
The Design and Evaluation of a Defense System
for Internet Worms

Riccardo Scandariato

Dipartimento di Automatica e Informatica
Politecnico di Torino

Corso Duca degli Abruzzi, 24
10129 Torino, Italy

Phone: +39 011 564 7048
Fax: +39 011 564 7099

Email: riccardo.scandariato@polito.it

John C. Knight*
Department of Computer Science

University of Virginia
151 Engineer’s Way, P.O. Box 400740

Charlottesville, VA 22904-4740
Phone: +1 434 982 2216
Fax: +1 434 982 2214

Email: knight@cs.virginia.edu

Abstract

Many areas of society have become heavily dependent on services such as transportation facilities, utilities
and so on that are implemented in part by large numbers of computers and communications links. Both past
incidents and research studies show that a well-engineered Internet worm can disable such systems in a fairly
simple way and, most notably, in a matter of a few minutes. This indicates the need for defenses against
worms but their speed rules out the possibility of manually countering worm outbreaks. We present a
platform that emulates the epidemic behavior of Internet active worms. For purposes of experimentation, the
platform has been deployed on a cluster of computers to emulate worm outbreaks in very large networks. A
wide variety of worm properties can be studied and network topologies of interest constructed. A reactive
control system, based on the Willow architecture and the OOPS policy framework, operates on top of the
platform and provides a monitor/analyze/respond approach to deal with infections automatically. The logic
driving the control system is synthesized from a formal specification, which is based on control rules
correlating sensor events. Details of our highly configurable platform, the theory of operation of the Willow
architecture, the features of the specification language, and various experimental performance results are
presented.

Index Terms

Internet worm, emulation platform, defense system, Willow architecture, reactive control, policy rules

* Contact author

 1

1 INTRODUCTION

Many areas of society have become heavily dependent on services that are themselves dependent on

networked information systems. We rely on financial services, transportation facilities, utilities and so on;

systems that are implemented in part by large numbers of computers and communications links.

But what if these infrastructures were disabled very rapidly, perhaps in just a few minutes? This is

neither a remote nor unrealistic threat; both past incidents [1] and more recent research studies [2] have

shown that a well-engineered Internet active worm can accomplish this task in a fairly simple way. An active

worm is a unit of self-replicating malicious code that spreads from host to host by exploiting network-

accessible vulnerabilities of application software and operating system components [4]. The distinguishing

feature of active worms, in contrast to email-born worms (a.k.a. mass mail viruses), is that malicious code

takes control of machines autonomously.

In this paper, we present the design and evaluation of a defense system for Internet worms. The defense

system is an instantiation of the Willow survivability architecture in which a networked information system

is monitored for signs of worm activity, sensor data is analyzed to diagnose an attack, and changes made to

limit the attack if necessary. By choosing this strategy, we pursued the idea that only an automated control

mechanism can provide an effective defense against fast (or flash) worms. We also note that, for the most

part, current defense solutions are tailored to specific detection technologies, but, since worm strategies can

vary significantly, defense systems must be able to integrate different sensor types in order to detect and

counter worm epidemics successfully. Thus, in this research we do not focus on detection techniques. Rather,

our goal is to provide a framework that is independent of specific sensor types and that is capable of

integrating different detection techniques. The defense system presented supplies effective tools to analyze

sensor-generated information and to deploy countermeasures in a timely, fine-grained way without requiring

modification to the underlying network.

Evaluation of the defense system was conducted by experimentation. In practice, such evaluation is

problematic for two reasons. The first reason is the difficulty of replicating the target systems in a laboratory,

and the second reason is the difficulty of replicating accurately the infection processes of real worms. The

work reported here was conducted using a platform that emulates large networks and their infection by

worms. We approached the first problem by emulating a large (although not Internet-scale) network, i.e., we

built a real network with a large number of nodes although each individual node was not emulated by an

 2

individual computer. We approached the second problem by developing a parameterized worm that was

tailored to match the observed behavior of current worms such as Slammer. The effects of worms that are

expected to occur or are otherwise of interest can be assessed by setting the parameters of the platform

appropriately. Furthermore, the platform can be configured to study worm types that have not been seen in

the wild yet, e.g., topology-driven worms.

The paper is organized as follows. Section 2 reviews the most relevant incidents that have happened in

the past. Section 3 discusses related work about worm modeling and analyzes various techniques that have

been developed to detect and counter worm attacks. Section 4 presents the emulation platform and the

validation study we conducted, which compares the platform behavior with theoretical models. Section 5

describes the defense system and Section 6 provides the experimental results we obtained by operating the

defense system with different worm scenarios. Finally, Section 7 concludes by discussing key results of this

work.

2 WORMS AND THEIR EFFECTS

The first worm to propagate widely on the Internet was the Morris worm in 1988 [5]. The threat has

become much more serious in recent years as the virulence of epidemics has increased. Inevitably, the cost to

the community has become substantial. For instance, the CodeRed worm was able to take over more than

359,000 IIS web servers in less than 14 hours in July 2001. On September of the same year, the Nimda worm

was released causing a severe epidemic because of its propagation properties as a multi-vector worm. It

spread by using a mix of contagion (browsers became infected by visiting infected web servers), active

scanning, and mass mailing. In January 2003, the Slammer worm presented a new perspective on the

potential of worm infections. It was an amazingly fast outbreak that infected nearly the whole susceptible

population (more than 75,000 Microsoft SQL servers) in less than 10 minutes, highlighting how ineffective

human-based countermeasures are against this kind of malicious code. Finally, in August 2003 the Blaster

worm infected more than 330,000 Windows machines in less than 5 days. Blaster was a relatively slow

worm, but the high density of the vulnerable population (virtually any recent Windows system) allowed it to

infect a large number of targets.

Clearly, state-of-the-art worms present a major threat to key information infrastructures, especially if the

cost of disinfecting and restoring infected hosts is taken into account. Computer Economics estimated a

worldwide damage of 1 billion dollars for Slammer, 635 million for Nimda, and 2.62 billion for CodeRed.

