
University of Virginia, Department of Computer Science Technical Report CS-2004-19, September 1, 2004.
This paper has been submitted to the 27th International Conference on Software Engineering. Revised on 09/23/2004.

Software Design Spaces: Logical Modeling and Formal Dependence Analysis

Yuanfang Cai Kevin J. Sullivan
Dept. of Computer Science Dept. of Computer Science

University of Virginia University of Virginia
Charlottesville, VA, 22904-4740 USA Charlottesville, VA, 22904-4740 USA

yc7a@cs.virginia.edu sullivan@cs.virginia.edu

Abstract

We lack a useful, formal theory of modularity in abstract
software design. A missing key is a framework for the ab-
stract representation of software design spaces that sup-
ports analysis of design decision coupling structures. We
contribute such a framework. We represent design spaces
as constraint networks and develop a concept of design de-
cision coupling based on theminimal change setsof a vari-
able. This work supports derivation, from logical models,
of design structure matrices (DSM’s), for which we have a
promising but inadequate theory of modularity. We present
complexity results and a brute force algorithm. To test for
potential software engineering utility, we analyzed the de-
sign spaces of Parnas’s 1972 information hiding paper, with
positive results that were surprising in several ways.

1. Introduction

The motivation for this work is in the need for a value-
based theory of software design [9]. A key source of value
is adaptability through modularity in the coupling of de-
sign decisions [7]. Today we have no formal, useful theory
of modularity in abstract design spaces. The contribution
of this work is such a theory based on constraint network
(CN) [20] representations of software design spaces and a
logical formulation of design decision interdependence.

We use variables to represent dimensions in which de-
sign decisions are made, values to represent design deci-
sions, and constraints to model required relations. The set
of consistent assignments constitute the design space, and
a consistent assignment, a design. The key idea is in the
minimal change sets(MCS’s) for a design decision in a de-
sign: the set of minimal subsets of variables that could be
changed to restore consistency when the given decision is

changed in a given way. Two design variables are defined
to be pairwise dependent if, for some design, there is some
change to the first for which the second is in some MCS.

In earlier work [32] we showed that Baldwin and Clark’s
real-options model of the value of modularity shows some
promise of contributing to a value-based theory for soft-
ware design. Following their lead, we represented design
spaces asdesign structure matrices(DSM’s) [30] [12], with
design variables on the rows and columns, and pairwise
dependence marks in the cells. The coupling structure is
seen in the matrix, with modularity in the form of block-
diagonality.

Unfortunately, DSM’s are expressively weak. They do
not model design choices or the semantics of dependences,
and they only model pairwise dependences. It’s often hard
to know what a mark in a DSM means, or whether one
should even be present in a given case. We show that DSM’s
are lossy summaries of the MCS’s of a CN, and that deriv-
ing them is NP-complete. We developed a brute-force algo-
rithm, which we used in the experiments described in this
paper.

To evaluate our approach for potential engineering util-
ity, we tested its ability to expressively represent and use-
fully analyze the design space structures in Parnas’s infor-
mation hiding paper [23]. The results were positive and in-
teresting. The rest of this paper is organized as follows.
Section 2 reviews DSM’s. Section 3 reviews CN modeling
in design. Section 4 formalizes our notion of variable de-
pendences in CN’s and presents a mapping from CN’s to
DSM’s. Section 5 analyzes the computational complexity
of this mapping. Section 6 and 7 present our results. Sec-
tion 8 discusses related work. Section 9 evaluates this work,
including open problems for future research. Section 10
concludes.

A-DS B-Alg B-DS A-ADT A-DS B-Alg B-DS

A-DS . A-ADT .

B-Alg x . x A-DS x .

B-DS x . B-Alg x . x

B-DS x .

(b)(a)

Figure 1. DSM for a design of three variables

2. Design Structure Matrices

The DSM—developed by Steward [30], extended by
Eppinger [12], and now supported by tools such as De-
Maid [18]—is used for design task structuring and opti-
mization in a range of industries. The DSM is also the basis
for Baldwin and Clark’s concept of modularity. This section
reviews the DSM and its role in the that conception.

