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Abstract 
Wireless Sensor Networks have been proposed for a 

multitude of location-dependent applications.  For such 
systems, the cost and limitations of hardware on sensing 
nodes prevent the use of range-based localization schemes 
that depend on absolute point-to-point distance estimates.  
Because coarse accuracy is sufficient for most sensor net-
work applications, solutions in range-free localization are 
being pursued as a cost-effective alternative to more ex-
pensive range-based approaches.  In this paper, we present 
APIT, a novel localization algorithm that is range-free.  We 
show that our APIT scheme performs best when an irregu-
lar radio pattern and random node placement are consid-
ered, and low communication overhead is desired.  We 
compare our work via extensive simulation, with three 
state-of-the-art range-free localization schemes to identify 
the preferable system configurations of each.  In addition, 
we study the effect of location error on routing and 
tracking performance.  We show that routing performance 
and tracking accuracy are not significantly affected by 
localization error when the error is less than 0.4 times the 
communication radio radius. 

1. Introduction 
Wireless Sensor Networks (WSNs) distinguish them-

selves from other traditional wireless or wired networks 
through sensor and actuator based interaction with the envi-
ronment.  Such networks have been proposed for various 
applications including search and rescue, disaster relief, 
target tracking, and smart environments.  The inherent 
characteristics of these sensor networks make a node�s lo-
cation an important part of their state.  For such networks, 
location is being used (i) to identify the location at which 
sensor readings originate, (ii) in novel communication pro-
tocols that route to geographical areas instead of IDs ([16], 
[18], [34], [15]), and (iii) when providing other location 
based services such as the location directory service [19] 
and Sensing Coverage [20].  In addition to the applications 
and protocols mentioned, continued research in WSNs will 

serve to invent and identify many additional protocols and 
applications, many of which will likely depend on location 
aware sensing devices. 

Many localization algorithms for sensor networks have 
been proposed to provide per-node location information.  
With regard to the mechanisms used for estimating loca-
tion, we divide these localization protocols into two catego-
ries: range-based and range-free.  The former is defined by 
protocols that use absolute point-to-point distance esti-
mates (range) or angle estimates for calculating location.  
The latter makes no assumption about the availability or 
validity of such information.  Because of the hardware 
limitations of WSN devices, solutions in range-free local-
ization are being pursued as a cost-effective alternative to 
more expensive range-based approaches.  

This paper makes three major contributions to the lo-
calization problem in WSNs.  First, we propose a novel 
range-free algorithm, called APIT, with enhanced perform-
ance under realistic system configurations.  Second, though 
many different protocols [3][22][25] have been proposed to 
solve the localization problem in a range-free context, no 
prior work has been done to compare them in realistic set-
tings.  This paper is the first to provide a detailed quantita-
tive comparison of existing range-free algorithms to 
determine the system configurations under which each is 
optimal.  We perform such a study to serve as a guide for 
future research.  Third, no attempt has previously been 
made to broadly study the impact of location error on vari-
ous location-dependent applications and protocols.  This 
paper provides insight into the affect of localization accu-
racy on application performance degradation and identifies 
bounds on the estimation error tolerated by applications. 

The remainder of the paper is organized as follows:  
Section 2 discusses previous work in localization for sensor 
networks. Section 3 describes APIT.  Section 4 gives brief 
descriptions of three other state-of-the-art range-free proto-
cols to which we compare our work.  Section 5 describes 
our simulation.  Section 6 follows with a detailed perform-
ance comparison of the four range-free localization algo-
rithms described.  Section 7 further investigates the impact 
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of localization error on various location-dependent applica-
tions and protocols such as routing and target tracking.  
Finally, we conclude in Section 0. 

2. State of the Art  
Many existing systems and protocols attempt to solve 

the problem of determining a node�s location within its 
environment.  The approaches taken to solve this localiza-
tion problem differ in the assumptions that they make about 
their respective network and device capabilities.  These 
include assumptions about device hardware, signal propa-
gation models, timing and energy requirements, network 
makeup (homogeneous vs. heterogeneous), the nature of 
the environment (indoor vs. outdoor), node or beacon den-
sity, time synchronization of devices, communication costs, 
error requirements, and device mobility.  In this section, we 
discuss prior work in localization with regard to these 
characteristics; we divide our discussion into two 
subsections where we present both range-based and range-
free solutions. 

2.1. Range-Based Localization Schemes   
Time of Arrival (TOA) technology is commonly used 

as a means of obtaining range information via signal 
propagation time.  The most basic localization system to 
use TOA techniques is GPS [32].  GPS systems require 
expensive and energy-consuming electronics to precisely 
synchronize with a satellite�s clock.  With hardware limita-
tions and the inherent energy constraints of sensor network 
devices, GPS and other TOA technology present an 
unlikely solution for localization in sensor networks.      

The Time Difference of Arrival (TDOA) technique for 
ranging (estimating the distance between two communi-
cating nodes) has been widely proposed as a necessary in-
gredient in localization solutions for wireless sensor 
networks.  While many infrastructure-based systems have 
been proposed that use TDOA [1][12][27], additional work 
such as AHLos ([29][30]) has employed such technology in 
infrastructure free sensor networks.  Like TOA technology, 
TDOA also relies on extensive hardware that is expensive 
and energy consuming making it less suitable for low-
power sensor network devices.  In addition, TDOA tech-
niques using ultrasound require dense deployment (numer-
ous anchors distributed uniformly) as ultrasound signals 
usually only propagate 20-30 feet.   

To augment and complement TDOA and TOA tech-
nologies, an Angle of Arrival (AOA) technique has been 
proposed that allows nodes to estimate and map relative 
angles between neighbors [26].  Similar to TOA and 
TDOA, AOA estimates require additional hardware not 
available or likely to exist on sensor network devices.     

Received Signal Strength Indicator (RSSI) technology 
such as RADAR [1] and SpotOn [14] has been proposed 
for hardware-constrained systems.  In RSSI techniques, 
either theoretical or empirical models are used to translate 

signal strength into distance estimates.  For RF systems 
[1][14], problems occur as multi-path fading, background 
interference, and irregular signal propagation characteris-
tics (shown in an empirical study of this technology [10]) 
make range estimates inaccurate.  Work to mitigate such 
errors such as robust range estimation ([11]), two-phase 
refinement positioning ([28], [30]), and parameter calibra-
tion ([33]) have been proposed to take advantage of averag-
ing, smoothing, and alternate hybrid techniques to reduce 
error to within some acceptable limit.  While solutions 
based on RSSI have demonstrated efficacy in simulation 
and in a controlled laboratory environment, the premise 
that distance can be determined based on signal strength, 
propagation patterns, and fading models remains question-
able, creating a demand for alternate localization solutions 
that work independent of this assumption.        

