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Abstract
The Intel Concurrent File System (CFS) for the iPSC/2

hypercube is one of the first production file systems to utilize the
declustering of large files across numbers of disks to improve I/O
performance. The CFS also makes use of dedicated I/O nodes,
operating asynchronously, which provide file caching and pre-
fetching. Processing of I/O requests is distributed between the
compute node that initiates the request and the I/O nodes that ser-
vice the request. The effects of the various design decisions in the
Intel CFS are difficult to determine without measurements of an
actual system. We present performance measurements of the CFS
for a hypercube with 32 compute nodes and four I/O nodes (four
disks). Measurement of read/write rates for one compute node to
one I/O node, one compute node to multiple I/O nodes, and multi-
ple compute nodes to multiple I/O nodes form the basis for the
study. Additional measurements show the effects of different
buffer sizes, caching, prefetching, and file preallocation on system
performance.

1. Introduction
Multicomputers, with many processing nodes connected

through a high-speed interconnection network, are rapidly becom-
ing a common hardware platform for high-speed scientific compu-
tation. In such systems, each node consists of a processor-
memory pair together with specialized hardware for message
passing across the interconnection network. The Intel Scientific
Computers iPSC/2 and iPSC/860 and the nCUBE 2 are typical
machines in this category.

Scientific computations often require access to large data
files, for initial input, for final output, and for scratch storage dur-
ing a computation. High-performance concurrent file systems for
multicomputers have been available only since about 1988. The
Intel Concurrent File System (CFS) discussed in this paper is one
of the first delivered concurrent file systems in which read/write
operations on a single file can occur in parallel.

The design choices in a concurrent file system affect the
performance of the system in ways that are not well understood.
Unlike a conventional sequential file system, where there is a sin-
gle processor requesting data from one or more I/O channels, a
multicomputer system such as the Intel CFS may have M compute
nodes making concurrent I/O requests to N I/O nodes, each

controlling a channel to one or more I/O devices. Our goal in this
paper is to investigate the performance implications of some of
the key design choices made in the Intel CFS.

1.1. Background
Input/output subsystems that utilize many inexpensive

magnetic disks accessed in parallel (in contrast to the traditional
reliance on a single large expensive disk, the so-called SLED
design [PATT88]) have been a topic of a number of recent papers.
Some of the central issues in the design of such I/O subsystems
include:

1. Architecture of the I/O subsystem. How should the
hardware of the I/O subsystem be organized? Should the disks be
accessed synchronously or asynchronously?
[KIM86, REDD90, SALE86] Should all disks be on a single chan-
nel, or on multiple channels? How should processing of I/O
requests be distributed? [PIER89, REDD89] How should reliability
be achieved? [PATT88]

2. Disk caching. Use of memory in the I/O processor as a
cache for disk blocks is a common method for smoothing the
large speed difference between physical disk devices and main
memory. Can such ‘‘disk caching’’ be used effectively for pre-
fetching input blocks or for staging output blocks in a concurrent
I/O system? [KOTZ90]

3. File storage structure. How should the file system be
organized in a concurrent I/O system? Should individual files be
‘‘striped’’ or ‘‘declustered’’? [CROC89, LIVN87, SALE86] What is
the appropriate unit of decomposition—bits, bytes, or larger
blocks? How should the overall file system be organized?
[KOTZ90, PIER89]

Almost all the research on these design alternatives has
been limited to simulation studies. A few preliminary studies that
involve measurement of early versions of the Intel CFS are
presented in [ASBU89, BRAD89, PIER89, PRAT89]. Our study here
is based on the production software provided by Intel for the sys-
tem. To our knowledge, this study represents the first published
performance measurements on the production system.

The Intel CFS represents one slice from the range of design
choices mentioned above. In the Intel CFS, small groups of disks
(1–4) are attached to dedicated ‘‘I/O nodes’’. I/O nodes and their
disks work entirely asynchronously from other I/O nodes.
Memory on the I/O nodes is used for disk caching. Prefetching
and ‘‘preallocation’’ are used to speed I/O operations. Individual
files are split into 4KB1 blocks which are ‘‘declustered’’ [LIVN87]
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1In this paper, K = 210 (1024), not 103 (1000).



and spread across all the available I/O nodes and disks. Process-
ing of I/O requests is distributed between the ‘‘compute node’’
that initiates the request and the I/O node that services the request.
I/O requests from any compute node to any I/O node proceed con-
currently and asynchronously.

