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ABSTRACT

The Manufacturing Automation Protocol (MAP) is being developed as an attempt to
standardize communications between inteiligent manufacturing and controlling devices. Intel
Corporation has developed a communications board as a front-end processor to be used in Intel
Muitibus computers, which with MAPNET?2.1 software provides an implementation of MAP
version 2.1. The Data Link and the Transport Layers were studied through performance
analyses. For the Data Link Layer we measured the one way delay and the throughput for
various packet sizes. We also measured the number of messages that could be sent and received
per second for a range of Data Link packet sizes. For the Transport Layer we found a buffer
configuration which optimized throughput and used it for experiments that measured throughput
as the dependent variable, Throughput was measured with respect to TSDU message size. The
effects of decreasing the retransmission timer, varying the maximum Transport Protocol Data
Unit size, using multiple virtual circuits, and varying the maximum window size are described.
One way delay was measured with respect to the TSDU message size. Comparisons between
the two layers indicated that there are both benefits and drawbacks to using a front-end
processor for communications, largely due to message segmentation.
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Chapter 1

MANUFACTURING AUTOMATION PROTOCOL

1.1. Introduction

The development of the Manufacturing Automation Protocol (MAP) by General Motors
[GENES6] is an event which will change thg course of history with regard to factory automation.
Before 1980, every plant or assembly line which GM built involved a control system which was

. supplied by one of the major vendors of industrial automation equipment (e.g. Allen-Bradley,
Gould Modicon, Texas Instruments, etc.). However, these products could not communicate
across vendor boundaries unless someone, usually GM, financed custom hardware and software
to overcome the problem. In some instances the cost of developing the custom interfaces was
one-half the cost of automating the operation [WEAV87]. In addition, the custom interfaces

took a long time to build, and once in place were inflexible.

Faced with stiff international competition, GM found that it simply could not change its
production steps or rates fast enough to respond to a rapidly changing marketplace. Thus in
November of 1980 a task force was chartered to facilitate information exchange pertaining to
plant-floor computer data communications. Called the "Manufacturing Automation Protocol
Task Force”, it was formed to investigate and identify a common communications standard for
plant floor systems (see Figure 1.1). To this end, Michael Kaminski of General Motors,
working with Boeing Computer Systems, developed the Manufacturing Automation Protocol

(MAP) in an unusual attempt for the end-user to dictate a standard to its vendors.



Production Quality Material
Control Control Control
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Device (ateway
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Figure 1.1 — Pictorial Overview of GM MAP

Machinery for a factory floor is supplied by many different vendors. Each vendor
typically has its own proprietary way of communicating with its own devices, but seldom do
multiple vendors produce systems that can communicate with one another without first
developing special hardware and software interfaces. One of the goals of MAP is to provide a
method by which any sysiem from any vendor can be inserted into the MAP environment
without hardware or software customization, similar t0 the way that stereo components can be
purchased independently, plugged together, and still be expected to inter-operate. MAP is also
designed 1o provide technical services to control various intelligent devices in a consistent and

cost-effective manner, contributing to the automation of the factory fioor.

Even though MAP is end-user dictated, the equipment vendor’s investment in existing
protocals also has to be considered. Rather than being a set of newly invented protocols, MAP
is primarily a collection of existing national and international standards based on the

International Organization for Standardization’s Open Systems Interconnection (ISO OSI)



reference model as defined by [ISO7498]. The following is a list of the OSI layers and the

MAP standards adopted:

OSILAYER MAP 2.1 FUNCTIONS

7 - Application ISO Common Application Service Element (CASE)
SASE: MMFS (MMS in MAP 3.0)
SASE: FTAM

6 - Presentation Null (not null in MAP 3.0)

5 - Session ISO Session Kemel

4 - Transport ISO Transport Class 4

3 - Network ‘ ISO Connectionless Network Services (CLNS)

2 - Data Link IEEE 802.2 Link Level, Control Class 1
IEEE 802.4 Token Passing Bus

1 - Physical IEEE 802.4 Token Bus with

Broadband (10 megabits/sec)
or Carrierband {5 megabits/sec)
Modulation on Coaxial Media

The OSI model is a seven layer architecture in which each layer provides hierarchical
support to the layer above it. It provides a structured solution to the reduction of design
complexity by isolating functionality into layers, defining the function of each layer completely,
and abstracting the layer’s implementation decisions to provide modularity. This allows the
MAP designers to fill each of these layers by choosing from existing hardware and software
standards rather than creating new ones. Knowing that these standards are national or
international minimizes the risk to the vendors as well as the end users, and makes all involved

more willing to adopt MAP.

Generally a factory floor will consist of several workstations, each with devices dedicated
to a specific task. These workstations, in turn, combine at the cell level to provide the cell

controller with a set of tasks. These tasks might be assembly operations or machining



operations that require little or no human intervention. Several cells are then combined to
become the whole factory floor (see Figure 1.2). At each level, computers are needed to
provide control and supervision. On the workstation level, a computer might coordinate several
robots and a milling machine. The cell controller may need to provide each workstation with
the necessary materials and process plans, and the factory floor controller may need to keep
track of inventory and provide operator conirol of products to be manufactured. A Local Area
Network (LAN) is the ideal mechanism for providing communications services to these various
factory floor devices. MAP specifies the implementation of such a LAN by defining the
hardware mechanisms and the software framing of data such that specific types of information
can be routed from one type of industrial control equipment to another within the factory

hierarchy.

It is the intent of General Motors to purchase industrial devices only from vendors who
support MAP, thereby allowing GM to reduce the cost of integrating these devices. It is largely
the enormous economic impact that GM has on its vendors that allows GM to dictate this
protocol. As a result of vendors producing industrial devices that adhere to MAP, other
industries and operations are expected to adopt MAP as well. Hence this protocol will have a
significant impact not only on specific manufacturing operations like automobile assembly

lines, but on factory automation in general.

GM MAP has been through several versions thus far and will undoubtedly continue to
change. Most commercial MAP hardware and software, including the system we tested,
conforms to MAP version 2.1. Minor changes were made in version 2.2; version 3.0 has been
released in draft form but is not expected to be established as the new specification until mid-

1988.
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Figure 1.2 — Factory Floor Hierarchy

1.2. MAP Architecture

The Manufacturing Automation Protocol bases its architecture on the ISC OSI reference
model. The reference model defines a seven layer hierarchy for providing functionality in a
modular fashion. The MAP network can be a collecion of segments with or without MAP
compatibility. Bridges, routers, and gateways famvide access to stations on different segments
- or different networks. Also, a provision is made for expedited communications using an

Enhanced Performance Architecture (EPA). EPA bypasses the upper layers in the OS] model



and provides application processes with direct access to the lower level network.

1.2.1. The Open Systems Interconnection Reference Model

One of the goals of GM MAP is to adhere to the networking structure of the ISO OSI
reference model. This model is supported by most active national and intemational standards
organizations, and since it provides a common basis for the coordination of standards
development, most existing and emerging protocols can be mapped onto one or more of the
seven layers of OSI. Furthermore, the model’s hierarchical design allows for easy assembling

of these protocols on a layer by layer basis, reducing compiexity while providing flexibility.

There are seven layers in the OSI model, each layer providing functionality and service to
the layer above it. The information passed down through each layer includes data (the message)
and control information (the message header), so bits which are control information in the layer
above are just treated as data in the layer below. This accounts for the difference in size
between the message frame sent over the physical medium and the application’s original data
unit.

Logically, each layer communicates with its peer layer at another station. This is why
control information is added to the data as it is passed down through the layers of the
transmitter. As the data passes up through the layers of the receiver, the control information is
used and then discarded. At the receiver’s application layer, the original message sent by the
transmitter’s application layer is finally recovered. The only layer that can physically (rather

than logically) communicate with its peers is layer 1, the Physical Layer (see Figure 1.3).

Since a neiwozk is connected node-to-node by a physical medium, layer 1 must
necessarily communicate only with its neighbor nodes (i.e., those nodes physically connected to

the same network cable segment). At layer 4, however, communication becomes independent
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Figure 1.3 — Peer Communications in the ISO OSI Reference Model

of the network topology and communication is said 1o be end-to-end (i.e., there exists a logical
path between transmitter and receiver, without regard to the physical topology required to

implement that logical path).

Layer 1 is éaﬂed the Physical Layer and is -concerned with the transmission of raw bits
over a physical communications channel. Layer 2 is called the Data Link Layer and uses the

raw data transmission service to provide a means by which data frames can be sent and received



without errors. The Network Layer is layer 3, and it provides for the routing of packets across
networks. The Network Layer examines the name of the destination and decides if it is local or
remote. If local, the header appended to the message at this layer is inactive. If remote, the
header contains the appropriate addresses used for routing the message to its remote destination.
Above the Network Layer, the layers become end-node specific. Layer 4, the Transport Layer,
is capable of splitting an arbitrarily large Transport Service Data Unit into multiple smaller
Transport Protocol Data Units suitable for the Network Layer. The Transport Layer also
provides sequencing and flow control for the end-to-end communications. This is all
transparent 1o the Session Layer, layer 5, which negotiates and establishes connections between
end-nodes and manages the dialogue. The Presentation Layer, layer 6, is responsible for
negotiating a transfer syntax which is acceptable to both end-nodes. Layer 7, the Application

Layer, provides all services directly comprehensible to application programs.

What follows is a more detailed explanation of each layer along with MAP’s specification

for each.

1.2.1.1. Layer 1: Physical Layer

The Physical Layer provides a connection for transmission of raw data between Data Link
entities. It also provides a means by which the physical connection can be activated and
deactivated. The intent of the MAP designers is to have the connection be media independent,
yet for early MAP implementations two alternatives have been specified for the network’s
physical media: (1) broadband or (2) carrierband on coaxial cable conforming to the
specifications of the IEEE 802.4 Token-Passing Bus Access and Physical Layer Specification

[IEEES5c].



In June of 1984 IEEE adopted the 802.4 specifications for local area networks using a
token-passing bus access method. This standard defines all of the Physical Layer and part of the
Data Link Layer. For the Physical Layer it specifies the electrical and physical characteristics
of the transmission media and the electrical signaling method. MAP originally chose the
CATYV industry standard coaxial cable using broadband, and later added carrierband as a way of

reducing the per-station interface costs.

Broadband signaling on coaxial cabie uses radio frequencies on the wire itself. Multiple
channels are possible by the manner in which the frequencies are divided. The IEEE 802.4
standard recommended by MAP is a 10 megabit per second duobinary broadband coaxial cable
with mid-split provision for two-way data flow. This would be MAP’s backbone physical
medium. Broadband was chosen for its ability to support multiple networks on the same
medium. It simultaneously supports real-time voice and video, clearly a direction of future

networks, via frequency division multiplexing.

The carrierband alternative supporis only one channel. This standard is a 5 megabit per
second phase-coherent carrierband. Carrierband is a less complicated technology which does
not require the headend remodulator of broadband, hence it is expected to increase reliability
and reduce cost. It is appropriate for control and supervisory communications, as one might

find on a factory floor.

1.2.1.2. Layer 2: Data Link Layer

The Data Link Layer provides for and manages the transmissions of individual frames of
data, ensuring error detection. A data frame is a collection of data and control bits delimited at
the start and end by special markers. Instead of ensuring that each bit individually arrives at its

destination intact, data frames are handled as units. In this manner the Data Link Layer
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provides a data transfer service to the Network Layer.

The ISO layer specifications allow for any layer to be subdivided, as long as the sum of
the divisions can still perform the layer’s tasks. The Data Link Layer can further be divided
into two distinct sublayers. Part of the IEEE 802.4 standard governs the physical specifications
(this is the Physical Layer specification) while the other part governs how that physical medium
is accessed. This Medium Access Control (MAC) sublayer specifies the lower half of the Data
Link Layer (see Figure 1.4). The upper half of the Data Link Layer is called the Logical Link
Control (LL.C) sublayer, and it provides for a logical connection between two adjacent nodes Hy
using error detection as specified by the IEEE 802.2 Logical Link Control {IEEE85b] standard.
The MAC and LL.C sublayers are completely independent of each other, but together provide

all of the required layer 2 functionality.

OSI IEEE
Network Network
LLC 802.2
Data Link — e
MAC
802.4
Physical Physical

Figure 1.4 — Layer Subdivision in the IEEE Model
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The MAC sublayer specified by MAP is the token passing bus access of IEEE 802.4. The
MAC is responsible for several actions. First, it provides for the maintenance of the token,
which is the "permit" passed between nodes granting transmission privileges. The MAC is also
responsible for the maintenance of the logical ring of nodes. Although the physical topology is
a bus with nodes attached to one cable, MAC ensures that each node has two logical (not
physical) neighbors, a predecessor and a successor. The token passes from neighbor to
neighbor, eventually returning to the first node to complete the logical ring. MAC also handles

error detection in addition to message and priority management.

The IEEE 802.4 MAC specifications were adopted by MAP for several reasons. Oniy the
IEEE 802.4 token bus presently supports the Data Link protocol on broadband media. Many
vendors already have programmable devices that are somewhat based on token bus technology.
Messages can be assigned priorities, and the protocol guarantees that the highest priority
messages will be delivered within a measurable and deterministic time limit. This is essential

for factory floor communications.