 3

The situation will worsen in the near future almost certainly as worm programmers develop yet more

advanced techniques [2]. Sophisticated worms can infect all vulnerable hosts in a matter of a very few

minutes, thereby ruling out the possibility of effective direct human intervention.

3 RELATED WORK

We begin this section by presenting theoretical models of epidemic behavior. These models are

important to validate the fidelity of our platform in capturing the relevant aspects of worm attacks. Second,

we analyze existing work dealing with worm detection and defense, by comparing them with the solution we

propose.

Staniford [6] was the first to propose the adoption of epidemiological models to study the propagation of

Internet worms analytically. His work relies on previous work by McKendrick [10] on homogeneous

epidemiological model. The homogeneous model assumes that each infected node may attack any other

member of the population with the same probability. This assumption holds reasonably well in the case of

the Internet. Since the only legal state transition for a node is from the susceptible state to the infected state

(i.e., nodes are neither immunized, nor cured), this is also known as the SI model. Under these assumptions,

it is possible to derive a closed-form equation to represent the growth of infected nodes over time for a

random-scanning worm as follows.

())1(
HN

NH
Kwith

KeN

Ke
tx

t
T

sN

t
T

sN

−
=

+
=

In Equation 1, x(t) is the total number of infected nodes, N is the size of the vulnerable population, s is the

average scan rate (i.e., the number of attacked targets in a time unit, which also includes probes to

invulnerable or non-existing targets), and T is the size of the address range used to randomly select candidate

targets. K is a constant that depends on the initial conditions. In this case, an initial population of H infected

nodes (hit-list) was imposed at the beginning of the epidemic. The trend represented by the equation is

known as the logistic curve, which has a sigmoid shape.

The above model is quite simple and does not consider more sophisticated effects that can take place

during an epidemic. Nonetheless, it models the infection growth precisely during the early stages of worm

outbreaks. Furthermore, this model has proven accurate when compared to data from real observations of

past epidemics [7]. For these reasons, it was selected as the reference model to validate our emulation

platform.

 4

More accurate models for random-scanning worms exist. Zou [11] studied the effects on the infection

growth caused by the (human-based) removal of susceptible/infected hosts (e.g., by patching or disinfecting),

and by the decreasing spread rate due to the network congestion generated by the worm activity itself. That

work shows clearly that these effects only become significant in the latest stage of an outbreak. We are

interested in studying mitigation strategies that might help prevent the spread of worms into critical parts of

enterprise networks, and we are interested in characterizing the behavior of a worm precisely during its early

phase of diffusion. If the defense mechanism does not act at this time, it will be ineffective since the damage

suffered by the network will be too high. Thus, removal is not relevant in our case since we are attempting to

tackle the startup infection regime of extremely fast worms. Under such conditions, removals are neither in

place nor feasible. In addition, although the decrease in the spread rate is not modeled explicitly in our

platform (because effects are not observable during the infection phase in which we are interested), our

experimentation exhibited such behavior as well. This effect is a positive outcome of using an emulation

since it is naturally subject to network congestion conditions, as discussed below.

The homogeneous model does not characterize topology-aware worms, nor does it capture the effect of

topology constraints, e.g. physical connectivity, on the evolution of random-scanning worms. Kephart and

White [12] have analyzed the effects of topology constraints over worm propagation. In particular, the

authors applied the SIS (susceptible/infected/susceptible) model to random graphs. The SIS model assumes

that there is both a birth rate for newly infected hosts and a cure rate for already infected hosts. The most

relevant result is the demonstration that there is no epidemic if the product of the average connectivity and

the birth rate is lower than the cure rate (epidemic threshold). However, the SIS infection model is of limited

utility for the Internet worm infections. Indeed, this early work adopted the above-mentioned model because

it is suitable for the propagation of old-style computer viruses (e.g. boot-sector viruses) that spread by means

of floppy disks. For that type of virus, it is reasonable to assume that a host can be infected multiple times by

the same virus. However, this is not the case for Internet worms. Indeed, Briesemeister [15] noted that the SI

model is more appropriate for rapidly spreading malicious code. Moreover, the topological model the authors

adopted is not suitable for the Internet case although it is a reasonable approximation for diskette-born

viruses.

Wang [14] and Pastor-Satorras [13] investigated worm propagation behavior over realistic topologies. In

particular, Wang presents the results of a simulation study to characterize epidemics in clustered and tree-

 5

like networks, which are typical in hierarchical structures, e.g., bank networks. Pastor-Satorras proposed an

epidemic model for scale-free networks, which are typical in social networks (e.g., connections among

address books, and so on). We expect these results will be useful sources to evaluate the characteristic of our

platform, when configured for topology-aware worms. Such evaluation will be the subject of future work.

For detection and defense systems, the majority of research is based on simulation experiments. Moore

[16], for example, explores the effect of dynamic quarantine on infection trends. In particular, that work

investigates two defense strategies: (1) black-listing of known infected nodes; and (2) filtering of

connections based on worm signatures. The study assumes the existence of a notification service able to

notify each node in a timely manner of either newly infected nodes (black-listing case), or newly discovered

worm signatures (filtering case). The time needed to notify nodes is called the reaction time, and the authors

investigate the acceptable values for the reaction time in order to stop an outbreak. An empirical Internet

topology was used but the study only analyzed a slow moving worm, and a prototype of the system was not

provided. It is not clear whether the proposed solution could be applied to fast-spreading worms, especially

in consideration of the timing constrains that such a technique imposes.

Zou [17] reports the simulation results of an intrusion detection system that generates early warnings.

The study supposes that monitoring systems are spread in many places of the Internet, in particular at ingress

points of edge networks. Monitors detect scan activity towards unused addresses and forward alerts to a

central analysis station. Alerts are processed through a Kalman filter in order to estimate the spreading

parameters of the worm dynamically and consequently raise a warning. Some concerns still remain about the

scalability of the proposed system, since a single analysis point must collect all alerts.