1.2. Organization of This Paper
In the next section, we outline the methodology used to

evaluate the Intel CFS, paying particular attention to careful
definition of terms such as ‘‘transfer rate’’ that are basic to the
study. In Section 3, we describe the organization of the Intel
IPSC/2 and Concurrent File System in enough detail to allow an
understanding of the design. Section 4 presents the results of our
performance studies, organized around design decisions made in
the I/O subsystem and the CFS software. Section 5 summarizes
the lessons learned.

2. Methodology for Evaluation
This study focuses on the overall behavior of the I/O sub-

system as seen from an applications program. The performance
characteristics of software systems such as the Intel CFS are tran-
sitory. Each software release or change in the hardware is likely
to affect the results of performance studies. However, unless
there is a major rewrite of the software, the overall behavior of the
system remains in the same range. Our detailed performance
measurements "snapshot" the performance of our particular
configuration of the system with our particular release of the CFS
software. The observed experimental values may not accurately
reflect the detailed performance of other configurations, but we
believe that the overall characteristics of system behavior
described and measured should be common to all CFS
configurations.

In studying I/O performance, surprisingly much informa-
tion can be gleaned from observing a few parameters of the sys-
tem. For this study we looked at the behavior of the Intel CFS
from the viewpoint of a scientific applications program running in
parallel on the nodes of the machine and asked questions about
what the expected CFS behavior might be from this vantage point.
Note that we are not asking about the overall performance of the
CFS from a more global perspective, such as its overall effective-
ness for multiple users. Nor are we concerned with issues such as
reliability and recoverability of the file system in the event of
failures.

The I/O requirements of large scientific programs usually
include both low volume data transfers (formatted character data)
and high volume transfers (unformatted binary data). Sequential
access is the predominant mode of file access. We focus here on
the high volume I/O component: sequential access to very large
data files (1MB—1GB). Typical data files might be satellite
imagery, measurement data from experiments, or graphical output
from simulations.

We use the term buffer size to refer to the size of the block
of data involved in a read/write request by an application pro-
gram. For high volume I/O, large buffer sizes (4 KB – 500KB)
are often used in I/O requests. These requirements are distinctly
different from other computing environments such as personal
workstations (small files, small buffer sizes) and commercial
applications (large files, small buffer sizes, random access).

For this study, we target I/O behavior typical of large
scientific programs. Files are read/written in sequential portions,
where each of several application processes may be concurrently
reading/writing disjoint portions of the same file. The files are
large (at least 1 MB in most cases), and the buffer size used in the
application is also large (buffers of at least 4 KB and always a

multiple of the physical block size used by the file system).
Where the I/O system has several modes of operation, we are con-
cerned primarily with just the modes that offer the highest I/O
performance. Our measurement programs generate I/O requests
at a rate sufficient to saturate the I/O system, with little or no com-
putation between requests. This means our programs are entirely
I/O bound in general.

For a single application program, the pervasive questions
are "how fast can I move my data into and out of the file system?"
and "how should I organize the I/O operations within the program
to achieve the most effective performance?" Because of the mul-
ticomputer environment, the application program may itself be
running on many compute nodes. We assume that from 1 to 32
nodes (the size of our machine) may be involved in I/O for this
study. This environment broadens the questions of interest,
because K nodes may be involved in reading/writing a single data
file concurrently. Now it is also of interest to ask "how should the
I/O operations be distributed among the computational nodes for
most effective performance?"

Let’s consider first the view from a parallel process run-
ning in a single computational node. The primary measurement
of interest is the data transfer rate observed for that process. For
multiple nodes, we also are concerned with aggregate rates.
These terms need careful definition.