The Logical Link Control is specified by the IEEE 802.2 standard. There are three types of
service: connectionless mode, connection-oriented, and connectionless mode with
acknowledgements (called LLC T&pe 1,2, and 3, respectively). Connectionless mode service is
sometimes called datagram service, and it provides for the exchange of data between iwo
Logical Link entities without first establishing a connection. This resembles mailing a letter.
Connection-oriented service is sometimes called virtual circuit service because it sets up a
(seemingly) direct line between Logical Link entities, as a telephone call would between
people. Type 3 service is a proposed datagram service with acknowledgement of data frames.
MAP specifies using the Type 1 connectionless service, and allows the use of Type 3 service
(datagrams with aéknowledgements) for improving the reliability of the LLC, as would be

needed for the MAP/Enhanced Performance Architecture, The LLC is discussed in more detail



12

in Chapter 2.

A subnetwork is a collection of interconnected nodes for which routing of messages is not
necessary for data transfer. Layer 3 handles the routing of messages in the larger
interconnection of subnetworks. Ideally, each node in a subnetwork would be a MAP node, that
is, it would support the full MAP architecture, but for historical and migratory reasons, this is

not a reasonable expectation.

1.2.1.3, Layer 3; Network Layer

The Network Layer provides services to convert global address information into routing
information so that a message can be delivered from one end-node to another. To do this it
must maintain rowting tables and/or algorithms, establish and terminate network connections
when appropriate, and provide switching services to incoming messages to route them onto the

proper outgoing path.

The MAP specifications allow for four sublayers: the inter-network sublayer, the
harmonizing sublayer, the intra-network sublayer, and the link access interface. The inter-
network sublayer is responsible for routing information for end-node-to-end-node information
flow. Datagrams traverse possibly multiple LANs without regard to an individual LAN’s local
routing scheme. The standard chosen to do this is ISO 8473 Data Communications Protocol
for Providing the Connectioniess-Mode Network Service {ISO8473], called CLNP for
Connectionless Network Protocol. CLNP describes network service primitive functions and
specifies addressing conventions. In a pure MAP environment, this would be the only routing
methodology needed, as this subiaye; and the lower two layers would comprise all that is
necessary for routing and delivery, However, since MAP is also trying to provide for a

migration path from existing proprietary systems to this standard, the next two sublayers are
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concermed with interfaces to non-MAP networks.

Presumably a MAP node could have access to a network where the local addressing and
routing schemes are diffemnf. The hannoniziﬂg sublayer is an implementation-dependent
facility for converting inter-network addresses to local addresses and providing intermediate
functionality where needed to adapt the global routing requirements to the available local

routing services, If this functionality is not required, then this would be a null sublayer,

The intra-network sublayer then provides all the routing and switching of messages 1o,
from, or through a particular node within the immediate local network. This local network
would be a set of interconnected nodes communicating with a common, non-MAP, routing

protocol. Again, in an ideal MAP environment, this sublayer would also be null,

The link access interface provides the necessary functional interface between the Network
Layer and the Data Link Layer. It may have to provide the translation between connection-
oriented communications at the Network Layer and a connectionless mode service on the Data
Link Layer. Whatever the case, its job is to provide the logical interface between the Network

and Data Link Layers.

Above the Network Layer are end-to-end communications in which the concept of a
subnetwork should be mostly transparent as should any details of how the data is transferred

between peer layer entities.

1.2.14. Layer 4: Transport Layer

The Transport Layer exists solely to provide reliable and transparent transfer of data
between session or transport user entities. It provides this service without regard to the
underlying system of subnetworks or their Network Layer protocols. It relieves the transport

user from any concem with how the data is transferred, where it must go to arrive where
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intended, or the ordering of the data as it arrives.

The Transport Layer provides two types of services: connection management and data
transfer. The facility for the creation and deletion of a data path to a peer transport user is
provided in connection management. In data transfer, the data may be sent by the normal path
or by expedited means when the message is urgent. To provide these services MAP has
selected the ISO 8073 Transport Protocol Specification [ISO8073] Class 4. This protocol has
provisions for flow control for data transfer efficiency. It can multiplex users, providing each
user with access to the network for transmissions. It can detect errors and recover from lost,
damaged or out-of-sequence packets of data. An addendum to the standard (ISO 8602
Connectionless-Mode Transport Service [ISO8602]) provides a datagram oriented service,
which makes it popular among U.S. computer manufactures for its support of a wide variety of

network sublayers. These standards are discussed in detail in Chapter 2.

1.2.1.5. Layer 3: Session Layer

The purpose of the Sessio_n Layer is to enhance the services provided by the Transport
Layer with mechanisms for managing and structuring reliable data transfer. Such structuring is
achieved in three ways: two-way alternate (half-duplex), one-way interaction (simplex), and
two-way simultaneous (full-duplex) data tranéfer. MAP specifies the ISO Basic Connection
Oriented Session Protocol Specification {ISO8327] for this layer, with full-duplex

communications.

The process running the Session Layer will be controlled by a state table, where changes
in the status of the session will result in state table updates. Typically the state tables consist of
a well-ordered series of events and alternatives for establishing, maintaining, and closing a

dialogue between session users. These tables monitor the success of session events and
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Transport Layer function usage. They also provide major and minor checkpoints for rollback to
keep the dialogue synchronized. Upon an error or desynchronization, the Session Layer
manages the retum to one of these checkpoints (the last place in the dialogue which was

mutually agreed to be error-free).

1.2.1.6. Layer 6: Presentation Layer

The purpose of the Presentation Layer is 10 negotiate a transfer syntax for use by the
Application Layer. This layer may actuaily cause the representation of the data unit 1o be
changed. MAP 2.2 does not specify a Presentation Layer, and thus it is a null 1ay§r. However,
future MAP versions (beginning with.vemion 3.0) will specify the Presentation Layer as using

ISO 8822 Comnection Oriented Presentation Service Definition [ISO8822].

1.2.1.7. Layer 7: Application Layer

The Application Layer is the interface between user programs and the network. It defines
the way in which communication functions are made available to a user program and manages
the details required to support that communication. User programs access the network through
service elements, using these elements in a prescribed manner. The interface hides the
implementation details of the rest of the network from the user, providing only those elements

necessary for user programs to establish connection, transfer data, and terminate the connection.

The MAP spéciﬁcation of the Application Layer is a modified subset of the ISO Common
Application Service Elements [ISO8649], called MAP Common Application Service Elements
(CASE). MAP CASE provides the ﬁ\(e service elements most often used by application
processes. Also present at this layer are Specific Application Service Elements, or SASEs,
which provide service elements used only in special applications. An example of a SASE

specified by MAP is ISO File Transfer, Access, and Management (FTAM),
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The User Element is the interface to the area outside of the OSI environment. Qutside of
this environment are the users of the network. Within the Application Layer are the service
elements to provide network functionality. The User Element bridges between the two. The
User Element has access to MAP CASE and the SASEs, and provides services through them to

the application process.

1.2.1.7.1. Common Application Service Elements (CASE)

The purpose of MAP CASE is o provide an application association between application
processes in different nodes in the MAP network. An application association is established
when two application processes want to communicate. The building of the underlying
connection occurs when lower level protocol entities are invoked to provide such connection
establishment. No knowledge of how these lower level protocol entities actually execute this
establishment is necessary. Herein lies an important difference between the ISO CASE and the
MAP CASE: MAP CASE is mapped directly onto the Session Layer services, whereas ISO
CASE provides for the use of the Presentation Layer services. When later versions of MAP are
adopted, the Presentation Layer will no longer be null and the mapping of MAP CASE onto the

rest of the network will include the Presentation Layer.

MAP CASE provides services and protocols to allow for two application processes to
transfer information. A mechanism for presenting and supporting a common MAP addressing
and naming scheme allows for logical names to be transparently mapped to network names and
addresses. Security is addressed by providing a framework for a MAP authorization and
authentication facility. A standard encoding for MAP applications to communicate reasons for
refusing an application association, as well as signaling normal and abnormal termination, is

also provided.
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There are only five service elements in the MAP CASE group. These elements provide
the functionality to establish, use, and terminate an application association. They include A-
ASSOCIATE, which is used to establish an application association between two application
processes; A-RELEASE, which allows either of the two MAP CASE users to terminate the
application association without loss of information in transit; A-U-ABORT, which is used by
either MAP CASE user to terminate the application association abnormally; A-P-ABORT,
which informs each of the two MAP CASE users that the underlying services are terminating
abnormally or that MAP CASE detects an error indicating abort; and finally A-TRANSFER,
which is used to transfer data between MAP CASE users. A finite state machine controls these

service elements.

1.2.1.7.2. File Transfer, Access and Management (FTAM)

The File Transfer, Access and Management (FTAM) {ISO8571] protocol provides
services that will support transfer of both binary and ASCII format files, as well as the remote
creation and deletion of files. The FTAM services are related to a local filestore, where
incoming or outgoing files are buffered. FTAM uses the services of CASE and the Session
Layer directly to transfer files across the network. A finite state machine is responsible for

monitoring the use of these services.

Files are of two types, binary and ASCII. Binary files are octet string encoded with no
embedded structuring recognized. ASCII files, on the other hand, are structured by variable
length lines ending in carriage return and line feed. Neither the carriage retumn nor the line feed

can ever appear alone, as they are the end-of-line delimiters.

MAP specifies that ISO 8571 File Transfer, Access and Management be the defining

document. There is an allowance for a second phase of implementation of FTAM, where an
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enriched set of file formats and a limited set of file access capabilities would be included. Other
protocol specifications are under review for this next phase. Furthermore, as MAP CASE
services mature, it is expected that FTAM will be integrated into the Application Layer

functionality.

1.2.2. Bridges, Routers and Gateways

The interconnection of a set of networks is called a Catanet. MAP recognizes the need for
a Catanet within a facility, connecting MAP networks to both MAP and non-MAP networks.
There are three types of devices used to accommodate the three different layers where points of

connection couid be established.

Bridges are devices that can connect two or more subnetworks at the Data Link Layer.
Their actions are transparent to the network because they actually participate in the token
passing in all subnetworks to which they are connected. Upper layers of the communicating
nodes have no need to know that the messages they are sending are going through a bridge to
get to their destination. Since a bridge is a Data Link connector, the MAC sublayers must be
compatible or the same. MAP bridges will be used in very clearly defined situations and will
only connect segments with similar MAC sublayers, which for MAP means coanecting one
IEEE 802.4 token-passing bus to another IEEE 802.4 token-passing bus. Major uses, then, of
the bridge device will be connecting carrierband subnets to the broadband backbone network or
interconnecting different channels of a broadband system. Figure 1.5 shows an example of a

bridge architecture.

A bridge can connect two or more sets of Physical and MAC layers. The Interdatalink
that interconnects the layers uses the MAC services 10 gain access to the data, then it does

whatever translation is needed between the Physical Layers. The Interdatalink is not the
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Interdatalink

MACI MAC2

PHYSICAL1 PHYSICAL2

Segment 1 Segment 2

Figure 1.5 — Architecture of a MAP Bridge

Network Layer, or a separate layer at all; it is simply a connector of MAC sublayers.

Routers interconnect networks at the Network Layer when different LLC sublayers are
implemented on segments. This means that networks with different Data Link and Physical
Layers can be connected together. The router has a known address, and any message needing
delivery 10 another network connected to the router must first traverse the router. Figure 1.6
shows the structure of a MAP router. The Internetlink performs any necessary address

translations, but is not a separate layer; it merely interconnects network layers.

Gateways interconnect different network architectures by performing protocol translation.
Gateways are used to interconnect completely different networks (either local area networks, or
wide area networks, or any combination). Some proprietary and commercial networks are not
based on the oSl seven layer architecture, so gateways are also used to cross the boundary
between ISO-based and non-ISO based networks. Figure 1.7 shows the architecture of a
gateway. Note that layers X1 and X2 represent peer layers of nodes in different networks (i.e.

layer TRANSPORT1 might be the OSI Transport Layer of MAP on a local area network, while



20

Internetlink

NETWORKI1

DATALINK1

PHYSICALL1

Network 1

NETWORK2

DATALINK2

PHYSICAL2

Network 2

Figure 1.6 — Architecture of a MAP Router

layer TRANSPORT?2 might be a TCP Transport Layer in an X.25 wide area packet-switched

commercial network).
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Interprotocollink
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PHYSICAL!L PHYSICAL?2
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Figure 1.7 — Architecture of a MAP Gateway

1.2.3. EPA - The Enhanced Performance Archifecture

The Enhanced Performance Architecture, or EPA, is a subset of the MAP architecture that
is designed to provide faster message response times at the sacrifice of upper level functionality.
A full MAP node would include all seven layers according to the MAP specification. EPA
bypasses the upper layers, connecting the application processes directly to the Data Link Layer
in an effort to streamline critical communications. It is expected that most nodes would have

~ both architectures; that is, be able to provide full MAP functionality with the option to provide
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EPA in special circumstances. A node that provides only MAP is called Full MAP, a node with
both is called MAP/EPA, and a node with only EPA is called Mini-MAP. Figure 1.8 compares

the Full MAP, MAP/EPA and Mini-MAP architectures.

