
 1

Using Branch Prediction Information for Near-Optimal I-Cache Leakage Reduction
University of Virginia, Department of Computer Science Tech Report CS-2006-03

Sung Woo Chung and Kevin Skadron

Department of Computer Science
University of Virginia

Charlottesville, VA 22904
{schung, skadron}@cs.virginia.edu

Abstract

This paper describes a new on-demand wakeup prediction policy for instruction cache leakage control that
achieves better leakage savings than prior policies, and avoids the performance overheads of prior policies. The
proposed policy reduces leakage energy by more than 92% with only less than 0.3% performance overhead on
average, whereas prior policies were either prone to severe performance overhead or failed to reduce the leakage
energy as much. The key to this new on-demand policy is to use branch prediction information for the wakeup
prediction. In the proposed policy, inserting an extra stage for wakeup between branch prediction and fetch, allows
the branch predictor to be also used as a wakeup predictor without any additional hardware. Thus, the extra stage
hides the wakeup penalty, not affecting branch prediction accuracy. Though extra pipeline stages typically add to
branch misprediction penalty, in this case, the extra wakeup stage on the normal fetch path can be overlapped with
misprediction recovery. With such consistently accurate wakeup prediction, all cache lines except the next expected
cache line are in the leakage saving mode, minimizing leakage energy. We focus on super-drowsy leakage control
using reduced supply voltage, because it is well suited to the instruction cache’s criticality. The proposed policy can
be applied to other leakage saving circuit techniques as long as the wakeup penalty is at most one cycle.

1. Introduction

Power dissipation has emerged as a major concern both for high-end processors and embedded processors, since
higher power incurs higher packaging, power delivery and cooling costs. Recently, power dissipations have become
high enough to cause serious thermal challenges, possibly even resulting in a project cancellation [26]. As process
technology scales down, leakage energy accounts for a significant part of total energy. The International Technology
Roadmap for Semiconductor [23] predicts that by the 70nm technology, leakage may constitute as much as 50% of
total energy dissipation. In particular, the leakage energy for on-chip caches is crucial, since they comprise a large
portion of chip area. For instance, 30% of the Alpha 21264 and 60% of the StrongARM are devoted to cache and
memory structures [13]. However, cache size can not be decreased to reduce leakage power since cache size is
directly related to the performance.

There have been four major circuit techniques to reduce leakage energy dynamically: ABB (Adaptive-reverse
Body Biasing) MTCMOS [17], DRG (Data-Retention Gated-ground) [1], Gated-Vdd [18], and DVS for Vdd (which
is also called drowsy cache) [3]. In the ABB MTCMOS technique, threshold voltage is dynamically changed but the
wakeup penalty between the active mode and the leakage saving mode is long, which makes it difficult for use in L1
caches [4]. DRG retains the data while reducing leakage by gating ground and using remaining leakage to retain cell
contents, but the wakeup penalty is long. Thus, this technique may be inappropriate for timing critical caches such as
an L1 cache, even if it is effective for less timing critical caches such as L2 [10]. The gated-Vdd technique reduces
the leakage power by breaking the connection from the supply voltage (Vdd) or ground (the difference compared to
DRG is that a larger sleep transistor is used and cell contents are not preserved) when the cell is put to sleep. While
this technique dramatically reduces the leakage, its main disadvantage is that it does not preserve the state of the
data in the sleep mode [4]. When the line is needed after it has been put into the leakage saving mode, the line must
be refetched from a lower-level memory, which leads not only to additional dynamic energy consumption but also to
performance degradation. To prevent these costs, conservative prediction policies should be employed [5][21][22].
Gated-Vdd may, however, be suitable for some L1 data caches where re-fetch penalty is short [12]. Another leakage
saving technique is to lower the supply voltage. In this technique, data is not lost when the cache line is in the
leakage saving mode (called “drowsy” mode). In the drowsy mode, data is retained, although it can not be accessed
for read or write operation. Fortunately, most cache lines are unused for long periods due to temporal locality. Thus,
by putting infrequently used cache lines into drowsy mode and keeping frequently accessed cache lines in the active
mode, much leakage power is reduced without significant performance degradation. Please note that there is a
wakeup penalty to restore the voltage level of the Vdd from the drowsy mode into the active mode. However, the
wakeup penalty is expected to be one cycle in 70nm process technology [3]. There has been concern that drowsy
cache is more susceptible to soft errors than conventional caches [10]. Fortunately, instructions are read-only and

 2

must be protected by parity even in the absence of drowsy techniques. In the infrequent cases when an error is
detected, the instruction only has to be refetched.

Among the above four techniques, drowsy technique is most suitable for L1 instruction caches, since it retains
data and has short wakeup penalty. In order to prevent (or hide) the wakeup penalty of the drowsy cache, many
prediction policies have been proposed. The easiest policy is “no prediction”: to place all the cache lines into the
drowsy mode periodically and restore the voltage level of Vdd of accessed cache lines, suffering the wakeup penalty.
It performs well with data caches because they have high temporal locality, leading to little performance loss, and
out-of-order processors can often tolerate extra latency from waking up lines [3]. For instruction caches, however,
this “no prediction” technique does not perform well, because any wakeup penalty that stalls fetching directly
impacts the performance. Many prediction policies have been proposed for instruction caches. (Details will be
explained in the next section). None of them has simultaneously shown consistent leakage energy reduction with
negligible performance degradation. In this paper, we propose a new on-demand wakeup prediction policy for an
instruction cache. By on-demand, we mean that only the cache line currently in use needs to be awake. This
technique takes advantage of the fact that we can accurately predict the next cache line by using the branch predictor.
Thus, the wakeup prediction accuracy capitalizes on branch predictors that have already proven to be very accurate
[14]. A further advantage compared to previous policies is that the proposed policy does not require an additional
predictor. To utilize the branch predictor for wakeup prediction, we can allow a pipeline stage between branch
prediction and instruction cache fetch. Allowing the branch predictor to be accessed one cycle earlier permits the
branch prediction outcome to be used for wakeup, without harming branch prediction accuracy or requiring
additional wakeup prediction hardware. Please note that this approach does not suffer the traditional branch-
misprediction overhead of inserting extra stage in the pipeline. On a branch misprediction, the extra wakeup stage
is overlapped with misprediction recovery. For further details, see Section 3.

This work focuses on use of drowsy cache (actually super-drowsy cache [9], explained in Section 2) as the
leakage saving circuit technique, but if the wakeup penalty of the ABB MTCMOS or DRG, or the cache miss latency
were shortened in the future, the on-demand policy works equally well with these leakage-saving circuit techniques.
In this case, the proposed policy can be also applied to the leakage saving circuit techniques. In this paper, we
distinguish the wakeup prediction policy from the leakage saving circuit technique. The wakeup prediction policy
predicts which cache line will be woken up, while the leakage saving circuit technique is the mechanism for putting
lines to sleep and waking them up, independent of the prediction policy.

