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Abstract 
 
Many areas of society have become heavily dependent on services such as transportation facilities, utilities 
and so on that are implemented in part by large numbers of computers and communications links. Both past 
incidents and research studies show that a well-engineered Internet worm can disable such systems in a fairly 
simple way and, most notably, in a matter of a few minutes. This indicates the need for defenses against 
worms but their speed rules out the possibility of manually countering worm outbreaks. We present a 
platform that emulates the epidemic behavior of Internet active worms. For purposes of experimentation, the 
platform has been deployed on a cluster of computers to emulate worm outbreaks in very large networks. A 
wide variety of worm properties can be studied and network topologies of interest constructed. A reactive 
control system, based on the Willow architecture and the OOPS policy framework, operates on top of the 
platform and provides a monitor/analyze/respond approach to deal with infections automatically. The logic 
driving the control system is synthesized from a formal specification, which is based on control rules 
correlating sensor events. Details of our highly configurable platform, the theory of operation of the Willow 
architecture, the features of the specification language, and various experimental performance results are 
presented. 
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1 INTRODUCTION 

Many areas of society have become heavily dependent on services that are themselves dependent on 

networked information systems. We rely on financial services, transportation facilities, utilities and so on; 

systems that are implemented in part by large numbers of computers and communications links. 

But what if these infrastructures were disabled very rapidly, perhaps in just a few minutes? This is 

neither a remote nor unrealistic threat; both past incidents [1] and more recent research studies [2] have 

shown that a well-engineered Internet active worm can accomplish this task in a fairly simple way. An active 

worm is a unit of self-replicating malicious code that spreads from host to host by exploiting network-

accessible vulnerabilities of application software and operating system components [4]. The distinguishing 

feature of active worms, in contrast to email-born worms (a.k.a. mass mail viruses), is that malicious code 

takes control of machines autonomously. 

In this paper, we present the design and evaluation of a defense system for Internet worms. The defense 

system is an instantiation of the Willow survivability architecture in which a networked information system 

is monitored for signs of worm activity, sensor data is analyzed to diagnose an attack, and changes made to 

limit the attack if necessary. By choosing this strategy, we pursued the idea that only an automated control 

mechanism can provide an effective defense against fast (or flash) worms. We also note that, for the most 

part, current defense solutions are tailored to specific detection technologies, but, since worm strategies can 

vary significantly, defense systems must be able to integrate different sensor types in order to detect and 

counter worm epidemics successfully. Thus, in this research we do not focus on detection techniques. Rather, 

our goal is to provide a framework that is independent of specific sensor types and that is capable of 

integrating different detection techniques. The defense system presented supplies effective tools to analyze 

sensor-generated information and to deploy countermeasures in a timely, fine-grained way without requiring 

modification to the underlying network. 

Evaluation of the defense system was conducted by experimentation. In practice, such evaluation is 

problematic for two reasons. The first reason is the difficulty of replicating the target systems in a laboratory, 

and the second reason is the difficulty of replicating accurately the infection processes of real worms. The 

work reported here was conducted using a platform that emulates large networks and their infection by 

worms. We approached the first problem by emulating a large (although not Internet-scale) network, i.e., we 

built a real network with a large number of nodes although each individual node was not emulated by an 
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individual computer. We approached the second problem by developing a parameterized worm that was 

tailored to match the observed behavior of current worms such as Slammer. The effects of worms that are 

expected to occur or are otherwise of interest can be assessed by setting the parameters of the platform 

appropriately. Furthermore, the platform can be configured to study worm types that have not been seen in 

the wild yet, e.g., topology-driven worms. 

The paper is organized as follows. Section 2 reviews the most relevant incidents that have happened in 

the past. Section 3 discusses related work about worm modeling and analyzes various techniques that have 

been developed to detect and counter worm attacks. Section 4 presents the emulation platform and the 

validation study we conducted, which compares the platform behavior with theoretical models. Section 5 

describes the defense system and Section 6 provides the experimental results we obtained by operating the 

defense system with different worm scenarios. Finally, Section 7 concludes by discussing key results of this 

work. 

2 WORMS AND THEIR EFFECTS 

The first worm to propagate widely on the Internet was the Morris worm in 1988 [5]. The threat has 

become much more serious in recent years as the virulence of epidemics has increased. Inevitably, the cost to 

the community has become substantial. For instance, the CodeRed worm was able to take over more than 

359,000 IIS web servers in less than 14 hours in July 2001. On September of the same year, the Nimda worm 

was released causing a severe epidemic because of its propagation properties as a multi-vector worm. It 

spread by using a mix of contagion (browsers became infected by visiting infected web servers), active 

scanning, and mass mailing. In January 2003, the Slammer worm presented a new perspective on the 

potential of worm infections. It was an amazingly fast outbreak that infected nearly the whole susceptible 

population (more than 75,000 Microsoft SQL servers) in less than 10 minutes, highlighting how ineffective 

human-based countermeasures are against this kind of malicious code. Finally, in August 2003 the Blaster 

worm infected more than 330,000 Windows machines in less than 5 days. Blaster was a relatively slow 

worm, but the high density of the vulnerable population (virtually any recent Windows system) allowed it to 

infect a large number of targets. 