Toth [19] proposes a system to detect and counter worm propagation in local-area networks. The author

extends the idea (previously introduced by Staniford [20]) of analyzing connection graphs to infer causality

relationships among connections in a network. The system only works in a single broadcast segment and for

TCP-based worms. The network is monitored by an analysis station that listens to the traffic in search of new

connection attempts to/from local hosts and local unused addresses. Each host is also equipped with a

personal firewall, whose filtering rules can be updated dynamically by digitally signed remote messages. The

monitor builds a graph of connections and analyzes it for a suspicious pattern that is likely to be an indicator

of worm activity. The pattern recognition is based on the causality principle, i.e. that there is a chain of

connections with similar characteristics.

 6

Berk [21] presents a defense system in which ICMP-T3 (destination unreachable) messages are

monitored for detection. Those messages reveal connection attempts to non-existing hosts and are common

for random-scanning worms. Routers are configured to copy and forward such messages to an analysis

station. The analysis system looks for repeated probes to the same address (with configurable thresholds) and

generates an alarm whenever a pre-configured pattern of activity is recognized. The system was tested on a

worm emulation of 800 logical nodes running on a single machine. Recently, the authors extended the work

in order to test the detection system with realistic worm-generated traffic patterns [22]. The authors used the

worm traffic simulator proposed in [23], which can capture the propagation behavior of a worm in terms of

flows crossing a coarse-grained network topology. With this setup, the authors show that the detection

system is able to recognize a CodeRed-like infection with a set of instrumented routers (i.e. routers that

forward a copy of ICMP messages to the collector) covering at least 217 unused addresses.

4 THE WORM EMULATION PLATFORM

The platform that we built for emulating worm infections allows the construction of a network of

software nodes, each emulating a real host running an insecure application element or a vulnerable operating

system. To achieve a large-scale emulation (more than 20,000 nodes), multiple nodes can be instantiated on a

single physical machine. The platform is highly configurable so as to allow a wide variety of possible types

of worm to be modeled. The platform allows detailed information about the evolution of an ongoing

infection to be collected and it provides a graphical console to visualize the state of the network in real-time.

For the sake of safety, worm propagation is not implemented as mobile code. Instead, the malicious

code is embedded as a dormant thread on each node. The thread listens on a server UDP socket waiting for

an activation message from an already infected peer. The platform was implemented mainly in Java, using

the Sun Java Standard Edition 1.4.1_02. To gain better performance, the attack component of the worm was

implemented in C++ (gcc 2.95.2). The platform was deployed on a cluster of about 100 homogeneous dual

400 MHz processors PCs running Red Hat Linux version 6.2 (kernel 2.2.19), with 100 Mbps Ethernet

connections.

The susceptible population of emulated nodes (N) can be organized according to the different

vulnerabilities that each node exposes. For instance, the population can represent hosts running the Apache

web server on Windows and Linux platforms. Furthermore, a vulnerability can be specific to a version of the

 7

operating system, e.g., Windows XP, rather than Windows NT. Thus, for example, we could model the

following three types of worm attacks:

• All systems running Apache are vulnerable, irrespective of the underlying operating system.

• Only systems running Apache on a Windows platform (all variants) are vulnerable.

• Systems are vulnerable only if they are running Apache on top of a specific version of an operating

system, such as Windows NT.

Nodes download their configuration at startup time from a central repository. This allows a great deal of

flexibility in experimenting with different types of worm since the deployed platform need not be modified

for different experiments. All changes can be effected via a single configuration file in the repository

machine. The relevant parameters that each node fetches from the repository are the target selection strategy,

the peer list, and the infection behavior.

The target selection strategy indicates whether a node scans the address space randomly in search of new

vulnerable nodes or uses on-board topological information to attack peers. In the latter case, the peer list is

used to select new targets; the node continues to extract an address randomly from the list until the list is

empty. This behavior is particularly useful for emulating worms that spread by gathering information from

the host node, e.g., worms that spread over applications like KaZaA by following the peer-to-peer topology,

or worms that inspect host machine resources (e.g., browser cache, hosts file, address book, instant

messenger contacts, etc.) to find vulnerable targets. Even though e-mail worms commonly employ these

techniques, they have not (yet) been seen in active worms. Nonetheless, it is highly probable that topology-

driven attacks will be used in active worms in the near future (a recent worm used peer-to-peer technologies

to install a Distributed Denial of Service network, clearly demonstrating the potential of those techniques).

Our platform can be used to investigate such behaviors.

In random-scanning mode, each infected node indefinitely generates random targets out of a

configurable range of addresses (T). The rate at which scans of possible targets are generated is called the

scan rate (s). We used the Mersenne-Twister pseudo-random number generator [24] because of its large

period since the number of generated addresses can be very high for fast worms. After generating an address,

the node probes it to verify that it is valid, i.e., that there actually is an active node responding to that

address. In such cases, a network message is sent out to attack the target node. For random-scanning nodes,

the peer list contains the addresses of all nodes in the network and is used to verify the generated addresses.

 8

Note that the replacement of a real network probe with a lookup in the peer list does not invalidate the

infection model. Indeed, the time needed by a node to execute the probe of a generated address is aggregated

into the scan rate. However, we are aware that this simplification partially reduces the amount of network

traffic that the emulated worm generates compared to a real worm This implementation choice was necessary

in order to accommodate our emulation environment without crashing the network infrastructure with

extraordinary large amounts of ARP traffic. Moreover, one may object that real worm-generated traffic could

affect the performance of the defense system as well (which works in-band). However, since the defense

system operates in the early stage of epidemics, congestion is not a relevant factor.