2.2. Range-Free Localization Schemes 
In sensor networks and other distributed systems, er-

rors can often be masked through fault tolerance, redun-
dancy, aggregation, or by other means.  Depending on the 
behavior and requirements of protocols using location in-
formation, varying granularities of error may be appropri-
ate from system to system.  Acknowledging that the cost of 
hardware required by range-based solutions may be inap-
propriate in relation to the required location precision, re-
searchers have sought alternate range-free solutions to the 
localization problem in sensor networks. 

In [3], a heterogeneous network containing powerful 
nodes with established location information is considered.  
In this work, anchors beacon their position to neighbors 
that keep an account of all received beacons.  Using this 
proximity information, a simple centroid model is applied 
to estimate the listening nodes� location.  We refer to this 
protocol as the centroid algorithm.   

An alternate solution, DV-HOP [25] assumes a hetero-
geneous network consisting of sensing nodes and anchors.  
Instead of single hop broadcasts, anchors flood their loca-
tion throughout the network maintaining a running hop-
count at each node along the way.  Nodes calculate their 
position based on the received anchor locations, the hop-
count from the corresponding anchor, and the average-
distance per hop; a value obtained through anchor commu-
nication.  Like DV-Hop, an Amorphous Positioning algo-
rithm proposed in [22] uses offline hop-distance 
estimations, improving location estimates through neighbor 
information exchange. 

 These range-free techniques are described in more 
depth in section 4, and are used in our analysis for com-
parison with our work.   

3. APIT Localization Algorithm 
In this section, we describe our novel area-based 

range-free localization scheme, which we call APIT.  APIT 
requires a heterogeneous network of sensing devices where 
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a small percentage of these devices (percentages vary de-
pending on network and node density) are equipped with 
high-powered transmitters and location information ob-
tained via GPS or some other mechanism.  We refer to 
these location-equipped devices as anchors.  Using bea-
cons from these anchors, APIT employs a novel area-
based approach to perform location estimation by isolating 
the environment into triangular regions between beaconing 
nodes (Figure 1).  A node�s presence inside or outside of 
these triangular regions allows a node to narrow down the 
area in which it can potentially reside.  By utilizing combi-
nations of anchor positions, the diameter of the estimated 
area in which a node resides can be reduced, to provide a 
good location estimate.  

 
Figure 1 Area-based APIT Algorithm Overview 

3.1. Main Algorithm  
The theoretical method used to narrow down the pos-

sible area in which a target node resides is called the Point-
In-Triangulation Test (PIT).  In this test, a node chooses 
three anchors from all audible anchors (anchors from which 
a beacon was received) and tests whether it is inside the 
triangle formed by connecting these three anchors.  APIT 
repeats this PIT test with different audible anchor combina-
tions until all combinations are exhausted or the required 
accuracy is achieved.  At this point, APIT calculates the 
center of gravity (COG) of the intersection of all of the 
triangles in which a node resides to determine its estimated 
position.  

The APIT algorithm can be broken down into four ma-
jor steps: 1) Beacon exchange, 2) PIT Testing, 3) APIT 
aggregation and 4) COG calculation.  These steps are per-
formed at individual nodes in a purely distributed fashion.  
Before providing a detailed description of each of these 
steps, we first present the basic pseudo code for our algo-
rithm: 
 
BEGIN 
 Receive location beacons (Xi,Yi)  from N anchors.  
InsideSet = Φ // the set of triangles in which I reside 
For (each triangle Ti Є )(3

N  triangles) { 
    If (Point-In-Triangle-Test (Ti) == TRUE) 

InsideSet = InsideSet∪ { Ti } 
  If( accuracy(InsideSet) > enough ) break; 

} 
 /* Center of gravity (COG ) calculation */ 
Estimated Position = COG ( ∩Ti Є InsideSet); 
END 

We note that the size of InsideSet grows cubically with 
the number of anchor beacons heard.  For example, with 30 
audible beacons in a sensor network of 1,500 nodes, the 
radio region will be divided by 4,060 triangles into small 
pieces.  If the PIT tests render correct inside/outside deci-
sions, each decision will narrow down the area in which a 
target node can possibly reside, making the final error 
small.  In the next two sections, we describe the perfect PIT 
test and discuss the infeasibility of performing this test in a 
WSN.  We then introduce a practical approximation to this 
perfect PIT test, applicable to our work. 

3.2. Perfect PIT Test  
In this section, we provide a perfect, albeit theoretical, 

solution to following problem: For three given anchors:  
A(ax,ay), B(bx,by), C(cx,cy), determine whether a point M 
with an unknown position is inside triangle ∆ABC or not. 
  
Propositions I: If M is inside triangle ∆ABC, when M is 
shifted in any direction, the new position must be nearer to 
( further from) at least one anchor A, B or C. (Figure 2A)  
Proposition II: If M is outside triangle ∆ABC, when M is 
shifted, there must exist a direction in which the position of 
M is further from or closer to  all three anchors A, B and 
C. (Figure 2B).   

 
Figure 2 Propositions I and II 

Propositions I and II are intuitively correct (the formal 
proofs are in appendix A).  Accordingly, the Perfect PIT 
test methodology derived from propositions I and II goes as 
follows:  

 
Perfect P.I.T Test Theory: If there exists a direction such 
that a point adjacent to M is further/closer to points A, B, 
and C simultaneously, then M is outside of ∆ABC.  Other-
wise, M is inside ∆ABC.  
 

The Perfect P.I.T test is guaranteed to be correct in de-
ciding whether a point M is inside triangle ∆ABC.  How-
ever, there are two major issues with performing this in a 
WSN: 
• How does a node recognize directions of departure 

from an anchor without moving? 
• How to exhaustively test all possible directions in 

which node M might depart/approach vertexes A, B, C 
simultaneously? 
We address these issues in the next section. 
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3.3. Approximation of the Perfect PIT Test 
The Perfect P.I.T. test is infeasible in practice; how-

ever, we can still obtain a very high level of accuracy by an 
approximation method introduced in this section.   

3.3.1. Departure Test  

In previous work [1][14], researchers have assumed a 
circular, or otherwise well-defined, mathematical or em-
pirical model for radio propagation characteristics that de-
scribes the relationship between the signal strength 
degradation and the distance a radio signal travels.  Ac-
cording to an empirical study by D. Ganesan at UCLA 
[10], this assumption does not hold well in practice.  In our 
work, we make a much weaker assumption about radio 
propagation characteristics.  We assume that in a certain 
propagation direction, defined to be within a narrow angle 
from the sending anchor (Figure 3), the received signal 
strength is monotonically decreasing in an environment 
without obstacles.  This simply says that in a given direc-
tion, the further away a node is from the anchor, the weaker 
the received signal strength will be.  Through signal 
strength comparisons between neighboring nodes, this as-
sumption allows a node to determine whether a neighbor-
ing node is closer to a given anchor.  

