, the reference tool displays for each domain term
the set of domain terms upon which it depends. Finally, the refer-
ence tool displays the definition of any term if the right mouse but-
ton is clicked over it.

The reference tool performs a variety of analyses on the
domain map as the display is built. For example, it checks for defi-
nitions that are either duplicates or empty, i.e., there is a place-
holder for the definition text but no text has been entered. It detects
cycles so that terms with circular definitions can be refined (note
examples in Figure 4). It also checks the tree of definitions and
ensures that all definitions are grounded in common terms.

Finally, the reference tool computes various metrics from the
domain map including the distribution of the number of levels in
the tree of definitions, the number of defined terms or phrases, and
so on.

5.3 Symbol Tool
If a specification includes a formal component, the domain

map can be tied closely to this component since symbols used in
the formal component can be given meaning by the domain map.
A third tool within Zeus, the symbol tool, checks the complete list
of symbols used in the formal part of a specification and compares
it with the definitions in the domain map. Any symbol used in the
formal part for which no definition appears in the domain map is
flagged. 6. FEASIBILITY STUDY AND EXAMPLE

Use of the approach described in this paper is designed to
help bridge the gap between the expert’s knowledge of a domain

Figure 4. Sample output of the reference tool.

and the knowledge of engineers who need to create software arti-
facts. Since this gap is responsible for many software defects, the
long-term assessment of the approach has to be based on measure-
ment of its effect on defects in industrial-scale development.

We are planning such assessment, but, in the short term, we
have undertaken a small study to assess the overall feasibility and
utility of the domain-map concept. This study is based on a large
specification from the maritime control domain and we present it
as an example to illustrate the application of the concepts.

6.1 Description
The starting point for this feasibility study is part of an exist-

ing, publicly available international standard for track-control sys-
tems for large, ocean-going ships. Specifically, it is the
International Electrotechnical Commission’s specification for
track control systems on ships [5]. This is a natural-language stan-
dard document that defines many functional and safety properties
that operational track-control systems must have. A track-control
system allows an operator to enter a series of waypoints (interme-
diate or final destination points), and then the system steers the
ship along those waypoints to the desired location. The standard
includes test cases that are used to test compliance and the
expected results of the test cases.

We have developed a version of this international standard in
Z and natural language that is a complete rewrite of the original. It
was written as a testbed for tools and techniques in the area of for-
mal methods. The full standard (both versions) encompasses three
categories of ships, differentiated by their ability to guide the ship
through turns (where a ship has attained a waypoint and must
change direction in order to proceed to the next waypoint). For
simplicity in this initial study, we have limited our analysis to Cat-
egory A ships, i.e., those that provide no assistance from the track-
control system to the operator during turns. Within this category,
we have further restricted the requirements to those that support
entry of only one waypoint at a time.

An excerpt of the requirements section of the original stan-
dard served as our domain source document. After excerpting the
relevant portion, we acted as developers and selected the set of
terms we perceived to be domain terms. A domain expert in
marine systems then inspected the document to choose any addi-
tional domain terms that we had missed. We then created an initial
version of the domain map, including definitions of the domain
terms derived from the natural language text and definitions of any
new domain terms used when creating the domain map. The
domain expert then inspected the candidate domain map, marking
corrections where needed. Finally, we incorporated the corrections
into the domain map and then analyzed the map for characteristics
of the terms’ definition trees.

6.2 Results
The requirements excerpt we used was 1600 words long and

included a domain set of 102 terms. In the source document, some
of these terms were defined and others were not. The source
document [5] contained a glossary but those terms that were
defined were defined in various places—definitions were not lim-
ited to the glossary. Of those that were defined, some were defined
clearly while others were defined using domain terms. For exam-
ple, “sway” was defined as “Athwartships component of ship
motion (positive to starboard).” Some of the terms were ambigu-

ous enough that the domain expert was unsure of their meaning.
Use of the domain map revealed and resolved these issues.