Suppose that we have p processes reading (writing) a file of
N bytes in parallel, where each process resides on a separate pro-
cessor. Each process i reads (writes) n bytes in time ti where

n =
p
N��� . The individual data transfer rate of a particular processor

i is given by ri =
ti

n��� . The average individual data transfer rate is

given by r
�

=
p
1� �

i =1
Σ
p

ri .

There are at least two reasonable measures of the aggre-
gate data transfer rate of the p processors. In the first case, we
sum the data rates of the individual processors. This gives rise to

the quantity
i =1
Σ
p

ri called the maximum sustained aggregate rate

(max_SAR). We call this measure the ‘‘maximum’’ rate because,
by construction, it assumes that each processor i contributes a rate
ri and all processors contribute during the same time interval.
From the definition of r

�
above, we see that

(1)max_SAR =
i =1
Σ
p

ri = pr
�

.

In the second case, we consider that all N bytes move
through the system in τ =

i
max ti time units. That is, the entire file

is not transferred until the slowest processor finishes reading

(writing) its partition of the file. This gives rise to the quantity
τ
N���

called the minimum sustained aggregate rate (min_SAR). We
call this a ‘‘minimum’’ rate since this is the rate that an outside
observer will perceive as the rate at which the entire processor
ensemble is operating. From the definitions above, we see that

min_SAR =
τ
N��� =

max ti

np� ���������

(2)= np min

��
� ti

1���
� �
� = p min

��
� ti

n���
� �
� = p min ri .

Note that min_SAR ≤ max_SAR with equality when ti = τ for all
i. Both min_SAR and max_SAR are useful measures of the



absolute performance of an I/O subsystem.

3. The Intel iPSC/2 and Concurrent File System
The Intel iPSC/2 system used in this study is composed of

32 compute nodes interconnected in a hypercube geometry. A
‘‘host node’’ provides the interface to the outside world. The host
node manages its own disk (separate from the CFS-managed I/O
subsystem) and is the target for low-volume I/O from applications
programs running on the compute nodes. Each of the compute
nodes is actually a composite of two processors, one for computa-
tion (an 80386 chip) and one for handling message traffic. The
message co-processor assures that node-to-node communication is
independent of the number of links traversed, if there is no con-
tention for those links. Each compute node has 4 MB of memory.

There are 4 I/O nodes in the system, each connected to one
port of a different compute node. Each I/O node has 4 MB of
internal memory and is connected to one port of a SCSI bus which
serves as the conduit to a Maxtor disk with around 330 MB of
memory available for user files. Up to four I/O devices can be
connected to each bus; our system has only a single disk/bus. Fig-
ure 1 illustrates the architecture. The I/O nodes are connected to
the compute nodes 2,6,10 and 14 in the system. Each physical
disk corresponds to a logical ‘‘volume’’ in the file system. Thus
there are four volumes in this system. Each I/O node uses a part of
its internal memory for a disk cache, in which it can temporarily
store blocks whose permanent copies are in the associated

Intel iPSC/2 with
CFS(Concurrent File System)
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Figure 1

volume.

3.1. File Organization
The CFS maintains the UNIX view of a file from an appli-

cation program. Each file has a file body and header. Short files
are packed into the header. For larger files, block locations are
tracked by a tree-structured index whose root is in the header
block. These index blocks are termed indirect blocks. The depth
of the tree is unrestricted.

The basic unit of file allocation and data transfer in the
CFS is a block of 4096 bytes. Paul Pierce, the designer of CFS,
describes this block size as the smallest block size where the
request/response performance over the communication network
matches the sustained disk transfer rate of about 1MB/sec.
[PIER89] He also notes that a larger block size would increase
contention on communication links and increase internal fragmen-
tation when blocks are not filled completely.

Each file is split into 4KB blocks when it is initially
created. A file can be made to reside on one or more volumes.
When a file is on multiple volumes it is ‘‘declustered,’’ — the
blocks of the file are allocated in round-robin manner among the
allowable volumes (unless one of them runs out of space in the
course of allocation, in which case it is subsequently bypassed).
A file is spread across all available volumes by default. However
the restrictvol system call may be used to restrict a file’s alloca-
tion to certain volumes.