Finally, nodes download from the repository their infection behavior. Nodes use this information to set

the success rate and the activation time. The success rate (PS) is the probability that an attack exploiting a

vulnerability of the target node will be successful, i.e., the attack will actually lead to an infection. The same

vulnerability can necessitate that different malicious payloads be used for an exploit. For instance, the

Blaster worm exploited a buffer overflow vulnerability in the DCOM RPC interface of Windows NT and

Windows XP. In order to exploit the vulnerability, a payload specific to the OS variant must be crafted. Once

it found a vulnerable target, the Blaster worm selected Windows XP 80% of the time. The success rate

parameter can be used conveniently to model similar behaviors. The activation time (tA) is the period

elapsing between the reception of a successful attack and the time when the infected node, in turn, starts its

attack phase. This parameter can be used to model several aspects of worm’s behavior. First, the actual

payload of a real worm can be large enough that transmission times are relevant; in this case that time can be

taken into account at the receiver end by slowing down packet processing. Second, once the malicious code

is received, it takes some time to gain control of the node. Finally, worms such as CodeRedII [7], have a

programmed delay that imposes a dormant period before starting the attack phase.

The platform provides detailed information about the behavior and performance of the released worm.

By analyzing the log files it creates, one can rebuild the infection history of a worm down to the level of a

single node. For example, we can analyze the success ratio of individual nodes, i.e., how many targets a node

infected, compared to the total number of attempts, or the re-infection rate of a node. This analysis can be

extended to a cluster of nodes in a region of interest (e.g., a site) as well.

 9

4.1 Platform validation

We assessed the propagation behavior generated by the platform for a specific sample worm by

comparing it with the theoretical model of Equation 1 and the results are shown in Figure 1. For the

assessment we deployed a set-up of 98 physical machines, each running 205 virtual nodes, for a total of

20,090 nodes (N). We executed 10 runs under the following four conditions:

• All nodes shared a single vulnerability, there was a 100% probability of success during attacks (Ps =

1.0), and infection was instantaneous (tA = 0 sec).

• Nodes were configured to work in random-scanning mode, with a scan rate (s) of 1000 probes per

second per node.

• Possible targets were randomly extracted out of 228 address range (T).

• The hit-list (H) contained 100 nodes.

With the above parameters, the worm took about three and a half minutes to infect the total population.

These tests led to very similar data. We obtained an R-squared equal to 99.97%, which was calculated using

the experimental average trend. Using the theoretical model, the R-squared value is 99.91%. These values

show that statistical significance was achieved even with a relatively small number of experiments.

 Figure 1 compares the experimental data with the analytical model of Equation 1. The solid line in

Figure 1(a) represents the model, where the involved parameters have been customized to our scenario. The

dashed line represents the average values obtained from the 10 emulation runs. The platform tracked the

analytical model closely, especially during the early stages of the infection, i.e., in the interval between 0 and

40 seconds (the early stage). This regime of the infection behavior is of particular interest as it represents the

working area where the control system is supposed to operate.

(a) Global trend

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time (s)

H
o

st
s

Model Testbed

Infection
prevalence

Early
stage

(b) Infection prevalence

11000

13000

15000

17000

19000

75 80 85 90 95 100 105 110 115

Time (s)

H
os

ts

Model Testbed
Figure 1 Results of validation

 10

Figure 1(b) shows the “ infection prevalence” zone, i.e., the interval between 80 and 110 seconds where

the platform performs with an effective scan rate that is lower than the nominal value. The slow-down is due

to the high traffic load present in the network under infection prevalence conditions, as also observed in [11]

and in the experimental data of past outbreaks [7]. While nodes still continue to generate attacks at the

nominal scan rate (by construction), the reception at the receiver side is not instantaneous because UDP

packets overwhelm receiving machines. Under infection prevalence, almost all the nodes in the modeled

network on each physical machine are active (recall that multiple logical nodes are mapped to a single

physical machine) and they are receiving re-infection attacks. Under such conditions, the delivery of attacks

to newly to-be-infected nodes takes more time. This behavior was unplanned but is highly beneficial because

it makes the platform more realistic.

5 THE DEFENSE SYSTEM

The defense system creates a monitor/analyze/respond loop that supplements the networked application.

The system monitors sensors spread throughout the emulated network and correlates sensor data to detect

attacks. It then enforces defensive actions. The analytic element of the defense system is synthesized by a

compiler from a formal specification written in the Object Oriented Policy Specification (OOPS) language

[3]. The language provides users with an intuitive way to model defensive decisions that must be undertaken

in case of attack. Scenarios of interest (e.g., an ongoing infection within the protected network) are identified

by means of event patterns and decisions are modeled as control rules associating defensive actions to each

pattern of alerting events. The support infrastructure for both event delivery and action deployment is

provided by the Willow architecture [9].

The use of a specification-driven approach, in general, and a policy-based specification language, in

particular, was suggested by the continuous evolution observed in this particular application field (which is

far from being mature). There has been a progressive evolution of strategies and techniques employed by

worm designers, and improvements in worm design lead to new, fast-changing scenarios that worm defense

systems must face. Furthermore, techniques to detect worm attacks are evolving, necessitating the ability to

integrate new sensors. The automated generation of control logic from a specification provides the flexibility

necessary to permit rapid response to change. Whenever new techniques have to be incorporated into the

system, the defense system can be adapted by simply changing rules in the specification rather than requiring

that the control system be rewritten.

 11

The defense system is designed to protect a portion of the vulnerable population that is deemed critical.

An example of such a portion might be an enterprise network or a critical information infrastructure. We

refer to such a portion as a managed domain. As shown in Figure 2, the emulation platform can be

configured to provide two types of node: (1) managed nodes (gray nodes in the lower part of the figure) that

represent hosts inside a managed domain; and (2) unmanaged nodes (black nodes) that represent hosts in the

“outside” world. Managed nodes receive and execute commands from the defense system; unmanaged nodes

do not cooperate in the defense activity and are out of the control of the defense system. Managed nodes can

be organized into sites (clouds, in the figure), and sites aggregated to create a domain (shaded circles). The

dimension of each site, and thus of domains, can be specified.