Figure 1 presents an example. The design variablesA-
DS, B-Alg and B-DS, represent choices of values for the
data structure for some program A, and two dimensions for
a program, B: its algorithm and its data structure. Marks in
a row show what decisions a given decision depends upon.
DSM’s represent design spaces. A set of design variables
can be clustered as aproto-module: a set of decisions to
be made collectively. A proto-module is in essence a com-
posite variable. In Figure 1 (a), gray blocks denote proto-
modules. Algorithm and data structure choices for B are
made as one, for example.

Decisions made in collaboration are said to beinterde-
pendent. Hierarchical dependencearises where one deci-
sion influences but is not influenced by another.Indepen-
dentdecisions can be made without communication. Algo-
rithm and data structure choices are often interdependent.
The symmetric marks in rowB-Alg, columnB-DSand in
the symmetric cell,(B-DS, B-Alg), in the first DSM model
this condition: an efficacious choice of either depends on
the other. The X in(B-Alg, A-DS)models a dependence of
B’s algorithm on A’s data structure, as might arise in struc-
tured design. The lack of symmetry indicates a hierarchi-
cal dependence: A’s choice of data structure dominates B’s
choice of algorithm.

Whereas a proto-module can depend on other variables
(as B depends on A), a true module, in Baldwin and Clark’s
view, is independent, with no marks in the rows or columns
outside its bounding box, except as explained below. To
obtain a modular design, any dependencies across proto-
modules must be broken. In Figure 1 (b) the dependence of
B-Alg on A-DS is eliminated in favor of a hierarchical de-
pendence of A and B on a new decision,A-ADT: the choice

of a shared interface. Here we have the essential concept
of modularity in Baldwin and Clark’s work:independence
modulo design rules. A design rule is a decision that serves
to decouple others decisions. Dark shading of theA-ADT
variable in Figure 1 (b) denotes thatA-ADT is a design rule
for this design. Modularity appears as block-diagonality in
a submatrix governed by a set of design rules.

3. Modeling Design Spaces with Constraints

In our earlier work we developed DSM’s manually and it
was hard to be sure they were valid. We now introduce con-
straint networks (CN’s) as a far more expressive modeling
notation. Using CN’s in design is not new. Typical appli-
cations use constraint solvers to find designs under com-
plex constraints. Our goal, by contrast, is a new coupling
theory. Subsection 3.1 develops the idea informally. Sub-
section 3.2 uses Z [26] to formalize the CN model we use.
Subsection 3.3 explains how we represent design spaces as
CN’s. Subsection 3.4 describes how we represent them in
Alloy [17], in particular.

3.1. Informal Introduction

Software design spaces are naturally representable in
formal, abstract terms as CN’s. Variables represent di-
mensions of design decisions, sometimes calledcon-
cerns [11]. The domain of a variable represents possible
design choices. Bindings reflect actual choices. Variables
can also represent conditions in theenvironmentthat affect
design decisions [32]. Constraints express arbitrarily com-
plex dependences among design and environment variables.

We conjecture that a key advantage of logical models
is that any concern can naturally and separately be repre-
sented as a variable: from choice of a real time response
time, to logging or security policy, to type signature, data
structure, algorithm, or code body. Separation of concerns,
a seemingly complex issue requiring aspects [19] in imple-
mentation, becomes a choice of a set of variables in logi-
cal modeling. Here, we focus on kinds of choices faced in
object-oriented design, deferring exploration of the broader
potential to future work.

Consider a simple design space comprising the choice
of a function signature and implementation. A CN model
could include two variables:signatureandimplementation.
Their domains represent the choices under consideration.
We could include a specialunknownvalue to model pos-
sible but as yet unelaborated choices. Suppose a designer
has developed a particular signature and an implementation,
modeled by valuessig 1 andimpl 1. The domain ofsigna-
ture is {sig 1, unknown}; and, ofimplementation, {impl 1,
unknown}.

2

A key constraint is that the choice of implementation as-
sumes a choice of a signature. We can model this relation
using implication. The binding of the assuming variable
implies the assumed binding:implementation = impl1⇒
signature = sig 1. This model captures the idea that chang-
ing the signature can forces a change in implementation,
but changing the implementation doesn’t necessarily force
a change in signature. Ifimplementationis unknown, for
instance,signaturecan take any value of its domain.