3.2. File System Interface
The user interface to the CFS follows the standard UNIX

design, with some extensions. The pathname component "/cfs" is
what distinguishes CFS files from those on the disk managed by
the host node. For most operations on CFS files standard UNIX
I/O calls are used. Lsize is used to preallocate blocks to a file
before writing them. Restrictvol, as mentioned earlier, allows the
user to exercise control over which volumes are used to store the
blocks of the file. It also allows the user to explicitly control
where the header (and the indirect blocks) reside. Cread and
cwrite are high performance synchronous read/write commands
which are used by our measurement programs.

3.3. Distributed Processing of I/O Requests
The CFS software is distributed among the compute nodes

and the I/O nodes. Each I/O node runs a server process called a
disk process whose main function is to send and receive file
blocks in response to read/write requests from the compute nodes.
One I/O node also runs a second server process called the name
process whose major function is to handle the directory tree and
to respond to I/O requests that involve manipulation of directory
entries. In CFS the entire directory tree is represented as a single
file rather than as a tree of separate files.

Processing of I/O requests is distributed between the com-
pute node running the application program, where the request is
initiated, and the I/O nodes themselves. An application program
process that makes I/O requests is linked to a runtime I/O library
routine on the compute node. The library routine interprets the
I/O request, breaks it into smaller I/O service requests, and sends
the service requests as messages to the appropriate I/O nodes.
This organization allows concurrency between the interpretation
of the file structure and the actual handling of block fetches or
stores. Since file structure interpretation is done on each compute
node, each compute node has to store the header and indirect
blocks to avoid getting them from the servers upon each request.
No file data blocks are cached at compute nodes between I/O
operations.



When a read or write operation is executed by an applica-
tion process on a compute node, the call activates the appropriate
library routine. If the data involved resides within a single block
of the file, the library routine sends an I/O request to the I/O node
responsible for that block. If the data crosses the boundaries of
one or more file blocks, then the library routine breaks the I/O
request into requests for individual blocks (whole or partial) and
sends each request to the appropriate I/O node. Thus a single
read/write operation by an application program may spawn more
than one I/O request from its compute node to various I/O nodes.
In all cases, at most one block (4 KB) is transferred per I/O
request received by an I/O node.

At each I/O node, the disk process manages a large (1 MB)
cache for file blocks. When reading a file, blocks are prefetched
from the disk into the cache. When writing a file, blocks are
deposited into the cache as they arrive from compute nodes, and
then they are moved from the cache to the disk itself as a back-
ground activity of the I/O node.

4. CFS Design Decisions and Their Performance Impli-
cations

The organizing principle in the sub-sections that follow is
to explore the effects of several key design decisions on the per-
formance of the CFS. In this way the CFS behavior can be
characterized within the context of the design framework.

Recall that the CFS software is organized as a single name
process and one disk process per I/O node. The physical place-
ment of these processes requires that the name process occupy the
same node as one of the disk processes. Throughout the measure-
ment process, we sought to minimize (or eliminate) the effects of
the name process by concentrating on read/write activity rather
than open/close activity. We have measured the cost of opening
(closing) a file to be approximately 30 ms (1.5 ms). As long as
this cost is reasonable, it is largely irrelevant in our perceived
application domain.

In the following sections, our concern is primarily to meas-
ure the maximum achievable I/O rates in the system. Our meas-
urement programs are designed to saturate the I/O system with I/O
requests, with little or no computational load. In the CFS, ‘‘preal-
location’’ of the blocks of an output file always leads to higher
output rates, so all output files are preallocated for the tests dis-
cussed below (Section 4.5 provides details on the performance
benefits of preallocation).

4.1. Single Compute Node to Single I/O Node
Our first measurements are used to determine the point-to-

point I/O rates achievable in the absence of contention in the sys-
tem. The tests use a single application process on a compute node
interacting with a single I/O node. The same studies are used to
show that I/O rates are unaffected by the number of inter-node
‘‘hops’’ that I/O requests must make in going from a compute
node to an I/O node. Recall from Figure 1 that the I/O nodes of
the CFS are directly connected to individual compute nodes. On
the machine used for these measurements, the four I/O nodes are
attached to compute nodes 2, 6, 10, and 14.