Clearly, state-of-the-art worms present a major threat to key information infrastructures, especially if the 

cost of disinfecting and restoring infected hosts is taken into account. Computer Economics estimated a 

worldwide damage of 1 billion dollars for Slammer, 635 million for Nimda, and 2.62 billion for CodeRed. 
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The situation will worsen in the near future almost certainly as worm programmers develop yet more 

advanced techniques [2]. Sophisticated worms can infect all vulnerable hosts in a matter of a very few 

minutes, thereby ruling out the possibility of effective direct human intervention. 

3 RELATED WORK 

We begin this section by presenting theoretical models of epidemic behavior. These models are 

important to validate the fidelity of our platform in capturing the relevant aspects of worm attacks. Second, 

we analyze existing work dealing with worm detection and defense, by comparing them with the solution we 

propose.  

Staniford [6] was the first to propose the adoption of epidemiological models to study the propagation of 

Internet worms analytically. His work relies on previous work by McKendrick [10] on homogeneous 

epidemiological model. The homogeneous model assumes that each infected node may attack any other 

member of the population with the same probability. This assumption holds reasonably well in the case of 

the Internet. Since the only legal state transition for a node is from the susceptible state to the infected state 

(i.e., nodes are neither immunized, nor cured), this is also known as the SI model. Under these assumptions, 

it is possible to derive a closed-form equation to represent the growth of infected nodes over time for a 

random-scanning worm as follows. 
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In Equation 1, x(t) is the total number of infected nodes, N is the size of the vulnerable population, s is the 

average scan rate (i.e., the number of attacked targets in a time unit, which also includes probes to 

invulnerable or non-existing targets), and T is the size of the address range used to randomly select candidate 

targets. K is a constant that depends on the initial conditions. In this case, an initial population of H infected 

nodes (hit-list) was imposed at the beginning of the epidemic. The trend represented by the equation is 

known as the logistic curve, which has a sigmoid shape. 

The above model is quite simple and does not consider more sophisticated effects that can take place 

during an epidemic. Nonetheless, it models the infection growth precisely during the early stages of worm 

outbreaks. Furthermore, this model has proven accurate when compared to data from real observations of 

past epidemics [7]. For these reasons, it was selected as the reference model to validate our emulation 

platform. 
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More accurate models for random-scanning worms exist. Zou [11] studied the effects on the infection 

growth caused by the (human-based) removal of susceptible/infected hosts (e.g., by patching or disinfecting), 

and by the decreasing spread rate due to the network congestion generated by the worm activity itself. That 

work shows clearly that these effects only become significant in the latest stage of an outbreak. We are 

interested in studying mitigation strategies that might help prevent the spread of worms into critical parts of 

enterprise networks, and we are interested in characterizing the behavior of a worm precisely during its early 

phase of diffusion. If the defense mechanism does not act at this time, it will be ineffective since the damage 

suffered by the network will be too high. Thus, removal is not relevant in our case since we are attempting to 

tackle the startup infection regime of extremely fast worms. Under such conditions, removals are neither in 

place nor feasible. In addition, although the decrease in the spread rate is not modeled explicitly in our 

platform (because effects are not observable during the infection phase in which we are interested), our 

experimentation exhibited such behavior as well. This effect is a positive outcome of using an emulation 

since it is naturally subject to network congestion conditions, as discussed below. 

The homogeneous model does not characterize topology-aware worms, nor does it capture the effect of 

topology constraints, e.g. physical connectivity, on the evolution of random-scanning worms. Kephart and 

White [12] have analyzed the effects of topology constraints over worm propagation. In particular, the 

authors applied the SIS (susceptible/infected/susceptible) model to random graphs. The SIS model assumes 

that there is both a birth rate for newly infected hosts and a cure rate for already infected hosts. The most 

relevant result is the demonstration that there is no epidemic if the product of the average connectivity and 

the birth rate is lower than the cure rate (epidemic threshold). However, the SIS infection model is of limited 

utility for the Internet worm infections. Indeed, this early work adopted the above-mentioned model because 

it is suitable for the propagation of old-style computer viruses (e.g. boot-sector viruses) that spread by means 

of floppy disks. For that type of virus, it is reasonable to assume that a host can be infected multiple times by 

the same virus. However, this is not the case for Internet worms. Indeed, Briesemeister [15] noted that the SI 

model is more appropriate for rapidly spreading malicious code. Moreover, the topological model the authors 

adopted is not suitable for the Internet case although it is a reasonable approximation for diskette-born 

viruses. 

Wang [14] and Pastor-Satorras [13] investigated worm propagation behavior over realistic topologies. In 

particular, Wang presents the results of a simulation study to characterize epidemics in clustered and tree-
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like networks, which are typical in hierarchical structures, e.g., bank networks. Pastor-Satorras proposed an 

epidemic model for scale-free networks, which are typical in social networks (e.g., connections among 

address books, and so on). We expect these results will be useful sources to evaluate the characteristic of our 

platform, when configured for topology-aware worms. Such evaluation will be the subject of future work. 