For each domain, a dedicated control system is instantiated. In Figure 2, two domains are depicted: one

representing the University of Virginia (on the left), with two department sites; the other representing the

Politecnico di Torino network (on the right). In the figure, two control systems (domain controllers) are

guarding their respective domains. These controllers may be organized hierarchically to share information

with each other through the mediation of a top-level coordinator.

The Willow architecture (middle of Figure 2) is a comprehensive framework to deal with survivability

requirements of large-scale networked application in case of complex non-local faults [9]. Survivability is

ensured by both proactively eliminating faults when they are identified or suspected (but before they become

manifest) and reactively tolerating the effects of faults during operation [8]. In this work we exploit the

reactive features of the Willow architecture. In particular, we exploit the Willow concept of (multiple)

reactive monitor/analyze/respond loops, where the state of the networked application is continuously

UVa

CS

EE

Intelligence (e.g. CERT)

PoliTO

OOPS

OOPS

Repository

Net Detector
Unmanaged Managed

UVa
domain

controller

PoliTO
domain
controller

Coordinator

Willow

World

Willow

OOPS

Figure 2 The hierarchical defense system

 12

monitored and analyzed by each loop. If the analysis detects a fault of some kind (including physical

damage, software failures, security attacks, etc.), the control system responds by issuing the necessary

commands to reconfigure the network, until the system returns to a desired (possibly different) state.

In our defense system, the state of the network is gathered through notifications sent by sensors to

controllers using a simple peer-to-peer connection mechanism. A substantially modified version of the Siena

publish/subscribe event service [26] implements selective notification (SN) [27] and workflow projection

services.

Selective notification is a technique to manage large-scale systems, and it is used by the workflow

projection service to send tasks to a subset of subscribers. Each subscriber (network node) exposes a set of

attributes that describe its characteristics, and this set constitutes its “address”. In turn, each task contains a

set of characteristics of nodes that should receive the task. In the worm scenario, each managed node exposes

its identifier, the domain and site it is in, the node configuration (e.g., the type of host it represents), and the

current infection state (healthy or allegedly infected). Accordingly, the defense system can direct a task to a

subset of managed nodes, e.g., to “all infected web servers in the CS site” .

The workflow system allows the creation of logical sets of commands, with the intuitive formalisms of

tasks and workflows. In particular, it is possible to specify both conflict and precedence relationships among

tasks and workflows. The service is responsible for deploying tasks (commands) in the network and then

gathering workflow completion information. Furthermore, each network node subjected to control is

equipped with the client side of the workflow service, which resolves conflicts by means of the “ intention”

mechanism. Intentions are a high-level strategy to assign priorities. In a large-scale scenario, especially when

dealing with complex faults and multiple control loops, it is extremely important to be prepared to deal with

conflict situations due to simultaneous and mutually exclusive commands.

The kernel of the defense system is the correlation engine. The defense policy is coded by means of

rules, which are enforced by analyzing incoming alarms and then reacting accordingly. In our platform, four

types of alarms can be generated. These alarms are treated as general entities, and detectors that generate

them are modeled probabilistically. Thus, the defense system abstracts from specific detection techniques

employed at the lower level.

Local alarms are generated directly by managed nodes that have an on-board sensor emulating a local

intrusion detector. Various local intrusion detection techniques can be employed for this function, e.g., the

 13

analysis of system log files [18] or the monitoring of outgoing connections [28]. Since local detectors are

sometimes unable to properly detect an ongoing infection, we model the accuracy of the detector by

encompassing a configurable success rate in the detector model itself. The success rate represents the false

negative rate of the local detection system, i.e., the probability that an infected node will not be reported to

the control system. False positives are supported, but not explicitly modeled in the worm emulation platform.

However, they may be injected in the network by directly stimulating the local detectors through an external

application. Such an application could follow a statistical model or replicate the observed pattern obtained

from the forensic analysis of real networks. Finally, since detection activity might be lengthy and hence

could not be considered instantaneous, we have embedded a tunable delay parameter in the detector model.

The delay represents the interval between the time the node is infected and the time the alarm is sent out by a

detector.

Site alarms are generated by network intrusion sensors, represented by white nodes inside each site in

Figure 2. In our platform we modeled a honey pot intrusion detection system [29] by assigning a monitor to

each site. Note that the defense system does not rely on a particular network detection technique. The choice

we made was driven by the appeal (in terms of performance) of the above-mentioned technique, but different

intrusion detection techniques can be easily incorporated into the platform. The monitor we modeled is

configured with a set of unused addresses (honey set) and listens for probes directed to that set. Each probe is

obviously suspicious, since the address is not in use, and is hence reported to the control system. The

performance of each site monitor is proportional to the size (U) of its honey set. Note that real networks are

not clean environments. Thus, similarly to local sensors, network intrusion sensors can be directly

stimulated, e.g. to emulate routine scanning traffic (noise).

Domain alarms are generated by domains under attack to inform the coordination level about a high

level of threat. The policy followed to generate this alarm is determined by the domains themselves. For

instance, a domain alarm can be forwarded to the coordinator whenever multiple sites of the same domain

are under attack. In turn, the coordinator forwards alarms to other domains that federated with the originating

domain.

External alarms can be produced by a third-party agency (e.g., SEI/CERT) based on evidence such as

the result of intelligence activity. Intelligence can be directly injected at the controller level, or propagated

through the mediation of the coordination level (as shown in the upper part of Figure 2).

 14

To guide the selection of the U parameter of network detectors, the following approach can be used.

Suppose that we would like network detectors to detect an outbreak before the infection has plagued a

fraction r of the whole susceptible population N. That means that we want to receive a probe in the U address

space before the critical time tC, which represents the time the infection has reached the threshold r according

to the analytical model of Equation 1. The critical time can be calculated by imposing x(tC) = rN in Equation

1 and we can express the probability of having at least one probe in the honey set U, before the critical time,

as in the following.