To measure the greatest achievable transfer rate from each
node, we placed a single reader (writer) in turn on each node of a
quiescent cube and measured the time required to read (write) files
of 1 MB and 8 MB. These two file sizes were chosen to help
assess any effects due to disk cache size. The disk processes each
use about 1 MB of memory for the disk block cache. Thus for a
writer, the 1 MB file can often be written from memory to
memory, while the 8 MB file must involve actual disk accesses.
To restrict interactions to a single I/O node, the files were

restricted to lie wholly on a single disk volume. The results of
these measurements are shown in the plots of Figure 2. These
measurements show the point-to-point transfer rate attainable
when a single reader (writer) reads (writes) a file to a single I/O
node.

A quick glance at the plots shows that the placement of a
reader (writer) within the compute nodes has no effect on the
attainable point-to-point data transfer rate, so the number of hops
to the I/O node has no observable effect.

There are several other interesting observations which can
be made. Consider first the write behavior as shown in Figures
2(c) and 2(d):

1. The data transfer rate for the 1 MB file is approximately
1240 KB/sec. The maximum point-to-point communica-
tion transfer rate of the iPSC/2 is specified by Intel
[PIER88] to be 2800 KB/sec and has been measured by oth-
ers [BOMA89] at 2660 KB/sec. Thus this output rate is
slightly less than 50% of the basic message-passing com-
munication rate.

2. The data transfer rate for the 8 MB file is 750–800 KB/sec
or 610 KB/sec depending on where the file header is rela-
tive to the file body. The higher rate is achievable when
the header resides on a different volume than the file body;
when the header and body are on the same volume, conten-
tion between accesses to indirect blocks and writes to the
file result in the lower figure.

3. The lower overall transfer rate associated with the 8M file
is due to the physical disk activity necessary to flush cache
blocks to disk as the cache fills.

Now consider the read behavior as shown in Figures 2(a) and
2(b):

1. Again we see two modes of behavior for the 8 MB file.
The data transfer rate (Fig. 2(b)) is 670–685 when the file
header is on a different volume than the body of the file
and 660–675 when the header and body reside on the same
volume. Notice that the magnitude of the difference is
smaller for reads (10–15 KB/sec) than for writes (140–190
KB/sec).

2. The data transfer rate for the 8 MB file is slightly higher
than for the 1 MB file. This apparently counterintuitive
effect is due to a large initial startup cost. Our data shows
that while a typical read transfers 4 KB in 3–4 ms, one or
two early I/O operations incur times of around 100 ms.
The larger file transfers 8 times as many blocks so the
effect of these large spikes is amortized over a larger
number of I/O operations.

A summary of these measurements is shown in Table 1.
As can be seen, the write rates are usually higher than the read
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rates. This is explained by the fact that when writing, almost all
of the physical disk I/O can often be overlapped with the



Figure 2

Point-to-Point Transfer Rates Reading(Writing) a 1(8) MB File

File body continuously restricted to volume zero
File header restricted to each volume in turn (see legend in (b))

X-axis : Compute Node, Y-axis : Transfer Rate (KB/sec)
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movement of data from the application to the disk process.
Readers incur the wait for physical reads far more frequently. For
example, when a file is small enough to fit entirely in the disk pro-
cess cache, a writer will effectively be doing memory to memory
copies. However, a reader must wait, at least initially, for disk
blocks to be brought into the cache.

4.2. Single Compute Node to Multiple I/O Nodes
The last section confined its discussion to files that had

been restricted to a single volume. The plots of Figure 3 show the
transfer rate achievable by a single reader and a single writer
respectively when the file is fully declustered. The transfer rate
increases with increasing file size until reaching a steady state.

Our system has four I/O nodes. We can use restrictvol to
simulate a system with from one to four I/O nodes to gauge the
effect on system performance of increasing the number of I/O
nodes. A second experiment involved a single writer writing an 8
MB file four separate times, to a file spread across 1, 2, 3, and 4
volumes. This is logically equivalent to writing the file using only
1, 2, 3, and 4 I/O nodes respectively. The results of these tests are
shown in Table 2.