For detection and defense systems, the majority of research is based on simulation experiments. Moore 

[16], for example, explores the effect of dynamic quarantine on infection trends. In particular, that work 

investigates two defense strategies: (1) black-listing of known infected nodes; and (2) filtering of 

connections based on worm signatures. The study assumes the existence of a notification service able to 

notify each node in a timely manner of either newly infected nodes (black-listing case), or newly discovered 

worm signatures (filtering case). The time needed to notify nodes is called the reaction time, and the authors 

investigate the acceptable values for the reaction time in order to stop an outbreak. An empirical Internet 

topology was used but the study only analyzed a slow moving worm, and a prototype of the system was not 

provided. It is not clear whether the proposed solution could be applied to fast-spreading worms, especially 

in consideration of the timing constrains that such a technique imposes. 

Zou [17] reports the simulation results of an intrusion detection system that generates early warnings. 

The study supposes that monitoring systems are spread in many places of the Internet, in particular at ingress 

points of edge networks. Monitors detect scan activity towards unused addresses and forward alerts to a 

central analysis station. Alerts are processed through a Kalman filter in order to estimate the spreading 

parameters of the worm dynamically and consequently raise a warning. Some concerns still remain about the 

scalability of the proposed system, since a single analysis point must collect all alerts. 

Toth [19] proposes a system to detect and counter worm propagation in local-area networks. The author 

extends the idea (previously introduced by Staniford [20]) of analyzing connection graphs to infer causality 

relationships among connections in a network. The system only works in a single broadcast segment and for 

TCP-based worms. The network is monitored by an analysis station that listens to the traffic in search of new 

connection attempts to/from local hosts and local unused addresses. Each host is also equipped with a 

personal firewall, whose filtering rules can be updated dynamically by digitally signed remote messages. The 

monitor builds a graph of connections and analyzes it for a suspicious pattern that is likely to be an indicator 

of worm activity. The pattern recognition is based on the causality principle, i.e. that there is a chain of 

connections with similar characteristics. 
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Berk [21] presents a defense system in which ICMP-T3 (destination unreachable) messages are 

monitored for detection. Those messages reveal connection attempts to non-existing hosts and are common 

for random-scanning worms. Routers are configured to copy and forward such messages to an analysis 

station. The analysis system looks for repeated probes to the same address (with configurable thresholds) and 

generates an alarm whenever a pre-configured pattern of activity is recognized. The system was tested on a 

worm emulation of 800 logical nodes running on a single machine. Recently, the authors extended the work 

in order to test the detection system with realistic worm-generated traffic patterns [22]. The authors used the 

worm traffic simulator proposed in [23], which can capture the propagation behavior of a worm in terms of 

flows crossing a coarse-grained network topology. With this setup, the authors show that the detection 

system is able to recognize a CodeRed-like infection with a set of instrumented routers (i.e. routers that 

forward a copy of ICMP messages to the collector) covering at least 217 unused addresses. 

4 THE WORM EMULATION PLATFORM 

The platform that we built for emulating worm infections allows the construction of a network of 

software nodes, each emulating a real host running an insecure application element or a vulnerable operating 

system. To achieve a large-scale emulation (more than 20,000 nodes), multiple nodes can be instantiated on a 

single physical machine. The platform is highly configurable so as to allow a wide variety of possible types 

of worm to be modeled. The platform allows detailed information about the evolution of an ongoing 

infection to be collected and it provides a graphical console to visualize the state of the network in real-time. 

For the sake of safety, worm propagation is not implemented as mobile code. Instead, the malicious 

code is embedded as a dormant thread on each node. The thread listens on a server UDP socket waiting for 

an activation message from an already infected peer. The platform was implemented mainly in Java, using 

the Sun Java Standard Edition 1.4.1_02. To gain better performance, the attack component of the worm was 

implemented in C++ (gcc 2.95.2). The platform was deployed on a cluster of about 100 homogeneous dual 

400 MHz processors PCs running Red Hat Linux version 6.2 (kernel 2.2.19), with 100 Mbps Ethernet 

connections. 

The susceptible population of emulated nodes (N) can be organized according to the different 

vulnerabilities that each node exposes. For instance, the population can represent hosts running the Apache 

web server on Windows and Linux platforms. Furthermore, a vulnerability can be specific to a version of the 
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operating system, e.g., Windows XP, rather than Windows NT. Thus, for example, we could model the 

following three types of worm attacks: 

• All systems running Apache are vulnerable, irrespective of the underlying operating system. 

• Only systems running Apache on a Windows platform (all variants) are vulnerable. 

• Systems are vulnerable only if they are running Apache on top of a specific version of an operating 

system, such as Windows NT. 

Nodes download their configuration at startup time from a central repository. This allows a great deal of 

flexibility in experimenting with different types of worm since the deployed platform need not be modified 

for different experiments. All changes can be effected via a single configuration file in the repository 

machine. The relevant parameters that each node fetches from the repository are the target selection strategy, 

the peer list, and the infection behavior. 

The target selection strategy indicates whether a node scans the address space randomly in search of new 

vulnerable nodes or uses on-board topological information to attack peers. In the latter case, the peer list is 

used to select new targets; the node continues to extract an address randomly from the list until the list is 

empty. This behavior is particularly useful for emulating worms that spread by gathering information from 

the host node, e.g., worms that spread over applications like KaZaA by following the peer-to-peer topology, 

or worms that inspect host machine resources (e.g., browser cache, hosts file, address book, instant 

messenger contacts, etc.) to find vulnerable targets. Even though e-mail worms commonly employ these 

techniques, they have not (yet) been seen in active worms. Nonetheless, it is highly probable that topology-

driven attacks will be used in active worms in the near future (a recent worm used peer-to-peer technologies 

to install a Distributed Denial of Service network, clearly demonstrating the potential of those techniques). 