The rest of this paper is organized as follows. Section 2 explains the concept of the drowsy/super-drowsy cache
and presents previously proposed prediction policies for a drowsy instruction cache. Section 3 proposes a new on-
demand wakeup prediction policy by using branch prediction information. Section 4 presents the analytical model
for evaluation and simulation environments. Section 5 evaluates energy/performance for the proposed policy. Finally
we provide conclusions in Section 6.

2. Background Work

2.1 Drowsy/Super-Drowsy Cache Circuit Technique
The drowsy cache technique [3] has received a great deal of attention, because it retains data while providing a

short wakeup penalty. When the cache line is not expected to be used in the near future, the Vdd of the cache line is
reduced to a lower level, leading to lower leakage power. In active mode when normal voltage is supplied, the cache
line operates the same as in a conventional cache. In drowsy mode, however, the cache line cannot be accessed even
though data is retained. After being woken up, the cache line is accessed. Since the drowsy mode does not fully turn
off the supply voltage, the drowsy cache does not reduce the leakage power as much as gated-Vdd, but data
retention means the drowsy cache does not need to refetch instructions. Moreover, wakeup penalty is short: one
cycle is expected in 70 nm technology [3].

Kim et.al proposed a refinement of this technique, called super-drowsy cache [9]. A single-Vdd cache line voltage
controller with Schmitt trigger inverter replaces multiple supply voltage sources in order to alleviate interconnect
routing space. In addition, the on-demand gated bitline precharge technique [20] is employed to reduce the bitline
leakage. We apply our prediction policy to the super-drowsy cache because it is the most advanced circuit technique
for instruction cache leakage control as far as we know.

2.2 Previous Wakeup Prediction Policies

The success of the drowsy-style cache depends on how accurately the next cache line can be predicted and woken
up. Especially for an instruction cache, accuracy is crucial since the accuracy directly affects performance
degradation. A simple policy is noaccess [3]: This uses per-line access history and puts all the unused lines into
drowsy mode periodically. For more accurate wakeup prediction, two prediction policies were proposed for a

 3

drowsy instruction cache [8] – NSPB (Next Subcache Prediction Buffer) and NSPCT (Next Subcache Predictor in
Cache Tags). Additional storage is required to predict the next subbank (not a cache line) using NSPB, whereas
cache tags are extended to provide the subbank predictor in NSPCT. Therefore, NSPCT requires less hardware
overhead but is comparable to NSPB in accuracy (performance loss is 0.79%). However, leakage reduction is weak
[8] due to large sub-bank turn-on energy. Zhang et.al. proposed the Loop policy [22] where all cache lines are put
into the drowsy mode after each loop was executed. This bears some similarity to the DHS (Dynamic HotSpot Based
Leakage Management) policy, which was proposed in [5]. DHS makes use of the branch target buffer (BTB), since
branch behavior is an important factor in shaping the instruction access behavior. In the DHS policy, the global turn-
off (drowsy) signal is issued when a new loop-based hotspot is detected. Thus this policy can lower the supply
voltage of unused cache lines before the update window expires by detecting that execution will remain in a new
loop-based hotspot. The DHS-PA (DHS-Per Access) policy employs a Just-In-Time-Activation (JITA) strategy on
top of the DHS policy [5]. The JITA strategy is to wake up the next sequential line, exploiting the sequential nature
of code. However, this is not successful when a taken branch is encountered. The DHS-Bank-PA policy [5] issues the
global turn-off signal at fixed periods, when the execution shifts to a new bank, or when a new loop hotspot is
detected. It attempts to identify both spatial and temporal locality changes. It also employs hotspot detection to
protect active cache lines and the JITA policy for predictive cache line wakeup. As shown in [5], although the DHS-
Bank-PA reduced leakage energy significantly, performance degradation is severe.

The super-drowsy cache deploys the noaccess-JITA policy with as large as a 32K-cycle update window size for
next cache line prediction to achieve high accuracy [9]. The noaccess-JITA puts only lines that have not been
accessed during a fixed time period into drowsy mode and activates the first sequential cache line. The super-drowsy
cache also deploys an additional NTSBP (Next Target Sub-Bank Predictor) that predicts next sub-bank to be bitline
precharged in advance, since the on-demand gated precharge incurs extra penalty to enable an inactive sub-bank,
and this can result in significant execution time increase. The noaccess-JITA/NTSBP with 32K cycle update window
size is a leakage energy reduction policy with the most accurate wakeup prediction but with modest leakage energy
reduction. However, the accuracy of the noaccess-JITA/NTSBP is so dependent on program behavior, especially
locality, that the accuracy of no-access-JITA/NTSBP is poor in some applications.

For our study, we selected two policies: noaccess-JITA/NTSBP and DHS-Bank-PA, since the former is known to
be the most accurate and the latter is known to reduce leakage reduction most. For a fair comparison, we also apply
the gated bitline precharging technique to all the policies. Note that there is no additional penalty for on-demand
bitline precharging in DHS-Bank-PA, where all the cache lines in the previous sub-bank are put into the drowsy
mode when execution moves to a new sub-bank. All these previously proposed policies are explained in Table 1 to
prevent possible confusion.

Policy Description

Noaccess All the unused cache line is put into drowsy mode
periodically by referencing to per-line access history.

NSPB (Next Subcache Prediction Buffer) Additional predictor to wake up the next subbank
NSPCT (Next Subcache Predictor in Cache Tags) Additional bits in cache tags to wake up the next subbank
NTSBP (Next Target Sub-Bank Predictor) Additional predictor to precharge the bitline of a sub-bank

Loop
All cache lines are put into the drowsy mode after each
loop was executed

DHS (Dynamic HotSpot based leakage management)
All cache lines are put into the drowsy mode when a new
loop-based hotspot is detected

DHS-PA (Per Access) In addition to DHS, next cache line activation is supported

Noaccess-JITA (Just In Time Activation)/NTSBP
For a drowsy cache, Noaccess is used, while activating
sequentially next cache line. For bitline gating, NTSBP is
used

DHS-Bank-PA
For a drowsy cache, DHS-Bank is used while activating
sequentially next cache line. Automatically DHS-Bank-PA
predicts next sub-bank to be bitline precharged

Table 1. Previously proposed prediction policies, including the policies for comparison

3 Novel Wakeup Prediction Policy : Utilizing Branch Prediction Information
In conventional drowsy (including super-drowsy) instruction caches, branch predictors are only used to predict

the branch direction/target. In previous wakeup prediction policies, additional predictors are required in order to

 4

wake up a cache line, and accessed cache lines remain active for a fixed time period. Accordingly, the accuracy of
the previous policies is highly dependent on the locality. As shown in Figure 1(a), the additional predictors, such as
JITA [5], NSPB [8], NSPCT [8] and NTSBP [9], are accessed before looking up the branch predictor in order to hide
the wakeup penalty. However, the accuracy of additional predictors was not satisfactory. For near-optimal leakage
energy reduction and performance, we propose a new wakeup prediction policy which enables on-demand wakeup.
In the proposed policy, as shown in Figure 1(b), the branch predictor, consisting of Prediction History Table (PHT)
and Branch Target Buffer (BTB), is accessed one cycle earlier than in conventional policies.