In his information hiding paper [23], Parnas informally
framed design decisions, environment conditions, and con-
straints among them. For example, when describing an in-
put module, he said, “This module reads the data lines from
the input medium and stores them in core for processing
by the remaining modules. The characters are packed four
to a word. . . ”. We find an important design variable and
one of its possible values: the input data structure specifica-
tion, and a choice to pack four to a word. We can formalize
this idea using a design variableinput data structurewith
packedas one of its values.

Similarly, his statements on the circular shift module,
“. . . It prepares an index. . . It leave its output in core. . . ,” can
be represented by a design variable representing the choice
of circular shift data structure, and a particular value, index
in core, modeled by the variablecirc data structureand
the valueindex.

Variables can also represent aspects of the environment
that drive design decisions. One of the main change drivers
in Parnas’s case study is the size of inputs in relation to
memory. Parnas makes several points. First, in his origi-
nal design, input characters were packed four to a word, so
that the input would fit in memory. Second, Parnas notes
that “[i]n cases where we are working with small amounts
of data it may prove undesirable to pack the characters. . . .”
Third, he observes that, “For large jobs it may prove incon-
venient or impractical to keep all the lines in core. . . .” In
this case, data will be stored on disk.

We can now formalize this description, making a few
assumptions where necessary to fill gaps in the informal
presentation. The environment variableenvr core size
represents memory size, with values{large core} and
{small core}. The environment variableenvr input size
represents the input data size, with valueslarge input (too
big even for a large memory),small input (fits packed
in a small memory or unpacked in a large memory), and
medium input (fits in either memory if packed). The de-
sign variableinput data structure represents a choice of
a input data structure, with valuesunpacked, packed,and
disk. Constraints express the conditions under which vari-
ous decisions are valid. The effort to store data on disk is
worthwhile only for large inputs; the choice to store data
unpacked works only for small inputs and large memories;
and the choice to pack data makes sense only for small and

medium input sizes:

input data structure= disk⇒ envr input size= large input;
input data structure= unpacked⇒ envr input size= small input∧

core size= large core;
input data structure= packed⇒ envr input size= small input
∨ envr input size= mediuminput;

Parnas also discusses choices for the circular shift store.
In his first information hiding design, only indices into in-
put data are stored. In an alternative, copies of shifted
lines are stored. Parnas says, “for a small index or a large
core, writing them out [copying] may be . . . preferable [to
indexing]. . . ” We thus have another value for variable
circ data structure, copy, and a constraint: copying as-
sumes small inputs or a large memory.

circ data structure= copy⇒ envr core size= large core
∨ envr input size= small input;

It’s no surprise that Parnas’s informal design space de-
scription is incomplete. As stated, it permits at least one set
of design decisions that makes little sense: packing inputs
and copying shifts in the case of a small input and small
core. This problem could be repaired by changing the con-
straint above to state that copying shifts assumes a large
memory, by adding a constraint that copying assumes un-
packed inputs, or in other ways.

We addunknownto the domains of selected variables to
model choices not yet elaborated but that likely exist. The
variables and their domains are as follows. The constraints
are all given above. We have thus developed a CN model of
a small part of Parnas’s example.

input data structure: {packed,unpacked,disk,unknown}
circ data structure: {index,copy,unknown}
envr input size: {small input,mediuminput, large input,unknown}
envr core size: {small core, large core,unknown}

3.2. Finite-domain Constraint Networks

In the design spaces we consider, each choice is made
from a finite set. Many designs have this form. We model
such spaces asfinite-domain constraint networks(FDCN’s).
We now formalize, in Z [27], a cleaned up version of
Tsang’s formulation of FDCN’s [33]. We start withvari-
ablesand theirvalues. Each variable takes values from a
domain,and valid assignments respect these domains.

[Variable,Value]

Domains
domain: Variable↔ Value

3

Assignment
Domains
valueof : Variable 7→ Value

∀v : domvalueof• valueof(v) ∈ domain(| {v} |)

A set of variables may be subject to a set of constraints.
Each such constraint is modeled as a set of assignments:
bindings of values to variables that the given constraint al-
lows. Theconstraintsrelation defined here maps a given
subsets of variables to a set of constraints on the variables.