In the Full MAP implementation, each layer provides a service through which peer-to-
peer communication of differing computing devices can be achieved. All seven layers are
implemented. MAP/EPA provides Full MAP capabilities during normal factory floor

communications as well as a method for obtaining faster response time for use on control and

Application _ Application Process 'Appiication
Process Process
APPLICATION APPLICATION
PRESENTATION PRESENTATION
SESSION SESSION
TRANSPORT TRANSPORT
NETWORK NETWORK
DATALINK EPA DATALINK EPA DATALINK
PHYSICAL EPA PHYSICAL EPA PHYSICAL
Full MAP MAP/EPA Mini-MAP

Figure 1.8 — Comparison of Full MAP and MAF/EPA
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time-critical networks. It is designed to exist in specific environments for specific types of
communications. This special case is usually a small, tightly coupled group of devices which

require rapid response, use small messages, and need little or no support from a directory server.

An example of where MAP/EPA may be used effectively would be a workstation with
several intelligent devices and a computer controller. A robot may be in charge of taking a part
blank from the materials tray and loading it into the vice of a milling machine. The robot must
report its status very often, informing the controlling computer where it is and what it is doing.
These status data frames must be delivered quickly, as the robot is moving in real-time and the
information is shorn-lived. Small messages, rapid response time and no worry about the
occasional loss of a message are characteristics of this application. These are also the
characteristics of EPA. If the controlling computer is connected to the MAP backbone, it must
have the full MAP architecture. However, to facilitate monitoring the status of the robot, EPA
is more appropriate. Thus, the computer controller should have the dual MAP/EPA

architectures.

In order o achieve the quickened communications promised by EPA, several layers in the
OSI1 reference model have been bypassed. These layers provide functionality necessary for
more complex and leisurely communications, which increases the processing and response
times. By eliminating the layers, the procedural interface between the layers and the control
information used by the layers is also removed. This lessens the processing time by reducing
the amount of software 10 actually handle the message and reducing the message overhead due

to headers, There is a price to pay for such expedience, however.

In obtaining this streamlined architecture, the application processes interface directly with
the Data Link Layer. This means functionality is lost and restrictions apply. Skipping the

Presentation Layer means no negotiation or changing of the message encoding scheme or its
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transfer syntax. The presentation syntax must be known a priori for applications that use EPA
services. Data streams cannot be monitored by the checkpoints and the resynchronizing
services that the Session Layer normmally provides. The Transport Layer is not present to
guarantee message delivery. The only assurance given is that a "best effort”" attempt wili be
made to deliver the message. High quality guaranteed message delivery is therefore sacrificed.
The messages are restricted to transfer across a single network segment because the Network
Layer internet services are missing, so there can be no global delivery of messages. Only one
unacknowledged message no larger than the Data Link protocol data unit may be sent. This
reduces throughput if errors occur frequently, and restricts the length of the message because no
facility exists for disassembling and reassembling messages. The type of service can only be
connectionless (datagram, or Type 1), with the option of immediate acknowledgement (Type 3).
If the Type 3 acknowledged message is used, this becomes a "stop-and-wait protocol" (the
sender stops and waits after each message transmission until an explicit acknowledgement of

the last message sent is received).

The specifications for EPA include the [EEE 802.4 phase coherent carrierband for the
physical medium. The Data Link Layer is IEEE 802.4 MAC and IEEE 802.2 LLC, the same as
for a full MAP architecture. These layers will be managed by the same network management

scheme as the full MAP, as specified in [EEE 802.1B Station Management {IEEE85a].

It is important to realize that the Mini-MAP is not a MAP node, and thus must be
connected to MAP by either routers, gateways or bridges. A Full MAP node cannot
communicate with a Mini-MAP node except through one of these devices. In this respect, EPA
is not MAP compatible, but actually a separate subnetwork of devices which can be connected

10 a MAP network.
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1.3, Network Management

The purpose of Network Management is to gather information on the usage of the network
media, ensure the correct operation of the network, and provide reports. This information is
then made available for three types of users: those concemed with‘ the maintenance of the
network, those concerned with the operations within the network, and those concemed with the
planning of network design. The maintenance aspect uses the data to provide problem detection
and diagnosis, preventive maintenance, and the installation of new nodes. The operatio.ns
aspect uses the data to provide performance monitoring and network access management. The

concern in planning is to design, model, and simulate new network configurations.

Three entities exist within a network for gathering all of this information: a human
operator, a management applications processor, and management agents. The human operator
invokes the management applications processor (manager) and requests services from it. This
manager is an application program, so it uses the services of the Application Layer to
communicate to various nodes in the network. For each node there is an agent which receives a

message from the manager and reacts or responds (o it.

The type of information MAP has specified for network management falls under the
categories of configuration, performance, event, and fault. Configuration management is
concemed with the current system state. Performance management reports on system statistics,
such as the frequency of event occurrence. The event processor reports the occurrence of a state
changing event. Fault management verifies the system state, isolates and corrects faults. There
is a management applications processor for each of these categories, allowing the human
operator 1o collect, control, store or present the information requested by use of the manager’s
functionality. The types of data returned may be real-time, as in the current state of a node, or

* administrative, as in a software version number. The manager’s functions access this data by
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using management messages and parameters.

The typical System Management Protocol Data Unit (SMPDU) is comprised of (1) the
type of the message, either request, response, or event; (2) the layer to which the request is
directed; and (3) one or more ficlds for information to be sent or received. These SMPDUs are
given to the Application Layer for delivery to the agent, which also responds via the
Application Layer. The manager makes all of the connections, initiates all the transactions, and
closes all channels. The agent must maintain a storage and retrieval system at each level for the

information that may be requested.

MAP specifies that only layers 3 through 7 are responsible for such Network Management
dialogue. Layers 1 and 2 will be handled, at least initially, by another management scheme.
The domain of the Network Management extends only so far as the environment is MAP-based,

and never extends through gateways or routers to non-MAP networks,

1.4. Migration Path

General Motors recognizes the fact that vendors have been making their own proprietary
communications systems for some time. Given that change takes titne, MAP has laid out a set
of interim recommendations for both equipment manufacturers and GM MAP system architects.
The MAP environment will be present from the start in the form of a MAP backbone network,
and from it the evolution of devices will occur. As a device becomes more MAP-like, it moves

closer to becoming a full MAP node on the MAP backbone or on a MAP segment.

In the short term, the MAP backbone will consist of a token passing bus network on
broadband coaxial cable. Non-MAP subnetworks will be attached to the backbone by way of
gateways, which will perform the necessary translation from non-MAP to MAP network

protocols. Any device on the non-MAP subnet will be an indirect participant on the MAP
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network. In the long term, these non-MAP subnetworks will be replaced by MAP subnetworks

or the devices will be placed directly on the backbone as participating MAP nodes.



Chapter 2

STANDARDS

2.1. Introduction'

The suite of experiments described in Chapter 4 measured the performance of Intel’s
MAPNET?2.1 [INTE87a] implementation of MAP 2.1 at the Data Link and Transport Layers.
The following is a detailed review of the standards used at these two layers, with particular

emphasis on the type or class specifically required for MAP 2.1.

2.2. Transport Layer Introduction

The Transport Layer is the fourth layer in the ISO OSI reference model. It provides
transparent transfer of data between transport users, relieving the user of any concem with the
details of how the data is transferred. There are degrees of reliability offered and the téchniques
for ensuring this reliability are also transparent. This transparency is reflected in the network

independence characteristic of the Transport Layer.

There are two types of Transport Layer Services defined by ISO. The first is specified by
ISO 8073 Connection-Oriented Transport Layer Service [ISO8073]. It provides the transport
user with connection management and data transfer services through virtual circuits. The
second is specified by ISO 8602 Connectionless Mode Transport Layer Service [ISO8602]. It

provides a datagram service for data transfer without connection maintenance.

28
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2.2.1. Connection-Oriented Transport Layer

The Connection-Oriented Transport Layer provides two kinds of services to the transport
user: connection management and data transfer. The transport connection management service
provides the facility to create, maintain, and destroy a data path between peer transport
processes. The data transfer service provides normal and optionally expedited transfer of data

between peer transport processes.

- The transport entity will negotiate with its peer for the quality of service to be provided by
this layer. The criteria are: what is required by the transport user, what is provided by the
underlying network, and of that which is requested and available, which is affordable with
respect 10 the cost of providing that service. The negotiations take place during connection

establishment, and in part account for the multi-way handshake involved.

A transport user accesses the Transport Layer through a Transport Service Access Point
(TSAP). The user passes service data units to the Transport Layer and receives service data
units from the Transport Layer through the TSAP. These data units are called Transport
Service Data Units (TSDUs). The Transport Entity operates on ihcoming TSDUs, preparing
them for delivery to the user by processing header information, and on outgoing TSDUs,
preparing them for départure on the network. The TSDUs are transformed into one or more
Transport Protocol Data Units (TPDUs). The Transport Layer specified by the ISO 8073
document assumes the presence of a Network Layer with certain services. The TPDUs that are
passed down to the Network Layer then become the Network Layer’s Network Service Data
Units (NSDUs), and they come and g0 at one or more Network Service Access Points (NSAPs)

(see Figure 2.1).

When a large TSDU is passed 1o the Transport Layer, it may have to be broken down into

smaller, more manageable TPDUs. This is called segmenting, and it is the transport provider’s
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Figure 2.1 — Model of Service Access Points

responsibility to reassemble these pieces into the original TSDU upon delivery to the peer

transport user.

One transport connection may use [wo Or more network connections to improve
throughput. Because the user is unaware of how the Transport Layer provides the cost-
effective, reliable data transfer, it is not the user’s task to manage these multiple connections.
When the transport provider does this, it is called splitting and recombining. As in the case of
segmenting and reassembling, the transport provider must recombine the pieces of the message

before it can be delivered to the user.

Multiplexing and demultiplexing allow two or more transport users to use the same
network connection. Again, this is transparent to the users and it is the responsibility of the

transport provider to make this service transparent.
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Sometimes the size of several TSDUs is small enough that they can be placed into the
same TPDU. This is called chaining. Of course, it is the job of the transport provider to

decouple these messages before final delivery.

2.2.1.1. Classes Of Service

A class of service is a set of functions providing a level of quality of service to the
transport user, The options are functions within a class which may or may not be included.

There are five classes of service available:

Class O - Simple Class

Class 1 - Basic Error Recovery Class

Class 2 - Multiplexing Class

Class 3 - Error Recovery and Multiplexing

Class 4 - Error Detection and Recovery with Multiplexing

Class 0 is the simplest of the classes. It provides the barest of transport services, allowing
the maximum level of errors acceptable. Residual and signaled errors are acceptable without

detection or recovery.

Class 1 provides the basic transport services with minimal overhead. It is designed to be
recoverable from network layer disconnect or reset, but still allows residual errors to go

undetected.

Class 2 provides Class 0 functionality with the addition of multiplexing. As stated above,
multiplexing is the use of a single network connection to provide service to two or more

transport connections. No detection or recovery from residual or signaled errors is provided.

Class 3 provides Class 1 functionality with the addition of multiplexing. Now the system

can recover from signaled errors, but the residual errors still go undetected.

Class 4 provides the capability to multiplex, as well as to detect and recover from errors

which are the result of a low grade of service from the network provider. Errors detected
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include TPDU loss, TPDU delivery out of sequence, TPDU duplication, and TPDU corruption.
By providing these services efficiently, increased throughput and additional resilience to

network failure can be observed.

2.2.1.2. Class 4 Transport

Class 4 provides the highest degree of reliability for an error-prone network. Many

mechanisms and timers are required to provide this level of service.

2.2.1.2.1. Class 4 Mechanisms

Sequence numbers tag the TPDUs with identifying and ordering information. Each TPDU
is stamped with 2 unique number, one more than the last TPDU processed, and one less than the
next TPDU in line. This number is then used to acknowledge receipt and order TPDUs before

handing them up to the transport user.

A window is an ordering of sequence numbers that are termed active. This may be the list
of sequence numbers on TPDUs that can be transmitted or received. The window extends from
the next sequence number to be processed to one greater than the last sequence number for

which prdcessing is possible,

A TPDU with the special purpose of acknowledging the receipt of one or more data
TPDUs is called an acknowledgement (ACK). ACKs carry the sequence number of the next
active data TPDU (one greater than the sequence number that is being acknowledged) and a
credit field. The credit field in an ACK is the means for specifying how many sequence
numbers after this one are considered active by the receiving user. As a consequence ACKs
also represent permission to transmit. A closed window has a credit of 0, which effectively

turns off the transmitting node. An ACK with updated credit information may be sent at any
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time to control, or "throttle", the transmitting node,

2.2.1.2.2. Class 4 Timers

There are several timers that are useful in flow control and error recovery, These timers
"timeout” when they reach certain set values, The values for the timers are determined from
‘negotiations or supplied by the underlying network. These values are expected lengths of time
for certain events, and if the event does not ocecur within that expected time an exception is

signaled.

Since the Transport Layer uses the services of the Network Layer, a Transport Protocot
Data Unit becomes a Network Service Data Unit when it is passed to the Network Layer. The
Network Layer provides the value 6f the length of time an NSDU can remain in the network.
These values, called NSDU lifetimes, are referred to as M(ri) for remote to local, and M(ir) for
local to remote. This is a guarantee from the Network Layer that if this time has passed then the

NSDU will be discarded.