Our platform can be used to investigate such behaviors. 

In random-scanning mode, each infected node indefinitely generates random targets out of a 

configurable range of addresses (T). The rate at which scans of possible targets are generated is called the 

scan rate (s). We used the Mersenne-Twister pseudo-random number generator [24] because of its large 

period since the number of generated addresses can be very high for fast worms. After generating an address, 

the node probes it to verify that it is valid, i.e., that there actually is an active node responding to that 

address. In such cases, a network message is sent out to attack the target node. For random-scanning nodes, 

the peer list contains the addresses of all nodes in the network and is used to verify the generated addresses. 
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Note that the replacement of a real network probe with a lookup in the peer list does not invalidate the 

infection model. Indeed, the time needed by a node to execute the probe of a generated address is aggregated 

into the scan rate. However, we are aware that this simplification partially reduces the amount of network 

traffic that the emulated worm generates compared to a real worm This implementation choice was necessary 

in order to accommodate our emulation environment without crashing the network infrastructure with 

extraordinary large amounts of ARP traffic. Moreover, one may object that real worm-generated traffic could 

affect the performance of the defense system as well (which works in-band). However, since the defense 

system operates in the early stage of epidemics, congestion is not a relevant factor. 

Finally, nodes download from the repository their infection behavior. Nodes use this information to set 

the success rate and the activation time. The success rate (PS) is the probability that an attack exploiting a 

vulnerability of the target node will be successful, i.e., the attack will actually lead to an infection. The same 

vulnerability can necessitate that different malicious payloads be used for an exploit. For instance, the 

Blaster worm exploited a buffer overflow vulnerability in the DCOM RPC interface of Windows NT and 

Windows XP. In order to exploit the vulnerability, a payload specific to the OS variant must be crafted. Once 

it found a vulnerable target, the Blaster worm selected Windows XP 80% of the time. The success rate 

parameter can be used conveniently to model similar behaviors. The activation time (tA) is the period 

elapsing between the reception of a successful attack and the time when the infected node, in turn, starts its 

attack phase. This parameter can be used to model several aspects of worm’s behavior. First, the actual 

payload of a real worm can be large enough that transmission times are relevant; in this case that time can be 

taken into account at the receiver end by slowing down packet processing. Second, once the malicious code 

is received, it takes some time to gain control of the node. Finally, worms such as CodeRedII [7], have a 

programmed delay that imposes a dormant period before starting the attack phase. 

The platform provides detailed information about the behavior and performance of the released worm. 

By analyzing the log files it creates, one can rebuild the infection history of a worm down to the level of a 

single node. For example, we can analyze the success ratio of individual nodes, i.e., how many targets a node 

infected, compared to the total number of attempts, or the re-infection rate of a node. This analysis can be 

extended to a cluster of nodes in a region of interest (e.g., a site) as well. 
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4.1 Platform validation 

We assessed the propagation behavior generated by the platform for a specific sample worm by 

comparing it with the theoretical model of Equation 1 and the results are shown in Figure 1. For the 

assessment we deployed a set-up of 98 physical machines, each running 205 virtual nodes, for a total of 

20,090 nodes (N). We executed 10 runs under the following four conditions: 

• All nodes shared a single vulnerability, there was a 100% probability of success during attacks (Ps = 

1.0), and infection was instantaneous (tA = 0 sec). 

• Nodes were configured to work in random-scanning mode, with a scan rate (s) of 1000 probes per 

second per node. 

• Possible targets were randomly extracted out of 228 address range (T). 

• The hit-list (H) contained 100 nodes. 

With the above parameters, the worm took about three and a half minutes to infect the total population. 

These tests led to very similar data. We obtained an R-squared equal to 99.97%, which was calculated using 

the experimental average trend. Using the theoretical model, the R-squared value is 99.91%. These values 

show that statistical significance was achieved even with a relatively small number of experiments. 

 Figure 1 compares the experimental data with the analytical model of Equation 1. The solid line in 

Figure 1(a) represents the model, where the involved parameters have been customized to our scenario. The 

dashed line represents the average values obtained from the 10 emulation runs. The platform tracked the 

analytical model closely, especially during the early stages of the infection, i.e., in the interval between 0 and 

40 seconds (the early stage). This regime of the infection behavior is of particular interest as it represents the 

working area where the control system is supposed to operate. 
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Figure 1(b) shows the “ infection prevalence” zone, i.e., the interval between 80 and 110 seconds where 

the platform performs with an effective scan rate that is lower than the nominal value. The slow-down is due 

to the high traffic load present in the network under infection prevalence conditions, as also observed in [11] 

and in the experimental data of past outbreaks [7]. While nodes still continue to generate attacks at the 

nominal scan rate (by construction), the reception at the receiver side is not instantaneous because UDP 

packets overwhelm receiving machines. Under infection prevalence, almost all the nodes in the modeled 

network on each physical machine are active (recall that multiple logical nodes are mapped to a single 

physical machine) and they are receiving re-infection attacks. Under such conditions, the delivery of attacks 

to newly to-be-infected nodes takes more time. This behavior was unplanned but is highly beneficial because 

it makes the platform more realistic. 