Constraints
constraints: FVariable↔ FAssignment

∀varset: FVariable; asgnset: (FAssignment) •
(asgnset∈ (constraints(| {varset} |)))⇒
(∀asgn: asgnset• (domasgn.valueof= varset))

A FDCN is a triple (V, D, C), with V, a finite set of vari-
ables; D, theirdomains; and C,constraintson subsets of V.
A valuationassigns values to variables respecting domains.
The functionvaluationsmaps a FDCN to its valuations. A
valuationsatisfiesa constraint if and only if the valuation is
consistent with at least one permitted assignment. Asolu-
tion of a FDCN is a valuation satisfying all constraints. The
set of solutions is thesolution space. The functionsolutions
maps a FDCN to its solution space.

ConstraintNetwork
V : FVariable
Domains
Constraints

domdomain= V
domconstraints= FV

valuations: ConstraintNetwork→ FAssignment

∀cn : ConstraintNetwork• valuations(cn) =
{asgn: Assignment| (domasgn.valueof) = cn.V}

solutions: ConstraintNetwork→ FAssignment

∀cn : ConstraintNetwork• solutions(cn) =
{asgn: Assignment| asgn∈ valuations(cn) ∧
(∀asgnset: (rancn.constraints) •
(∃conasgn: asgnset• conasgn.valueof⊆ asgn.valueof))}

3.3. Modeling Design Spaces with Constraints

We can now formalize the models developed above. The
design space for the function example is given by the FDCN
that follows. A valid design is modeled as a solution of
such a FDCN. A valuation that is not a solution models an
invalid design. For example,{(signature, unknown), (im-
plementation, impl1)} is not valid. Designs in our model
can haveunknownvalues. For example{(signature, sig1),

(implementation, unknown)} is valid, as is{(signature, un-
known), (implementation, unknown)}, which says there are
valid combinations of signatures and implementations not
yet considered. An infinite set of choices is thus represented
by a small, finite model.

V = {signature, implementation};
D = {(signature,sig 1),(signature,unknown),

(implementation, impl 1),(implementation,unknown)}.
C = {{(signature,sig 1),(implementation, impl 1)},

{(signature,sig 1),(implementation,unknown)},
{(signature,unknown),(implementation,unknown)}}

3.4. Representing Design Spaces using Alloy

Enumerating the assignments that each constraint per-
mits is impractical. We need to state them declaratively. We
chose to use Alloy (Version 2) [16], a first order relational
logic, for its balance of expressiveness and tractability and
its existing solver. At this stage of research, we didn’t re-
quire high performance. We now show how we represented
our design spaces as FDCN’s in Alloy.

In Alloy, sig defines a set, andstatic partpartitions the
set followingextendsinto subsets, each of which has only
one instance. We use these constructs to model design
choices for a variable. The following definition defines the
domain for the input data structure specification variable.
The other domains are defined similarly.

sig input DS spec{}
static part sig unpacked,packed,disk,unknowninput data structure

extends inputDS spec{}

We partition a model into disjoint sets of design
and environment variables. Thedesign signature spec-
ifies two design variables: input data structure and
circ data structure. Theenvrsignature specifies two envi-
ronment variables:envr input sizeandenvr core size. A
modelcombines the two. Finally, we represent constraints
as Alloy facts. Having represented the FDCN, we can use
the Alloy solver in computing the solution space.

sig design{input data structure: input DS spec,
circ data structure: circ DS spec}

sig envr{envr input size: input size,envr core size: core size}
sig model{e : envr,d : design}

4

fact {
all s : model| all x : s.d.input data structure|

all y : s.e.envr input size|
x = core4 => y = mediuminput or y= small input

all s : model| all x : s.d.input data structure|
all y : s.e.envr input size| all z : s.e.envr core size|
x = core0 => y = small input and z= large core

all s : model| all x : s.d.input data structure|
all y : s.e.envr input size| x = disk=> y = large input

all s : model| all x : s.d.circ data structure|
all y : s.e.envr input size| all z : s.e.envr core size|
x = copy=> y = small input or z= large core }

4. Formal Dependence Analysis

Changing a design decision can violate given con-
straints. In our function example, starting with the design,
{(signature,sig1),(implementation, impl1)} and chang-
ing signatureto unknownviolates a constraint, producing
an invalid design state. If such an invalidating change must
stick, consistency restoration demands changes to some
subset of other variables. Here we can changeimplementa-
tion to unknown(when a function signature is changed, its
implementation has to be revisited), and we can say thatim-
plementation dependson signature. Not all changes cause
ripples. Starting with{(signature, sig1), (implementation,
impl 1)} and changingimplementationto unknown, for ex-
ample, yields a valid design.

