ON THE INFERENCE OF STRATEGIES

Charles Swart
Oregon State University

Dana Richards
University of Virginia

Computer Science Report No. TR-86-16
June 20, 1986

ON THE INFERENCE OF STRATEGIES

by

Charles Swart
Department of Computer Science
Oregon State University
Corvallis, Oregon, 97331

and

Dana Richards
Department of Computer Science
University of Virginia
Charlottesville, Virginia, 22903

ABSTRACT

We investigate the use of automata theory 1o model strategies for nonzero-sum
two-person games such as the Prisoner's Dilemma. We are particularly interested in
infinite tournaments of such games. In the case of finite-state strategies (such as ALL
D or TIT FOR TAT) we use graph traversal technigues to show the existence of a
{(non-terminating) procedure for detecting our opponent’s strategy and developing an
“optimal”’ defense. We also investigate counter machine and Turing machine stra-
tegies. We show that the optimal defense to a counter machine strategy need not be
finite-state, thus disproving a previous conjecture. We show that determining an
optimal defense to an arbitrary Turing machine strategy is undecidable.

1. INTRODUCTION

Consider the following nonzero-sum two-peérson game, called the Prisoner’s
Dilemma, given by the payoff matrix in Figure 1. (In this description we follow
" closely the presentation given by Hofstadter [Hors83].) In the payoff matrix with
(i.j) entry (PG.7).QG.j)). PG.j) represents the payoff to player X when X

chooses move i and Y chooses move j. Similarly, Q(i,j) represents the payoff to

Player ¥
Payoff
C D
(3.3) | (0.5
Player X
(5.0 | (LD

Figure 1

player Y.

The origin of the term Prisoner’s Dilemma comes from the following hypothetical
situation: Suppose you and an accomplice attempt to commit a crime and are caught.
The prosecuting attorney offers each of you, independently, the following “deal.” If
neither of you confess (i.e., you both cooperate with each other), you will both be
convicted and will each serve two years in prison. However, if either of you
- confesses (defects against your partner) and the other doesn’t, the one who confesses
will be released and the other will serve five years. If you both confess you will
each serve four years. This situation can be described by tbe matrix of Figure 2
where (—x,—y) means that you get x Yyears in jail and your accomplice gets y Yyears.
If, for convenience, you avoid negative values by adding five to each element in Fig-

ure 2 you get the original matrix of Figure 1.

The dilemma of this game arises from the following analysis. If Y chooses C
(to cooperatej the best choice for X is D (to defect), for X then will win 5 instead
of 3. If ¥ chooses D then X still does best by choosing D, winning 1 instead of 0.
Consequently, the best choice for X is to defect regardless of what Y does. The
same analysis for player Y indicates that ¥ should also defect. Consequently, both
players receive 1 unit when they both could have received 3 units by mutual

cooperation.

The Prisoner's Dilemma has been used by Axelrod and Hamilton [AXEL81] and
by Hofstadter [HOFs83] to study the evolution of cooperation. Imagine that X and ¥

play an infinite sequence, or tournament, of games, each using the past history of the

Accomplice
Payofl
C D
(-2.-2) | (-5.0)
You
D | (0-5) | (-4-4)

Figure 2

other player to determine its next move. The general condition for a Prisoner’s
Dilemma is a payoff matrix of the form given in Figure 3, where R is the reward
for mutual cooperation, 7' is the temptation to defect, P is the punishment for
mutual defection, and S is the sucker's payoff. The interesting case occurs when 1)
7> R>P>S and 2) (T+8)2 < R. The first condition gives the ditemma. The
second guarantees that if the two players get locked into out-of -phase alternations
(i.e., on one move X defects and ¥ cooperates, on the next move X cooperates and ¥

defects, etc.) then both players will do worse than with mutual cooperation.

We will examine various strategies for playing such a tournament using standard
computing devices, specifically, Turing Machines, counter machines and finite-state
automata. In this model a player will choose a move, be informed of the other

player’s move, then perform some computation to choose its next move.