PHT

BTB

Fetch StageWakeup Stage

Instruction
Cache (Data)

Fetch Stage

Predictor to
wake up cache line

PHT

BTB

(a) Conventional Drowsy Instruction Cache

(b) Proposed Drowsy Instruction Cache

Instruction
Cache (Tag)

Instruction
Cache (Data)

Instruction
Cache (Tag)

Way Predictor

Way Predictor (for JITA)

Wakeup Stage

Way (Sub-Bank) Predictor

Figure 1. Pipeline stage comparison

There are two architectural options in branch resolution. When a branch turns out to be mispredicted in the

execution stage, some time is usually required to clean up mis-speculated state and generate the next address (Figure
2(a)), but depending on exactly where during the branch-resolution cycle the misprediction is detected, it may be
possible to complete this without any extra overhead (Figure 3(a)). Requiring at least one cycle for cleanup and
fetch-address generation appears to be common [23].

- Additional penalty for recovery after the execution stage
As shown in Figure 2 (b), after the execution/branch-resolution stage of the instruction n, cleanup, effective

address calculation, and wakeup occur simultaneously. Thus there is always only one active cache line.

Fetch Decode Execute
Write
back

Fetch

Fetch Decode Execute
Write
back

Wakeup

Fetch

Wakeup
t

t+4

t t+4
(a) Traditional Pipeline

(b) Proposed Pipeline

…
…

Instruction n

Instruction n+4

Instruction n

instruction n+4

Branch Misprediction

Branch Misprediction

Address
Generation

Address
Generation

Figure 2. Pipeline structure (when there is one-cycle penalty for effective address calculation)

 5

- No penalty for recovery after the execution stage
In Figure 3 (b), it is impossible to wake up only the one correct cache line after a misprediction without incurring

a one-stage penalty, because cleanup and address generation occur in the same stage as misprediction detection.
Instead, the potential alternative path should be woken up speculatively in parallel with branch resolution. This
means that during some cycles, two lines are awake.

Fetch Decode Execute
Write
back

Fetch

Fetch Decode Execute
Write
back

Wakeup

FetchWakeup

t t+4

t t+4
(a) Conventional Pipeline

(b) Proposed Pipeline

…
…

Instruction n

Instruction n+3

Instruction n

instruction n+3

Branch Misprediction

Branch Misprediction

Figure 3. Pipeline structure (when there is no penalty for effective address calculation)

It is possible to determine the alternative path in parallel with branch resolution. For predicted-taken branches, the

not-taken path must be woken up and the branch address itself (usually carried with the instruction) can be used.
For predicted not-taken branches, the taken target is needed. This can either be carried with the instruction or reside
in some dedicated storage. This capability must exist anyway in current microprocessors because every taken branch
in flight must be able to check whether the target address obtained from the BTB is correct or not. Note that the
taken target is available at branch-prediction time regardless of predicted direction, because the direction predictor
and target predictor are usually consulted in parallel.

There are only two cases that we can not cover in case of branch direction misprediction. Since the cache line
address woken up is not that of (mispredicted instruction address + 4), but the mispredicted instruction address itself,
there is a penalty when the mispredicted instruction is at the end of the cache line. It is possible to make use of the
instruction address +4, but it requires extra adder or storage for the instruction address + 4. Even though this cost
may be minor, in this paper we do not use an extra adder or extra storage, since the probability that a mispredicted
instruction is at the end of the cache line is rare.

In the proposed policy, only one cache line (or two cache lines in Figure 3) expected to be accessed exists in the
active mode and all the other cache lines are in the drowsy mode. After a new line is selected for wakeup, the current
awake line is put to sleep. For a set-associative cache, only one way should woken up to save the energy. We adopt a
way predictor [19] that employs MRU (Most Recently Used) bit and integrates a way predictor and a BTB for high
accuracy, which is known as one of the most accurate way predictors. For conventional drowsy instruction caches,
the way predictor is used to predict the way that will be woken up. Conventional way predictors only wake up the
cache line that is sequential. Non-sequential cache lines are expected to still be awake based on cache lines that were
previously woken up and remain active. In the noaccess-JITA/NTSBP, the way predictor is used for cache line
wakeup prediction, while for NTSBP it is used for precharging and way prediction of cache line to be read. When
the way predictor can have 2-read ports in order to predict the next cache line that will be actually read as well, the
prediction accuracy for precharging is higher and the NTSBP is unnecessary (In this paper, we call this policy as
Noaccess-JITA utilizing w.p. (Way Predictor)). Both options (noaccess-JITA/NTSBP and noaccess-JITA (utilizing
w.p.) are evaluated in this paper. In DHS-Bank-PA, way prediction is not required in case of actual cache read, since
the whole sub-bank is put in the sleep mode when execution jumps from one sub-bank to another, resulting in
overlapping of wakeup penalty and precharging penalty. In the proposed policy, the PHT and the BTB are accessed
one cycle earlier, which leads to one cycle earlier way prediction. There is no need for another way prediction to
read the instruction cache, since only one woken up cache line can be read in the proposed on-demand policy. In
case of Figure 3, however, a two-port way predictor is required to support concurrent two accesses: one is to wake

 6

up the next cache line in case of correct branch prediction (to wake up instruction n+3, when instruction n is
predicted correctly in Figure 3 (b)) and the other is to wake up a probable cache line recovered from branch
misprediction (to wake up instruction n+3, when instruction n is recovered from branch misprediction in Figure 3
(b)).

Figure 4 shows one example of the proposed policy. After a misprediction by incorrect target address, the
recovered target address (0x00182f10) is woken up in cycle n. At the same time, the branch predictor is looked up to
predict next fetch block. In the conventional pipeline, the first branch predictor access is done in cycle n+1. There is
no predicted taken branch in the fetch block (0x00182f10), leading to waking up the next sequential fetch block
(0x00182f20) in cycle n+1. In cycle n+1, the branch predictor is accessed for the block (0x00182f20), which should
be accessed in cycle n+2 in the conventional pipeline. In this case, the fetch block (0x00182f20) has a predicted
taken branch. Thus, the target address from the BTB is used for wakeup address. Accordingly, the block
(0x001820a0) is woken up in cycle n+2 and fetched in cycle n+3. Please note that the proposed policy does not
affect the branch prediction accuracy.

Since the non-branch instruction accounts for large portions of instructions and the branch prediction accuracy is
high, the proposed policy is expected to be accurate, with the advantage of maximum leakage reduction.

0x00182f10

BTB

PHT

0x00182f10

BTB

PHT

(taken)

0x001820a0

BTB

PHT

(taken)

Recovered
Address

(0x00182f10)

Read Address

Wakeup Address

Instruction Cache

BTB hit

0x00182f20

Read Address

Wakeup Address

Instruction Cache

BTB hit

0x00182f30

Read Address

Wakeup Address

Instruction Cache

BTB hit

0x00183dc00x00182f20 0x001820a0

0x00182f10 0x00182f20 0x001820a0

0x001820b0

‘0’ ‘1’ ‘1’

Cycle n

(not taken)
0x00182f20 0x001820a0

Cycle n+1 Cycle n+2

0x00182f10 : Wakeup Stage 0x00182f10 : Fetch Stage
0x00182f20 : Wakeup stage

0x00182f10 : (not shown)
0x00182f20 : Fetch stage
0x001820a0 : Wakeup Stage

Figure 4. Example operation of the on-demand wakeup prediction policy, in which fetch resumes at address

0x0018sf10 after a misprediction.