()
()

)2(11
0
∏

<≤

��
����

−−=Ρ
Ctt

tsx

C T

U
t

To interpret the formula, suppose that, at time t, there are x(t) infected nodes. Since each infected node

probes s addresses per unit time, there will be sx(t) scans before the next time tick. The events that an unused

address will not be hit by any of those probes for all time ticks preceding the critical time are mutually

independent, and the corresponding probability is expressed by the term between parentheses. Note that in

the above formula, we assume a discrete time for the infection model x(t). For instance, Equation 1 can be

sampled. In conclusion, by imposing the values of both r and P(tc), we can solve Equation 2 numerically in

order to obtain a lower-bound for U.

Alarms are stored to form the domain event history, and this is used by the correlation engines of

controllers to activate rules. When an event pattern is matched against the event history, the rule is executed

and associated commands sent to the domain. Once the command is received and enacted by a node, a

feedback event is sent back to the controller. Control rules are specified by means of the OOPS language,

which accommodates the specification of complex event patterns involving both logical and temporal

relationships. Furthermore, each event pattern can be associated with an absolute time interval, e.g., “ in the

last 10 minutes”, or a relative one, e.g., “every Monday morning”. In such cases, the pattern will trigger the

rule only if it happens in the proper time interval. Additionally, constraining conditions can be imposed both

on the value of event attributes (e.g., the source of the event) and on state variables (e.g., the state of the

domain). Finally, such values can be passed dynamically to commands as argument, e.g., to select target

nodes dynamically on the basis of the event attributes.

 15

6 EVALUATION OF THE DEFENSE SYSTEM

Evaluation of a system such as this raises two critical questions: what are the important evaluation

metrics and how can their values be determined? Different perceptions yield different desired metrics and

resource limitations restrict their determination severely. In this work we defined three metrics that we

consider to be generally useful and we measured their values for a set of three scenarios. Each scenario

includes a worm with specific characteristics and a particular instantiation of the defense system. However,

the results of the experimentation are indicative only. Indeed, the metrics that we measured are dependent on

many implementation details and the size of the target network available to us. In considering the results

presented here, it is essential therefore to keep this in mind. We measured times, for example, and those

times are meaningful for the specific implementation on the specific target that we were using.

We defined the following three metrics to assess the effectiveness of the defense system:

• Penetration ratio. Percentage of managed nodes being hit before the defense system reacts. This metric

is extremely important for evaluating the effectiveness of the defense system as a whole, since it is

influenced by both the accuracy of the detection system (because of false negatives), and the

responsiveness of the control system. If the reaction is slow in enforcing the protective actions, new

nodes will be compromised even after the infection has been detected.

• Infection size. Percentage of nodes that are globally infected (even in the outside world) at the time the

control system reacts. This metric evaluates the ability of the defense system to detect an outbreak early

on. The expected behavior is that the system will be able to detect and recover from an ongoing infection

before it assumes epidemic proportions.

• Reaction time. Time between the detection of an ongoing infection and the actual enforcement of the

corresponding protective actions. This value is the interval between a rule firing and receipt of the last

feedback from the nodes involved in the action defined by the rule. This metric is useful in evaluating

the responsiveness of the control system independent of the accuracy of the detection system.

First two metrics assess the performance and effectiveness of the defense system. The third metric is used to

show that worm network activity does not impact system capabilities, even though defenses are deployed by

means of in-band communication between managed nodes and the controllers. For purposes of evaluation,

these three metrics were measured in the following three increasingly complex scenarios.

 16

6.1 Scenario 1. Local detection without coordination

In this experiment, we released a medium-speed random scanning worm, with the following

characteristics:

• N = 10,290 nodes (on a cluster of 49 PCs); T = 224 addresses;

• s = 100 probes per second per node; H = 10 nodes;

• PS = 1.0; tA = 0 seconds.

According to the analytic model, the infection should last about 4.4 minutes. We created a single domain

with two sites in it. The first had 300 nodes and the other 100. This configuration models a company network

with a headquarters and a smaller branch. In this experiment, network detectors are not included in order to

measure the effect of local detectors on the performance of the defense system. We tested two cases: (1a)

first, we used a set of local detectors with perfect accuracy, i.e., with no false positives; (1b) then, we

repeated the experiments after lowering detectors accuracy to 80%. This value has no special importance and

was selected to test the defense system when detectors are significantly less dependable than the ideal case of

(1a).

For both cases, the correlation engine enforces two simple rules: (1) for each local alarm, the

corresponding node must be immunized, and (2) if a cluster of 3 nodes in the same site reported a local

infection, the corresponding site must be isolated.

The observed penetration ratio (calculated as the number of nodes being infected in the managed

domain, compared to the domain size) was 1.75%1. This means that, on average, only 7 out of 400 nodes are

compromised before defenses are deployed. This is good performance given that at least 6 nodes must be

compromised (because of Rule 2) before an ongoing infection is detected. Repeating the experiment with

faulty detectors, we observed an average penetration of 2.25%. This means that, on average, 3 extra nodes

were hit before the worm was successfully detected inside the domain.

The infection size estimates the ability of the defense system to detect the worm during the early phase

of an infection. In case (1a), the worm was detected in the headquarters site when 0.78% of the population

(i.e., 78 nodes out of 10,000) had been infected. For the branch site, the corresponding infection size was

2.93%. The higher percentage value is an obvious consequence of the branch site’s smaller size. Because of

1 All the reported numerical results are calculated as the average behavior we observed.

 17

the random nature of probes, it takes more time for 3 nodes in the smaller site to be compromised, and hence

the infection has more time to replicate before being detected. In case (1b) the infection sizes for the

headquarters and the branch were 1.6% and 5.2%, respectively.

The reaction time was separately calculated for Rule 1 and Rule 2 because of the operational difference

between the two rules. The first requires a command be transmitted to a single node, namely the infected

one. The second rule takes more time to be effective because the corresponding action is transmitted

selectively to all nodes in the site, with the further issue that the transmission time increases with the size of

the site.