A finite-state strategy for player X can be represented by a directed graph simi-
lar to the well-known state diagram. Each vertex of the graph is labeled with the
choice of player X. Each directed edge is labeled with a choice of player Y. So an
edge labeled y; joining vertices x; to X2 represents the fact that if player X is in the
state indicated by the vertex labeled x; then he will choose move x; and if player ¥

makes a corresponding move of y; then player X next chooses move X.

Various strategies for playing tournaments of the Prisoner’s Dilemma were exam-
ined by Axzelrod and subsequently by Hofstadter. Some of the simplest (and most
interesting) of them are finite-state. We give a few strategies taken from Hofstadter

[Hors83] along with their corresponding automata.

Player ¥
Payoff
C D
R. R},
Player X
(r,s) | P)

Figure 3

ALL D: Defect every time. (Figure 4.)

Figure 4
MRS: (Massive retaliatory strike.) Cooperate until ¥ defects, then defect every time.

(Figure 5.)

c c.D

() ()
OmO
Figure 3

~ TIT FOR TAT: Cooperate on the first move, then mimic ¥’s last move. (Figure 6.)

Figure 6

In computer tournaments TIT FOR TAT was found to be an extremely successful

strategy. See Axelrod [AXEL84].
We also introduce another type of strategy which will aid our analysis.

TOT TIT FOR TAT: Cooperate if Y has cooperated at least as often as he has

defected.

Note that this is not a good strategy in practice. An optimal defense against this stra-

JEign 5

tegy is to alternately cooperate and defect. We are interested in this strategy because
it can be modeled with a counter machine which uses the counter 1o keep track of

the difference between the number of times ¥ cooperated and the number of times he

 defected.

In this paper we apply the techniques of Richards and Swart [RicH83] for graph
traversal and identification to attempt to solve the following problems. We assume
that ¥ is playing a deterministic strategy.

1) Determine ¥'s strategy. by playing a tournament as X,

2) Given Y’s strategy. produce an optimal strategy (or defense) for X.

We assume that each strategy can be modeled by a transducer, specifically either
a finite-state machine (FSM), a counter machine (CM), or a Turing machine (TMD.
The input to the transducer represents the ¥ move and the output represents the sub-

sequent X move.

2. TERMINOLOGY

The following notation, similar to Trakhtenbrot and Barzdin’ [TRAKT73] is helpful.
Fach player's strategy produces a sequence of moves which may depend on its partic-
ular opponent Let the moves of player X be given by

XVvsY =x1.x2, """
and let the moves of player Y be given by

YvsX =y,y2 -
Then for i22, x; depends on ¥1.Y¥2. "' Yi-1s and y; depends on Xy, %2, ", Xi-1.
(The sequences X VSY and Y VSX are called nonanticipatory operators.) Suppose X
and Y have each chosen their strategies. We define the payoff sequence
P(XVSY)=Py(XVSY), PyXVsSY) -+ , where P (Xvsy) is Plx;y;). ie., the

payoff to player X after the ith move in the tournament.
For convenience, we often identify players with their strategies.

Next we must determine what we mean by a good strategy for X playing in an
infinite tournament with Y. Simply adding the total payoffs to X is inadeguate since
this sum is usually infinite. We suggest the following definition. Consider two stra-
tegies X; and X, against a given strategy for player Y. Then strategy X; dominates

X, with respect to ¥, X; 2y X, if and only if there exists an ng 2 1 such that for

6

all n 2 no. :V_‘,P,- (X,vsY)2Z f_‘,P,- (X,vsY). This means that after some point, the

i=1 i=1

total payoff to X; is never less than the total payoff to X, The reason for not
demanding that each partial sum dominate is to allow initial sacrifices which eventu-
ally provide a larger payoff. A strategy X is strongly optimal with respect to Y if
for every strategy X', X Zy X'. As we shall show below, a strongly optimal strategy

need not exist.
It is sometimes possible to prove another form of optimality. The (average) value

H3
of a strategy V(X vs ¥)= Iim-j‘i— S P(X;.Y;) if this limit exists. Since each term in the
oAl

i=1

partial sum is bounded above and below by values in the payofl matrix the averages
of the partial sums are always bounded. So if the limit fails to exist then the aver-
age sums do not diverge but oscillate between two finite values. We say that X is
value optimal against ¥ if the value of X exists and is at least as large as the value

of any other strategy X' against Y.