4 Experimental Methodology

4.1 Analytical Models
Leakage-Related Energy includes leakage energy in the active mode, leakage energy in the drowsy mode

(including super-drowsy mode), turn-on energy for prediction, and turn-on energy for correction of wakeup
misprediction (turn-on means changing the cache line from the drowsy mode into the active mode and is due to the
need to charge the capacitance of the line back to Vdd). The leakage energy due to extra execution time is captured,
since the increased total execution time affects leakage-related energy in formula (1).

Notation Description
Pi Leakage power consumed for a cache line in the ith mode
Pturn-on Transition power consumed for a cache line to be changed to the active mode
ANi Average Number of cache lines in the i mode
TNprediction Total Number of cache lines turned on by wakeup prediction
TNcorrection Total Number of cache lines turned on for correction (by wakeup misprediction)
T Total execution time

Table 2. Notation description

 7

Leakage-Related energy is calculated as follows. The notations are described in Table 2.
 Eleakage_related = Σ Pi * ANi * T + Pturn-on * (TNprediction + TNcorrection) (1)
 where i = {active mode, drowsy mode, bitline gating mode, super-drowsy mode (drowsy mode + bitline gating

mode)}
In the base model, all the cache lines are always in the active mode. The policies use predictions to reduce the

leakage-related energy by decreasing the number of cache lines in the active mode. In the proposed policy, all the
cache lines except the next fetch cache line are in the drowsy mode, in which some of them are bitline-gated and
others are not.

In order to compare the proposed policy to the theoretically best policy, the optimal policy is presented in this
paper. The optimal policy is assumed to have perfect knowledge of the future address trace. Thus, its performance is
same as the base model and its leakage-related energy is least. Not only minimizing the number of cache lines in the
active mode but also reducing the unnecessary turn-on energy is the goal of the optimal policy. If the turn-on energy
is more than the active leakage energy (in other words, if the time until the cache line is reused is short enough), it is
more efficient to leave the cache line in the active mode, instead of putting it in the drowsy mode. Accordingly, the
optimal policy can save more energy than the proposed policy. Using the following formula (2), extended from [15],
the optimal point can be found. If the reuse interval (Ireuse) for a cache line satisfies the following formula, it is more
energy efficient to leave the cache line in the active mode.

 Ireuse * Pactive_mode < Ireuse * Pdrowsy_mode + Pturn-on (2)

4.2 Simulation Environment
We extended Simplescalar 3.0 [2] to evaluate energy and performance. The processor parameters model a high-

performance microprocessor similar to Alpha 21264 [7], as shown in Table 3. Table 3 also gives the technology and
power/energy parameters used in this paper. The power/energy parameters are based on the 70nm/1.0V technology
[9]. We use all integer and floating point applications from the SPEC2000 benchmark suite [25] and use their alpha
binaries and reference inputs for execution. Each benchmark is first fast-forwarded half a billion instructions and
then simulated the next half a billion instructions.

We selected gshare for a branch predictor, since gshare performs fairly well and it is suspected to be used for Intel
P4 architecture [16]. However, if more accurate branch predictor were selected for evaluation, the proposed policy
would perform even better, while it would not help wakeup prediction accuracy for other policies. Using gshare,
instead of a more aggressive branch predictor, therefore sets a higher bar for our proposed policy.

We selected three previous prediction policies (noaccess-JITA/NTSBP, noaccess-JITA (utilizing w.p.), and DHS-
Bank-PA, described in Section 2 and Section 3) for comparison. We use same details of the policies as proposed in
[5][9]. The noaccess-JITA/NTSBP has a 32 K cycle update window to periodically update mode of each cache line.
Although execution moves from one sub-bank to another sub-bank, the precharge circuits of the previous sub-bank
remain on for 16 cycles to prevent the misprediction of sub-bank. After 16 cycles, the bitline of the sub-bank is
isolated. The DHS-Bank-PA has 2 K cycle update window and its hotness threshold (when the access count exceeds
over this value, the cache line is considered to be a hotspot and all other cache lines except this hotspot basic block
are turned off) is 16.

Processor Parameters
Instruction Window 64 RUU, 32 LSQ
Fetch/Decode/Issue/Commit Width 4 instructions/cycle
Branch Predictor Gshare/4K, 1024-entry 4-way BTB
Integer ALUs/Multi-divs/memory ports 4/1/2
FP ALUS/multi-divs 4/1

FU Latencies
Int : mul 3, div 20, all others 1
FP : adder 2, mul 4, div 12, sqrt 24

Memory Bus Width/Latency 4 Bytes/80 and 8 cycles for the first and inter chunks

Instruction/Data TLB
128 entry/32 entry in each way, 8KB page size, fully
associative, LRU, 28-cycle latency

L1 I-Cache
32 KB, 1 way/4 way, 32B blocks, 1 cycle latency,
4KB sub-bank size

L1 D-Cache 32 KB, 4 ways, 32B blocks, 1 cycle latency
L2 Unified Cache 512 KB, 4 ways, 64B blocks, LRU, 12 cycle latency

 8

Power/Energy Parameters
Process Technology 70 nm
Threshold Voltage 0.2 V
Supply Voltage 1.0 V (active mode), 0.25 V (drowsy mode)
Leakage Power/Bit in Active Mode w/o Gated
Precharging (1 cycle) 0.0778 µW

Leakage Power/Bit in Active Mode w/ Gated
Precharging (1 cycle) 0.0647 µW

Leakage Power/Bit in Drowsy Mode w/o Gated
Precharging (1 cycle) 0.0167 µW

Leakage Power/Bit in Drowsy Mode w/ Gated
Precharging (1 cycle) 0.00387 µW

Turn-on (drowsy to active) Energy/Bit 115fJ
Turn-on (drowsy to active) Latency 1 cycle
Clock Cycle Time 12 * FO4 (395ps)

Table 3. Architecture/circuit parameters

5 Simulation Results

This section presents our simulation results and compares the proposed policy to other policies. We analyze each
policy’s energy reduction and execution time increases. Then, we explore the effects of the proposed policy on the
total processor energy and its potential effect on other leakage saving circuit techniques.