� �����������������������������������������������������������������������������������
Transfer Rate as Number of I/O Nodes Varies

(KB/sec)� �����������������������������������������������������������������������������������
Number Reading Writing

I/O Nodes 4 KB 16 KB 4 KB 16 KB
buffer buffer buffer buffer� �����������������������������������������������������������������������������������

1 683 684 698 713
2 935 1314 727 975
3 957 1480 1139 1760
4 962 1492 1179 1764� �����������������������������������������������������������������������������������
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Table 2

Table 2 indicates that declustering gives substantial
improvement in transfer rates for a single reader/writer. When
either reading or writing, three I/O nodes are needed to provide
maximum transfer rates to a single compute node. Moving to four
I/O nodes provides only a small additional gain.

4.3. Multiple Compute Nodes to Multiple I/O Nodes
One of the major potential advantages of the CFS architec-

ture is that multiple application processes, running on different
compute nodes, can be performing concurrent I/O operations on
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the same file (or different files at the same time). Figure 4 shows
the transfer rate obtained for an 8 MB file as the number of con-
current readers/writers varies from 1 to 16. All four I/O nodes are
involved in handling the I/O requests. The lower part of the
graphs shows that contention for I/O services reduces the
read/write transfer rate available to individual nodes as the
number of concurrent workers increases. The aggregate rates
(maxSAR and minSAR) shown in the upper graphs indicate that
the I/O nodes become saturated when the number of concurrent
readers/writers reaches about four. After that point additional
readers/writers do not increase the aggregate rates. The rather
large variation in the aggregate write rates remains unexplained
(the same behavior is exhibited over many runs).

Overall, increasing the number of concurrent
readers/writers increases the aggregate transfer rate, from the
approximately 1500 KB/sec available to a single reader/writer to
an aggregate rate of 2500 KB/sec for reading and approximately
3000 KB/sec for writing. The apparent saturation of the I/O nodes

with more than four readers/writers indicates that increasing the
number of I/O nodes would increase the number of concurrent
readers/writers that could be effectively employed, with an atten-
dant increase in the aggregate transfer rate.

4.4. Effects of Buffer Size on Transfer Rate
To maximize I/O rates, an application might choose a large

buffer size in making I/O requests. However, in this setting, a
larger buffer size does not translate into a larger data transfer
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between an I/O node and the compute node. Recall that the CFS
decomposes large buffer reads/writes into 4 KB (or smaller)
pieces — the block size of the file system. This enables the asyn-
chronous processing of the entire I/O request. Using a larger
buffer size in an I/O request allows a single entry to the library
routine on the compute node to spawn a larger number of 4 KB
I/O requests, spread across multiple I/O nodes. To measure the
effect of larger buffer sizes, we measured I/O rates with both 4
KB and 16 KB buffer sizes. Table 2 shows that 16 KB buffers
achieve about 1.5 times the data rate of 4 KB buffers when a sin-
gle reader (writer) is reading (writing) a file.

Earlier measurements of the effects of buffer size on
transfer rate [FREN89] showed that most improvement occurred
when the buffer size was increased from 4 KB to 16 KB. After
that essentially no further improvement is observed. With our
four I/O node system, a 16 KB buffer translates into four 4 KB
block transfer requests, one from the compute node to each of the
four I/O nodes. With larger buffer sizes, multiple 4 KB requests
would be directed to each I/O node, and the speed of the I/O node
would become the limiting factor. It appears that a system with
more I/O nodes would allow larger buffer sizes to be more effec-
tive.

4.5. Effects of Caching and Prefetching on Read Opera-
tions

Caching and prefetching of disk blocks have an important
effect on read performance. In this section, we explore further the
ramifications of the CFS caching and prefetching design.

The read behavior of the CFS can be characterized by a
spectral analysis of the timing of individual read operations as an
entire file is read. Figures 5(a) and 5(b) demonstrate the two
characteristic behaviors exhibited by the CFS. The figures show
the read times for 4 KB buffers as an entire file is read. That is, if
the k th read operation takes t ms, then the k th vertical line in the
figure is proportional to t. The data file has been restricted to a
single CFS volume.