In the following, when there is no chance of confusion, we shall refer to value

optimal strategies simply as optimal.

3. STRATEGY INFERENCE

Next we examine the problem in which player X tries to determine player ¥'s
strategy by playing a tournament against him. This work is closely related to the
area of inductive inference. This field deals with the process of guessing a general rule
from examples. For instance, the guesser could be given, one by one, words from a
context-free language and the guesser attempts 10 construct a grammar for the
language. Or the guesser might have access 10 an “oracle” for the language. When
provided with a word by the guesser, the oracle states whether or not that word is
in the given language. As the guesser obtains more information about the language, he
refines his prediction of the grammar for that language. The fundamental paper on
this topic is Gold {GoLD67]. A good survey of the field may be found in Angluin and

Smith [ANGL83].

7

Our work differs from inductive inference in that it is more interactive and
dynamic. Even though the player's strategy is fixed his actual moves are not predeter-
mined but are affected by his opponent’s testing of his strategy. This work is very
" imilar to the “black box identification” found in section five of Gold [GoLD67] and

falls within the general model of identification suggested by section six of the same
paper.
As is the case with graph traversal in Richards and Swart [RicH83] there are

some inherent limitations to any attempt at strategy identification.

1) Cardinality

A general strategy can be represented as a nonanticipatory operator (Trakhtenbrot
and Barzdin® [TRAK73]). Hence the set of oblivious strategies (those which make no
use of the other player’s moves) is in one-to-one correspondence with the set of

infinite sequences, so is uncountable. Thus no procedure can identify all strategies.

2) Termination.

There is no way to know when a general Turing machine strategy, or even a
finite-state strategy, has been identified because there is always an incompletely
specified finite-state strategy consistent with any finite sequence of moves. Suppose
player X tries to identify strategy Y. Then for any finite sequences of moves
X1, %9 """, %, and Y. Y2 " Vn there is a graph of the ‘form given by Figure 7.
Therefore, a guesser will never know at any given point in time whether he has suc-
cessfully determined the strategy or has merely identified an initial part of a more
complicated strategy. So any attempt to identify a strategy must never terminate.

We will do the best possible considering this restriction. OQur procedure will converge

Figure 7

8

to the actual strategy in the sense that after a finite amount of time the procedure
will suggest the actual strategy as a hypothetical strategy and the procedure will
reject each alternate hypothetical strategy in a finite amount of time. In other words
our procedure will find the correct strategy, but it will never stop verifying that it is

indeed the correct strategy.

3) Reachability

Consider the following finite-state strategy' for ¥. Cooperate on the first move.
Then if player X cooperated on his first move play TIT FOR TAT. Otherwise play '
ALL D. This strategy is indicated in Figure 8. This strategy cannot be identified,
since the first test move by X restricts all future moves to one strongly connected
component of the graph. This problem is general and not restricted to finite-state
machines. Specifically. we can describe any Turing computable strategy by an infinite
graph in which each vertex corresponds to a state of the machine (its instantaneous
description) along with its choice of next move. Edges are labeled with the opponent’s
move. An edge from one vertex to another indicates that if the Turing Machine is in
the configuration indicated by the first vertex and if the opponent chooses the move
indicated by the label, then the Turing machine will be in the configuration given by

the second vertex (possibly after considerable computation) when it selects its next

Figure 8

9

move. This graph is connected since it describes all configurations reachable from the

initial state, but in general it is not strongly connected.
There are several reasonable approaches to handling this reachability problem.

e Allow the tester to “reset” the strategy he is testing, ie. let him play several

tournaments with Y.

e Consider only those strategies in which the starting configuration is reachable

from any other configuration.

® Relax the meaning of identification of a strategy to mean identification of one
strongly connected component of the strategy. This is essentially what Gold
refers 1o as “weak learnability.” (This is the approach we adopt in the last sec-

tion.)

Our general approach for inferring a given strategy is the following. First we
develop a procedure for generating a list of all strategies. (For example, for finite-state
strategies it is possible to generate simpler strategies before more complex ones, accord-
ing to the number of states used to describe the strategy.) These strategies are pro-
duced as needed below. We initialize by selecting the first strategy on the list as a

candidate strategy S.. We then repeat the following pair of steps forever.