Departure Test Definition: Test whether M is further away 
from anchor A than N.  

 
Figure 3 Departure Test  

 
In addition to gathering evidence drawn from prior 

empirical studies of WSNs [10], we checked the validity of 
our assumption on Berkeley�s MICA mote testbed in an 
obstruction free laboratory environment.  In this experi-
ment, we incrementally increased the distance between 
sending (anchor) and receiving motes.  Figure 4 shows the 
measured signal strength of 40 beacons from a single an-
chor at varying distances. 
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Figure 4 Signal Strength at Different Distances 

We conclude from Figure 4 that our assumption of 
monotonically decreasing signal strength in a given direc-
tion is usually valid.  For example, the signal strength read-
ings shown in Figure 4 are usually about 560 mv at one-
foot, and about 510 mv at five-feet.  However, we note that 
there are various points on the graph where this signal 
strength property is violated due to burst disturbance ef-
fects.  Two approaches to minimize the effect of such dis-
turbances include taking a running average of the signal 
strength over time and using robust aggregation, a tech-
nique discussed further in section 3.4.  

It should be noted that our scheme does not make any 
assumptions about the correlation between absolute dis-
tance and signal strength; hence, we consider our scheme a 
range-free solution.  More importantly, though we use ra-
dio signal comparisons throughout the paper, our scheme 
can actually work with any system, as long as it can sup-
port a form of the departure test. 

3.3.2. Approximate PIT Test  
To perform PIT testing in sensor networks without re-

quiring that nodes move, we define an Approximate PIT 
Test (APIT) that takes advantage of the relatively high 
node density of these networks (usually with connectivity 
above 6).  The basic idea behind the APIT test is to use 
neighbor information, exchanged via beaconing, to emulate 
the node movement in the Perfect PIT test.  The APIT test 
is formally described below. 

 
Figure 5 Approximate P.I.T Test 

Approximate P.I.T Test: If no neighbor of M is further 
from/closer to all three anchors A, B and C simultaneously, 
M assumes that it is inside triangle ∆ABC.  Otherwise, M 
assumes it resides outside this triangle. 

 
We further explain the APIT test through an example.  

Figure 5A presents a scenario where none of M�s neighbors 
1, 2, 3 or 4 is further from/closer to all three anchors A, B 
and C simultaneously.  In this scenario, M will assume that 
it is inside the triangle ∆ABC according to the definition.  
The other scenario is shown in Figure 5B, where neighbor 
3 will report to node M that it is further away from A, B, 
and C than M.  This allows M to assume it resides outside 
of triangle ∆ABC. 
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Figure 6 Error Scenarios for the APIT Test. 

 
Because APIT can only evaluate a finite number of di-

rections (the number of neighbors), APIT can make an in-
correct decision.  The two scenarios where incorrect 
decisions are made are depicted in Figure 6.  In Figure 6A, 
we show what we deem InToOut error, where the node is 
inside the triangle but concludes based on the APIT test 
that it is outside the triangle.  This can happen when M is 
near the edge of the triangle while some of M�s neighbors 
(3 in this case), are outside the triangle and further from all 
points ABC, in relation to node M.  As a result, M mistak-
enly thinks it is outside of triangle ABC due to this edge 
effect.  On the other hand, the irregular placement of 
neighbors can result in OutToIn error.  Figure 6B depicts a 
scenario where M is outside of triangle ABC and none of 
its neighbors is further from/closer to all three anchors, A, 
B and C, simultaneously.  This makes M mistakenly as-
sume it is inside triangle ABC.    

Fortunately, from experimentation, we find that the 
percentage of APIT tests exhibiting such an error is rela-
tively small (14% in the worst case).  Figure 7 demon-
strates this error percentage as a function of node density.  
When node density increases, APIT can evaluate more di-
rections, considerably reducing OutToInError (Figure 6B).  
On the other hand, InToOutError will slightly increase due 
to the increased chance of edge effects. 
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 Figure 7. APIT Error under Varying Node Densities 

3.4. APIT Aggregation 
Once the individual APIT tests finish, APIT aggre-

gates the results (inside/outside decisions among which 
some may be incorrect) through a grid SCAN algorithm 
(Figure 8).  In this algorithm, a grid array is used to repre-
sent the maximum area in which a node will likely reside.  
In our experiments, the length of a grid side is set to 0.1R, 

to guarantee that estimation accuracy is not noticeably 
compromised. 

For each APIT inside decision (a decision where the 
APIT test determines the node is inside a particular region) 
the values of the grid regions over which the corresponding 
triangle resides are incremented.  For an outside decision, 
the grid area is similarly decremented.  Once all triangular 
regions are computed, the resulting information is used to 
find the maximum overlapping area (e.g. the grid area with 
value 2 in Figure 8), which is then used to calculate the 
center of gravity for position estimation.   

 

 
Figure 8 SCAN Approach 

The pseudo code for APIT aggregation is as follows: 
 
For (each triangle )(3

n
iT ∈  triangles) {   

    If (APIT(Ti) == Out ) AddNegtiveTriangle(Ti); 
    If (APIT(Ti) == In ) AddPositiveTriangle(Ti);  
};  
 Find the area with Max values; 
 
 APIT aggregation is a robust approach that can mask 

errors in individual APIT tests.  As we know from Figure 
7, the majority (more than 85% in the worst case) of APIT 
tests are correct.  With limited error, the correct decisions 
will build up on the grid and the small number of errors 
only serves as a slight disturbance to the final estimation. 

3.5. A Walk through the APIT Algorithm 
In this section, we present an example to further ex-

plain our APIT algorithm. 
1. Having received beacons from anchors A, B, and C, 

each node maintains a table (Anchor ID, Location, Sig-
nal Strength) for each anchor heard (Figure 9). 

 

Node M Node 1

1mv5623C
3mv3145B

2mv2020A
SS(X,Y)

1mv5623C
3mv3145B

2mv2020A
SS(X,Y)

3mv5623C
2mv3145B

1mv2020A
SS(X,Y)

3mv5623C
2mv3145B

1mv2020A
SS(X,Y)

 
Figure 9 Table of heard Anchors 

2. Each node beacons once to exchange anchor tables with 
its neighbors.  These tables are merged at every node to 
maintain neighborhood state (Figure 10). 
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Figure 10 Combined Table 

3. APIT runs on every column of the node�s table to de-
termine whether a neighboring node exists that has con-
sistently larger/smaller signal strengths from the three 
anchors A, B and C2.  If such a neighbor is found, M 
assumes that it is outside triangle ABC.  If no such 
neighbor is found, M assumes it is inside this region. 