5 THE DEFENSE SYSTEM 

The defense system creates a monitor/analyze/respond loop that supplements the networked application. 

The system monitors sensors spread throughout the emulated network and correlates sensor data to detect 

attacks. It then enforces defensive actions. The analytic element of the defense system is synthesized by a 

compiler from a formal specification written in the Object Oriented Policy Specification (OOPS) language 

[3]. The language provides users with an intuitive way to model defensive decisions that must be undertaken 

in case of attack. Scenarios of interest (e.g., an ongoing infection within the protected network) are identified 

by means of event patterns and decisions are modeled as control rules associating defensive actions to each 

pattern of alerting events. The support infrastructure for both event delivery and action deployment is 

provided by the Willow architecture [9]. 

The use of a specification-driven approach, in general, and a policy-based specification language, in 

particular, was suggested by the continuous evolution observed in this particular application field (which is 

far from being mature). There has been a progressive evolution of strategies and techniques employed by 

worm designers, and improvements in worm design lead to new, fast-changing scenarios that worm defense 

systems must face. Furthermore, techniques to detect worm attacks are evolving, necessitating the ability to 

integrate new sensors. The automated generation of control logic from a specification provides the flexibility 

necessary to permit rapid response to change. Whenever new techniques have to be incorporated into the 

system, the defense system can be adapted by simply changing rules in the specification rather than requiring 

that the control system be rewritten. 
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The defense system is designed to protect a portion of the vulnerable population that is deemed critical. 

An example of such a portion might be an enterprise network or a critical information infrastructure. We 

refer to such a portion as a managed domain. As shown in Figure 2, the emulation platform can be 

configured to provide two types of node: (1) managed nodes (gray nodes in the lower part of the figure) that 

represent hosts inside a managed domain; and (2) unmanaged nodes (black nodes) that represent hosts in the 

“outside” world. Managed nodes receive and execute commands from the defense system; unmanaged nodes 

do not cooperate in the defense activity and are out of the control of the defense system. Managed nodes can 

be organized into sites (clouds, in the figure), and sites aggregated to create a domain (shaded circles). The 

dimension of each site, and thus of domains, can be specified. 

For each domain, a dedicated control system is instantiated. In Figure 2, two domains are depicted: one 

representing the University of Virginia (on the left), with two department sites; the other representing the 

Politecnico di Torino network (on the right). In the figure, two control systems (domain controllers) are 

guarding their respective domains. These controllers may be organized hierarchically to share information 

with each other through the mediation of a top-level coordinator. 

The Willow architecture (middle of Figure 2) is a comprehensive framework to deal with survivability 

requirements of large-scale networked application in case of complex non-local faults [9]. Survivability is 

ensured by both proactively eliminating faults when they are identified or suspected (but before they become 

manifest) and reactively tolerating the effects of faults during operation [8]. In this work we exploit the 

reactive features of the Willow architecture. In particular, we exploit the Willow concept of (multiple) 

reactive monitor/analyze/respond loops, where the state of the networked application is continuously 
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monitored and analyzed by each loop. If the analysis detects a fault of some kind (including physical 

damage, software failures, security attacks, etc.), the control system responds by issuing the necessary 

commands to reconfigure the network, until the system returns to a desired (possibly different) state.  

In our defense system, the state of the network is gathered through notifications sent by sensors to 

controllers using a simple peer-to-peer connection mechanism. A substantially modified version of the Siena 

publish/subscribe event service [26] implements selective notification (SN) [27] and workflow projection 

services. 

Selective notification is a technique to manage large-scale systems, and it is used by the workflow 

projection service to send tasks to a subset of subscribers. Each subscriber (network node) exposes a set of 

attributes that describe its characteristics, and this set constitutes its “address”. In turn, each task contains a 

set of characteristics of nodes that should receive the task. In the worm scenario, each managed node exposes 

its identifier, the domain and site it is in, the node configuration (e.g., the type of host it represents), and the 

current infection state (healthy or allegedly infected). Accordingly, the defense system can direct a task to a 

subset of managed nodes, e.g., to “all infected web servers in the CS site” . 

The workflow system allows the creation of logical sets of commands, with the intuitive formalisms of 

tasks and workflows. In particular, it is possible to specify both conflict and precedence relationships among 

tasks and workflows. The service is responsible for deploying tasks (commands) in the network and then 

gathering workflow completion information. Furthermore, each network node subjected to control is 

equipped with the client side of the workflow service, which resolves conflicts by means of the “ intention”  

mechanism. Intentions are a high-level strategy to assign priorities. In a large-scale scenario, especially when 

dealing with complex faults and multiple control loops, it is extremely important to be prepared to deal with 

conflict situations due to simultaneous and mutually exclusive commands. 

The kernel of the defense system is the correlation engine. The defense policy is coded by means of 

rules, which are enforced by analyzing incoming alarms and then reacting accordingly. In our platform, four 

types of alarms can be generated. These alarms are treated as general entities, and detectors that generate 

them are modeled probabilistically. Thus, the defense system abstracts from specific detection techniques 

employed at the lower level. 