Choose Alternate Strategy. Find the next strategy on the list which is consistent
with the results of the tournament as played so far and which is distinguishable

from S,. Call this strategy S, the alternate strategy.

Eliminate One Strategy. Generate a distinguishing sequence of plays which will

differentiate S. from S,. Run this sequence against the actual strategy to elim-

inate either S, or §,. Update S, as necessary.

Certain conditions must hold for this procedure to be valid.

1. Possible strategies must be enumerable. This is true for strategies given by finite-

i
4
!
o
=1

1

state machines, counter machines and Turing machines.

2. A distinguishing sequence for non-equivalent machines must be found. If two

10

machines are known to be non-equivalent, such a sequence can always be found in an
“off-line” manner. That is. the algorithm generates all sequences in lexicographical

order and tests them by simulating the effect of each sequence on the two machines.

3. The equivalence of two given strategies must be decidable. For games with only
two possible moves we can immediately reduce this problem to the standard machine
equivalence problem by considering one move to correspond to an accepting state, the
other to a non-accepting state. The equivalence problem for finite-state machines is
well known t§ be decidable. Valiant and Paterson [VALI75] have shown that the
equivalence problem for (deterministic) counter automata is decidable. The equivalence

problem for Turing machines is well known to be undecidable.

Note that although the equivalence of Turing machines is undecidable, our
approach could be modified to enumerate and test all pairs of descriptions of strategies
and every sequence of plays. The procedure could work in a sequence of stages. At
each stage a finite number of alternate machines are considered along with a finite set
of test sequences and a finite time bound. Each test sequence is run on each alternate
machine for at most the time bound to try to distinguish the alternate strategy from
the candidate strategy. In each successive stage the number of alternate strategies and
test sequences are increased and the time bound is raised. Thus each strategy which
is demonstrably not equivalent to the actual strategy could be eliminated. However,
infinitely many equivalent strategies would remain (including strategies which are con-
sistent with the actual strategy for all moves produced but which do not terminate

their computation for some test sequences.)

This analysis gives us the following result.

Theorem 1. A (non-terminating) procedure exists for identifying a finite-state sirategy

or a counter machine strategy.

i1

4. OPTIMAL DEFENSES

In this section we suppose the strategy of ¥ has been identified. What defense
should X choose to play with ¥'? We have positive results when Y uses a finite-
state strategy, and, not surprisingly, negative results when Y uses a Turing machine
strategy. We have resolved a previous conjecture concerning counter machine sira-
tegies.
As we mentioned above, observe that a strongly optimal defense might not exist.
For example, consider the following finite-state strategy for Y playing a Prisoner’s
Dilemma given in Figure 9. Y cooperates on the first move and then alternates
between cooperation and defection. The first choice of X determines Y's second move.
Specifically, Y’s second move repeats X ‘s first move. After the first move ¥'s moves
are independent of X’s choices. X has only two reasonable strategies in the sense
that any alternate strategy is dominated by one of these. They are
X4: Cooperate on move one then defect forever.
Xy Defect forever.

The payoff sequences of the two strategies are:
P(X,vsY)=RT.PTP, -

P(X,vsY)=T.PTPT, .

12

The conditions of a Prisoner’s Dilemma give us I’ > R > P. Since R > P, X dom-~
inates X, after every even move, and since T > R, X, dominates Xy after every odd

move. Therefore a strongly optimal defense does not exist.

However, we are able to show, using a pumping argument, that a value optimal

defense exists against a finite-state strategy.

Theorem 2. A value optimal defense against an FSM strategy exists and is finite-state.
Furthermore, an algorithm exists for determining an optimal defense if a description
of the FSM strategy is given.