4. Each node repeats step 3 for varying combinations of 
three anchors.  (Note: we only demonstrate 1 combina-
tion of three anchors in this example). 

5. The algorithm described in Section 3.4 is then used to 
determine the area with maximum overlap.  

6. Finally, the center of gravity of this area is used as the 
final location estimation. 

3.6. APIT Performance and Overhead Analysis 
We consider a senor network with N anchors and M 

nodes.  Since APIT requires each anchor and node to 
broadcast once, the communication overhead of our APIT 
algorithm is N+M.  We have proven that if a target node 
can receive beacons from K anchors, the maximum number 
of polygons partitioned by these anchors can be achieved 
by placing all anchors on a convex curve.  This anchor 
placement creates (K-1)(K-2)/2 + K(K-1)(K-2)(K-3)/24 
partitions.  Assuming the nominal anchor radio range is R, 
the average size of each partition is then:  

3)/242)(K1)(K K(K2)/2 1)(K(K
R

−−−+−−

2π  

It should be noted that the above formula only indi-
rectly reflects the upper bound performance of the Perfect 
PIT test.  APIT has less accuracy due to the approximation 
as we will show in our evaluations.   

By using our SCAN algorithm during APIT aggrega-
tion, we bound the computational complexity of the APIT 
algorithm by O(L) (L is the number of APIT tests and each 
test only requires several comparisons).  If we use a geo-
metric algorithm to perform APIT aggregation precisely, 
the computational complexity will be O(L2).  

3.7. Key Observations 
We note several key observations here to justify the 

use of our APIT algorithm in sensor networks. 

                                                           
2 No P.I.T. test is performed when neighboring nodes do not share 
three common anchor points. 

• Redundancy and high node density are the key positive 
characteristics of sensor networks over traditional ad 
hoc networks.  By exploiting this redundancy, aggre-
gated decisions can provide good accuracy during lo-
cation estimation, regardless of the fact that 
information obtained by an individual test is coarse 
and error prone. 

• In order to obtain high redundancy without increasing 
deployment costs, we can use a single moving anchor 
that sends out beacons at different locations to localize 
all nodes inside a sensor network.  

4. Range-Free Localization Algorithms 
In this section, we briefly describe the key features of 

three state-of-the-art range-free localization algorithms 
studied in our simulation.  These algorithms are imple-
mented in accordance with the published design; with the 
exception of a few enhancements, made to ensure that our 
comparison is as fair as possible.  The protocols discussed 
include: 

 
• Centroid Scheme [3] by N.Bulusu  and J. Heidemann  
• DV-Hop Scheme [25] by D.Niculescu and B. Nath  
• Amorphous Scheme [22] by R. Nagpal  
 

In addition to the aforementioned four range-free algo-
rithms, we implement an oracle version of APIT that uses 
the Perfect PIT Test defined in Section 3.2.  For complete-
ness, we provide brief descriptions of these algorithms.  
More details can be found in [3], [22], and [25].    

4.1. Centroid Localization 
N. Bulusu and J. Heidemann [3] proposed a range-free, 

proximity-based, coarse grained localization algorithm, that 
uses anchor beacons, containing location information 
(Xi,Yi), to estimate node position.  After receiving these 
beacons, a node estimates its location using the following 
centroid formula: 







 ++++

=
N

YY
N

XX
YX NN

estest
LL 11 ,),(  

The distinguished advantage of this centroid localiza-
tion scheme is its simplicity and ease of implementation.  
In a later publication [4], N. Bulusu augments his work by 
suggesting a novel density adaptive algorithm (HEAP) for 
placing additional anchors to reduce estimation error.  Be-
cause HEAP requires additional data dissemination and 
incremental beacon deployment, we do not include this 
later work in our simulations for the sake of fairness.  

4.2. DV-Hop localization 
DV-Hop localization is proposed by D. Niculescu and 

B. Nath in the Navigate project [24].  DV-Hop localization 
uses a mechanism that is similar to classical distance vector 
routing.  In this work, one anchor broadcasts a beacon to be 
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flooded throughout the network containing the anchors 
location with a hop-count parameter initialized to one. 
Each receiving node maintains the minimum counter value 
per anchor of all beacons it receives and ignores those bea-
cons with higher hop-count values.  Beacons are flooded 
outward with hop-count values incremented at every inter-
mediate hop.  Through this mechanism, all nodes in the 
network (including other anchors) get the shortest distance, 
in hops, to every anchor.  The hop count for a single anchor 
A, generated by simulation, is shown in Figure 11. 

 

 
Figure 11 Anchor Beacon Propagation Phase   

In order to convert hop count into physical distance, 
the system estimates the average distance per hop without 
range-based techniques.  Anchors perform this task by ob-
taining location and hop count information for all other 
anchors inside the network.  The average single hop dis-
tance is then estimated by each anchor using the following 
formula: 

∑
∑ −+−

=
j

jiji
i h

yyxx
HopSize

22 )()(  

In this formula, (xj,yj) is the location of anchor j, and hj is 
the distance, in hops, from anchor j to anchor i.  Once cal-
culated, anchors propagate the estimated HopSize informa-
tion out to the nearby nodes. 

Once a node can calculate the distance estimation to 
more than 3 anchors in the plane, it uses triangulation 
(Multilateration) to estimate its location.  Theoretically, if 
errors exist in the distance estimation, the more anchors a 
node can hear the more precise localization will be.   

4.3. Amorphous localization  
The Amorphous Localization algorithm [22], proposed 

independently from DV-Hop, uses a similar algorithm for 
estimating position.  First, like DV-Hop, each node obtains 

the hop distance to distributed anchors through beacon 
propagation. 

Once anchor estimates are collected, the hop distance 
estimation is obtained through local averaging.  Each node 
collects neighboring nodes� hop distance estimates and 
computes an average of all its neighbors� values.  Half of 
the radio range is then deducted from this average to 
compensate for error caused by low resolution.  

The Amorphous Localization algorithm takes a differ-
ent approach from the DV-Hop algorithm to estimate the 
average distance of a single hop.  This work assumes that 
the density of the network, nlocal, is known a priori, so that 
it can calculate HopSize offline in accordance with the 
Kleinrock and Sliverster formula [17]: 

)1(
1

1

1arccos 2

dteerHopSize
ttt

n
n

local

local ∫−





 −−−− −+= π  

Finally, after obtaining the estimated distances to three 
anchors, triangulation is used to estimate a node�s location. 