In case (1a) we observed a reaction time of 226 milliseconds for Rule 1. The enforcement of Rule 2 took

494 msec for the headquarters site and 425 msec for the branch site. In case (1b) the reaction times were 258

milliseconds (Rule 1), 539 msec (Rule 2, headquarters), and 434 msec (Rule 2, branch site). The better

values obtained in case (1a) compared to case (1b) are due to the later detection observed in the second case.

Indeed, because of later detection, the network load is higher (more nodes are actively scanning) and this

influences the performance of command delivery to nodes since commands are transmitted in-band.

Nonetheless, the defense system was able to react within half a second, on average.

6.2 Scenario 2. Effect of network detection

In this set of experiments, we released the same worm as in Scenario 1 and on the same network

structure. However, we turned on local detectors at both sites. For the headquarters, we used a honey set of

size U = 470 addresses, which is roughly equivalent to 2 class C networks and is not unrealistic for medium

to large institutions. Smaller companies may still benefit of the defense system by federating. The above

value was estimated by imposing r = 1% and PS = 99% in Equation 2, i.e., we confidently expect to detect

the outbreak before it reached a penetration of 1%. The second site has a less effective network detector

because the honey set has a size of 350 addresses. Furthermore, in order to isolate the effect of the network

sensors on the defense system performance, we used 100% accuracy for local detectors.

In addition to the control rules of Scenario 1, we added a third rule: (3) if a network detector senses a

probe, the corresponding site must be isolated. This rule is similar to Rule 2, but implies higher confidence in

network detectors over local ones. Indeed, a single probe is sufficient to infer an attack condition while in

Rule 2 three alarms are necessary, e.g., because of false positives in local detectors.

 18

In this experiment, the only rule that fired was Rule 3 and the reaction times were similar to the data in

Scenario 1 (551 msec for the headquarters, 280 msec for the branch site). Indeed, network detection is an

extremely powerful technique that leads to very early detection of outbreaks, even before an infection starts

spreading within the managed domain. The network detectors signaled the worm presence in the outside

world when it had infected as few as the 0.22% (headquarters) and the 0.45% (branch) of the global

population (infection size). The lower performance of the detector in the branch site is due to the smaller size

of the honey set. However, the defense system proved to be very effective even with a honey set smaller than

the theoretical optimal value. Moreover, as an effect of early detection, less than one node (on average) was

compromised during the experiments, as indicated by a penetration ratio of 0.08%.

6.3 Scenario 3. Effect of coordination

In this experiment, we released a much faster random-scanning worm. In particular, we emulated a

Slammer-like worm with the following parameters.

• N = 20,000 nodes (on a cluster of 100 PCs); T = 230 addresses;

• s = 1000 probes per second per node; H = 100 node.

In the real Slammer incident, the scan rate was of the same order of magnitude as our experiment, but the

vulnerable population (N) was 4 times larger. We scaled down the address range (T) by the same factor to

maintain the proper density. With the above configuration, the infection is estimated to last 13.6 minutes. In

this scenario, we deployed a hierarchical defense system. Similar to Figure 2, the network was arranged into

two domains. The first domain, representing the University of Virginia (UVa), was divided into the CS and

the EE sites, i.e., to model two departments. The second domain (PoliTO) was organized into two sites as

well. The configuration parameters for the two domains are summarized in Table 1. The UVa domain had

less accurate local detectors, but was equipped with a network detection system (see the U column in Table

1), while the PoliTO local detectors had perfect accuracy, but the domain had no network detectors. The

expected behavior was that the PoliTO domain would benefit from the better detection capabilities of the

UVa domain. Furthermore, we supplemented the rule set with the following: (4) if both sites in a domain are

Table 1 Configuration of Scenario 3

UVa Nodes Accuracy Delay U PoliTO Nodes Accuracy Delay U

CS 300 90% 100 msec 200 CS 150 100% 0 msec 0
EE 100 90% 100 msec 200 EE 50 100% 0 msec 0

 19

under attack, notify the coordinator, and (5) if an alarm is received from the coordinator, seal the domain.

The rule engine at the coordinator level had a simple rule that forwards domain alarms between domains.

In this scenario we measured a penetration ratio of 1% for the UVa domain and 1.5% for the PoliTO

domain. It is worth noting the positive effect of cooperation on the second domain. Indeed, since none of the

sites in the PoliTO managed network had a network detector, the only rule that could protect the sites is

Rule 2. This means that, in isolation, we could not have had a performance better than 3% (at least, 6 nodes

out of 200 should be infected for the infection to be detected). Cooperation doubled the performance of the

defense system in the PoliTO domain.

To measure the reaction time, we evaluated the performance of Rule 4 chained to Rule 5. We measured

the time between the firing of Rule 4 (notification to the coordinator) in a domain and the consequent

completion of Rule 5 (protection of the domain after receiving a notification from the controller) in the

opposite domain. This measure estimates the performance of the hierarchical control systems, since it

includes the time needed by domain alarms to travel up and down the controller hierarchy. The reaction time

roughly doubled compared with the earlier scenarios, with an average value of 915 milliseconds.

Finally, the infection size was calculated with respect to the time when the coordinated defense took

place. The value obtained was 0.38%. This figure is comparable to the one obtained in Scenario 2, which is a

encouraging since only half of the sites contained network detectors.

7 CONCLUSIONS

We have presented details of the first (to our knowledge) platform for large-scale, high fidelity worm

emulation and the design of an effective defense system that is not bound to specific detection techniques,

making it general and adaptable to evolving needs. In particular, we presented a defense system that can

counter automatically the spread of very fast Internet worms, i.e., outbreaks that can completely infect a

population within a few minutes. The system is designed to protect parts of the Internet, such as corporate

networks, but it can also be deployed effectively on even larger portions because of its hierarchical structure.