Local alarms are generated directly by managed nodes that have an on-board sensor emulating a local 

intrusion detector. Various local intrusion detection techniques can be employed for this function, e.g., the 
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analysis of system log files [18] or the monitoring of outgoing connections [28]. Since local detectors are 

sometimes unable to properly detect an ongoing infection, we model the accuracy of the detector by 

encompassing a configurable success rate in the detector model itself. The success rate represents the false 

negative rate of the local detection system, i.e., the probability that an infected node will not be reported to 

the control system. False positives are supported, but not explicitly modeled in the worm emulation platform. 

However, they may be injected in the network by directly stimulating the local detectors through an external 

application. Such an application could follow a statistical model or replicate the observed pattern obtained 

from the forensic analysis of real networks. Finally, since detection activity might be lengthy and hence 

could not be considered instantaneous, we have embedded a tunable delay parameter in the detector model. 

The delay represents the interval between the time the node is infected and the time the alarm is sent out by a 

detector. 

Site alarms are generated by network intrusion sensors, represented by white nodes inside each site in 

Figure 2. In our platform we modeled a honey pot intrusion detection system [29] by assigning a monitor to 

each site. Note that the defense system does not rely on a particular network detection technique. The choice 

we made was driven by the appeal (in terms of performance) of the above-mentioned technique, but different 

intrusion detection techniques can be easily incorporated into the platform. The monitor we modeled is 

configured with a set of unused addresses (honey set) and listens for probes directed to that set. Each probe is 

obviously suspicious, since the address is not in use, and is hence reported to the control system. The 

performance of each site monitor is proportional to the size (U) of its honey set. Note that real networks are 

not clean environments. Thus, similarly to local sensors, network intrusion sensors can be directly 

stimulated, e.g. to emulate routine scanning traffic (noise). 

Domain alarms are generated by domains under attack to inform the coordination level about a high 

level of threat. The policy followed to generate this alarm is determined by the domains themselves. For 

instance, a domain alarm can be forwarded to the coordinator whenever multiple sites of the same domain 

are under attack. In turn, the coordinator forwards alarms to other domains that federated with the originating 

domain. 

External alarms can be produced by a third-party agency (e.g., SEI/CERT) based on evidence such as 

the result of intelligence activity. Intelligence can be directly injected at the controller level, or propagated 

through the mediation of the coordination level (as shown in the upper part of Figure 2). 
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To guide the selection of the U parameter of network detectors, the following approach can be used. 

Suppose that we would like network detectors to detect an outbreak before the infection has plagued a 

fraction r of the whole susceptible population N. That means that we want to receive a probe in the U address 

space before the critical time tC, which represents the time the infection has reached the threshold r according 

to the analytical model of Equation 1. The critical time can be calculated by imposing x(tC) = rN in Equation 

1 and we can express the probability of having at least one probe in the honey set U, before the critical time, 

as in the following. 
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To interpret the formula, suppose that, at time t, there are x(t) infected nodes. Since each infected node 

probes s addresses per unit time, there will be sx(t) scans before the next time tick. The events that an unused 

address will not be hit by any of those probes for all time ticks preceding the critical time are mutually 

independent, and the corresponding probability is expressed by the term between parentheses. Note that in 

the above formula, we assume a discrete time for the infection model x(t). For instance, Equation 1 can be 

sampled. In conclusion, by imposing the values of both r and P(tc), we can solve Equation 2 numerically in 

order to obtain a lower-bound for U. 

Alarms are stored to form the domain event history, and this is used by the correlation engines of 

controllers to activate rules. When an event pattern is matched against the event history, the rule is executed 

and associated commands sent to the domain. Once the command is received and enacted by a node, a 

feedback event is sent back to the controller. Control rules are specified by means of the OOPS language, 

which accommodates the specification of complex event patterns involving both logical and temporal 

relationships. Furthermore, each event pattern can be associated with an absolute time interval, e.g., “ in the 

last 10 minutes”, or a relative one, e.g., “every Monday morning”. In such cases, the pattern will trigger the 

rule only if it happens in the proper time interval. Additionally, constraining conditions can be imposed both 

on the value of event attributes (e.g., the source of the event) and on state variables (e.g., the state of the 

domain). Finally, such values can be passed dynamically to commands as argument, e.g., to select target 

nodes dynamically on the basis of the event attributes. 
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6 EVALUATION OF THE DEFENSE SYSTEM  

Evaluation of a system such as this raises two critical questions: what are the important evaluation 

metrics and how can their values be determined? Different perceptions yield different desired metrics and 

resource limitations restrict their determination severely. In this work we defined three metrics that we 

consider to be generally useful and we measured their values for a set of three scenarios. Each scenario 

includes a worm with specific characteristics and a particular instantiation of the defense system. However, 

the results of the experimentation are indicative only. Indeed, the metrics that we measured are dependent on 

many implementation details and the size of the target network available to us. In considering the results 

presented here, it is essential therefore to keep this in mind. We measured times, for example, and those 

times are meaningful for the specific implementation on the specific target that we were using. 

We defined the following three metrics to assess the effectiveness of the defense system: 

• Penetration ratio. Percentage of managed nodes being hit before the defense system reacts. This metric 

is extremely important for evaluating the effectiveness of the defense system as a whole, since it is 

influenced by both the accuracy of the detection system (because of false negatives), and the 

responsiveness of the control system. If the reaction is slow in enforcing the protective actions, new 

nodes will be compromised even after the infection has been detected. 