4.3.1. Amorphous Localization Enhancement 
By using only three anchors, Nagpal suggests in [22] a 

critical minimum average neighborhood size of 15, in order 
to obtain good accuracy.  As shown in the APIT algorithm, 
increasing estimation redundancy reduces estimation error.  
We, therefore, argue that the same design philosophy can 
be applied to [22].  By increasing the number of anchors 
used in their estimation, we can effectively reduce the criti-
cal minimum average neighborhood requirement from 15 
nodes per communication area, to 6, in uniform node 
placement (Figure 12) without reducing estimation accu-
racy (this number would be 8 for random node placement). 

This enhancement uses work done by Jan Beutel [2] in 
the Picoradio Project at UC Berkeley.  A minimum mean 
square error (MMSE) algorithm triangulates node positions 
based on the locations of multiple anchors (in this case 
more than 3), and associates distances between each anchor 
and the target node.  
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Figure 12 Phase Transition in the DV-Based Algorithm 
 

Using this enhancement, we show that the amorphous 
algorithm can actually work in a sparsely connected net-
work.  Increasing the number of anchors participating in 
multilateration can dramatically reduce the required level 
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of network connectivity.  In Figure 12, we see that when 3 
anchors are used, the estimation error (normalized to units 
of node radio range R) is large, regardless of the level of 
connectivity.  By increasing the number of anchors to 5, we 
obtain better precision, with lower levels of connectivity.    

More importantly, Figure 12 shows two kinds of phase 
transitions that occur.  First, when the neighbor size ex-
ceeds 8, increasing the number of anchors participating in 
multilateration brings down the estimation error below half 
of the radio range, a bound tolerated by most applications.  
Second, the estimation accuracy increases dramatically as 
the number of anchors heard increases up to 6.  However, 
after that, continuing to increase the number of anchors 
heard only slightly increases precision.  In accordance with 
Figure 12, for DV-based algorithms, in order to confine the 
average estimation error to reside within half of the radio 
range, we suggest that both the neighborhood size, and the 
number of anchors used in multilateration, remain about 
8~10.  We argue that it is not quite cost-effective to further 
increase node density or the number of anchors used in 
multilateration for better accuracy after these phase transi-
tion points.   

4.4. Perfect PIT algorithm  
As previously mentioned, the precision of our APIT 

algorithm is highly dependent on the correctness of the 
APIT Test.  To obtain boundary conditions for a best esti-
mate in our localization scheme, we simulate a perfect PIT 
algorithm that utilizes an oracle, which can guarantee cor-
rectness when determining whether a node resides within 
the triangular region created by the three anchors.  We use 
this as a precision bound on our APIT algorithm.   

5. Simulation Settings  
This section describes the simulation settings we use in 

our evaluation. 

5.1. Radio Model  
Some previous work in localization assumes a perfect 

circular radio model exists.  As stated before, empirical 
studies [10] on real testbeds have shown that this assump-
tion is invalid for WSNs.  To ensure that our evaluation is 
as true to reality as possible, we use a more general radio 
model in our evaluation.  Specifically, we assume a model 
with an upper and lower bound on signal propagation 
(Figure 13).  Beyond the upper bound, all nodes are out of 
communication range; and within the lower bound, every 
node is guaranteed to be within communication range.  If 
the distance between a pair of nodes is between these two 
boundaries, three scenarios are possible: 1) symmetric 
communication.  2) uni-directional asymmetric communi-
cation, and 3) no communication.   

 
 DOI = 0.05     DOI = 0.2 

Figure 13 Irregular Radio Pattern 

The parameter DOI is used to denote the irregularity of 
the radio pattern.  It is defined as the maximum radio range 
variation per unit degree change in the direction of radio 
propagation.  When the DOI is set to zero, there is no range 
variation, resulting in a perfectly circular radio model.  To 
get a better idea of how this DOI parameter affects signal 
propagation characteristics, Figure 13 shows the radio pat-
terns generated in simulation with DOI values set to 0.05 
and 0.2 respectively. 

5.2. Placement Model 
In our simulations, nodes and anchors are distributed 

in a rectangular terrain in accordance with predefined den-
sities.  Two common placement strategies are investigated, 
namely random and uniform.  The first, random placement, 
distributes all nodes and anchors randomly throughout the 
terrain.  In the uniform placement case, the terrain is parti-
tioned into grids and nodes and anchors are evenly divided 
amongst these grids.   

5.3. System Parameters 
In our experiments, we study several system-wide pa-

rameters that we feel directly affect estimation error in 
range-free localization algorithms.  A description of these 
parameters follows: 
• Node Density (ND): Average number of nodes per 

node radio area. 
• Anchors Heard (AH): Average number of Anchors 

heard by a node and used during estimation. 
• Anchor to Node Range Ratio (ANR): The average 

distance an anchor beacon travels divided by the aver-
age distance a regular node signal travels.  When this 
value equals one, the anchor and nodes have the same 
average radio range.  The larger this value, the fewer 
anchors required to maintain a desired AH value. 

•  Anchor Percentage (AP): The number of anchors di-
vided by the total number of nodes.  This value can be 
derived from the three parameters described above us-
ing the formula:  AP=AH/(AH+ND*ANR2). 

• Degree of Irregularity (DOI): DOI is defined in section 
5.1 as an indicator of radio pattern irregularity.   

• GPS Error: In reality, GPS equipped anchors will ren-
der imprecise readings.  In our evaluation, this parame-
ter is defined as the maximum possible distance from 
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the real anchor position to the GPS estimated anchor 
position in units of node radio range (R). 

• Placement: Random and Uniform node/anchor place-
ments are investigated in the evaluation. 
 
In the evaluation, all distances including error estima-

tion are normalized to units of node radio range (R) to en-
sure generally applicable results. 

5.4. A Note in Comparison  
The range-free localization algorithms studied in this 

paper share a common set of system parameters, and most 
of them are defined in a consistent way across the algo-
rithms we analyze.  However, due to different anchor bea-
con propagation methods utilized in different algorithms, 
the Anchor to Node Range Ratio (ANR) parameter varies 
between algorithms.  In the Centroid and APIT algorithm, 
direct communication between anchors and target nodes 
(nodes attempting to determine their location) is used.  In 
this case, ANR is set to the physical radio range ratio be-
tween anchor and target nodes.  In the Amorphous and DV-
Hop algorithms studied, the physical radio range of anchors 
is the same as that of target nodes, and the ANR is set to 
the distance an anchor beacon can propagate in units of 
node radio range (R).  In our evaluation, we indicate any 
performance implications that result from this implementa-
tion difference.  