A value for the expected maximum transmit ime is the total amount of time necessary for
a TPDU to be transmitted from the sending node to the receiving node. It is referred to as E(Ir)
for local to remote transmit, and E(r}) for remote to local transmit. The amount of time a
receiving node can wait before it must acknowledge a received TPDU is called A(l) for the
local value, and A(r) for the remote. A value for the local retransmission timer (T1) can be

calculated using the the above values.
‘T1=E(r) + EAn + A(r) + X

where X is an amount of time to allow for system latency.
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The number of retransmissions of a particular TPDU is bounded to prevent the Transport
Layer from sending infinitely many retransmitted TPDUs over a bad network. This number is
called N. The persistence time (R) is the length of time before the Transport Layer stops trying

to transmit over the network, and is calculated as:
R=(TI1*N)+Y

where Y is system latency.

The number of sequence numbers is finite, so they will have to be reused after some finite
number of TPDUs have been transmitted. There is a bound (L) on the amount of time that

should pass before a sequence number can be reused:

L =M@l + MO + R + A(n).

To ensure that peer Transport Layers are still communicating, an inactivity timer (I) is
used. When the amount of time specified by this timer has passed without a response from the
remote Transport Layer, the local Transport Layer initiates a release due to inactivity, To keep
the window information current, and to ensure that flow control is affected, a window timer (W)

signals for periodic transmission of window and credit information.

2.3. Connectionless Mode Transport Layer

Connectionless Mode transfer of data at the Transport Layer provides the transport user
with a single-access data transfer without the overhead of transport connection establishment.
This service is intended for the benefit of those applications that require a one-time, one-way
transfer of data, towards one transport user, taking full advantage of mechanisms which are

simpler than those used in Connection-Oriented Transport Services.
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2.3.1. Functions

The functions provided are at least those necessary to bridge the gap between the service
available from the Network Layer and the service to be offered to the Transport User. They are
concemed with the enhancement of quality of service in a cost optimizing manner, These
functions include selection of the Network Service that best fits the requirements of the
Transport Service User, address mapping for determining the destination address from the

function parameters, TSDU delimiting, and error detection.

2.3.2. Model of Connectionless Mode Transport Service

The model of the connectionless mode Transport Service is similar to the model for
connection-oriented Transport Service. The transport entity communicates with the Transport
Service User through one or more TSAPs by means of transport service primitives. These
primitives cause or are the result of the exchange of TPDUs between peer transport entities.

Protocol data units are exchanged by making use of the Network Layer services.

Transfer of data may occur over a connectionless mode Network Service, or a
connection-oriented Network Service. The purpose of using a connectionless Network Service
is to provide the one-time, one-way transfer of a TSDU between Transport Service' Users
without confirmation of receipt, without transport connection establishment and release, and
without network connection establishment and release. Connection-oriented Network Service
satisfies the purpose of connectionless mode Network Service with the added reliability of a

network connection at the added cost of that connection overhead.
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2.4. Data Link Layer

The Data Link Layer is the second layer in the ISO QSI reference model. In the IEEE
family of standards, the Data Link Layer is divided into two sublayers, the Medium Access
Control (MAC) and the Logical Link Control (LLC). The IEEE 802.4 Token-Passing Bus
Access Standard [IEEE85] describes the Physical Layer and the MAC sublayer. The LLC
sublayer is described in the IEEE 802.2 Logical Link Control Standard [IEEE84b], to be used in
conjunction with the MAC of the IEEE 802.4, It is the LIL.C sublayer which provides the
service interface to the Network Layer or any other Data Link user, and thus it is discussed in

detail here,

The services of the Data Link Layer are the capabilities that it offers to the data link user.
These services are provided at the LLC sublayer, and are built upon the services provided by the
MAC sublayer below it. Services are specified by describing the information flow at the
interface between the service user and the service provider, or Data Link Entity. This is
implemented by passing service primatives to the Data Link Entity through a Link Service

Access Point (LSAP).

2.4.1. Types of Service

The services provided by the LLC to its user include peer-to-peer protocol procedures that
are defined for the transfer of information and control between any pair of LSAPs on a

subnetwork, independent of the particular MAC being implemented on that subnetwork.

There are two types of operations provided by the LLC sublayer. The first type provides
unacknowledged data link connectionless service across a data link. This is a means by which
users can exchange Data Link Service Data Units (DL.SDUs) without first establishing a Data

Link Level connection. Since there is no connection, there are only data transfer primatives



37

associated with this type of service. This is called Type 1.

The second type provides a data link connection-oriented service across data links,
supporting sequenced delivery of data units and error recovery techniques. Primatives are
provided that establish the connection, allow transfer of DLDSUs, reset a connection to an
initial state, terminate the connection, and control the flow of data associated with a specified
connection across the interface from user to provider. The Data Link Protocol Data Units
(DLPDUs) will be assigned sequence numbers, and acknowledgements verifying receipt will
indicate what sequence number is expected next. The LL.C Entity is also responsible for error

recovery and flow control. This collection of services is called Type 2.

Driven by the new RS-511 Manufacturing Message Service (MMS) [ELEC86]
specification for MAP 3.0, a third type is proposed. This would be a hybrid of the first two
types, combining connectionless service with acknowledgements. Any DLPDU received that is
of T&pe 3 would send back an acknowledgement. This type of service would be for the
important commands that would need a verification of receipt, as are present in some MMS

primatives used in a MAP/EPA environment.

2.4.2. Classes of Procedure

Various Classes of Procedure incorporate one or more of these types. Class I LLC is the
support of Type 1 services only. Class II LLC is the support of Type 1 and Type 2 services,

with the ability to switch between the two on a DLPDU-by-DLPDU basis, if necessary.

2.4,3. Logical Link Control Protocol Data Unit Structure

IEEE 802.2 specifies the format to which all LLC PDUs must conform, as shown in

Figure 2.2, The address representation is in the form of two one-octet fields. The Destination
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SL.SAP | DLSAP

Information| Control | 4 4iecs | Address

8*M bits y bits 8 bits 8 bits

where y is either 8 or 16 and M is an integer value equal to
or greater than 0.

Figure 2.2 — Format of the Logical Link Control Protocol Data Unit

Link Service Access Point (DLSAP) has 7 bits for the actual address and 1 bit for identifying
the address as either an individual or group address. The Source Link Service Access Point
(SLSAP) also has 7 bits for the actual address and 1 bit for identifying if the LLC PDU is a
response or command. The Control ficld consists of one or two octets and is used to designate
command and response functions, and contains sequence numbers when required. The

Information field consiéts of any integral number (including 0) of octets.



Chapter 3

ENVIRONMENT

3.1. Introduction

A performance analysis was designed and experiments were performed on Intel's
implementation of GM MAP, using Intel hardware and software products. These experiments
were intended to measure various aspects of performance at the Data Link and Transport Layers
in the ISO stack. The hardware environment included Intel computer hardware, timing
hardware and communications hardware. The specific hardware and software are described
below.

The experiments were performed using two Intel 286/310 computer systems serving as
nodes on a MAP network. MAP communications services were provided by MAPNET2.1
[INTE87a,b], Intel’s implementation of MAP version 2.1. MAPNET?2.1 software provided the
OS1 Application, Session, Transport, Network, and Logical Link Control Layers. The
iSXMS54 hardware provided the Medium Access Control (MAC) sublayer and the interface 1o
the 10 megabit/second IEEE 802.4 token bus broadband network. The Intel product iNAS60
[INTE86a,b,c] provided a subset of the MAPNET2.1 services, specifically the Transport,
Network, and Logical Link Control Layers. iNA960 was the product actually used in the
experiments beg:ause it provided Transport and Data Link services in exactly the same manner
as MAPNET2.1 without the complication of the upper layers. All the MAPNET2.1 or iNA960

software resided on the front-end processor.

39
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Qur application processes, written in ‘C’ and ‘PLM’ and resident on the host processor,
communicated with MAPNET2.1 and with iNA960 using another Intel convention called
Multibus Interprocessor Protocol (MIP) [INTES6¢]. MIP allows the host _processdr {the 802868)
and the front-end processor (the 80186 on the iSXM554) to communicate request blocks by
simply passing pointers to shared memory via a Message Delivery Mechanism (MDM). If the
block to be transferred is not in shared memory, MDM will copy the block from host memory
into the front-end processor’s packet buffer. MIP isolates user tasks from the complexities of
communicating across the Muldbus. MIP ﬁandles the interaction between the host processor,
the front-end processor, and other intelligent Multibus devices. MIP supports functions such as
locate a port, attach/de-attach a task to/from a port, and transfer/receive a buffer to/from a port.

Figure 3.1 shows the relationship between MAPNET?2.1 and iNA960.

3.2, Intel 286/310 Computer System

Each of the Intel 286/310 computer systems was used as a station or node on the Local
Area Network. Each consisted of a chassis with a Multibus backplane, a power supply, a floppy
disk drive and a Winchester hard disk drive. An iSBC 286/10 single board computer (host
board) was placed into the backplane to complete the computer system. Included on this board

was:

1) 80286 CPU -- 6.0 MHz

2) 80287 Math Co-processor -- 6,0 MHz

3) Two RS-232 serial I/O ports

4) One Centronix parallel I/O port

5) 1 megabyte RAM addressable by Multibus.

The software functions performed on this board consist of:

1) iIRMX86 real-time multi-tasking operating system [INTE85]
2) Multibus Interprocessor Protocol (MIP) driver

(enables communications with COMMengine boards)
3) Application Performance Programs
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Application: MAP CASE

FTAM

Directory Services

MAPNET2.1

Presentation: Null (in MAP 2.1)
Session: ISO Session
Transport: ISO Transport Class 4
Network: ISO Intemetworking Protocol
Data Link: LLC - IEEE 802.2 Class 1

MAC - [EEE 802.4 iNASGO
Physical: IEEE 802.4 Token Bus —

10 megabit/sec Broadband ISXMS54

|

Figure 3.1 — Intel’s OpenNET Products

There was also a memory board with 896 kilobytes of RAM on the backplane. This
memory belonged to the Multibus, and could be addressed by any intelligent device attached to
the Multibus at the backplane, including the host board. Additional Multibus boards could be
placed in the chassis. These would provide specific hardware functions such as

communications.
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3.3. The Synchronous Clock System

All delays recorded for experiments were measured using a global synchronous clock
[FRAN86]. This clock was external and hardwired into each of the Intel 286/310 computers

serving as experiment stations, thus assuring absolute synchronization.

The Synchronous Clock System consisted of a specially designed clock board connected
via coaxial cable 10 a Program Interval Timer (PIT) on each of the Intel iSBC 286/10 CPU
boards. The clock board generated a pulse with a period of 0.1 millisecond. These pulses were
counted by the PIT in a 16 bit word. When this word overflowed, which occurred about every
6.55 seconds, the PIT generated an interrupt. A special interrupt handler caused a 16 bit
software clock word to be decremented; thus a synchronous clock value contained in a 32 bit

double word was available for delay measurements in each of the connected Intel system.

Hardware modification was necessary to connect the Synchronous Clock System to the
Intel systems. This consisted of rearranging PIT jumpers on the iSBC 286/10 CPU board and

installing the coax wire into the input of the local PIT.

Software modifications included installing the new interrupt handler at the start of an
application performance program using the clock, and removing it when done. Clock readings
were made by a simple function call. Since the clock was being decremented, the start time was

subtracted from the stop time to yield the elapsed time.

The procedures used within the software for measuring the times were as follows:

install$syncSintr -- installed the Synchronous Clock interrupt handler
remove$sync$intr -- removed the Synchronous Clock interrupt handler
init$synciclk -- initialized the Synchronous Clock to OxFFFFFFFF
read$sync$clk -- returmed a 32 bit double word clock reading
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3.4. MAPNET2.1

MAPNET?2.1 is Intel’s implementation of the Manufacturing Automation Protocol version
2.1 {MAP 2.1). MAP 2.1’s architecture is based on the ISO OSI reference model. This model
specifies the standards to be used at each of the seven layers in the architecture. MAPNET2.1
implements each of these standards at each of these layers to provide the MAP networking
functions. Furthermore, MAPNET2.1 allows programmatic access to several layers in the

architecture, not just the Application Layer.

MAPNET2.1 is the complete seven layer implementation and simply incorporates
iNA960’s Transport and Networking services with the Session, Presentation, and Application
Layers. MAPNET2.1’s programmatic interface is similar to iNA960’s. Both products are
configurable and are loaded onto front-end processors that provide the communications
hardware. These boards are called COMMengines; since MAP 2.1 cails for 10 megabit/sec

broadband bus using token-based network access, the iISXM554 COMMengine board was used.

In MAPNET2.1, CASE and Session Layer data transfer primatives map directly onto the
Transport Layer data transfer primatives. Since iNA960 provides the transport services without
the overhead of the higher layers, it was used for the Transport and Data Link experiments.
Only the additional upper layers provided with MAPNET?2.1 are described here; the Transport,
Network and Data Link Layers are described in the iNA960 section. The MAC and Physical

Layers are described in the COMMengine Communications Board section.

3.4.1. Application Layer

MAPNET2.1 includes a programmatic interface to the Application Layer. This layer
provides the network user with the highest level of abstraction. MAP Common Application

Service Elements (CASE) provide association and data transfer primatives. The File Transfer,



44

Access and Management (FTAM) services provide file manipulation at remote stations. The
Directory Services provide CASE and FTAM will the name-to-address conversion services

necessary for name-based associations.