5.1 Drowsy Fraction and Gated Bitline Precharging Fraction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T
av

g

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s

m
es

a

m
gr
id

si
xt
ra
ck

sw
im

w
up

w
is
e

FP
 a
vg av

g

Applications

F
ra
c
ti
o
n
 o
f
D
ro
w
s
y
 L
in
e
s

Noaccess-JITA/NTSBP Noaccess-JITA (utilizing w.p.) DHS-BANK-PA On-Demand

Figure 5. Average drowsy fraction in instruction cache (4-way set-associative)

Figure 5 shows the drowsy fraction in the 4-way set-associative cache. We do not show the drowsy fraction in the

direct-mapped cache, because the results are similar to the 4-way set associative cache. Since the update window
size of the noaccess-JITA/NTSBP is as large as 32K, the drowsy fraction is 66.9% (65.3 % in the direct-mapped
cache), on average. In the DHS-Bank-PA, the drowsy fraction is 98.2% (97.8% in the direct-mapped cache), on
average. The reason is that the update window size is as small as 2K and additionally cache lines are put into the
drowsy mode when a new hotspot is detected. In the proposed on-demand policy, only one (or two in the proposed
policy of Figure 3) cache line is in the active mode and the others are in the drowsy mode, resulting in 99.9% (or
99.8% in the proposed policy of Figure 3) drowsy fraction, on average. Naturally, the direct-mapped cache has also
99.9% (or 99.8% in the proposed policy of Figure 3) drowsy fraction, on average. There is little difference between
the noaccess-JITA/NTSBP and the noaccess-JITA (utilizing w.p.), since the NTSBP and the 2-read port way
predictor are not related to the drowsy fraction but related to the precharging fraction. We only show the on-demand
policy of Figure 2 instead of that of Figure 3, since there is only negligible difference (0.1%) between them.

Figure 6 shows the fraction of isolated bitines in the 4-way set associative cache. We do not show the fraction of

 9

isolated bitlines in the direct-mapped cache, since the results are similar to the 4-way set associative cache. In case
of bitline precharging prediction, there is no energy penalty but there is one cycle timing penalty when mispredicted.
In the noaccess-JITA/NTSBP, on average 75.7% (77.1% in the direct-mapped cache) of the sub-banks are bitline
gated. The fraction is relatively small, because a sub-bank should be remained bitline precharged for 16 cycles to
prevent bitline precharging mispredictions when execution moves to another sub-bank. However, the noaccess-JITA
(utilizing w.p.) always has 87.5% since way predictor is used for subbank prediction. In the other two techniques,
only one sub-bank is bitline percharged. Thus, the portion of gated bitline precharging is always 87.5% (1 sub-
bank/8 sub-banks). We only show the on-demand policy of Figure 2, since there is negligible difference between
them.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T
av

g

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s

m
es

a

m
gr
id

si
xt
ra
ck

sw
im

wup
wis

e

FP
 a
vg av

g

Applications

F
ra
c
ti
o
n
 o
f
 G
a
te
d
 B
it
li
n
e
s

Noaccess-JITA/NTSBP Noaccess-JITA (utilizing w.p.) DHS-BANK-PA On-Demand

Figure 6. Average isolated bitline fraction in instruction cache (4-way set-associative)

5.2 Total Leakage-Related Energy

Figure 7 shows normalized leakage-related energy to the base model in the direct-mapped cache (As explained in
Section 4.1, the base model is a conventional cache that does not perform leakage control). The noaccess-
JITA/NTSBP shows inconsistent reductions depending on applications, whereas the other policies show very
consistent reductions. Average leakage-related energy reduction is 67.5%, 91.3%, 92.5%, 92.2%, and 92.6% in the
noaccess-JITA/NTSBP, DHS-Bank-PA, on-demand of Figure 2, on-demand of Figure 3, and optimal policies,
respectively.

In the proposed policy, the next cache line is woken up on-demand. Thus, the leakage energy in the active mode is
minimized, whereas turn-on energy by prediction is expected to be larger due to more frequent sleep/activation
round-trips compared to the other previous policies, such as the noaccess-JITA/NTSBP and the DHS-Bank-PA.
However, turn-on energy in the proposed policy still accounts for a small portion of total leakage-related energy.
Consequently, the average relative difference in leakage-related energy between the proposed policy and the optimal
policy is only 1.6% (6.4% for the proposed policy of Figure 3). In contrast, the leakage-related energy difference
between the DHS-Bank-PA and the optimal policy is 18.4%. The proposed policy of Figure 3 consumes a little more
energy than that of Figure 2, since there is unnecessary turn-on energy.

 10

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr INT avg

Applications

N
o
rm
a
li
z
e
d
 L
e
a
k
a
g
e
-
R
e
la
te
d
 E
n
e
rg
y

Leakage Energy in the Normal Mode Leakage Energy in the Drowsy Mode Turn-on Energy

(a) SPEC2000 INT applications

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 3
)

O
p
ti
m
a
l

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise FP avg Total

avg

Applications

N
o
rm
a
li
z
e
d
 L
e
a
k
a
g
e
-
R
e
la
te
d
 E
n
e
rg
y

Leakage Energy in the Normal Mode Leakage Energy in the Drowsy Mode Turn-on Energy

(b) SPEC2000 FP applications and total average

Figure 7. Normalized leakage-related energy in the direct-mapped cache

Figure 8 shows normalized leakage-related energy to the base model in the 4-way set-associative cache. The base
model does not use any leakage-saving policy but it has the way predictor. Average leakage-related energy reduction
is 68.1%, 69.8%, 90.4%, 92.5%, 92.2%, and 92.6% in the noaccess-JITA/NTSBP, noaccess-JITA (utilizing w.p.),
DHS-Bank-PA, on-demand of Figure 2, on-demand of Figure 3, and optimal policies, respectively. These results are
similar to the results in the direct-mapped cache.

 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr INT avg

Applications

N
o
rm
a
li
z
e
d
 L
e
a
k
a
g
e
-
R
e
la
te
d
 E
n
e
rg
y

Leakage Energy in the Normal Mode Leakage Energy in the Drowsy Mode Turn-on Energy

(a) SPEC2000 INT applications

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

N
o
a
c
c
e
s
s
-
J
IT
A
 /
N
T
S
B
P

N
o
a
c
c
e
s
s
-
J
IT
A
 (
u
ti
li
z
in
g
 w
.p
.)

D
H
S
-
B
A
N
K
-
P
A

O
n
-
D
e
m
a
n
d
 (
F
ig
u
re
 2
)

O
n
-
D
e
m
a
n
d
(F
ig
u
re
 3
)

O
p
ti
m
a
l

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise FP avg Total

avgApplications

N
o
rm
a
li
z
e
d
 L
e
a
k
a
g
e
-
R
e
la
te
d
 E
n
e
rg
y

Leakage Energy in the Normal Mode Leakage Energy in the Drowsy Mode Turn-on Energy

(b) SPEC2000 FP applications and total average

Figure 8. Normalized leakage-related energy in the 4-way set-associative cache

5.3 Wakeup Prediction Accuracy
Table 4 shows the branch prediction accuracy and the branch instruction ratio (#branch instructions/#total

instructions) for SPEC2000 applications. On average, the branch prediction accuracy is 94.3% and the branch
instruction ratio is 8.7%. Recall that wakeup misprediction is mainly caused by branch misprediction by incorrect
target address. As the number of branch instructions gets smaller, the branch prediction accuracy affects wakeup
prediction accuracy less. For example, gcc and gzip shows similar branch prediction accuracy but the branch
instruction ratio of gzip is much less than that of gcc, resulting in higher wakeup prediction accuracy of gzip in
Figure 9 and Figure 10.