• Infection size. Percentage of nodes that are globally infected (even in the outside world) at the time the 

control system reacts. This metric evaluates the ability of the defense system to detect an outbreak early 

on. The expected behavior is that the system will be able to detect and recover from an ongoing infection 

before it assumes epidemic proportions. 

• Reaction time. Time between the detection of an ongoing infection and the actual enforcement of the 

corresponding protective actions. This value is the interval between a rule firing and receipt of the last 

feedback from the nodes involved in the action defined by the rule. This metric is useful in evaluating 

the responsiveness of the control system independent of the accuracy of the detection system. 

First two metrics assess the performance and effectiveness of the defense system. The third metric is used to 

show that worm network activity does not impact system capabilities, even though defenses are deployed by 

means of in-band communication between managed nodes and the controllers. For purposes of evaluation, 

these three metrics were measured in the following three increasingly complex scenarios. 
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6.1 Scenario 1. Local detection without coordination 

In this experiment, we released a medium-speed random scanning worm, with the following 

characteristics: 

• N = 10,290 nodes (on a cluster of 49 PCs); T = 224 addresses; 

• s = 100 probes per second per node; H = 10 nodes; 

• PS = 1.0; tA = 0 seconds. 

According to the analytic model, the infection should last about 4.4 minutes. We created a single domain 

with two sites in it. The first had 300 nodes and the other 100. This configuration models a company network 

with a headquarters and a smaller branch. In this experiment, network detectors are not included in order to 

measure the effect of local detectors on the performance of the defense system. We tested two cases: (1a) 

first, we used a set of local detectors with perfect accuracy, i.e., with no false positives; (1b) then, we 

repeated the experiments after lowering detectors accuracy to 80%. This value has no special importance and 

was selected to test the defense system when detectors are significantly less dependable than the ideal case of 

(1a). 

For both cases, the correlation engine enforces two simple rules: (1) for each local alarm, the 

corresponding node must be immunized, and (2) if a cluster of 3 nodes in the same site reported a local 

infection, the corresponding site must be isolated.  

The observed penetration ratio (calculated as the number of nodes being infected in the managed 

domain, compared to the domain size) was 1.75%1. This means that, on average, only 7 out of 400 nodes are 

compromised before defenses are deployed. This is good performance given that at least 6 nodes must be 

compromised (because of Rule 2) before an ongoing infection is detected. Repeating the experiment with 

faulty detectors, we observed an average penetration of 2.25%. This means that, on average, 3 extra nodes 

were hit before the worm was successfully detected inside the domain. 

The infection size estimates the ability of the defense system to detect the worm during the early phase 

of an infection. In case (1a), the worm was detected in the headquarters site when 0.78% of the population 

(i.e., 78 nodes out of 10,000) had been infected. For the branch site, the corresponding infection size was 

2.93%. The higher percentage value is an obvious consequence of the branch site’s smaller size. Because of 

                                                
1 All the reported numerical results are calculated as the average behavior we observed. 
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the random nature of probes, it takes more time for 3 nodes in the smaller site to be compromised, and hence 

the infection has more time to replicate before being detected. In case (1b) the infection sizes for the 

headquarters and the branch were 1.6% and 5.2%, respectively. 

The reaction time was separately calculated for Rule 1 and Rule 2 because of the operational difference 

between the two rules. The first requires a command be transmitted to a single node, namely the infected 

one. The second rule takes more time to be effective because the corresponding action is transmitted 

selectively to all nodes in the site, with the further issue that the transmission time increases with the size of 

the site. 

In case (1a) we observed a reaction time of 226 milliseconds for Rule 1. The enforcement of Rule 2 took 

494 msec for the headquarters site and 425 msec for the branch site. In case (1b) the reaction times were 258 

milliseconds (Rule 1), 539 msec (Rule 2, headquarters), and 434 msec (Rule 2, branch site). The better 

values obtained in case (1a) compared to case (1b) are due to the later detection observed in the second case. 

Indeed, because of later detection, the network load is higher (more nodes are actively scanning) and this 

influences the performance of command delivery to nodes since commands are transmitted in-band. 

Nonetheless, the defense system was able to react within half a second, on average. 

6.2 Scenario 2. Effect of network detection 

In this set of experiments, we released the same worm as in Scenario 1 and on the same network 

structure. However, we turned on local detectors at both sites. For the headquarters, we used a honey set of 

size U = 470 addresses, which is roughly equivalent to 2 class C networks and is not unrealistic for medium 

to large institutions. Smaller companies may still benefit of the defense system by federating. The above 

value was estimated by imposing r = 1% and PS = 99% in Equation 2, i.e., we confidently expect to detect 

the outbreak before it reached a penetration of 1%. The second site has a less effective network detector 

because the honey set has a size of 350 addresses. Furthermore, in order to isolate the effect of the network 

sensors on the defense system performance, we used 100% accuracy for local detectors. 