3.4.1.1. Common Application Service Elements (CASE)

The MAPNET2.1 Common A;}plication Service Elments (CASE) facility provides MAP
2.1 compatible CASE associations between application processes for information transfer,
independent of the nature of the application. Remote process connection may be made using
only the process name; CASE will access the Directory Services to make the Iogical name-to-
address conversion. Included in the CASE services is a reliable, full duplex data transfer with a
graceful close. This graceful close ensures that all data in transit is actually received before the

connection is broken,

The CASE protocol exists primarily to establish and terminate associations. These
associations are the major enhancement over the Session Layer services. Application titles are
used rather than session addresses during the establishment of an association. Directory
Services are used to resolve these application titles into session addresses, relieving the CASE
user of this responsibility. The data transfer commands do not require the Directory Services so

they are mapped directly onto the session data transfer commands.

3.4.1.2. File Transfer and Access Management (FTAM)

The File Transfer and Access Management (FTAM) facility provides functions for the
retrieval of file attributes and the creation, reading, writing, and deletion of files at remote
stations. FTAM operates over the Session Layer using Directory Services to make the logical

name-to-address conversions.
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Any implementation of FTAM contains an FTAM consumer at the local node and an

FTAM server at the remote node. The FTAM server responds to the requests for services on its

local files. The user requests an FFAM consumer to establish a connection with a remote

FTAM server. This request is honored only if the session entities can establish a connection.

The two FTAM eniities carry on a dialogue consisting of FTAM requests and responses.

Finally the FTAM and Session connections are terminated.

The FTAM commands are as follows:

FT'AM Connect:

FT'AM Release:

FTAM Abort:

FTAM Create:

FTAM Delete:

FTAM Select:

FTAM Deselect:

FTAM Get Attributes;

Establishes an FTAM/Session connection with a remote FTAM server.

Gracefully terminates the FTAM/Session connection with the remote

Server.

Abruptly terminates the FTAM/Session connection with the remote

server.
Creates a new file at the remote server’s "virtual filestore”,

Deletes an existing file at the remote server’s "virtual filestore".
Selects an existing file at the remote server’s "virtual filestore”.

Detaches a previously selected or created file at the remote server’s

"virtual filestore".

Reads and returns to the user the MAPNET2.1 file attributes of a
previously selected or created file at the remote server's "virtual

filestore”,
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FTAM Open: Opens a previously selected or created file at the remote server’s

"virmal filestore” for the purpose of reading from or writing to the file.

FTAM Close: Closes a previously opened file at the remote server’s "virtual
filestore”.
FTAM Read: Reads and returns file data to the user from a previously opened file at

the remote server’s "virtual filestore".

FTAM Write: Writes file data supplied by the user 10 a previously opened file at the

remote server’s "virtual filestore”.
FTAM Write End: Indicates that the user has finished the file write.

FTAM Cancel: Abruptly ends a file read or write.

3.4.1.3. Directory Services

The MAPNET?2.1 Directory Services are designed to support MAP 2.1 Directory Services,
which defines a global directory called the Directory Information Base (DIB). The DIB is
accessed via the Directory Service Agent (DSA). The Client Service Agent (CSA) provides an

interface between the user and the DSA. The CSA also maintains a Local DIB.

The Directory Services provides a mechanism for storing, retrieving, and maintaining
information about network objects. These objects may be of different types, but each object has

a unique name and one or more properties.

Network objects are described by object names and object types. The object name is used
1o distinguish separate objects. The object type is an optional field that acts as an adjective to

describe the object in more detail. For MAP networks, the object types are used to specify the
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communication service used by that object, either FTAM or DT (Data Transfer). Objects have
one or more properties associated with them. These properties consist of a property type and
onhe Or more property values. A property type is a general attribute, such as ADDRESS. The

property value is the actual information.

The DIB is the collection of all the visible network objects. For the typical MAP network
there is one centralized directory. The Local DIB must contain the name and address of the
DSA in order to use its centralized services. When the DIB is accessed the information is

automatically entered into the Local DIB like a cache.

The commands used 1o access the directory are: Add New Name, Delete Name, and Return
Property. MAPNET?2.1 provides some Human Interface commands built on top of these. They
are used to add a name (Addname), add an object (Addobyj), delete a name (Delname), return an

address (Rtnaddr), and return a property (Rtmprop).

3.4.2. Session Layer

The MAPNET?2.1 Session Layer is an implementation of the ISO 8327 Session standard.
It is built on the Transport Class 4 service, and provides reliable, full duplex communications
with a graceful close sequence. One transport connection is used per active session connection.
First a transport connection is created with various connection parameters negotiated. Then a
session connection is established if the transport connection satisfies the needs of the session
user. Now data can be transferred using mostly transport fﬁnctionality with little Session Layer
processing. At the end of the session, the session connection is terminated prior to the
termination of the transport connection. These transport connections are not reusable for

multiple session connection.
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The session connection establishment and data transfer commands are very similar to the
analogous transport commands. The additional functionality provided by session appears in the
connection termination. There are three ways to terminate connections: orderly rélease;
connection abort, and connection termination notification. With orderly releases, both sides
agree to the release and the data being processed is not lost. This graceful close is
accomplished by request/accept handshaking. The abrupt terminate closes the connection
without regard to data loss. Connection termination notification tells the session user when a

close has happened or is being requested.

3.5. iNA960

Intel’s iINA9S60 is a general purpose local area network software package. It implements
the ISO OSI reference model for the Transport, Network and Data Link Layers. Also, a
Network Management Facility (NMF) is implemented to monitor and adjust the network’s

operation in order to maintain the network and optimize its performance.

3.5.1. Transport Layer

The Transport Layer provides the message delivery service. It relieves the transport user
of any concemns with the detailed way in which reliable, cost effective transfer of data is
achieved. iINA9S60 provides two methods of data transfer at this layer: the Virtual Circuit
Service and the Datagram Service. Virtual Circuits are logical "hard wire” connections, with
the characteristics of high reliability and in-order delivery. Datagrams are more like postal

letters, arriving with no ordering requirement. They should therefore be less expensive to use.
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3.5.2. Network Layer

The Network Layer provides routing between subnetworks to provide the network user

with a view of the whole network rather than its many subnetworks.

3.5.3. Data Link Layer

The Data Link is divided into two parts, the Logical Link Control (LLC) and the Media
Access Control (MAC)., At the LLC layer the IEEE 802.2 standard is used, which is the
common LLC for any of the IEEE 802 series network protocols. At the MAC layer the IEEE

802.4 Token Passing Bus Access is provided.

Access to the Data Link Layer is provided through an interface called Extemal Data Link

(EDL) inferface. Data Link datagrams may be sent and received using these EDL commands.

3.5.4. Network Management Facility

The Network Management Facility (NMF) supplies a network with planning, operation
and maintenance facilities. A network manager can make adjustments according to the type
and volume of activity loading the network. It is a distributed function that is built into every
layer on every system, and whose activities are being performed constantly to ensure proper
operation of the network. There does not exist a centralized network control station. NMF can
change some configuration parameters at most layers, for example, the retransmission time.

The Network Layer has no parameters that can be set using NMF.

3.6. iNA961: iNA960 Preconfigured Files

The preconfigured package of iINAS60 is called iNA961. It comes in various versions

representing the various hardware and software most likely to be used. Since these are standard
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products, these are the files that were loaded onto the COMMengine for running the Transport
and Data Link experiments,

The COMMengine used for Token Bus/MAP 2.1 network was the iSXMS54. The

iNA961 preconfigured file used was iNA961.24, which included the followiﬁg configurations;

NMF - Local, Remote, and Subnet NMF functions.

Transport - Virtual Circuit (100 VCs), Expedited and Datagram Ser-
vices (30 Datagram TSAPs).

Network - Internet Protocol with MAP 2.1 addressing.

Subnet - iSXM554 subnet. External Data Link interface with 10
LSAPs.

3.7. iINA960 Programmatic Interface

The user of the communications services provided by the properly installed
communications board and iNA960G software accesses these services through procedural
interfaces. These interfaces, discussed in more detail in the MIP Overview section, allow the
user to access the various iNA960 layers directly or indirectly. Memory segments, called
request blocks, are allocated from the user’s memory pool and passed by reference to iNA960
through the appropriate procedure.

A request block consists of several fields, some fixed format and some variable format.
Those in fixed format remain constant throughout the use of the services of iNAS60, such as
data relevant 1o the Uger and the target layer. An example would be the mailbox for which the
user will block, waiting until the request block has been serviced. The variable format fields

allow flexibility in accessing different layers and different kinds of services within these layers.

The user is responsible for the proper allocation and formatting of the request block.
After the request block has been properly specified, the user calls a special procedure that

delivers the request block to the iNA960 software for execution. Upon completion, the request
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block is returned to the user at the place he has specified to receive it (the mailbox).

3.8. Communication between the COMMengine and the Host

A COMMengine is a communications board which has a separate processor and operating
system to run the iNAS60 software. Since this is a separate processor, running at a different
speed and with a different operating system than the host processor, there are therefore two
environments that must be connected to provided communications services to the user
applications (see Figure 3.2). The host environment consists of the host processor and its
operating systemn, the memory accessible to it, and a message delivery mechanism (MDM).
The iNA960 environment includes the COMMengine board and associated data link hardware
- to imterface INA960 with the underlying network, the iNA960 communications software
running on a processor other than the host’s, and an MDM as well. MDM bridges the two
environments, providing the means by which request blocks are transferred between the host
and iNA960. Since both environments are connected on the backplane by the Multibus system
bus, the MDM used by both environments is the Multibus Interprocessor Protocol (MIP). The
implementation of this on the COMMengine is built into the iNA960 software. In the host

environment it is the first level user job called the MIP device driver.

3.8.1. Message Delivery Mechanism (MDM)

The iNA960 CPU must have direct access to all locations in host memory where request
blocks can be allocated. The Message Delivery Mechanisms (MDMSs) of the host and iNAS60
may simply pass the pointers of the request blocks to the INAS60 CPU. This may be too
simplistic, however. In another schemé the MDMSs copy the request block into the memory
space directly accessible by iNAS60. iNA960 will operate on this copy and then retum it to the

MDM to be returned to the host. This copy then overwrites the original.
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Host Environment

Application Software | MDM
Operating System
)
Memory| CPU | PIC | Timer

iNA9S60 Environment
Upper Layer Software
MDM
iNA960 Protocol Engine

Environment Interface Routines
/
\

Memory] CPU | PIC | Timer [WindowiDL H/W|

Figure 3.2 — Detailed View of the Communications World

3.8.2. Data Link Hardware

The data link hardware on the COMMengine board for the Token Bus/MAP 2.1 network

is the iSXM554 Token Bus Controller. This hardware includes the data link controller, the

means by which the data link controller is initialized or reset, the means by which it is signaled,

the means by which the host identifier is read, and the initialization of any other data link

hardware which may be present. The data link controller is the central feature in this

environment and is considered by iINA960 as a black box.

3.8.3. Protocol Engine

The configurations of the iINA960 software can be considered as the Protocol Engine,

which consists of one or more of the following:
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- Data Link Layer (subnets)
- Network Layer
- Transport Layer
- Network Management Facility
- Optional upper-level software
(such as MAPNET, RMXNET, and Xenix)

Each layer has configurable options, and some subset of them is linked into the loadable

iNA960 software.

3.8.4. Environment Interface Routine (EIR)

The Environment Interface Routines (EIR) are a set of software routines that allow a
protocol engine to operate in the environment provided. These routines interface the Protocol
Engine to the environment, and they include the routines 1o handle the MDM, windowing,

interrupts, timers, and other data link hardware drivers.

Upper Layer(s)
Network Transport Layer
Management
Facility Network Layer
Data Link Layer
Subnet 1 ... Subnetn

Figure 3.3 - Protocol Engine Model
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3.8.5. Multibus Interprocessor Protocol (MIP)

There is a specification for a set of mechanisms and protocols that enable reliable and
efficient exchange of data among tasks executing on various different single board computers
connected to a common Multibus system bus. This is called the Multibus Interprocessor
Protocol, or MIP. The MIP specification ensures compatibility among MIP implementations,

called MIP facilities.

MIP isolates user tasks from the complexities of communicating across the Multibus,

relieving them from such issues as:

-- different processors

-- different operating systems

-- different Multibus signaling mechanisms

-- different memory space

-- different addressing to the same shared memory
-- interference in the same shared memory areas.

MIP supports single board computers, called devices. Such a device is the COMMengine,
complete with CPU and operating system. MIP handles the interaction between devices
attached to the backplane, providing the use of the services of the device at a higher level of

abstraction.

These devices may generate tasks within their operating system that desire
communications with tasks from other devices. A task is a functional unit; it may be a program,
part of a program, or a system of related programs. Each processor on each device must be
running a MIP facility that conforms to the MIP specification. The functionality provided can

then bridge the gap between processors and allow tasks to interact.

Tasks interact via shared memory, called a buffer. This memory is called Multibus
memory because it is simply a memory board attached to the backplane. A port is a logical

delivery mechanism that enables delivery in FIFO order. It is represented as a queue. Another
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name for a port is a mailbox. A socket is an ordered pair of (device, port). At higher levels of

abstraction, ports are referenced by a function name,

There are three levels of interface within a MIP facility. The virtual level allows the user
to interact with the MIP facility itself. The physical level allows the MIP facilities on different
boards to interact with each other. The logical level translates between the virtual and the

physical levels. MIP facilities must be compatible at the physical level only.