Proof: Suppose ¥ uses a finite-state strategy. Form the graph corresponding to Y's
strategy. Give each edge in the graph weight equal to the payoff to X if that edge
is chosen. Find a simple cycle which is reachable from the start state and which has
the largest average payoff to X, ie. find a cycle whose payoff per edge is maximal.
Note that there may be several such cycles. Let the average payoff of such a cycle
be p. Define the strategy X to be one which takes ¥ to such a cycle and then
stays in this cycle. Clearly the value of this strategy is p. and since the sequence of
states generated is ultimately periodic, the strategy is finite-state. Next, let X' be
any strategy against Y. Consider the set of states into which X' takes Y. At least
one state. g, must occur infinitely often. So the behavior of the finite-state machine
for ¥ consists of an initial sequence of moves ending in state ¢ followed by an
infinite sequence of (not necessarily distinct) cycles taking ¢ to g. Since each of
these cycles has an average payoff at most p, the value of this strategy V(X'vsY) is

at most p. Therefore, since V(X vsY)2V(X'vsY), X is value optimal. O

Notice that we have proved a slightly stronger result than that stated by the
theorem in that we did not assume that strategy X' had a value. We proved that the
value of X was at least as large as a known upper bound on the average payoff of
X

Next we consider counter machine strategies. Notice that the optimal defense

against the CM strategy TOT TIT FOR TAT is CDCDCD ---, which is finite-state.

13

Observations such as this led to the conjecture [SWAR84] that a value optimal defense
against a CM strategy exists and is finite-state. We now give a counter-example to
that conjecture along with a theorem that shows that approximate finite-state defenses

exist against CM strategies.

Recall that a counter machine is a pushdown automaton which has only one
stack symbol, with the exception of a bottom-of-stack marker. (See Hopcroft and
Ullman [Hopc79].) The machine can push the symbol on the stack (increment the
counter), pop the symbol from the stack (decrement a non-zero counter) and check to

see if the count is zero (if the top stack symbol is the bottom-of-stack marker.)

We can use a generalization of the graph for finite-state strategies to represent
CM strategies. Each vertex corresponds to the player's move. An edge joining two
vertices is labeled by a triple. The first component is the opponent’s move, just as
with a finite-state strategy. The second component is a test for zero value on the
counter (O zero, —0 not zero). The final component is the action to be taken on the

counter (+ add one to the counter, — subtract one from the counter, 0 no action).

Using this notation, consider the CM strategy for tbe Prisoner’s Dilemma for

player Y given by Figure 10. All unspecified edges take ¥ to an ALL D state.

(D,~0,~) €.~0.4)
Figure 10

14

An simple interpretation of Y's strategy can be given. Whenever the counter is
zero ¥ cooperates once and then defects once, incrementing the counter both times. I
X has cooperated on both these moves then ¥ continues to cooperate and increment
the counter as long as X cooperates. When X defects ¥ continues to cooperate but
decrements the counter. ¥ expects X to continue to defect until the counter is zero.

When the counter again becomes zero ¥ begins this action all over again.

Now let’s consider the best defense for player X. If X doesn’t behave in the
general fashion anticipated by Y (ie., ¥ expects X to cooperate at least twice when
the counter is zero and when X defects he is expected to continue defecting until the
counter becomes zero), then Y plays ALL D, and so the value of any non-conforming

strategy is at best P.

If however, X plays along with ¥, then X must make a small initial sacrifice
(by cooperating when he knows Y will defect) when the counter changes value from
0 to 1. If X cooperates n times then defects n times he receives a payoff of

R+S+(n—2)R+nT. In this sequence of 2n moves X receives an average payoff per

R+T+S--R_

move of 5 o

Note that if X simply increases Y's counter forever he receives
R.S,R,R.R, -, so the value of this strategy is R. Consequently, X does best by
generating ever larger counter values for ¥ and each time defecting until the counter

is zero. So. for instance the strategy of C2D?C3D3C4D*--- has the optimal value of

RAT

5
A few more comments on this strategy are in order. Note that X never achieves

the value of his defense since he must make infinitely many (but widely spaced)

one-move sacrifices.

It is easy to see that no optimal defense to Y can be finite-state. Since any
such defense must play along with ¥, it must generate moves of the form CPD? for

ever increasing p. When such a defense generates the p C's ¥ will cooperate, defect,

15

then play p—2 C’s. So if p—2 is greater than the number of states of the supposed
finite automaton, then the machine will repeat a state, hence will cooperate forever.
So for any FSM there is 2 bound on p and further there exists another FSM strategy

which possesses a larger bound on p and hence can have greater value.