In addition to the control rules of Scenario 1, we added a third rule: (3) if a network detector senses a 

probe, the corresponding site must be isolated. This rule is similar to Rule 2, but implies higher confidence in 

network detectors over local ones. Indeed, a single probe is sufficient to infer an attack condition while in 

Rule 2 three alarms are necessary, e.g., because of false positives in local detectors. 
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In this experiment, the only rule that fired was Rule 3 and the reaction times were similar to the data in 

Scenario 1 (551 msec for the headquarters, 280 msec for the branch site). Indeed, network detection is an 

extremely powerful technique that leads to very early detection of outbreaks, even before an infection starts 

spreading within the managed domain. The network detectors signaled the worm presence in the outside 

world when it had infected as few as the 0.22% (headquarters) and the 0.45% (branch) of the global 

population (infection size). The lower performance of the detector in the branch site is due to the smaller size 

of the honey set. However, the defense system proved to be very effective even with a honey set smaller than 

the theoretical optimal value. Moreover, as an effect of early detection, less than one node (on average) was 

compromised during the experiments, as indicated by a penetration ratio of 0.08%. 

6.3 Scenario 3. Effect of coordination 

In this experiment, we released a much faster random-scanning worm. In particular, we emulated a 

Slammer-like worm with the following parameters.  

• N = 20,000 nodes (on a cluster of 100 PCs); T = 230 addresses; 

• s = 1000 probes per second per node; H = 100 node. 

In the real Slammer incident, the scan rate was of the same order of magnitude as our experiment, but the 

vulnerable population (N) was 4 times larger. We scaled down the address range (T) by the same factor to 

maintain the proper density. With the above configuration, the infection is estimated to last 13.6 minutes. In 

this scenario, we deployed a hierarchical defense system. Similar to Figure 2, the network was arranged into 

two domains. The first domain, representing the University of Virginia (UVa), was divided into the CS and 

the EE sites, i.e., to model two departments. The second domain (PoliTO) was organized into two sites as 

well. The configuration parameters for the two domains are summarized in Table 1. The UVa domain had 

less accurate local detectors, but was equipped with a network detection system (see the U column in Table 

1), while the PoliTO local detectors had perfect accuracy, but the domain had no network detectors. The 

expected behavior was that the PoliTO domain would benefit from the better detection capabilities of the 

UVa domain. Furthermore, we supplemented the rule set with the following: (4) if both sites in a domain are 

Table 1 Configuration of Scenario 3 

UVa Nodes Accuracy  Delay  U   PoliTO Nodes Accuracy  Delay  U  

CS 300 90% 100 msec 200  CS 150 100% 0 msec 0 
EE 100 90% 100 msec 200  EE 50 100% 0 msec 0 
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under attack, notify the coordinator, and (5) if an alarm is received from the coordinator, seal the domain. 

The rule engine at the coordinator level had a simple rule that forwards domain alarms between domains. 

In this scenario we measured a penetration ratio of 1% for the UVa domain and 1.5% for the PoliTO 

domain. It is worth noting the positive effect of cooperation on the second domain. Indeed, since none of the 

sites in the PoliTO managed network had a network detector, the only rule that could protect the sites is 

Rule 2. This means that, in isolation, we could not have had a performance better than 3% (at least, 6 nodes 

out of 200 should be infected for the infection to be detected). Cooperation doubled the performance of the 

defense system in the PoliTO domain. 

To measure the reaction time, we evaluated the performance of Rule 4 chained to Rule 5. We measured 

the time between the firing of Rule 4 (notification to the coordinator) in a domain and the consequent 

completion of Rule 5 (protection of the domain after receiving a notification from the controller) in the 

opposite domain. This measure estimates the performance of the hierarchical control systems, since it 

includes the time needed by domain alarms to travel up and down the controller hierarchy. The reaction time 

roughly doubled compared with the earlier scenarios, with an average value of 915 milliseconds. 

Finally, the infection size was calculated with respect to the time when the coordinated defense took 

place. The value obtained was 0.38%. This figure is comparable to the one obtained in Scenario 2, which is a 

encouraging since only half of the sites contained network detectors. 

7 CONCLUSIONS 

We have presented details of the first (to our knowledge) platform for large-scale, high fidelity worm 

emulation and the design of an effective defense system that is not bound to specific detection techniques, 

making it general and adaptable to evolving needs. In particular, we presented a defense system that can 

counter automatically the spread of very fast Internet worms, i.e., outbreaks that can completely infect a 

population within a few minutes. The system is designed to protect parts of the Internet, such as corporate 

networks, but it can also be deployed effectively on even larger portions because of its hierarchical structure. 

The rule-based approach we adopted confers significant flexibility on the system because it can be tailored to 

a large number of scenarios. Thus the system can evolve to accommodate new detection techniques with 

very little effort. We also presented a highly configurable platform for controlled experimentation with 

different types of worm outbreaks in a live environment along with the validation results for the platform. 
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The performance of the defense system was evaluated extensively using the worm emulation platform. 

This evaluation demonstrated that the defense system can react in about half a second in isolation, or in less 

than a second in the case of inter-domain cooperation. These values were obtained in a large-scale, emulated 

environment, i.e., having the system operating on a network of up to 20,000 emulated nodes (with a cluster 

of 100 real machines). These key results demonstrate the scalability of our approach. Furthermore, the 

system not only performs well in terms of scale, but also in terms of reaction time by guaranteeing recovery 

during the very early stages of the worm propagation and, most notably, with a low penetration ratio in the 

managed domain. 
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