 12

INT
Application

Branch Prediction Accuracy (%)
(Branch Instruction Ratio (%))

FP
Application

Branch Prediction Accuracy (%)
(Branch Instruction Ratio (%))

bzip2 93.75 (12.18) ammp 100.00 (13.78)
crafty 88.73 (11.48) applu 98.47 (0.24)
eon 93.78 (11.35) apsi 96.74 (6.71)
gap 92.66 (6.42) art 96.59 (11.32)
gcc 89.43 (16.06) equake 98.78 (16.88)
gzip 90.16 (9.36) facerec 98.72 (3.97)
mcf 97.85 (17.60) fma3d 96.25 (8.09)
parser 94.15 (15.70) galgel 98.91 (5.78)
perlbmk 79.25 (13.42) lucas 100.00 (4.76)
twolf 91.47 (14.36) mesa 95.90 (10.85)
vortex 95.48 (16.03) mgrid 95.46 (0.31)
vpr 86.53 (11.07) sixtrack 93.84 (12.21)
 swim 99.63 (1.65)
 wupwise 100.00 (4.08)
INT avg 90.27 (12.92) FP avg 97.80 (7.90)
 Total Avg 94.32 (8.68)

Table 4. Branch prediction accuracy and branch instruction ratio

As explained in Section 2.2, correct cache line prediction for drowsy cache does not always mean correct sub-
bank prediction for bitline precharging in the noaccess-JITA/NTSBP, since the cache line is predicted by noaccess-
JITA and the sub-bank is predicted by NTSBP (In other words, cache lines in the active mode are spread across sub-
banks). The same is applied to the noaccess-JITA (utilizing w.p.) in the set-associative cache. In the other policies,
cache lines in the active mode are in one sub-bank.

0

10

20

30

40

50

60

70

80

90

100

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T
av

g

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s

m
es

a

m
gr
id

si
xt
ra
ck

sw
im

wu
pw

is
e

FP
 a
vg

To
ta
l a

vg

Applications

W
a
k
e
u
p
 P
re
d
ic
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

Noaccess-JITA/NTSBP DHS-BANK-PA On-Demand

Figure 9. Wakeup prediction accuracy per fetch, Including bitline precharging accuracy

(direct-mapped)

Figure 9 shows the wakeup prediction accuracy (#fetches with a target-mispredicted branch/# fetches) in the

direct-mapped cache. For noaccess-JITA/NTSBP, the wakeup prediction accuracy includes bitline precharging
prediction accuracy. Average wakeup prediction accuracy of noaccess-JITA/NTSBP is as high as 96.1%, although
for perlbmk, the prediction accuracy is only 84.0%. On the other hand, the average wakeup prediction accuracy of
the DHS-Bank-PA is 76.5%. In the proposed on-demand policy, average wakeup prediction accuracy is as high as
98.4%. Moreover even in the worst case, the wakeup prediction accuracy is no worse than 94%.

Though the accuracy of noaccess-JITA/NTSBP is harmed more by bitline precharging prediction than other
techniques, the super-drowsy cache with bitline gating noaccess-JITA/NTSBP reduces the leakage-related energy
much more than the drowsy cache with noaccess-JITA without bitline gating in all applications [9].

 13

0

10

20

30

40

50

60

70

80

90

100

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T
av

g

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s

m
es

a

m
gr
id

si
xt
ra
ck

sw
im

w
up

w
is
e

FP
 a
vg

To
ta
l a

vg

Applications

W
a
k
e
u
p
 P
re
d
ic
ti
o
n
 A
c
c
u
ra
c
y
 (
%
)

Noaccess-JITA/NTSBP Noaccess-JITA (w/ w.p.) DHS-BANK-PA On-Demand Optimal

Figure 10. Wakeup prediction accuracy per fetch, Including bitline precharging and way prediction accuracy (4-way

set-associative)

Figure 10 shows the wakeup prediction accuracy, including bitline precharging and way prediction accuracy in the

4-way set-associative cache. The accuracy of the optimal policy implies the way prediction accuracy. Please note
that the results are not per instruction but per fetch. Average accuracy of the noaccess-JITA/NTSBP is 71.9% since a
set-associative cache make it more difficult to predict sub-bank precharging. However, the noaccess-JITA (utilizing
w.p.) and the proposed on-demand policy shows 87.3% and 87.6% accuracy, respectively which is close to the
accuracy (way prediction accuracy) of the optimal policy. The accuracy of DHS-Bank-PA is as low as 57.6%, on
average, which might result in severe performance degradation. This is caused by flushing the previous sub-bank
when execution jumps from one sub-bank to another, since the sub-bank hoppings are much more frequent in a set-
associative cache.

5.4 Execution Time

Even one percent increase of execution time leads to substantial increase of the total processor energy, which
might counterbalance the reduced L1 instruction cache leakage. Thus, it is crucial to maintain execution time close
to the base model. We only show the proposed policy of Figure 2, since there is negligible difference from that of
Figure 3.

When a wakeup misprediction (including precharging misprediction and way misprediction) and an instruction
cache miss occur at the same time, the wakeup penalty is hidden by the cache miss penalty. Thus, the wakeup
prediction accuracy is related to the execution time but this is not always exactly proportional.

Figure 11 shows the execution time normalized to the base model in the direct-mapped cache. The noaccess-
JITA/NTSBP increases execution time by 0.65%, on average but recall that leakage reduction is only 67.5%. In
some applications, the increase of the execution time is more than 3%. The DHS-Bank-PA shows 2.7% execution
time increase, on average. Even worse, in some applications, execution time is increased by more than 12%. The
proposed on-demand policy increases the execution time by only 0.26% and 2.3%, on average and in worst case,
respectively.

Figure 12 shows the execution time normalized to the base model in the 4-way set-associative cache. The
increases of execution time are 2.09%, 0.15%, 5.36%, and 0.27% for noaccess-JITA/NTSBP, noaccess-JITA
(utilizing w.p.), DHS-Bank-PA, and the proposed on-demand policy. Though the noaccess-JITA/NTSBP increases
the execution time by inaccurate next sub-bank prediction, the noaccess-JITA (utilizing w.p.) does not since it
utilizes the 2-read port way predictor which is more accurate than the NTSBP. In equake, The DHS-Bank-PA
degrades the performance as much as 30.1%, which is too severe to be tolerated.