Less obvious is the fact that any optimal defense to Y's strategy is not a CM
strategy. The intuition behind this result is that X must generate longer and longer
sequences and also must know when ¥ has a zero counter; a single counter cannot do

this simultaneous bookkeeping.

Lemma I. A CM with constant input has a fixed bound (depending only its number
of states) on the the number of steps from one zero counter 1o the next =zero

counter.

Proof: Consider the behaviour of the CM between zero counters. Since the input can
effectively be ignored and no zero counters occur the behaviour depends only the
states. Define a configuration to be a state and counter value pair. If a configuration
is repeated then the bebaviour of the CM would loop. So if the largest counter

value is bounded then the number of configurations will be bounded as well.

We claim that the counter value is bounded by the number of states. To see
this consider the sequence of states the CM is in the first time the counter value
becomes 1,2.3.... If there were two configurations with the same state and the second
configuration had a larger counter value it follows that the bebaviour of the CM

would loop and the counter would grow without bound. O

Theorem 3. There exists a CM strategy for which no optimal defense is a CM stra-
tegy.

Proof: We show that the strategy in Figure 10 is such a strategy. Assume that X
has an optimal CM strategy against Y. As discussed above X must play along with
Y and so must produce, for arbitrary p, a sequence of more than p C’s before
switching to a sequence of more than p D's and then switching back to a C, and

throughout the input is constant (after the second C). The CM needs some internal

16

cue to switch its output since the input is constant. First, notice that for p large
enough the CM must produce a zero counter during the C’s since, otherwise, by using
a pumping argument, it follows that the CM's behaviour must loop and it will not
change to a sequence of D’'s. Similarly during the sequence of D’s a zero counter
~ must occur. Second, by the same reasoning used in the proof of Lemma 1, there is a
fixed bound on the number of moves between the last time the counter is zero in a
sequence of D’s and the next time that X chooses a C. This follows because with
constant input there is a bound on the stack height the CM can attain before reaching
the configuration in which it next chooses to cooperate. Hence the CM will produce a
series of zero counters while the input is kept constant. At least one of these counters
occurs on a C choice and one occurs a bounded distance from the end of the D

choices.

There are two cases. If for all p it produces & number of zero counters that is
less than or equal to the number of states then, for large enough p, we can find a
pair of consecutive zero counter configurations separated by a number of steps larger
than any fixed bound. This contradicts Lemma 1. Therefore, for some p,. it produces
more zero counters than states. In this case some state must repeat in the zero
counter configuration. Therefore, the CM must loop. Its looping behaviour may be
all C’s, all D’s, or a combination of the two, but in all cases it either does not play

along with ¥ or generates bounded length sequences of C's and D’s O

Finally, note that X can get as close as he wishes to the optimal value of this
game by simply choosing a large enough n and playing the finite-state strategy

crprC*D"™ .-+, This situation generalizes to the following theorem.

Theorem 4. Suppose player ¥ uses a CM strategy and suppose X has a value optimal
defense against ¥ with value v. Let €>0 be given. Then X has a finite-state strategy
against ¥ with value at least v—e.

Proof: Suppose X plays its value optimal defense against ¥'. Then ¥'s moves can be

described by a sequence of pairs (s;./;), where s; is the state of ¥ and #; is the

17

height of the counter. There are two cases to consider.

a) h;=0 infinitely often (i.e., the counter is zero infinitely often). Since the CM has
only finitely many states there must be some state, say s; such that the pair (s:.0)
occurs infinitely often. Therefore, the sequence of ¥'s moves can be partitioned into a
finite initial segment and infinitely many segments, each of finite length and each
starting with (5;,0) and ending just before the next (s;,0). See Figure 11. We claim
that at least one of these segments has an average payoff per move of at least v—e.
If every segment had average payoff strictly less that v—€ then by adding all the
payoffs of all the segments we would get a value for X's optimal strategy which is
bounded above by v—e€, contrary to hypothesis. Suppose that the Xth segment has
value at least v—e. Then by choosing a strategy for X which is the same as the
value optimal one for the first k—1 segments and then repeatedly chooses the moves
which produced segment %k, we get a defense which has value at least v-€. Since this
strategy is ultimately periodic, it is finite-state.