There are three separate frequency components, each with
a characteristic amplitude. The components are:

1. The lowest amplitude component (3–4 ms) represents the
effect of a cache hit, where the block is simply moved from
the disk process cache to the compute node.

2. The next component has approximately a 15 ms amplitude.
It occurs every 8 read operations and represents the time
associated with CFS prefetch activity. The first read
request causes up to 8 blocks to be prefetched by the disk
process. After 4 blocks have been read by the application,
the CFS initiates another prefetch.

3. The highest amplitude component (70–105 ms) occurs
every 512 reads in Figure 5(a) and only at the beginning of
Figure 5(b). This component represents the cost of fetch-
ing indirect blocks. In Figure 5(a) the header is on the
same volume as the body of the file. In this situation, any
effort to prefetch the indirect blocks will be defeated when
incoming data forces the blocks from the cache. Thus,
when the next indirect block is needed it will not be in the
cache and must be read from the disk, incurring the large
delay. In Figure 5(b), the header resides on a volume dis-
tinct from the file body. In this situation, the indirect
blocks are already in the cache of another I/O node and can
be fetched directly as a memory-to-memory transfer,
without waiting for a disk access.

� �����������������������������������������������������������������
Point-to-Point Data Transfer Rates

800 KB file
(percentages show improvement
due to prefetching and caching)

(KB/sec)� �����������������������������������������������������������������
Direction Rate Improvement� �����������������������������������������������������������������
Reverse 208 —
Forward 661 217%
Reread 1037 57%� �����������������������������������������������������������������
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800 KB File

To help assess the effects of prefetching and caching on
reads, we ran a test which read an 800 KB file in reverse order,
then read it in forward order, and finally reread it in forward order.
The time taken for each read operation was recorded and the
resulting transfer rates calculated. These are shown in Table 3.
By reading the file in reverse order we completely defeat the pre-
fetch mechanism and are forced to the disk for every read request.
When reading the file in the forward direction prefetching will
improve performance. Note that care was taken to ensure that no
blocks of the file remained in the cache before reading the file in
the forward direction. Finally, after reading the file in the forward
direction the file was again read in reverse — any direction would
have had the same effect — and the effect of the cache is clearly
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seen. These effects are shown graphically in Figures 6 and 7.

Figure 6 shows a mean block read time of about 20 ms
when reading in reverse, dropping to less than 5 ms per block
when the file is reread from the cache. Figure 7 shows the pre-
fetch behavior described in the last section (small spike every 8
read operations) followed by a fairly constant block read time
when the file is entirely in the cache.

4.6. Effect of File Preallocation on Write Operations
As we said earlier, to achieve maximum performance we

used the CFS lsize call to preallocate files before writing them. In
this section, we discuss the actual performance benefit accruing
from that decision.

To examine the effects of preallocation on write times, we
created, preallocated, and wrote an 8 MB file under two scenarios
— first as a file restricted to one volume and then as a file
declustered over all volumes. The results of these tests are sum-
marized in the first two lines of Table 4. All times shown in the
table are given in seconds and for the preallocated write times, the
transfer rate is shown in parentheses.

� �������������������������������������������������������������������������������������������������������
Effect of File Preallocation on File Write Times (8 MB file)

(KB/sec)� �������������������������������������������������������������������������������������������������������
Preallocation Preallocated Unallocated

File Type Time Write Time Write Time� �������������������������������������������������������������������������������������������������������
Restricted .49 10.7 (748) 30.1
Declustered .45 7.2 (1111) 30.2� �������������������������������������������������������������������������������������������������������
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The table clearly shows that preallocation results in a major
performance gain. The cost of preallocation is about 55–60
ms/MB and resulted in speedups 3–4 times the unallocated rate.
Stated another way, the sum of preallocation time and the time to
write a preallocated file is 1/4 − 1/3 the time to write the
equivalent unallocated file.