 14

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T
av

g

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s

m
es

a

m
gr
id

si
xt
ra
ck

sw
im

wu
pw

is
e

FP
 a
vg

To
ta
l a

vg

Applications

N
o
rm
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

Noaccess-JITA/NTSBP DHS-BANK-PA On-Demand

Figure 11. Normalized execution time (direct-mapped)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb

m
k

tw
ol
f

vo
rte

x
vp

r

IN
T
av

g

am
m
p

ap
pl
u

ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg
el

lu
ca

s

m
es

a

m
gr
id

si
xt
ra
ck

sw
im

w
up

w
is
e

FP
 a
vg

To
ta
l a

vg

Applications

N
o
rm
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

Noaccess-JITA/NTSBP Noaccess-JITA (utilizing w.p.) DHS-BANK-PA On-Demand

Figure 12. Normalized execution time (4-way set-associative)

5.5 Total processor energy and ED2

Figure 13 shows average total processor energy and average ED2 (Energy*Delay2) for all SPEC2000 applications
in the direct-mapped cache (Please note that the “on-demand” graphs are almost overlapped with the “optimal”
graph in Figure 13 and Figure 14). Since the proposed policy and the optimal policy show similar performance and
leakage-related energy reduction as shown in the previous sub-sections, the total energy is also similar, regardless of
leakage-related energy ratio. The noaccess-JITA/NTSBP reduces the total processor energy more than the DHS-
Bank-PA in the leftmost bars, since the performance degradation by the DHS-Bank-PA is significant. However, as
the leakage-related energy in the instruction cache accounts for more of the total processor energy, total energy of
the DHS-Bank-PA becomes less than that of the noaccess-JITA/NTSBP. For ED2, there is negligible difference
between the proposed policies and the optimal policy

Figure 14 shows average total processor energy and average ED2 (Energy*Delay2) for all SPEC2000 applications
in the 4-way set-associative cache. When the leakage-related energy accounts for small portion of total processor
energy, the noaccess-JITA (utilizing w.p.) is the only competitor of the proposed on-demand policy, as shown in
Figure 14. However, as the leakage-related energy portion increases, the gap between the noaccess-JITA (utilizing
w.p.) and the on-demand policy gets larger in terms of total processor energy and ED2, both. Moreover, there is little

 15

difference between the on-demand policies and the optimal policy.

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

5% 10% 15% 20%

Leakage-Related Energy in Instruction Cache/Total Processor Energy

N
or

m
al

iz
ed

 T
ot

al
 P

ro
ce

ss
or

 E
ne

rg
y

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

N
or

m
al

iz
ed

 E
D

2

Total Processor Energy Noaccess-JITA/NTSBP (Total Processor Energy)
Total Processor Energy DHS-BANK-PA (Total Processor Energy)
Total Processor Energy On-Demand in Figure 2 (Total Processor Energy)
Total Processor Energy On-Demand in Figure 3 (Total Processor Energy)
Total Processor Energy Optimal (Total Processor Energy)
ED^2 Noaccess-JITA/NTSBP (ED^2)
ED^2 DHS-BANK-PA (ED^2)
ED^2 On-Demand in Figure 2 (ED^2)
ED^2 On-Demand in Figure 3 (ED^2)
ED^2 Optimal (ED^2)

Figure 13. Total processor energy and ED2 (direct-mapped)

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

5% 10% 15% 20%

Leakage-Related Energy in Instruction Cache/Total Processor Energy

N
or

m
al

iz
ed

 T
ot

al
 P

ro
ce

ss
or

 E
ne

rg
y

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

N
or

m
al

iz
ed

 E
D

2

Total Processor Energy Noaccess-JITA/NTSBP (Total Processor Energy)
Total Processor Energy Noaccess-JITA (utilizing w.p.) (Total Processor Energy)
Total Processor Energy DHS-BANK-PA (Total Processor Energy)
Total Processor Energy On-Demand in Figure 2 (Total Processor Energy)
Total Processor Energy On-Demand in Figure 3 (Total Processor Energy)
Total Processor Energy Optimal (Total Processor Energy)
ED^2 Noaccess-JITA/NTSBP (ED^2)
ED^2 Noaccess-JITA (utilizing w.p.) (ED^2)
ED^2 DHS-BANK-PA (ED^2)
ED^2 On-Demand in Figure 2 (ED^2)
ED^2 On-Demand in Figure 3 (ED^2)
ED^2 Optimal (ED^2)

Figure 14. Total processor energy and ED2 (4-way set-associative)

5.6 Combining with Other Leakage Saving Circuit Techniques
The proposed policy can be adopted for other leakage saving circuit techniques, as long as the wakeup penalty is

one cycle. Though other techniques, such as ABB MTCMOS [17] and DRG [1], have longer wakeup penalty in
current and next generation process technologies, the development of process technology and new circuit technology
might be able to reduce the wakeup penalty in the future. In Figure 15, we normalized average instruction cache
leakage energy to the base model for SPEC2000 applications. We present only one graph in Figure 15, since both
results (direct-mapped cache and 4-way set-associative cache) are almost overlapped (within 0.01%). In this graph,
we excluded the turn-on energy which is negligible to the total instruction cache leakage energy. Figure 15 makes it
possible to estimate how much leakage energy is reduced, when other leakage saving circuit techniques are applied,
as long as the wakeup penalty is one cycle. The execution time increased by the wakeup penalty is same as shown in
Figure 11 and Figure 12.

 16

0

0.1

0.2

0.3

0.4

0.5

0.6

1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20

Saving Mode Leakage/Active Leakage

N
o
rm
a
li
z
e
d
 I
n
s
tr
u
c
ti
o
n
 C
a
c
h
e
 L
e
a
k
a
g
e
 E
n
e
rg
y

Figure 15. Instruction cache leakage reduction combined with other leakage saving circuit techniques

5.7 Comparison of Hardware Overhead

For a wakeup prediction policy, hardware overhead is inevitable in additional to the DVS control circuitry. We
compare the hardware overhead of each policy. In the noaccess-JITA/NTSBP, one bit per cache line is required in
order to detect whether the cache line is accessed or not in the fixed time period. In addition, the NTSBP has 1K
entries (3 bits/entry). The noaccess-JITA (utilizing w.p.) requires one bit per cache line same as the noaccess-JITA.
In addition, it needs 2-read port way predictor for bitline precharging (sub-bank) prediction. In the DHS-Bank-PA,
one bit per cache line is also required to store the access history. Additionally, ten bits (half for the target basic block
counter and the other half for the fall-through basic block counter) are required to locate a hotspot [5]. Since the
BTB has 1024 entries, the total storage overhead is 10K. For the proposed policy, only a small register (ex. 10 bit for
our 1024-entry cache) is needed to record the most recently accessed cache line. Table 5 presents the total hardware
overhead for each policy. The hardware overhead is crucial, since it not only increases chip area but also incurs extra
dynamic/leakage energy.

Noaccess-JITA/NTBSP
Noaccess-JITA
(utilizing w.p.)

DHS-Bank-PA On-Demand

4K bit
(=1024 + 1024 * 3)

1K bit + 2-read port
way predictor (instead

of 1-read port way
predictor)

11K bit
(=1024 + 1024*10)

10 bit
(=log21024)

Table 5. Hardware overhead for the policies
(Please remind that the storage size is directly related to leakage energy, though we do not consider the

dynamic/leakage energy from this hardware overhead in the evaluation)

6 Conclusions and Future Work

In this paper, we propose an on-demand wakeup prediction policy using the branch prediction information. Our
goal is not only less energy consumption but also consistent near-optimal performance. The noaccess-JITA/NTSBP
and the noaccess-JITA (w/ w.p.) show competitive performance consistently but their energy consumption is more
than four times of the proposed policy, on average. The DHS-Bank-PA reduces leakage-related energy significantly
but it increases the execution time by more than 10% in many cases. In several cases, the increase is more than 20%.
The proposed policy degrades the performance by only 0.26~0.27%, on average, and 1.6~1.9 % for the worst case.
At the same time, leakage energy is almost eliminated since only one (or two) cache line is active while all other
lines are in the drowsy mode. This is especially beneficial for controlling leakage in future instruction caches which
might be much larger. The leakage energy reduction by the proposed policy is on average 92.2~92.5%, almost
identical to the reduction by the optimal policy (92.6%). The total processor energy and the ED2 of the proposed
policy are also almost identical to those of the optimal policy. Therefore, we conclude that the proposed on-demand
wakeup prediction policy is near-optimal.