b) h;=0 finitely often. A similar argument works. There must be some state s; and
some infinite subsequence which begins somewhere after the last time the counter is O,
(si ko), (5;.h1), -+ such that h; Sh;4y for each j. See Figure 12. Again, the sequence

of Y’s moves can be partitioned into a finite initial segment and infinitely many

5 5 5

Figure 11

18

/
5
A /_\ 55
5
t
Figure 12
segments, each of finite length, starting with (s;.h¢). (s5;.h1). - -. As before, at least

one of these segments, say the kth, has value at least v—e. Choose a strategy for X
which is the same as the value optimal one for the first £—1 segments and then
repeatedly chooses the moves which produced segment k. Notice that segment X%
started with the counter at value A, and ended with value k, and that at no time
did the counter become zero while ¥ was playing in this segment. When the moves
which produced segment k& are repeated, the new segment k-1 starts with the counter
at value A; and ends with the counter at value 2A;~h;_;. Since A,_1Sh;. the initial
counter value at the start of segment Z+1 is at least as large as the initial counter
at the start of segment %, so all moves in the new segment have counter values at
least as large as corresponding moves in the kth segment. Hence the counter is never
zero in segment X +1. So the behavior of ¥ in playing segment k+1 is identical to its
behavior in segment k. In particular the average payoff per move is the same. Con-
tinuing this sequence of moves gives us an ultimately periodic strategy of wvalue at

least v—e. O

Notice that in this theorem we have assumed that a value optimal strategy

exists. It is an open question whether every CM strategy has a value optimal defense.

Finally, we consider general Turing machine strategies. We extend the technique

used for FSM strategies to show that a general TM strategy need not have a value

19

optimal defense, and then show that even if a wvalue optimal or strongly optimal

defense exists finding it is undecidable.

Theorem 5. A value optimal defense against a TM strategy need not exist. There is a
TM strategy which has neither a strongly optimal nor a value optimal defense.
Proof: Consider the following TM strategy for Y playing the Prisoner's Dilemma.
Starting with its second move Y plays strategy 4 for two moves, then plays strategy
B for four moves, then strategy A for eight moves, etc. On the first move, ¥
cooperates and if X cooperates A is TIT FOR TAT and B is ALL D. If X defects on
the first move A is ALL D and B is TIT FOR TAT (cooperate then mimic ¥Y's
move). Again X bas two reasonable strategies in the sense that any other strategy is
dominated by one of these:

X;: C CD DDDD CCCCCCCD ete., and

X2: D DD CCCD DDDDDDDD etc.
(Note that both strategies defect on Y's last move in each TIT FOR TAT sequence.)
Neither of these strategies has a value. X, has an average payoff which approaches P
after moves 2%** —1 and R after moves 2%* — 1. Similarly, the averége payoff for
strategy X, approaches R after moves 2%°*1— 1 and P after moves 2%* —1. So a
value optimal defense doesn’t exist. Finally, since neither X; nor X, dominate one

another a strongly optimal strategy doesn’t exist. O

The existence of strategies such as this discourages us from simply defining the
value of a strategy to be the lim sup of the average of the partial sums. Such a
definition has the advantage that all strategies associated with finite games have a
 value, but it has the disadvantage that the average of the partial sums could be very

far from that value infinitely often.

Our final result in this area is that even if an optimal strategy exists, there is

no algorithm to determine it.

Theorem 6. There is no algorithm which, given a description of a TM strategy. pro-

duces an optimal defense, even if it is known that such a defense exists.