6. Evaluation  
This section provides a detailed quantitative analysis 

comparing the performance of the range-free localization 
algorithms described in Sections 3 and 4.  The obvious 
metric for comparison when evaluating localization 
schemes is location estimation error.  We have conducted a 
variety of experiments to cover a wide range of system 
configurations including varying 1) anchor density, 2) tar-
get node density, 3) radio range ratio (ANR), 4) GPS error, 
and 5) radio propagation patterns.   Because communica-
tion can have a significant impact on sensor network sys-
tems with low bandwidth, we also use communication 
overhead, in terms of number of messages exchanged, as a 
telling secondary metric to evaluate the cost and perform-
ance of the localization schemes studied. 

Outside of studying the effect of certain parameters on 
localization error, we use default values of AH=16, ND=8, 
and ANR=10 (Anchor Percentage = 2%) in most of our 
experiments.  These settings are in line with our expecta-
tion of future sensor network technology and facilitate 
comparisons between figures.  In all of our graphs, each 
data point represents the average value of 600 trials with 
different random seeds.  This ensures us that the 90% con-
fidence intervals for the data are within 5~10% of the mean 
shown.  We note that for legibility reasons, we do not plot 
these confidence intervals in this paper.  Full experimental 
data can be obtained from the authors upon request. 

6.1. Localization Error when Varying AH 
In this experiment, we analyze the effect of varying the 

number of anchors heard at a node (AH) to determine its 
effect on localization error.  Figure 14A shows that the 
overall estimation error decreases as the number of anchors 
heard increases.  However, it is important to note that dif-
ferent algorithms transition at different points in the graph.  
For example, the Amorphous and DV-Hop schemes im-
prove rapidly when AH is below 7, and are nearly insensi-
tive to the addition of anchors.  In contrast, the precision of 
APIT and the Centroid localization scheme constantly im-
prove as AH is increased (Figure 14B and Figure 14C).  
Our APIT algorithm performs worse than the Centroid al-
gorithm when AH is below 8 due to the fact that the diame-
ter of the divided area is not small enough.  This effect is 
significantly reduced by increasing AH values.  For larger 
AH values, APIT consistently outperforms the Centroid 
scheme.  Figure 14B extends AH to higher values in order 
to show estimation error below 0.6 R.  We note that our 
APIT algorithm requires only 12 anchors to reach the 0.6R 
level while the Centroid scheme requires 24.  Finally, 
Figure 14C presents the same experimental results for ran-
dom node placement.  By comparing graphs B (uniform 
placement) and C (random placement), we show that the 
DV-Based algorithm is more sensitive to irregular node 
placement than both APIT and the Centroid scheme.  This 
is mainly due to the fact that HopSize estimation in the DV-
Hop and Amorphous schemes, is less precise in non-
isotropic deployment. 
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Figure 14 Error Varying AH 

6.2. Localization Error when Varying ND 
Figure 15 explores the effect of node density (ND) on 

the localization estimation accuracy.  For all but the Cen-
troid algorithm, localization error decreases as the number 
of neighbors increases.  Since there is no interaction be-
tween nodes in the Centroid algorithm, we see nearly con-
stant results while varying ND.  However, due to its 
relatively simple design, the Centroid localization scheme 
does not perform as well as the others. 
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Figure 15 Error Varying ND 

 Because the offline estimation of HopSize in the 
Amorphous algorithm has large error when the node den-
sity is small, the estimation error is large when the node 
density is below 10.  APIT and DV-Hop however, are ro-
bust to varying ND, and produce good results as long as the 
neighbor density remains above 6.  By comparing Figure 
15A (DOI=0.1) and Figure 15B (DOI=0.2), we show that 
the DV-Based algorithm, especially the Amorphous algo-
rithm, is more sensitive to irregular radio patterns than the 
APIT scheme.  This is mainly due to the fact that HopSize 
estimation in the previous schemes is less precise in the 
presence of irregular radio patterns.  However, it should be 
noted that DV-Hop abates this error by online estimation. 

 

6.3. Localization Error when Varying ANR 
Section 6.1 demonstrated that a large number of an-

chors are desired for good estimation results.  The cost of 
having such a large percentage of anchors can be amelio-
rated by increasing the anchor radio range to which bea-
cons travel.  This happens because larger beacon 
propagation distances mean less anchors required to 
achieve the same AH value.  For example, if an algorithm 
requires AH equal to the neighborhood node density (ND), 
we need 50% of the nodes to be anchors when the ANR 
equals one.  By increasing the ANR by a factor of 10, we 
can reduce the required anchor percentage to only 1%.  

The implication with this solution, as shown in Figure 
16, is that estimation error increases as ANR increases.  
This occurs because larger beacon propagation distances 
result in larger accumulated error.  We note from Figure 16 
that while all algorithms possess this relationship, the esti-
mation error of the Centroid algorithm increases more sig-
nificantly with increased ANR, in comparison to the other 
three algorithms.  However, we also note that when the 
ANR is smaller than 3, APIT has a large InToOutErrorRa-
tio due to the edge effect (described in Section 3.3.2).  In 
this system configuration, a Centroid algorithm has its ad-
vantages.  
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Figure 16. Error under Different ANR 
 
From an alternate perspective, we show that we can 

increase accuracy by using a smaller ANR.  For example, 
the estimation error, shown in previous sections, can be 
reduced by about 30~40% when we use an ANR value of 5 
instead of 10.  However, this will increase the anchor per-
centage (AP) from 2% to 8%, requiring that more anchors 
be deployed. 

6.4. Localization Error when Varying DOI 
In this experiment, we investigate the impact of irregu-

lar radio patterns on the precision of localization estima-
tion.  It is intuitive that irregular radio patterns can affect 
the network topologies resulting in irregular hop count dis-
tributions in the Amorphous and DV-Hop algorithms.  The 
HopSize formula, used in the Amorphous algorithm, as-
sumes that radio patterns are perfectly circular.  We can 
see, in Figure 17, how this inaccurate estimate directly con-
tributes to localization error as the DOI increases.  In con-
trast, the DV-Hop scheme estimates HopSize using online 
information exchanged between anchors.  This results in 
much better performance than the Amorphous algorithm, 
even though they are both DV-Based algorithms.  Because 
the Centroid and APIT algorithms do not depend on hop-
count and HopSize estimations, and because the effect of 
DOI is abated by the aggregation of beaconed information, 
these algorithms are more robust than the Amorphous algo-
rithm. 
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Figure 17. Error under Varying DOI 