We believe that there is no reason to try to reduce remaining leakage by adopting non-state-preserving techniques,
at the risk of severe performance degradation. The proposed policy can be adopted for other state-preserving leakage
saving circuit techniques as long as the wakeup penalty is at most one cycle.

In this paper, we apply the on-demand wakeup policy to the tag part of the instruction cache. However, when the

 17

tag part is always in the active mode, the tag access can be moved to the wakeup stage, leading to tag matching in
the wakeup stage (or one cycle before the fetch stage). This results in 100% accurate way prediction without any
way predictor. The trade-off between the reduction of leakage energy in the tag part and perfect way prediction will
be an interesting research topic. We also plan to apply the proposed policy to low-end embedded processors, where
instruction fetch/issue rate is lower and the instruction cache may comprise a much larger fraction of chip area,
resulting in more total processor energy reduction compared to high-end processors.

Acknowledgements
This work was funded in part by the National Science Foundation under grant nos. CAREER CCR-0133634, CCF-
0429765, the Army Research Office under grant no. W911NF-04-1-0288, a Faculty Partnership Award from IBM T.J.
Watson, a gift from Intel MTL, an Excellence Award from the Univ. of Virginia Fund for Excellence in Science and
Technology, and the IT National Scholarship Program from IITA & MIC, Korea.

References
[1] A. Agarwal, L. Hai, and K. Roy. A Single-Vt Low-Leakage Gated-Ground Cache for Deep Submicron. IEEE

Journal of Solid-State Circuits. Vol. 38, Feb, 2003, pp. 319-328.
[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An Infrastructure for Computer System Modeling. IEEE

Computer Magazine. vol. 35, 2002, pp. 59-67.
[3] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, T. Mudge. Drowsy Caches : Simple Techniques for Reducing

Leakage Power. Proc. of Int. Symp. on Computer Architecture, 2002, pp. 148-157.
[4] F. Hamzaoglu, Y. Ye, A. Keshavarzi, K. Zhang, S. Narendra, S. Borkar, M. Stan, and V. De. Analysis of Dual-VT

SRAM cells with Full-Swing Single-Ended Bit Line Sensing for On-Chip Cache. IEEE Transaction on VLSI
Systems, vol. 10, April 2002, pp. 91-95.

[5] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin, M. Kandemir. Exploiting Program Hotspots and Code
Sequentiality for Instruction Caches Leakage Management. Proc. of Int. Symp. on Low Power Electronics and
Design, 2003, pp. 593-601.

[6] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting generational behavior to reduce cache leakage
power. Proc. of Int. Symp. on Computer Architecture, 2001, pp 240-251.

[7] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro Magazine. 1999, pp.24-36.
[8] N. S. Kim, K Flautner, D. Blaauw, and T. Mudge. Circuit and Microarchitectural Techniques for Reducing Cache

Leakage Power. IEEE Transaction on VLSI Systems, vol.12, no. 2, Feb. 2004, pp 167-184.
[9] N. S. Kim, K. Flautner, D. Blaauw, T. Mudge. Single-Vdd and Single-Vt Super-Drowsy Techniques for Low-

Leakage High-Performance Instruction Caches, Proc. of Int. Symp. on Low Power Electronics and Design, 2004,
pp.54-57.

[10] L. Li, V. Degalahal, N. Vojaykrishnan, M. Kandemir, and M. J. Irwin. Soft Error and Energy Consumption
Interactions: A Data Cache Perspective. Proc. of Int. Symp. on Low Power Electronics and Design, 2004, pp. 132-
137.

[11] L. Li, I. Kadayif, Y-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin and A. Sivasubramaniam. Leakage
Energy Management in Cache Hierarchies. Proc. of Int. Conf. on Parallel Architectures and Compilation
Techniques, 2002, pp.131-140.

[12] Y. Li, D. Parikh, Y. Zhang, K. Sankaranarayanan, M. Stan, and K. Skadron. State-Preserving vs. Non-State-
Preserving Leakage Control in Caches. Proc. of the Design Automation and Test in Europe Conference. 2004, pp.
22-27.

[13] S. Manne, A. Klauser, and D. Grunwald, Pipeline Gating : Speculation Control for Energy Reduction. Proc. of
Int. Symp. on Computer Architecture, 1998, pp.132-141.

[14] S. McFaring. Combining Branch Predictors. Technical Note TN-36. DEC June 1993.
[15] Y. Meng, T. Sherwood and R. Kastner. On the Limits of Leakage Power Reduction in Caches. Proc. of Int.

Symp. on High-Performance Computer Architecture. 2005.
[16] M. Milenkovic, A. Milenkovic, and J. Kulick. Demystifying Intel Branch Predictor. Proc. of Workshop on

Duplicating, Deconstucting and Debunking (in conjunction with ISCA-29). 2002.
[17] K. Nii et. al. A Low Power SRAM Using Auto-Backgate-Controlled MT-CMOS. Proc. of Int. Symp. on Low

Power Electronics and Design, 1998, pp. 293-298.
[18] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-Vdd : A circuit technique to reduce

leakage in deep-submicron cache memories. Proc. of Int. Symp. on Low Power Electronics and Design, 2000, pp
90-95.

[19] G. Reinman and B. Calder. Using a Serial Cache for Energy Efficient Instruction Fetching. Journal of Systems

 18

Architecture. vol. 50 , issue 11, 2004, pp.675-685.
[20] S. Yang and B. Falsafi. Near-Optimal Precharging in High-Performance Nanoscale CMOS Caches. Proc. of Int.

Symp. on Microarchitecture, 2003.
[21] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vijaykumar. An Integrated Circuit/Architecture Approach to

Reducing Leakage in Deep-Submicron High-Performance I-Caches. Proc. of Int. Symp. on High-Performance
Computer Architecture, 2001, pp.147-157.

[22] W. Zhang, J. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Compiler-Directed Instruction
Cache Leakage Optimization. Proc. of Int. Symp. on Microarchitecture, 2002, pp.208-218.

[23] ARM. ARM 1136 Technical Reference Manual. Available in http://www.arm.com
[24] ITRS (International Technology Roadmap for Semiconductor). Available in http://public.itrs.net.
[25] Standard Performance Evaluation Corp.. Available in http://www.specbench.org.
[26] VAR Business, Intel Clears up Post-Tejas Confusion, Available in http://www.varbusiness.com/sections

/news/breakingnews.jhtml?articleId=18842588