4.7. An Experiment with Four Writers
We conclude this discussion of the behavior of the CFS

with a simple experiment combining many of the dynamics of the
CFS. This should be considered illustrative of the complex
behavior of the CFS rather than an attempt to isolate some partic-
ular feature.

We assume that an application has four writers reading
(writing) disjoint pieces of a 32 MB file. There are at least three
obvious strategies that may be employed: (A) operate on a single
32 MB file declustered across all volumes, (B) assign one fourth
of the file (8 MB) to each volume and restrict it to reside wholly
on that volume, or (C) use four 8 MB files, one per writer, but
spread all four files across all volumes. Option (A) uses the
default behavior of the CFS as it was intended to be used. Option
(B) simulates a situation where each reader (writer) has a dedi-
cated I/O node (and disk). Option (C) simulates a situation where
each reader (writer) has a dedicated file, but not a dedicated I/O
node. The results of these measurements are summarized as
Table 5.

Option (B), dedicated I/O nodes, provides the worst perfor-
mance for both reads and writes. Option (A), the simple, direct
use of the CFS operations, provides an 8% improvement for
writes and a 7% improvement for reads. Option (C), separate files
for each compute node, provides even better write performance, a
12% improvement, but only a 3% improvement in read perfor-
mance. These results suggest that for large files and large buffer



� ���������������������������������������������������������������������������

One 32 MB Declustered File (A) vs.
Four 8 MB Restricted Files (B) vs.
Four 8 MB Declustered Files (C)

(Average transfer rate with 16 KB buffers)
Percentages = improvement over option (B)

� ���������������������������������������������������������������������������

Write Rate Read Rate
(KB/sec) (KB/sec)� �����������������������������������������������������������������������������������

A 690 (8%) 663 (7%)� �����������������������������������������������������������������������������������
B 645 (-) 621 (-)� �����������������������������������������������������������������������������������
C 723 (12%) 639 (3%)� �����������������������������������������������������������������������������������
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sizes, the basic CFS design provides balanced and effective use of
the available hardware resources.

5. Conclusions
To summarize these results, we would conclude that:

(1) Declustering of large files in the CFS provides performance
improvement for a single reader/writer. Depending on
buffer size, improvements for declustering across four I/O
nodes (disks) are measured at 40–120% for reading and
70–150% for writing.

(2) With multiple reader/writers, declustering and concurrent
access provide additional performance improvements until
the I/O nodes become saturated. For our system, the
improvements provided by concurrent access to four I/O
nodes were measured at about 70% for reading and 100%
for writing. Saturation occurred with about four
readers/writers. After saturation, additional concurrent
readers/writers experienced degraded performance, with
the overall aggregate transfer rate from the I/O subsystem
remaining approximately constant.

(3) The choice of buffer size used by an application program in
an I/O request affects the I/O transfer rate, in spite of the
fact that local processing of an I/O request on a compute
node splits the request into 4 KB or smaller block requests.
Larger buffers improved performance within a certain
range, with about a 50% improvement measured between 4
KB buffers and 16 KB buffers. Beyond 16 KB, larger
buffers did not affect performance in a four I/O node sys-
tem. The number of I/O nodes appears to be the critical
parameter here.

(4) Disk caching and prefetching on the I/O nodes improved
performance of read operations. For a 4 KB read request, a
cache hit allowed the operation to complete in 3–4 ms.
Prefetching caused about every 8th read operation to take
about 15 ms. When indirect blocks had to be fetched from
the disk, the read operation might take more than 70 ms. In
our tests, prefetching during sequential reads provided
about a 220% performance improvement over random
access, and caching provided an additional 60% improve-
ment.

(5) Preallocation of file blocks before beginning a sequence of
write operations provided major performance improve-
ments, measured at 300–400%.

(6) In a comparison of I/O strategies for applications pro-
grams, we compared the use of a single large declustered
file accessed by four processes concurrently, four smaller
files restricted to single disks and accessed only by a single

application process, and four smaller declustered files
accessed by single application processes. The single large
declustered file provided the simplest interface and the best
performance for reads; the four smaller declustered files
provided the best performance for writes. The dedicated
files option had the worst performance in all cases.
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