6.5. Localization Error when Varying GPS Error  
In other experiments, we consider the distinct possibil-

ity that the GPS or an alternative system, which provides 
anchor nodes with location information, is error prone.  
Figure 17 A and B demonstrate how initial location error at 
anchors directly affects the error of the range-free localiza-
tion protocols studied.  In general, GPS error is abated con-
siderably by utilizing location information from multiple 
anchors in all four schemes.  In the random error case 
(Figure 17A), we assume GPS error is isotropic; that is, the 
estimation error can occur in any direction.  In this situa-
tion, the error impact of GPS is very small.  We also see 
(Figure 17B) that when GPS error is biased (skewed in a 
particular direction) due to non-random factors, the estima-
tion error of all schemes increases at a much slower rate 
than GPS error due to aggregation. 
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6.6. Communication Overhead for Varying AH 
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Figure 18 Communication Overhead for Varied AH 

Figure 18 shows the results of experiments that test the 
communication overhead with regard to AH.  It is impor-
tant to note that the Centroid and APIT schemes use long-
range anchor beacons, while the Amorphous and DV-hop 
algorithms use short-range beacons.  Considering that en-
ergy consumption quadratically increases with increased 
beacon range, in Figure 18 we equate one long-range bea-
con to ANR2 short-range beacons.  This means that one 
long-range beacon sent out by APIT is counted as 100 
short-range beacons when ANR = 10.  Figure 18 shows 
that without flood-based beacon propagation, the Centroid 
and APIT algorithms use fewer beacons than DV-based 
algorithms.  For example, the APIT algorithm uses only 
about 10% of the beacons that the DV-Hop scheme uses 
when AH is set to 16. 

Figure 18 also shows that APIT requires more beacons 
than the Centroid algorithm because of the neighborhood 
information exchange.  In addition, DV-Hop requires more 
beacons than the Amorphous algorithm because of addi-
tional online HopSize estimation requirements.  

6.7. Communication Overhead for Varied ND 
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Figure 19 Overhead for Varied Node Density 

Figure 19 demonstrates the effect of neighborhood 
density on required communication for localization.  We 
can see from this graph that because there is no interaction 

between nodes in the Centroid scheme, the overhead stays 
constant.  Communication overhead in our APIT scheme 
does increase with increased node density; however, it does 
so at a much lower rate than the DV-based schemes.  

Drawing conclusions from Figure 18 and Figure 19, 
we argue that as far as the communication overhead is con-
cerned, the DV-Hop and Amorphous schemes are less suit-
able solutions for sensor networks with limited bandwidth 
when compared to the APIT and Centroid schemes.  This is 
due to the large number of beacons required in these 
schemes.  

6.7.1. Evaluation Summary 
In addition to the experiments previously discussed, 

we have conducted a variety of experiments to cover a 
varying range of system configurations.  These experiments 
help us better understand the situations where different 
localization schemes considered are more or less appropri-
ate than one another.  

Table 1 provides an overview of our results, and it can 
be used as a design guide for applying range-free schemes 
in WSN systems.  This table shows that no single algorithm 
works best under all scenarios, and that each localization 
algorithm has preferable system configurations.  Though 
the Centroid scheme has the largest estimation error, its 
performance remains independent of node density and it 
boasts the smallest communication overhead and simplicity 
of implementation.  Although DV-Hop requires more 
communication beacons to perform online estimation, it is 
notably more robust than the Amorphous algorithm in 
HopSize estimation.  Finally, our APIT algorithm trumps 
the other algorithms when an irregular radio pattern and 
random node placement are considered, and low communi-
cation overhead is desired.  However, we acknowledge that 
APIT has more demanding requirements for both ANR 
values and the number of anchors used in localization. 

 
 Centroid DVHop Amorp. APIT 
Accuracy  Fair Good Good Good 
NodeDensity >0 >8 >8 >6 
AnchorHeard >10 >8 >8 >10 
ANR  >0 >0 >0 >3 
DOI Good Good Fair Good 
GPSError Good Good Fair Good 
Overhead Smallest Largest Large Small 

Table 1 Performance and requirements summary 

7. Localization Error Impacts 
In localization for WSNs, achieving better results 

(usually with regard to location accuracy) requires increas-
ing the relative cost of the localization scheme via addi-
tional hardware, communication overhead, or the 
imposition of constraints and system requirements.  Al-
though more accurate location information is preferable, 
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the desired level of granularity should depend on a 
cost/benefit analysis of the protocols that utilize this infor-
mation.  In this section, we investigate the impact of local-
ization error on other communication protocols and 
proposed sensor network applications.  Designers of sensor 
network systems with certain performance requirements 
can use this analysis to aid in their architectural design and 
in setting system parameters.  Although requirements are 
expected to vary between deployments, we found that in 
the general case for the protocols studied, performance 
degradation is moderate and tolerable when the average 
localization error is less than 0.4R. 

7.1. Routing Performance 
A localization service is critical for location-based 

routing protocols such as GF [23], GPSR [16], LAR [18] 
and GAF [34].  In these protocols, individual nodes make 
routing decisions based on knowledge of their geographic 
location.  While most work in location-based routing as-
sumes perfect location information, the fact is that errone-
ous location estimates are virtually impossible to avoid.  
Problems arise as error in the location service can influence 
location-based routing to choose the best next hop (the 
neighbor closest to the destination), or can make a node 
inadvertently think that the packet could not be routed be-
cause no neighbors are closer to the final destination. 

To investigate the impact of localization error on rout-
ing, we studied the GF [23] routing protocol under simple 
network conditions.  For these experiments, we model low 
traffic conditions so that network congestion does not in-
fluence our results.  Our baseline is �perfect localization�, 
the protocol where every sensor node knows its correct 
physical location.   
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Figure 20: Delivery ratio with different localization errors, 
changing node density 

Figure 20 shows the delivery ratio with regard to node 
density for various levels of location error.  From this 
graph, we can see that for average localization errors of 0.2 
and 0.4 times the node radio range, the delivery ratios of 
GF are very close to the baseline (no error).  Beyond these 
numbers, the results diminish with increased error; a trend 
that could be problematic and costly depending on the im-
plemented architecture, reliability semantics, tolerance of 

message loss, and application requirements.  For example, 
when localization error is the same as the node radio range, 
even with fairly high node density (20 nodes per radio 
range), the delivery ratio still falls below 60%. 
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Figure 21: Routing overhead with different localization 
errors under varying node density 

Another metric affected by localization error is the 
route path length.  In Figure 21 we measure the hop count 
increase (in percentage) due to location error to assess the 
cost in communication overhead of this error.  We see from 
this graph that for low localization error (less than 0.4R), 
this routing overhead remains moderate (<15%).  However, 
as was the case for the delivery ratio metric, when localiza-
tion error grows beyond 0.4R, the routing overhead in-
creases to as high as 45%.  We also note that this trend 
occurs regardless of the network node density, a fact that 
was not true for our previous metric. 