The domain expert’s initial inspection uncovered six domain
terms that we, acting as the developers, had missed. His inspection
of the candidate domain map resulted in revisions to 55 of the 102
candidate definitions (54%) and four additional domain terms gen-
erated from the map. These revisions indicate a higher level of
understanding than might have been possible without application
of the technique.

While many of the changes to the definitions were minor,
some transformed the intended semantics significantly. For exam-
ple, the definition of “bearing” was completely incorrect. It was
used five times throughout the document, but perhaps more signif-
icantly, 38 words contained “bearing” as an ancestor in the domain
map. Because it was misused in the definition of “heading”, the
semantics of most of those whose ancestry was indirect were not
affected by the mistake, but this example illustrates the potential
magnification of seemingly insignificant misunderstandings.

The updated version of the domain map contained 106 terms.
Many of the terms had definitions accompanied by other explana-
tory text. Analysis of the domain map was conducted on the defini-
tions only, and it revealed two cycles. They were removed by
renegotiating the definitions to avoid the domain terms that caused
the cycles.

The maximum height of the domain-map for a single term
was 12, i.e., one or more definitions exist in which 12 layers of
definitional refinement were required. The average height over all
definitions was 5.0. The maximum number of references to other
domain terms in any single definition was 8, and the average num-
ber was 2.3.

6.3 Evaluation
In this case, the creation of the domain map was fairly

straightforward and the interleaved iterations of developers and
domain experts was effective. The confusion over definitions was
expected, but the potential for confusion brought about by severely
erroneous definitions upon which many other terms depended was
not. This is clearly a potentially significant source of subtle misun-
derstandings.

The data collected so far on the form of the domain map
structure is encouraging. The structure is not trivial but it appears
to offer a significant resource to the developer seeking to compre-
hend the domain.

The approach we have described does not require large
amounts of resources in its application yet it has the potential for
significant cost reductions in all lifecycle phases. It addresses a
major source of risk, and, as a result, offers the potential for a large
reduction of rework. It also has two dimensions of flexibility that
allow the cost of application to be controlled. First, the technique
can be applied to just the critical parts of a software artifact. Sec-
ond, the rigor with which the technique is applied can be adjusted
by varying the size of the domain set.

7. CONCLUSION
Numerous mistakes in requirements arise because of failure

to take into account the context of the system in which the software
operates. In many cases, this failure occurs because essential
domain knowledge is not communicated effectively from domain
experts to software engineers. We have introduced a linguistic

analysis of this problem based on three important linguistic princi-
ples: (1) cognitive categories and their internal structure; (2) cogni-
tive economy in the communication of categories; and (3) the
particular properties of basic level categories. From this analysis,
we have shown that the structure of our natural cognitive endow-
ment is at least one of the reasons why domain-knowledge com-
munication is fraught with the danger of misunderstanding.

Natural language is, in fact, necessary to provide the seman-
tics not available in requirements specifications presented in for-
mal notations. But while common natural language is not
conducive to precise detailed communication, explicit and consid-
ered use that is directed by linguistic insight has the potential to be
very useful. Our proposal consists of the construction and use of a
structure called the domain map within the general notion of docu-
menting specifications.

We note that the domain map is just a repository despite the
fact that it is designed to deal with a major source of error. Once
created, none of the developers (those in most need of a compre-
hensive understanding of domain knowledge) is required to use it.
However, it is not merely a crutch for those who choose to use it. It
is a crucial concept because it bridges the misalignment of struc-
ture between the everyday human model of terminology and a
form more suitable for precise communication. Its use should
prove attractive to software engineers, but its use could easily be
mandated in a suitably precise software development process.

The tools we have developed to support the creation and use
of the domain map provide immediate utility because they are
capable of several forms of analysis as well as presenting critical
domain information in an effective manner.