3.8.5.1. Physical Level

The physical level provides a communications mechanism between devices. This
mechanism is called a request queue. It is a fixed-size, unidirectional, first-in-first-out queue.
The ends of the queue are attached to ports. Two way communication can be implemented by

placing two request queues between two devices. This pair is called a channel.

3.8.5.2. Logical Level

The logical ievel uses request queues to transfer requests between source and destination
MIP facilities. A request is either a command or a response. Commands are orders sent from
the source to the destination, and a response is the return indication of the result of the attempt

to deliver the command.

3.8.5.3. Virtual Level

There are five procedures which use logical level entities to provide functionality to the
user interface. On the sending side, FIND locates a port given a function name, and
TRANSFER initiates a transfer of a buffer to a port channel by sending a command and waiting

on the response. On the receive side, ACTIVATE attaches a task to a port and enables
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reception of messages at that port. RECEIVE allows the completion of the transfer of a buffer
by accepting the command sent by TRANSFER and responding to it. DEACTIVATE

disconnects a task from its port and terminates reception of commands at that port.

3.8.6. iRMX86 MIP Driver Implementation

- The iRMX86 MIP driver implementation is based on the passing of request biocks
between the two processor environments to facilitate interactions. A request block is a
formatted segment of memory with some fixed fields for identification and some variable fields
for the arguments to the services desired. Services are requested and completion responses are

returned via formatted request blocks.

There are three types of procedures within the iRMX86 MIP driver. These are the device

independent procedures, the conversion procedures, and the device dependent procedures.

The device independent procedures are responsible for the initialization of local data
structures, loading and reporting the status of the communications software to the front-end
processor, creating and deleting users, and transferring formatted requests to the front-end
processor. Some of these routines are used in Human Interface commands like "Load” and
"Status". Others form the procedural interface for applications software, like the CqCommRb

and CqCreateCommUser routines. Others are just used internally.

The conversion procedures allow this MIP driver implementation to be operating system
independent. By converting an iRMX86 address reference within a request block into an
absolute address reference, buffers used by the user application can be referenced by the
different processdr' with its different addressing scheme. When the request block is retumed, if
it carries the absolute address of some filled buffers, these addresses must be reconverted.

These procedures are available 10 the applications user.
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The device dependent procedures are not available to users. They are used internally, by
each other and by the user interface routines, to provide the desired interactions. These
procedures directly manipulate the hardware to perform specific functions. Such procedures

include interrupt generation, MIP send and receive procedures, and queuing procedures.

3.8.7. Configuration Process

There are two steps needed for the MIP driver configuration in iRMX. The first is the
MIP job generation (device driver) and the second is the generation of the iRMX Operating

System to include the MIP job.

A file called MIPCFG.A86 is edited to reflect parameter setting specific to the system for

which the MIP job is being generated. Such parameters include:

- the COMMengine board name

- the wake up port*

- MIP interface address*

- interrupt level*

- number and address of MIP input and output queues
- number of mailboxes that the MIP driver can support,

*jumpered on the COMMengine

A file called MIPXXX.CSD, where XXX is the descriptor of the communications board,

is submitted. This links and locates the MIP job.

Next, the iRMX86 operating system is generated to include the MIP driver interface as a
first level user job. This informs iIRMX86 to service this device driver when communications
with the device are taking place. Several things must be done to the old operating system
definition in order to include this MIP dx‘iver. First, the part of memory where the job has been
located is removed from the contiguous free heap, Next, the root job must be informed of the

MIP driver job. This is done by declaring the user job and its parameters using the user jobs
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screen. Finally, the full pathname of the module that is to be the user job is specified. Now the

definition file can be used to generate the new operating system, which includes the MIP driver.

Once the computer system is booted using this new operating system, it is ready to service
requests on the COMMengine through the MIP device driver interface. If everything has been
configured, linked, and located properly, and the COMMengine device is installed, interaction
between the application software (host task) and iNA9S60 (the device task) can occur with little
or no knowledge of the type or design of the device. This interaction is further discussed in the

section on iNAS60.

3.9. iISXMS554 COMMengine Multibus Communications Board

The interaction between user application software and communications software depends
upon the hardware environment selected. A communications board that has the capacity to
provide the user with a front-end communications processor is called a COMMengine. These
communications boards each have a CPU, an operating system, and on-board memory, and can
run communications software in parallel with the host board. This COMMengine configuration
allows the host board to offload the communications concemns to the communications board (see
Figure 3.4).

By placing a communications board into the Multibus backplane, the system can be used
as a node on a local area network. The communications board and the host board interact
across the Multibus backplane using the Multibus Interprocessor Protocol (MIP) facility. By
using the functionality provided by MIP, the user can access the network services and yet be

separated from the network by a layer of abstraction.

The iSXM554 COMMengine used consisted of the following components: an iAPX 186

Microprocessor running at 8 MHz; an RF Broadband 10Mbps TBM-15 Token Bus Modem; and
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Figure 3.4 — HOST with COMMengine attached to Multibus

the iINA960/961 software.

3.10. The Network

Two Intel 286/310s were used as nodes on the network., Each node was connected to the
bus by a coaxial cable from the COMMengine modem to a 4-way multitap as shown in Figure

3.5. The bus was connected to an INI headend remodulator [INDU85a,bl.
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Chapter 4

EXPERIMENTS

4.1. Introduction

Since MAP is designed to operate on the factory floor, we developed a set of tests which
was intended to measure its performance characteristics. In MAPNET2.1, CASE and Session
Layer data transfer primatives map directly onto Transport Layer primatives. The Transport
virtual circuit service is built upon tl}f: datagram service of the Data Link Layer. For this reason

our measurements were targeted toward the Transport and Data Link Layers.

All applications programs which access the communications services of iNA960 or
MAPNET2.1 include several common components. These components are reviewed below. A
detailed description of the program written to access the External Data Link services and & brief
description of the program used to access the Transport Layer services are discussed. Finally,

the results of the experiments are presented.

4.2. Components of Applications

The procedures and libraries which provide the programmatic interfaces must be included
in any program to use the communications services of iNAS60. These procedures create a
communications user for the communication session, translate addresses between the Host and

the COMMengine, and submit request blocks which deliver requests for service to iNA960.

There are several steps involved in using the communications services., A

communications user and its associated resources must be allocated. Request blocks must be
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formatted and submitted. These request blocks provide a vehicle for requests to iINA960.
Timing routines are included at several places in the experiment programs but are not necessary
for the proper use of the communications services of iINA960. When the communications
session is terminated, the resources must be deleted. The following describes éach of these

steps in more detail.

4.2.1. Allocating Resources

A call to CqCreateCommUser must be made to create a user_id for identifying resources
and requests for the whole communications session. This is only done once. The user_id
remains active and is placed into the fixed format section of every request block during the

communications session.

Since the IRMX86 mailbox is the structure used as the point of access for the services of
iNAS60, a mailbox dedicated to this purpose must be created. The system call used to allocate
a mailbox is RgCreateMailbox. One or more mailboxes can be used throughout the
communications session, however, only one is necessary when the services requested follow a
sequential order. A mailbox is used because its structure is a queue. Since processes must
communicate asynchronously across the Multibus using MIP, requests are enqueued at the
mailbox while waiting for iNA960 to accept them, and they are again enqueued there upon
return from iNA960. A user is blocked waiting on this mailbox until the request block is

returned from iINA960 through the mailbox,

Request blocks are segments of memory, therefore a block of memory must be allocated.
A program should use RgCreateSegment to get a block of memory on a segment boundary
(required by INA960 because of the address translations). This block then becomes the request

block, and is filled and submitted.
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4.2.2. Formatting the Request Block

A request block has three parts, a set of identification fields, a set of system fields and a set
of arguments. Formatting a request block requires three steps: (1) the process identification
information is inserted into the identification fields; (2) the subsystem of INA960 and the
operation 1o be performed within that subsystem are placed into the system fields; and (3) the

arguments are supplied. The identification field structure is called a header:

1. Length -~ total length of the request block
2. User_id -- from CqCreateCommUser

3. Response_port -- always OxFF

4, Return_mailbox -~ from RqCreateMailbox

5. Segment_token -- from RqCreateSegment

The Retum_mailbox and the Segment_token fields are used by the inter-task
communications facilities of iRMX86 1o return processed request blocks to the user application
program that originated them. The Return_mailbox is the mailbox that was allocated, and the
Segment_token is the segment part of the address of the memofy block that was allocated for

the request block.

The systemn fields are the subsystem ficld and the operation field. The subsystem is an
identification number for use by the External Interface Routine (EIR) of iNA960 to direct the
request block to the proper layer within iNA96). This is how iINA960 is able tb provide
services at its several layers. The operation field is another identification number for the type of

service requested, for instance, Connect, Transmit, or Post Receive Buffers.

There are also operation-dependent arguments which are of variable length. An example
of variable field arguments is the several fields that hold the number of transmit buffers and
their addresses. iINA960 uses these arguments when it copies the buffers to the COMMengine

for processing and transmission.



4.2.3. Submitting a Request Block

By making the CqCommRb call with the segment address of the request block as the
argument, the request will travel through the Message Delivery Mechanism (MDM) io iNAS60
for servicing. CqCommRb is actually a MIP procedure; it is on the virtual level of the MIP
facility (see MIP, section 3.8.5) and provides the service of the MDM in an encapsulated form.
CqCommRb enqueues the request on the mailbox provided, where it is delivered to the

communications board to be serviced by iNA960.

When the request block is returned by the MDM, it is placed on the queue at the same
mailbox. It waits there until the procedure RqReceiveMessage is issued which returns the
address of the request block. This address is the address of the original request block. This
returned request block may have some retumn information left in some of the fields, such as
whether the request was successfully serviced. If RqReceiveMessage is called before the
request block has been processed, the application program (or task) blocks waiting for that

mailbox 1o receive the message in the form of the returned request block.

4.2.4. Timing Routine Calls

Timing routines [FRAN86] are placed at various points in the application programs to
report the amount of time specific operations take. For exampie, a call to the routine to read the
clock, read$sync$clk, could be placed before and after a CqgCommRb call to measure the

amount of time it takes to submit a request block.

4.2.5. Deleting Resources

When the program terminates successfully, the resources it acquired for use should be

returned. This includes the segment of memory used for the request block and the mailbox.



65

The memory is returned using RqDeleteSegment, and the mailbox is retumed using

RqDeleteMailbox.

4.3. EDLP — External Data Link Performance Program

The External Data Link (EDL) is an interface used to access directly the services of the
Data Link Layer, allowing users to circumvent the Transport and Network Layers. A user of
the EDL uses the general request block programmatic interface common to all layers and
commands, and described in the iI}‘A%O section (3.7) above. Through request blocks,
commands can be issued 1o establish and terminate Data Link connections, transmit data, post
receive buffers for incoming data, configure the Data Link Controller, reassign an individual
address for a node, and add and remove multicast addresses to and from a list maintained by the

data link node.

Data Link users communicate via Link Service Access Points (LSAPs). This LSAP is a
code that identifies a specific user process or another layer on the same node. Each receiving
process is identified by a Destination LSAP (DLSAP), and each sending process is identified by
a Source LSAP (SL.SAP). Packets must contain the DL.SAP of the receiving process in order to
be received into the buffers posted at that point. The EDL Connect command adds a processes

LSAP to the active list, and the EDL Disconnect command removes it.

The following is the flow of control of the EDLP program used for Data Link performance

measurements using the EDL interface.



EDLP Psuedo-Code

{

install clock interrupt handler

create resources {
CqCreateCommUser
RgCreateMailbox

input: (T)ransmit; (R)eceive; (Q)uit
if Q" {
remove interrupt handler
exit

read$sync$clk(start_experiment)

submit EDL Connect for a specific LSAP {
RqCreateSegment
format Connect Request Block
CqCommRb
RqReceiveMessage
RqCreateSegment

if 'R* {
RqCreateSegment
format Post Receive Buffer Request Block for that LSAP
read$synccik(start)
CqCommRb
read$sync$clk(stop)
receive_CqCommRb_delay = stop - start
RqReceiveMessage
read$sync$clk(received_timestamp)
get sent_timestamp from packet
one-way packet delay = sent_timestamp - received_timestamp
total_time = first sent_timestamp - last received_timestamp
RgDeleteSegment

else {
RgCreateSegment
format packet with receive LSAP (DLSAP)
format Transmit Request Block
read$syncSclk(start)
sent_timestamp = start
put sent_timestamp into packet
CqCommRb

- read$sync$clk(stop)

transmit_CqCommRb_delay = stop - start
read$syncScik(start)
RgReceiveMessage
read$sync$cik(stop)
time_to_transmit = stop - start
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RqgDeleteSegment

}
submit EDL Disconnect for a specific LSAP {

RqCreateSegment
format Connect Request Block
CqCommRb
RgReceiveMessage
RgDeleteSegment
o
RgDeleteMailbox
read$sync$cik(stop_experiment)
length_experiment = stop_experiment - start_experiment
print report to screen

4.4. PerformTB - Transport Token Bus Performance Program

The applications program PerformTB was used for the Transport Layer experiments. This
program accessed the Transport Layer directly via the programmatic interface in much the same
way as the program EDLP. The flow of control of PerformTB is much like EDLP and the

delays were measured in a similar fashion.