7.2. Target Estimation Performance 
Many of the most frequently proposed applications for 

WSNs utilize target position estimations for tracking, 
search and rescue, or other means.  In these proposed ap-
plications, when a target is identified, some combination of 
the nodes that sensed that target report their location to a 
centralized node (leader or base station).  This node then 
performs aggregation on the received data to estimate the 
actual location of the target.  Because target information 
could be used for locating survivors during a disaster, or 
identifying an enemy�s position for strategic planning, the 
accuracy of this estimation is crucial to the application that 
uses it.  

Intuitively an increase in localization error will directly 
lead to target estimation error.  To better understand the 
degree to which this error will propagate to other protocols, 
we investigate average estimation error under different 
node densities for varying degrees of location error.  For 
these experiments, we use a simple and widely used target 
estimation algorithm: the average x and y coordinates of all 
reporting nodes3 are taken as the target location estimation.  
We set the sensing range equal to the node radio range so 
that the node density is equivalent to the average number of 
sensors involved in target estimation.  The results of vari-

                                                           
3 Nodes report when they sense the event of interest in the envi-
ronment. 
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ous experiments are depicted in Figure 22.  This graph 
shows that target estimation error due to location error is 
dampened during the aggregation process.  As before, our 
baseline occurs when no localization error exists.  Aside 
from showing varying degrees of estimation error with 
respect to node location error, Figure 22 also shows that the 
absolute target estimation error decreases with increased 
node density.  For example, with localization error is equal 
to 1.0R, and node density reaches 12 nodes per radio range, 
the estimation error is only about 67% as large as when the 
node density is 6.  From this chart we see that more nodes 
participating in estimation results in more random estima-
tion error being ameliorated through aggregation. 
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Figure 22: Target estimation error with different localiza-
tion errors under varying node density 

7.3. Object Tracking Performance 
We further evaluate the performance of target estima-

tion by simulating a tracking application that uses estima-
tion in context.  In this experiment, a mobile evader 
randomly walks around the specified terrain while a pur-
suer attempts to catch it.  In this simple experiment, the 
pursuer is informed of the current location of the evader 
periodically via sensing nodes in the terrain that detect the 
evader, coordinate to estimate the targets position with re-
gard to their own positions, and periodically report this 
result to the mobile pursuer.  When receiving a report, the 
pursuer readjusts its direction in an attempt to intercept the 
evader.  When the pursuer comes within the node commu-
nication radius of the evader, the evader is considered 
caught and the simulation ends.  For this experiment, we 
compare the average tracking time (the time from pursuer 
take-off to when the evader is caught) under different local-
ization errors, to the tracking time in the case of no local-
ization error.  Figure 23 shows normalized tracking time in 
relation to the pursuer speed for various degrees of local-
ization error. 

From Figure 23 we can see that the tracking time 
overhead decreases with increased pursuer speeds.  More 
importantly, Figure 23 shows that tracking time increases 
as localization error increases.  This result implies that it is 
important for tracking applications with real-time require-

ments to take localization error into consideration.  For 
example, when the average localization error is known to 
be 0.8R, and the Pursuer speed is 5 units per second, the 
Pursuer requires 30% more time in comparison to the ideal 
situation in which no localization error exists.  To reduce 
this overhead to 10%, either the pursuer�s speed must be 
increased to 10 units per second, or we must reduce the 
estimation error to 0.4R.  Again, Figure 23 shows that 0.4R 
is a tolerable bound for estimation error since tracking time 
only increases by 7% in the worst case. 
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Figure 23: Normalized tracking time with different local-
ization errors varying pursuer speed.  Terrain size 
1000x1000 units, Radio range = 40units, density = 8 nodes 
per radio circle.  Evader speed = 5 units /second 

8. Conclusion 
Given the inherent constrains of the sensor devices en-

visioned and the estimation accuracy desired by location-
dependent applications, range-free localization schemes are 
regarded as a cost-effective and sufficient solution for lo-
calization in sensor networks.  From our extensive com-
parison study, we identify preferable system configurations 
of four different recently proposed range-free localization 
schemes as a design guideline for further research.  In par-
ticular, an APIT scheme, proposed in this paper, performs 
best when irregular radio patterns and random node place-
ment are considered, and low communication overhead is 
desired.  Moreover, we provide insight on how localization 
error affects a variety of location-dependent applications.  
These results show that the accuracy provided by the 
range-free schemes considered is sufficient to support vari-
ous applications in sensor networks with only slight per-
formance degradation.  
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Appendix A: 

 
Figure 24  Proofs for Propositions 

Proof of Proposition I: 
 

We first prove that M' is closer to at least one vertex 
than M. As shown in Figure 24A, let M move a short dis-
tance to another point M� which is also within the ABC∆ .  
Consider the different cases: 

Case 1: M� is on one of the three line segments AM, 
BM or CM.  Without loss of generality (WLOG), we can 
say that M� is on BM, call it M�1.  Clearly, BM�1 < BM, 
i.e., the point moves towards B � hence proved. 

Case 2: M� is in one of ABM∆ , BCM∆ or ACM∆ .  
WLOG let M� be in BCM∆ .  From M, draw a line perpen-
dicular to BC that meets BC at D� hence proved. 

Case 2.1: M� is on MD.  Let us call this point M�2.  
Since DM�2 < DM, by Pythagorean Theorem, BM�2 < BM, 
i.e., the point moves towards B � hence proved. 

Case 2.2: M� is in BDM∆ or CDM∆ .  Again, WLOG, 
let M� be in CDM∆ .  Call it M�3.  Now, draw the circum-
circle of CDM∆ (A circle that passes through three vertices 
C,D and M).  Note that CM is the diameter of this circle 
and M�3 is an interior point.  Obviously, CM�3 < CM, i.e., 
the point moves towards C � hence proved 

Second, by drawing three line segments AM�, BM� 
and CM�, we prove symmetrically that M is closer to at 
least one vertex than M�, hence M� is further from at least 
one vertex than M. 

Proof of Proposition II: 
 

As shown in Figure 24B, we prove this proposition by 
construction.  For any point M exterior to ABC∆ , there is 
always an edge connecting two vertices of the triangle such 
that the third vertex lies on one side of the edge while M is 
on the other. WLOG, we can assume that BC to be such an 
edge. From M draw a perpendicular line to BC meeting it 
at D. Choose M� to be a point on line DM below M. By 
Pythagorean Theorem, AM<AM�, BM<BM� and 
CM<CM�, hence proved. 