20

Proof: We show that the existence of such a strategy would imply the solution to the
blank tape halting problem. Consider the following Turing machine strategy for
player Y, which uses the description of an arbitrary Turing machine H as additional
input and plays a Prisoner’s Dilemma tournament. ¥ cooperates on the first play. If
X cooperates ¥ plays TIT FOR TAT. If X defects ¥ uses a scratch tape to simulate
H when started on a blank tape. ¥ defects once for each step H makes. If H halts
then ¥ cooperates in all future plays. Again, X has two reasonable strategies, com-
pletely determined by his first move. If X chooses to cooperate on his first move, ¥
will play TIT FOR TAT. The optimal defense to this strategy is to cooperate forever,
(ALL ©), so if X chooses this his payoff sequence is R,R,R, -+ If, however, X
- defects on his first move, then Y's future moves are independent of X's, so the best
strategy for X is ALL D. This strategy has payoff P, P,P, -+ if H never halts
since then Y will play ALL D forever. The same strategy has payoff
PP, P, T,T,T,--- with n P’s if H halts after n moves, since after n defec-
tions, ¥ will cooperate forever. So the value of ALL C is R and the value of ALL
D is either P if H never halts or T if H halts. Recall that P < R <7 so that

ALL D is optimal if A halts and ALL C is optimal if H doesn't halt. O

5. COMBINING IDENTIFICATION WITH OPTIMAL DEFENSE

In Richards and Swart [RICH83] we combined graph identification with graph
traversal. A similar situation occurs in the case of game strategies. When methods
exist for identifying a strategy and computing an optimal defense, then in some sense
it is possible to do both simultaneously. The basic idea is straightforward. Modify
the identification procedure to alternate between identification and defense playing.
Every time the identification procedure finishes one pass through the steps Choose Alter-
nate Strategy and Eliminate One Strategy (i.e., it has either reconfirmed the old candidate
strategy or selected a new candidate strategy) it computes the optimal defense against
the candidate strategy and spends some time playing that strategy. Since the pro-

cedure eventually identifies the correct strategy, it eventually plays the correct

21

defense. The major difficulty with this approach is assurin‘g that more moves are
spent playing than testing. For instance, it is conceivable that each new test takes:
more moves than all the previous moves made up to that test. In some cases one can
prevent this by predicting the maximum length of the next distinguishing sequence
and playing long enough in advance. By careful prediction one can assure that any
desired fraction (less than one) of the time is spent playing the defense and that in

the limit this fraction can be made to go to one.

In the case of finite-state strategies, this goal is achievable. Suppose M., the
automaton for the candidate strategy S, has n states and that M,, the automaton for
the next consistent, distinguishable alternate strategy has m states. Before playing the
optimal defense against strategy S,, for each pair (i,j) we compute a sequence which
distinguishes M, starting in state { from M, starting in state j. Whenever we finish
playing we know that one of these sequences will distinguish S, from S,. Therefore,
the longest of these nm sequences gives us a uniform upper bound on our next test
sequence. We can use this bound to determine how long to play our defense before

resuming testing.

6. REFERENCES
[ANGL83] D. Angluin and C. H. Smith, Inductive Inference: Theory and Methods,
Computing Surveys, 15(3), September 1983, pp. 237-269.

[AxEL81] R. Axelrod and W. D. Hamilton, The Evolution of Cooperation, Science, 211,

27 March 1981, pp. 1390-1396,
[AxEL84] R. Axelrod, The Evolution of Cooperation, Basic Books, New York, 1984.

[GoLp67] E. M. Gold, Language Identification in the Limit, Information and Control, 10,

1967, pp. 447-474.

[Hors83] D. R. Hofstadter, Metamagical Themas, Scientific American, May, 1983, pp.
18-26.

22

(Horc79] J. E. Hoperoft and J. D. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, Reading, Mass., 1979.

[Ricy83] D. Richards and C. Swart, Universal Traversal Sequences, Graph Traversal
and Graph Identification, in Combinatorics on Words, L. J. Cummings (ed.).

Academic Press, Toronto, 1983, 387-405.

[SwAR84] C. Swart and D. Richards, Identification of Strategies for Two-Person Games,

Congressus Numerantium, 45, 1984, pp. 193-205.

[TRAX73] B. A. Trakhtenbrot and Y. M. Barzdin’, Finite Awtomata Behavior and

Synthesis, North-Holland, Amsterdam, 1973.

[VALI75] L. G. Valiant and M. S, Paterson, Deterministic One-Counter Automata,

Journal of Computer And System Sciences, 10, 1975, pp. 340-350.