Finally, our feasibility study has given us an informal indica-
tion of the utility of the approach based on experiments with a sub-
stantial specification. We note that our feasibility study is very
preliminary, and more extensive and detailed experiments in coop-
eration with industrial development groups is planned.

8. ACKNOWLEDGEMENTS
It is a pleasure to thank Brenden Schubert of the University of

Virginia for his extensive assistance on the terminology of mari-
time systems and Sean Travis of the University of Virgin ia for his
development of the extensions to the Zeus toolset. We also thank
Jonathan Michel of Northrop Grumman for his assistance with the
track control specification. This work was funded in part by NASA
under contract NAG-1-2290.

9. REFERENCES
[1] B. Brehmer. Development of mental models for decision in
technological systems. In New Technology and Human Error, Eds:
Rasmussen, Duncan, and Leplat. John Wiley and Sons, New York,
1987.

[2] D. Berry. Formal methods: the very idea, some thoughts about
why they work when they work. Electronic Notes in Theoretical
Computer Science, 25, 1999. http://www.elsevier.nl/locate/entcs/
volume25.html.

[3] D. Berry. The importance of ignorance in requirements engi-
neering. Journal of Systems and Software, 28:179-184, 1995.

[4] K. Heninger. Specifying requirements for complex systems:
new techniques and their applications. IEEE Transactions on Soft-
ware Engineering, SE-6(1):2-12, January 1980.

[5] International Electrotechnical Commission, Maritime naviga-
tion and radio communication equipment and systems - Track con-
trol systems - Operational and performance requirements, methods
of testing and required test results. Project number: 62065/Ed. 1
(2000-08-11)

[6] J. Knight, K. Hanks, and S. Travis. Tool support for produc-
tion use of formal techniques. International Symposium on Soft-
ware Reliability Engineering. IEEE Computer Society Press,
November 2001.

[7] R. Langacker. Concept, Image, and Symbol: The Cognitive
Basis of Grammar. Mouton de Gruyter, Berlin, 1990.

[8] J. Leite and A. Franco. A strategy for conceptual model
acquisition. Proceedings of the IEEE International Symposium on
Requirements Engineering, pages 243-246. IEEE Computer Soci-
ety Press, January 1993.

[9] N. Leveson. Safeware: System Safety and Computers. Addi-
son Wesley Publishing Company, Reading, Massachusetts, 1995.

[10] R. Lutz. Analyzing software requirements errors in safety-
critical, embedded systems. Proceedings of the IEEE International
Symposium on Requirements Engineering, pages 126-133. IEEE
Computer Society Press, January 1993.

[11] C. Mervis and E. Rosch. Categorization of natural objects.
Annual Review of Psychology, 32:89-115, 1981.

[12] E. Rosch and B. Lloyd (eds.). Cognition and Categorization.
Lawrence Erlbaum Associates, Hillsdale, 1978.

[13] E. Rosch, C. Mervis, W. Gray, D. Johnson, and P. Boyes-
Braem. Basic objects in natural categories. Cognitive Psychology,
8:382-439, 1976.

[14] K. Ryan. The role of natural language in requirements engi-
neering. Proceedings of the IEEE International Symposium on
Requirements Engineering, pages 240-242. IEEE Computer Soci-
ety Press, January 1993.

[15] M. Saaltink. The Z/EVES System. Proceedings: 10th Inter-
national Conference of Z Users, Lecture Notes in Computer Sci-
ence 1212, Jonathan P. Bowen, Michael G. Hinchey and David Till
(Eds.), Springer-Verlag, Berlin, pp 72-85, April 1997

[16] J. Spivey. The Z Notation: A Reference Manual, Second Edi-
tion. Prentice Hall International (UK) Ltd, Hemel Hempstead, UK,
1992.

[17] F. Ungerer, H. Schmid. An Introduction to Cognitive Linguis-
tics. Longman, London, 1996.

[18] P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM Transactions on Software Engineering and
Methodology, 6(1):1-30, January 1997.