Before starting the transfer of data, the user of PerformTB is allowed to provide several
experiment set-up parameters. Data may be transferred in one direction or both. A user-defined
delay may be inserted between successive messages. Message (TSDU) size is actually the size
of the buffer holding the message. The number of messages sent is determined by the total
amount of data to be transferred. The number of user buffers determines the size of the queue
for sending messages. The number of virtual circuits is the number of separate connections that
will be used 1o transfer the total amount of data. There is also a protocol option for the number
of bits used for the sequence numbers and whether checksumming is turned on. For all resuits

reported here, checksumming was tumed off.
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4.5, Performance Measures

The External Data Link (EDL) is an interface used to access the services of the Data Link
Layer directly, allowing users to circumvent the Transport and Network Layers. A user of the
EDL accesses iNA960 through the general request block programmatic interface common to all
layers in MAPNET2.1 and iNA960. Through request blocks, commands can be issued to
establish and terminate Data Link connections, transmit data, post receive buffers for incoming
data, configure the Data Link Controller, reassign an individual address for a node, and add and
remove multicast addresses to and from a list maintained by the data link node. We measured

several aspects of data transfer using this datagram service.

The transport user also accesses INA960 through this programmatic interface. We used
the Transport Class 4 Virtual Circuit Service and measured several aspects of its performance
and error recovery mechanisms. We then made comparisons between the datagram service of
EDL and the virtual circuit service of Transport, identifying some benefits and drawbacks to

using a front-end processor communications board.

4.5.1. Service Accessing Delays

One group of experiments measured two distinct delay times for access to the EDL: the
time required for submitting a request block (CgCommRb call), and the time required for a

mailbox response (RgReceiveMessage call).

The delay in submitting a request block is the bound on the least amount of time
necessary for using the EDL services. The measure of the CgCommRb delay represenis the
time it takes for a request for service to be placed on a mailbox, the COMMengine to be notified
of the request, and for the request to be received and acknowledged by the iNA960 software

running on the COMMengine. Packet sizes ranged from 16 to 1024 bytes. One hundred receive
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buffers were posted using this CqgCommRb call; each was timed and the delays were averaged.
These receive buffers were posted prior to the transmission of any packet to ensure that each
packet could be received. The delays for submitting a post buffer request are shown in Figure
4.1 with the vertical bars representing the range of values observed. The one hundred packets
were transmitted and each call to CqCommRb was timed and the delays averaged. The delays

for submitiing a transmit request are likewise shown in Figure 4.2.

No values for the CgCommRb calls were below 4.0 millisecs, which appeared to be the
lower bound on this delay. Since this call must be made for every packet to be transferred, this
delay represented the lower bound on the delay suffered for any data transfer using the EDL
interface. There is no evidence that the delay was dependent on the size of the packet, which
suggested that the processing done for a transmit CgCommRb call did no buffer allocation or

copying at that time. However, the range of values for the transmit CqCommRb call, from 4 to

10
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Figure 4.1 — Post Buffer CqCommRb Call Delay vs. Data Link Packet Size
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Figure 4.2 — Transmit CqCommRb Call Delay vs. Data Link Packet Size

8 millisecs, suggested that this call was a function of the condition of the Multibus or the status

of the COMMengine.

After each request for transmit was submitted, the EDLP program blocked waiting on a
mailbox. This was done by making a RgReceiveMessage system call. The delay in waiting for
that mailbox to receive the message indicating that the service had been processed was
measured for packét sizes ranging from 16 to 1024 bytes. For each of these 100 packets, the

delays were averaged and are shown in Figure 4.3,

The delay incurred during a RgReceiveMessage call was partially dependent on packet
size. Since this call caused the program (o block waiting on the processing to be compieted, at
least one data copy must have occurred. The packet was copied from Multibug memory on the
host to the local memory on the COMMengine. The overhead associated with this and other
processing is divided into two parts: a constant delay due to submitting a request block and

accessing the DMA channel, and a packet size dependent delay for the copy, preparation, and
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Figure 4.3 - RqReceiveMessage Delay vs. Data Link Packet Size

transmission of the packet.

4.5.2, One Way Delay

The total delay incurred for the delivery of one EDL message required timestamping that
message as it was transmitted and noting the time as it was received. To eliminate any queuing
delays, one buffer was posted and one packet sent for each run of the experiment. This ensured
that all resources were ready and waiting to service that one packet as it traversed the network.
Packet sizes ranged from 16 to 1024 bytes by powers of 2. Four runs of the experiment were
performed for each packet size; these delays were averaged and the results are shown in Figure
44. There was a linear relationship between the packet size and the delay suffered during
transfer, For packets of length L, the end-to-end delay was approximately (8.5 + L/125)

milliseconds.
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Figure 4.4 — One Way Data Link Delay vs. Data Link Packet Size

The delay which a Transport Service Data Unit (TSDU) message suffered as it traversed
the network was also measured. The TSDU message sizes ranged from 16 to 1024 bytes by
powers of 2 as in the EDL experiments and then from 928 bytes to 5569 bytes ﬁy multiples of
928 and those multiples plus one. The TSDU message size of 928 represents the largest amount
of data that could be transferred using a single 1024-byte Transport Protocol Data Unit (TPDU)
(the remaining bytes are reserved for upper layer headers). One transmit buffer and one receive
buffer were used. A delay of 100 milliseconds between the transmission of each TSDU
message ensured that all resources were ready and waiting to process that message, and that

there would be no queueing delay.

As Figure 4.5 shows, delays increased linearly with TSDU message size until the TSDU
size exceeded 928 bytes. At 929 bytes, a penalty was assessed due to the overhead required to
segment the TSDU into two TPDUs. This penalty was repeated each time the TSDU size

exceeded a multiple of 928 bytes. The first division of a TSDU into two TPDUs cost about 20
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Figure 4.5 — One Way Transport Delay vs. Transport Service Data Unit Sizes

milliseconds; further TSDU segmentation cost 5 to 15 milliseconds per additional TPDU

required.

4.5.3. Throughput

The EDL throughput was measured for packet sizes ranging from 16 to 1024 bytes. One
hundred buffers were posted on the receive node and 100 packets were sent sequentially from
the transmit node. This throughput, therefore, was a measure of network efficiency with respect
to packet size, and did not necessarily represent the best possible throughput at the Data Link

Layer.

The timestamp of the first packet received was subtracted from the time the last packet
was received to obtain a total time to process the 100 packets. The total amount of data sent
(100 times the packet size) was divided by this total time to arrive at the throughput, shown in

Figure 4.6, There was a very strong dependency between the packet size and the throughput.
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Figure 4.6 — Data Link Throughput vs. Data Link Packet Size

For packets of length L, throughput was approximately 65L. bytes/second.

A transport user buffer was a dedicated segment of user memory which held a message as
it was prepared for transmission. When the measurement program submitted a transmit request,
the buffer holding the packet to be transmitted was not used again until iNA960 released it. The
performance program used the multiple transmit user buffers for multiple transmit requests,
Once that message had been acknowledged by the receiver, the user buffer was retuned to the

circulating queue of free buffers and reused.

As with the Data Link experiments, the concept of a user buffer refers to the use of a
dedicated amount of memory for storing a message (TSDU) to be transmitted or received.
Once that message has been processed, the user buffer may be returned to the pool of buffers
and reused. The user buffers available are kept on a circulating queue. The receiver posted all
of the user buffers it had and waited for messages to arrive. As they arrived, the message was

returned to the user in a user buffer, then the user buffer was posted again. The transmitter
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submitted all the messages stored in its user buffers, then waited for them to be processed. A
user buffer was not returned to the iransmitter until all of the data contained in it was

acknowledged by the receiver.

By varying the number of user buffers allocated by the transmitter and the receiver, the
number of transmit and receive buffers needed to optimize throughput was determined. The
number of receive buffers was set to a high number (10) and the number of transmit buffers was
increased from 1 to 10. The throughput was measured at each buffer configuration. Seven
transmit buffers resulted in the best throughput, as shown in Figure 4.7. Then the number of
receive buffers was decreased to one. Again, the throughput was measured at each buffer
configuration. The number of receive buffers which resulted in the best throughput was 5, as
shown in Figure 4.8. This buffer configuration was used in all experiments measuring

throughput against another variable.
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Figure 4.7 — Finding the Optimal Number of Transport Transmit Buffers
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Figure 4.8 — Finding the Optimal Number of Transport Receive Buffers

As seen in Figure 4.9, throughput increased linearly for TSDU message sizes that were
equal to or smaller than 928 bytes. Ata TSDU size of 929 bytes, throughput suffered due to the
overhead associated with segmenting one TSDU into two TPDUs, A decrease in throughput
was likewise observed whenever the TSDU size exceeded a multiple of 928 bytes. The curves
of the throughputs for each multiple of 928 (the peaks in the graph) and the mutltiples plus one
(the dips in the graph) were Quadratic, with the two curves converging asymptotically to
approximately 72 and 55 kilobytes/second, Tespectively. The difference between these two

values reflected the penalty for segmentation.

4.5.4. User Buffers

The user of EDL is solely responsible for the maintenance of user buffers. A user buffer
was a dedicated segment of user memory which held a packet as it wag prepared for

transmission. When the EDLP submitted a request to transmit, the buffer holding the packet to
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Figure 4.9 — Transport Throughput vs. Transport Service Data Unit Size

be transmitted was not used until the program returned from the RgReceiveMessage call. The
EDLP performance program represented multiple user buffers as multiple consecutive
CqCommRb calls submitting transmit requests. As RgReceiveMessage began to receive the
processed requests, the block of memory used for the transmit packet was returned to the pool

of free user buffers.

An ekperiment was performed to observe the effect of varying the number of user buffers
available to the transmitter. The receiving node posted 30 buffers before the start of the
experiment to ensure that all packets would be received. Then the transmit node had to recycle
a varying number of user buffers. As more buffers were used, more consecutive calls
CqCommRb wer.e made and thus more packets could be enqueued on the mailbox waiting to be
sent. The packet size used was 1024 bytes. The results of various numbers of user buffers is

shown in Figure 4.10.
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Figure 4.10 — Data Link Throughput vs. Number of User Buffers

By varying the number of user buffers, the peaks of throughput were observed at even
divisors of 30 (i.e. 2, 3, 5, 6, 10, and 15). Between these divisors there was a steady decrease in
throughput as the number of user buffers increased. This indicated that there was a small

throughput penalty imposed where the number of user buffers was not an integer divisor of 30.

Likewise, the user of Transport may vary the number of user buffers empioyed. To
observe the effect of the maintenance of many user buffers, the number of transmit and receive
user buffer was increased symmetrically from 1 to 100, and the throughput was measured.
Figure 4.11 shows the trade-off between increasing the resources and increasing the overhead to
manage these resources. There was a significant increase in throughput with increasing the
number of transmit and receive buffers from 1 to . However, additional user buffers did not
appear to provide faster service. This is consistent with the results of the optimal buifer
configuration experiment, which found that 7 transmit buffers and 5 receive buffers provided as

good or better service as any other configuration.
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Figure 4.11 — Transport Throughput vs. Number of User Buffers

4.5.5. Number of Messages Per Second

The number of EDL messages per second was measured using 100 transmit and 100
| receive EDL user buffers for maximum enqueueing. These EDL user buffers were represented
similarly to the transport user buffers. One hundred EDL user buffers were used to enqueue 100
messages so that all of the messages could be transmitted at the peak rate. Figure 4.12 shows
the number of messages transmitted per second for various packet sizes, The peak EDL

transmission rate observed was 156 128-byte messages per second.

Because the optimal configuration for the transport user buffers wés found to be 7 transmit
and 5 receive user buffers, the number of messages per second for Transport Layer was a
function of the throughput. When throughput was optimized the number of messages per
second was optimized as well. Figure 4.13 shows the number of messages transmitted per
second for various TSDU sizes. The peak transmission rate observed for Transport was 56 16-

byte messages per second.
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4.5.6. Retransmission Timer

The Network Management Facility (NMF) interface provided access to intra-layer
configuration parameters such as the retransmission timeout interval. The actual retransmission
timer uses an adaptive algorithm, adjusting itself to the characteristics of the network. The user
of iNA960 cannot set the actual retransmission timer value. Instead, one supplies the Minimum
Retransmission Timer setting which is used as the minimum for the actual retransmission timer
setting at any point in time. Intel limits the Minimum Retransmission Timer value to no lower
than 100 milliseconds during configuration of iNA960. However, we used the NMF

functionality to reset this value lower than 100 milliseconds.

The values of these related timer settings ranged from 5 milliseconds to 500 milliseconds.
The values at the high end of the range were chosen to show what would happen if the floor
(minimum) value of the retransmission timer was set reasonably large. The values at the low
end of the range likewise show what would happen if the value was unreasonably small. Ten
user buffers were used by both the transmitter and the receiver to ensure that the hardware and

software tasks remained busy.

As the Minimum Retransmission Timer value was decreased, as shown in Figure 4.14, the
throughput remained mostly unaffected until the value was set at 50 milliseconds. For values
above 50 milliseconds there were no retransmissions due to network error, so reducing the
minimum value of the retransmission timer did not affect throughput. Throughput peaked at 50
milliseconds and then dropped dramatically for lower values. At these points duplicate TPDUs
were being sent and rejected because the retransmission timer was expiring before the original
TPDUs could be acknowledged. Thus we observed that 50 milliseconds was the lowest usable
value that could be supplied to the Minimum Retransmission Timer for an unloaded network.