The rule-based approach we adopted confers significant flexibility on the system because it can be tailored to

a large number of scenarios. Thus the system can evolve to accommodate new detection techniques with

very little effort. We also presented a highly configurable platform for controlled experimentation with

different types of worm outbreaks in a live environment along with the validation results for the platform.

 20

The performance of the defense system was evaluated extensively using the worm emulation platform.

This evaluation demonstrated that the defense system can react in about half a second in isolation, or in less

than a second in the case of inter-domain cooperation. These values were obtained in a large-scale, emulated

environment, i.e., having the system operating on a network of up to 20,000 emulated nodes (with a cluster

of 100 real machines). These key results demonstrate the scalability of our approach. Furthermore, the

system not only performs well in terms of scale, but also in terms of reaction time by guaranteeing recovery

during the very early stages of the worm propagation and, most notably, with a low penetration ratio in the

managed domain.

ACKNOWLEDGMENTS

This work was supported in part by the Defense Advanced Research Projects Agency under grant N66001-
00-8945 (SPAWAR) and the Air Force Research Laboratory under grant F30602-01-1-0503. The views and
conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA, the Air Force, or
the U.S. Government.

REFERENCES

[1] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, N. Weaver, Inside the Slammer worm, IEEE Security
& Privacy, 1(4):33-39, July 2003

[2] S. Staniford, V. Paxson, N. Weaver, S. Staniford, How to own the Internet in your spare time, USENIX Security
Symposium, San Francisco, CA, August 2002

[3] R. Scandariato, Policy-based solutions for distributed systems, PhD thesis, Politecnico di Torino, April 2004
[4] N. Weaver, V. Paxson, S. Staniford, R. Cunningham, A taxonomy of computer worms, ACM Workshop on Rapid

Malcode, Washington, DC, October 2003
[5] E. Spafford, The Internet worm: crisis and aftermath, Communications of the ACM, 32(6):678-687, June 1989
[6] S. Staniford, Analysis of spread of July infestation of the Code Red worm, online at

http://www.silicondefense.com/cr/july.html
[7] D. Moore, C. Shannon, J. Brown, Code-Red: a case study on the spread and victims of an Internet worm, ACM

Internet Measurement Workshop, Marseille, France, November 2002
[8] J.C. Knight, E. Strunk, K. Sullivan, Towards a rigorous definition of information system survivability, DARPA

Information Survivability Conference and Exposition, Washington, DC, April 2003
[9] J.C. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbu, M. Gertz, The Willow architecture:

comprehensive survivability for large-scale distributed applications, Intrusion Tolerance Workshop, The
International Conference on Dependable Systems and Networks, Washington, DC, June 2002

[10] B. Keyfitz, N. Keyfitz, The McKendrick partial differential equation and its uses in epidemiology and population
study, Mathematical and Computer Modeling, 26:1-9, 1997

[11] C. Zou, W. Gong, D. Towsley, CodeRed worm. Propagation modeling and analysis, ACM Symposium on
Computer and Communication Security, Washington, DC, November 2002

[12] J. Kephart, S. White, Computers and epidemiology, IEEE Spectrum, May 1993
[13] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters, 86(14),

April 2001
[14] C. Wang, J.C. Knight, M. Elder, On computer viral infection and the effect of immunization, IEEE Annual

Computer Security Applications Conference, New Orleans, LA, December 2000
[15] L. Briesemeister, P. Lincoln, P. Porras, Epidemic profiles and defense of enterprise networks, ACM Workshop

on Rapid Malcode, Washington, DC, October 2003
[16] D. Moore, C. Shannon, G. Voelker, S. Savage, Internet quarantine: requirements for containing self-propagating

code, Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), San
Francisco, CA, March 2003

[17] C. Zou, L. Gao, W. Gong, D. Towsley, Monitoring and early warning for Internet worms, ACM Conference on
Computer and Communications Security, Washington, DC, October 2003

[18] B. Chun, J. Lee, H. Weatherspoon, Netbait: a distributed worm detection service, Intel Research Berkeley
Technical Report IRB-TR-03-033, September 2003

 21

[19] T. Toth, C. Krugel, Connection history based anomaly detection, IEEE Workshop on Information Assurance,
West Point, NY, June 2002

[20] S. Staniford, S. Cheung, R. Crawford, M. Dilger, J.Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, D. Zerkle,
GrIDS. A graph-based intrusion detection system for large networks, National Information Systems Security
Conference, Baltimore, MD, October 1996

[21] V. Berk, G. Bakos, R. Morris, Designing a framework for active worm detection on global networks, IEEE
International Workshop on Information Assurance, Darmstadt, Germany, March 2003

[22] M. Liljenstam, D. Nicol, V. Berk, R. Gray, Simulating realistic network worm traffic for worm warning system
design and testing, ACM Workshop on Rapid Malcode, Washington, DC, October 2003

[23] M. Liljenstam, Y. Yuan, B. Premore, D. Nicol, A mixed abstraction level simulation model of large-scale
Internet worm infestations, IEEE/ACM Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Fort Worth, TX, October 2002

[24] M. Matsumoto, Y. Kurita, Twisted GFSR generator II, ACM Transactions on Modeling and Computer
Simulation, 4(3):254-266, July 1994

[25] Z. Chen, L. Gao, K. Kwiat, Modeling the spread of active worms, Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), San Francisco, CA, March 2003

[26] A. Carzaniga, D. Rosenblum, A. Wolf, Design and evaluation of a wide-area event notification service, ACM
Transactions on Computer Systems, 19(3):332-383, August 2001

[27] J. Rowanhill, P. Varner, J.C. Knight, Efficient hierarchic management for reconfiguration of networked
information systems, The International Conference on Dependable Systems and Networks (DSN), Florence, Italy,
June 2004

[28] M.W. Williamson, Throttling viruses: restricting propagation to defeat malicious mobile code, HP Labs Bristol
Technical Report HPL 2002-172R1, December 2002

[29] D. Moore, Network telescopes: observing small or distant security events, USENIX Security Symposium, San
Francisco, CA, August 2002