We concur with Intel documentation [INTE86a] that this value should never be set below 100
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milliseconds for a general purpose network. However, the implication of setting the Minimum
Retransmission Timer to a value no less than 100 milliseconds is that lost TPDUs are not
detected for at least one-tenth of a second. The default configured Minimum Retransmission

Timer value is 500 milliseconds.

4.5.7. Segmentation

The TPDU is the packet frame and consists of both data and headers. The Network
Management Facility allowed the user to specify a maximum TPDU size. iNA960, however,
uses the minimum of 1024 bytes (the maximum Data Link packet size allowed in our

configuration) and this maximum TPDU size as its actual TPDU size.

Figure 4.15 shows the relationship between throughput and TPDU size. Throughput is
defined as the rate of data delivery in bytes per second and excludes the bytes required for

framing. As TPDU size decreases, throughput decreases because the ratio of header bytes to
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data bytes increases.

4.5.8. Virtual Circuits

We varied the number of virtual circuits, or connections, from 1 to 16 to observe its effect
on throughput. As seen in Figure 4.16, one virtual circuit provided the best throughput because
it required the least intemal overhead. Even though multiple virtual circuits between two
stations provided additional avenues for transfer of data, all virtual circuits used the same
physical connection and thus overall throughput was not enhanced. In fact, there was the
penalty of maintenance overhead levied on the user of multiple virtual circuits (connections),

reducing the overall throughput.

The dramatic reduction in throughput for 3 virtual circuits was an anomaly. The
experimental evidence strongly suggested that this was a worst case occurrence. The

asynchronous characteristics of the communications between the host and the COMMengine,
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the number and use of the internal transmit and receive buffers, and the token bus access all
contribute to delays imposed by the system. We hypothesize that the poorer performance
observed for 3 virtual circuits was due to a worst-case alignment of these factors, aithough we

were unable to verify the hypothesis due to proprietary restrictions on the software,

4.5.9. Window Size

In Fransport Class 4, a window is an ordering of sequence numbers that are termed active.
The sequence number identifies and orders a particular TPDU so that the receiver may
reassemble multiple TPDUSs into one TSDU. The window slides 10 incorporate new sequence
numbers as the TPDUs are acknowledged and their sequence numbers become inactive. Thus,
the size of the window dictates how many unacknowledged TPDUs a receiver is willing to
buffer. The receiver communicates this information via a credit field. The receiver can control

the flow of data by varying its window size and thus throttle the transmitter by reducing its
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credit. A window size of 0 is called a closed window, and effectively shuts off the transmitter

until the window is reopened by the receiver.

The maximum window size was set using the Network Management Facility and
throughput was measured to show the impact of lowering the maximum window size. The
range of maximum window sizes was 1 to 15, where 15 was the default setting from the
iNA960 configuration. This configuration also prevented the window from closing, even when
this was appropriate. The decision not to allow the window to close was based on Intel’s
empirical data which showed better performance at the risk of losing messages due to lack of

resources [INTE86a].

As the receiver’s buffer space was filled with incoming TPDUs, the number of TPDUs
that it had room to receive decreased. To keep from being overrun, the receiver sent a "credit”

with the acknowledgements. This credit told the transmitter how many more TPDUs the
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receiver was prepared to handle; it was in the range of 0 to the maximum window size. As the
maximum window size was decreased, the credit was likewise decreased. This caused fewer
TPDUs to be in the pipeline to the receiver and thus decreased the throughput. As Figure 4.17
shows, there appeared o be no effect when decreasing the maximum window size from 15 (o 4,
but decreasing it from 4 to 1 caused the throughput to suffer dramatically. This indicated that
the receiver could not handle TPDUs sufficiently fast for the additional credit greater than 4 to
matter. However, credit less than four caused the transmitter to throttle itself to having only

one or.two TPDUs in the pipeline.

4.6. Layer Comparisons

There were benefits and drawbacks of using a front-end processor like the iSXM554
COMMengine. Having the communications services provided by a front-end processor allowed
concurrency. The COMMengine and the host processor ran in parallel and interacted via the
Multibus. The host processor was not concemed with servicing the messages as they arrived
asynchronously from the physical network. More computing tirne could be dedicated to the

user application since the use of the network did not require CPU cycles.

However, the only means of access to the COMMengine and its software was through the
MIP interface across the Multibus, which was a bottleneck. By accessing iNA960 through the
External Data Link interface, restrictions were placed on the size of the messages that could be
transmitted by the user application. Large messages had to be buffered in the host’s memory
and delivered to the EDL in smaller (1024 byte) segments. In this instance many small
messages were sent through the MIP interface, across the Muliibus and to the COMMengine,

subsequently causing the throughput to suffer.
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By accessing iNA960 through the Transport Layer, large messages were delivéred t0 the
front-end processor and stored there until they could be processed. iINAS60 and the underlying
data link hardware worked most efficiently while there was data in buffers on the
COMMengine. When iNA960 was finished processing one large message, it could be sent
another to be stored in the on-board buffers. This increased throughput by decreasing the

number of interactions across the MIP interface.

Figure 4.18 shows that time-dependent messages should employ the EDL rather than the
Transport Layer. There was a constant cost of approximately 7.5 milliseconds associated with
using the additional functionality provided with the Transport layer, which may be too
expensive for short command/response or status/request messages. The bound on the message
size was 1024 bytes for the Data Link Layer. At Transport, the bound was 928 bytes before the

TSDU message was segmented into two TPDUs. For messages of length L. and smaller than
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Figure 4.18 — One Way Transport and Data Link Delay vs. TSDU and Data Link Packet Sizes
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928 bytes, the one way delay at transport was approximately (16.5+L/250) milliseconds; using

the EDL interface it was approximately (9+L/250) milliseconds.

Data Link provided better throughput for packets of the same size, as seen in Figure 4.19.
This was because the TSDU messages were all small enough to fit into one TPDU, so
segmentation was not an issue. For messages of length 928 bytes or shorter, the difference
between the throughputs reflected the difference between the overhead associated with a
relatively simple Data Link data transfer service and the overhead associated with a
complicated but reliable Transport data transfer service. Data Link, however, is restricted to
packets of size 1024 bytes or smaller, When messages are larger than 1024 bytes, the meséage

must be segmented.

When an application process uses Transport, it moves entire TSDUs onto the front-end

processor, then Transport segments the TSDUs into TPDUs as required. If the application
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process uses EDL, the host must perform the segmentation and deliver packets no larger than
EDL is configured to accept. By forcing the maximum TPDU to be the same size as the Data
Link packet, we observed the differencel between segmentation on the front-end processor by
Transport and segmentation on the host by the application process. In Figure 4.20, the
throughput for Transport is slightly greater than throughput for Data Link. This shows that an
application process cannot segment messages on the host as well as Transport can segment the
messages on the front-end processor. Thus, in terms of performance, segmentation on the

front-end processor was more efficient.



Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1. Observations

The iSXM554 COMMengine provided a front-end processor which successfully off-
loaded the task of communications from the host. Its primary advantage was that it provided
transparent segmentation (the reduction of an arbitrarily large TSDU into multiple ”['PDUS).
Even so, segmentation was expensive — the first segmentation increased end-to-end delay by
approximately 20 milliseconds and each additional segmentation édded another 5 to 13
milliseconds. When using the largest TSDU not requiring segmentation (928 bytes), throughput
averaged 47 kilobytes/second; when using the smallest TSDU requiring segmentation (929

bytes), throughput dropped to 30 kilobytes/second.

Data Link supported a connectionless-mode (datagram) service for packets up to 1024
bytes. Transpbrt used that underlying connectionless-mode service and added segmentation,
sequencing, acknowledgment, and reassembly to provide a connection-oriented (virtual circuit)
service. As expected, direct access to the Data Link Layer provided shorter one-way delays and
higher throughput than did direct access to the Transport Layer. For large messages, however,
sending one large TSDU to Transport and allowing it to perform segmentation was more
efficient that having the host perform segmentation and pass multiple smaller packets directly to

Data Link.

In terms of absolute performance, a two-station system with no other computational tasks
using the Data Link interface supported continuous transmission rates ranging from 156 128-

byte messages per second to 84 1024-byte messages per second. At Transport, it supported
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continuous transmission rates ranging from 56 16-byte messages per second to 13 5000-byte
messages per second. When Transport was supplied continuously with large messages,
segmentation overhead limited the maximum throughput to approximately 72 kilobytes/second.
We confirmed that Transport’s retransmission timer should not be set to less than 100
milliseconds; the implication is that lost packets will not be detected for at least 0.1 second
which could be very significant in real-time control systems. We observed that a window size
of 4 was sufficient to achieve maximum throughput, and that using muttiple virtual circuits

decreased data throughput due to circuit maintenance overhead.

5.2. Future Work

There are several extensions to this research that we plan for the near future. Some of the
work will be further investigation into MAP network, such as upper layer performance analysis
and the methods provided by MAP to join several subnetworks or networks. Other work is
directed toward possibly improving the Intel implementation of the Transport retransmission
algorithm. The impact of the speed of the operating system will also be studied. Finally, the
Physical and MAC Layers will be replaced with IEEE 802.3 CSMA/CD network and an

analysis will be performed of the Technical Office Protocol (TOP).

5.2.1. Upper Layer Data Transfer Analysis

The Session and Case Layers in MAPNET2.1 use the data transfer services of Transport,
mapping their data transfer functions directly onto those of Transport. Therefore the evaluation
of Transport data transfer was performed and generalized to represent the data transfer
performance of the upper layers. Another set of performance experiments will be done on the

actual Session and Case data transfer services to verify this generalization.
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Experiments will also be designed to measure certain aspects of File Transfer, Access and
Management (FTAM) and Directory Services. It is expected that delays in file access and
transfer with P‘TAM will be insignificant when compared to the delays caused by disk access.
Since CASE and FTAM use names to identify the remote process, the Directory Services must
be invoked to make the name-to-address transl_ation at least once. Measures of the access time
for the data base, along with the data transfer analyses, will provide more insight into the costs

of using Application Layer functionality.

5.2.2. Bridges, Routers and Gateways

A bridge as described by MAP can be constructed using an iSXM186/51 CSMA/CD
board with a 586 Multimodule pléced onto it to provide two segments of CSMA/CD networks
shariﬁg one node. By using multiple tasks to capture Data Link packets, those intended for the
other segment can be redirected to that scgment. This would make the two segments
transparent to the Network Layer aﬁd above. It is expected that there would be a penalty for
subnetwork isolation, which can be measured using the External Data Link Performance
(EDLP) tools we developed here. Although the Physical and MAC Layers would be IEEE
802.3 CSMA/CD rather than IEEE $02.4 Token Bus, the cost of including a bridge in a network

can still be observed and generalized.

Similarly, a router may be constructed by placing a 586 Multimodule onto the ISXMS554
Token Bus board, allowing an Token Buss segment to be joined with a CSMA/CD segment,
Again, EDLP will be employed to provide the data transfer across the two heterogeneous

segments and measurements of the cost of joining two segments in this manner,

A gateway may be constructed by placing two COMMengines into the Multibus

backplane and running the full MAPNET?2.1 on each. A task would be monitoring messages
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received by one COMMengine. If a message requires translation and transmission on the other
COMMengine, a dedicated task would reroute it. This would simulate a gateway from a MAP
network to some other network. It is expected that the cost of using a gateway is severe because

the message needs to be propagated through two full seven layer stacks.

5.2.3. Retransmission Timer Algorithm

The adaptive retransmission timer employed by INAS60 Transport does not handle
degraded service due to lost or damaged packets in a timely and efficient manner. An
abbreviated Transport can be constructed using the External Data Link services. This transport
will be able to transfer and acknowledge data and retransmit packets that are lost or damaged.
Lost or damaged packets can be artificially induced. By studying the distribution of the
frequency of lost or damaged packets, an error-prone system can be simulated. This will be the
testbed for developing an algorithm that minimizes the cost of lost or damaged packets by

adapting according to recent conditions.

5.2.4. Upgrading the Central Processing Unit Board

The new iSXM80386/20 CPU boards are reported to improve the speed of the operating
system by S times, according to Intel. By replacing the current iSXM80286-10A CPU board
with this newer, faster, more advanced processor, the impact of the operating system on
communications may be seen. Furthermore, this increase in speed will provide a better

indication of the actual speed of the front-end processor for communications.
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5.2.5. Technical Office Protocol TOP

Technical Office Protocol is essentially MAP functionality on all Layers of the ISO stack
except the Physical and MAC Layers, where IEEE 802.4 Token Bus is replaced by IEEE 802.3
CSMA/CD. A similar evaluation of performance is foreseen, with emphasis on those
characteristics whose behavior we have stuidied here, and characteﬁstics which many be

Physical Layer dependent.

The IEEE 802.3 standard is an older, more established Physical and MAC Layer protocol.
Iniei has developed several COMMengines designed for CSMA/CD, the most recent of which is
the iISXM552A board, which employs a special Ethernet controller called a 82586 co-processor.
This co-processor relieves some of the MAC Layer responsibilities from the board’s CPU.
Also, this protocol is less complicated than Token Bus, requiring no modem or additional

hardware such as a headend remodulator.

We expect to see improved results in all respects. This may not be so much the result of a

superior Physical Layer protocol as it may be the maturity of the product.
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