Any sensible definition will define variables to be depen-
dent only if a change to one in some senseforcesa change
in the other. We don’t want a definition of dependence
that makes every variable depend on every other merely be-
cause wecouldchange every decision in response to a given
change, but only because, in some sense, wemustchange
a given variable. The situation is complicated because, in
general, there are several ways to compensate for a change.
These observations lead to the basis for our definition of
pairwise dependence, in the notion of minimal change sets.

The key idea is that to each solution and invalidating
change in the value of a variable there corresponds a set of
minimal subsets of variables,minimal change sets(MCS’s),
such that consistency can be restored by some changes to
all of those variables, but not by changes to any proper sub-
set. For a given design state and invalidating change—for
any invalidating design state transition—we call the set of
MCS’s theMCS group for the transition. We then define
theMCS set of a variableas the union of the MCS groups
over all invalidating transitions for that variable in the space
of valuations. Finally, we will say that one variable depends
on another if the former is in some MCS set of the latter.

We formalize the key notions in the functions,mcsgroup
andmcsset. The first maps an FDCN, a solution, one of its
variable, and an invalidating new value for the variable—an
invalidating design state transition—to the set of MCS’s for
the transition. The second defines the union operation.

In formalizing these ideas, we use a utility functionsub-
space, that maps a given valuation and a set of variables to
the set of valuations obtained by allowing the given one to
vary on each of the given variables.

subspace: ConstraintNetwork×Assignment×
FVariable→ FAssignment

∀cn : ConstraintNetwork; given: Assignment;
vs: FVariable; gotten: Assignment•
gotten∈ subspace(cn,given,vs)⇒

(∀v : cn.V | v /∈ vs•
gotten.valueof(v) = given.valueof(v)) ∧
given∈ valuations(cn) ∧ gotten∈ valuations(cn)
∧ vs⊆ cn.V

The key function ismcsgroup. Here, the conditions state
that changing the value ofx to v invalidates the design,sol,
resulting in a valuationnotsol. Among all the valuations
that differ from notsol in the values of all variables in a
MCS, there must be at least one solution. None of the valua-
tions that differ fromnotsolonly in the values of any proper
subset of theMCSconstitute a valid solution.

mcsgroup: (ConstraintNetwork×Variable×Assignment×Value) 7→
(F(FVariable))

∀cn : ConstraintNetwork; x : Variable; sol : Assignment; v : Value•
(sol∈ solutions(cn)) ∧ (x∈ cn.V) ∧

(v∈ cn.domain(| {x} |)) ∧ (sol.valueof(x) 6= v) ∧
mcsgroup(cn,x,sol,v) = {mcs: FVariable|
(∃notsol: (valuations(cn)\solutions(cn)) •
(notsol.valueof(x) = v) ∧ (∀y : cn.V \{x} •
notsol.valueof(y) = sol.valueof(y)) ∧
((subspace(cn,notsol,mcs)∩solutions(cn)) 6= /0) ∧
(∀submcs: FVariable| submcs⊂mcs•

(subspace(cn,notsol,submcs)∩solutions(cn)) = /0))
}

mcsset: (Variable×ConstraintNetwork) 7→
(F(FVariable))

∀x : Variable; cn : ConstraintNetwork•
mcsset(x,cn) = {amcs: FVariable|

(∃sol : solutions(cn); v : cn.domain(| {x} |) •
amcs∈mcsgroup(cn,x,sol,v))

}

We can now formalize design variable dependence for a
FDCN, and thus, in essence, the DSM for a FDCN, as a bi-
nary relation on variables, as described above. The function
dsmmaps a given FDCN to the required binary relation:(x,
y) belongs to the DSM of a FDCN if and only ify is present
in some element of the MCS set ofx.

5

dsm: ConstraintNetwork→ (Variable↔ Variable)

(∀cn : ConstraintNetwork; deps: Variable↔ Variable•
dsm(cn) = deps⇔
((domdeps⊆ cn.V) ∧
(randeps⊆ cn.V) ∧
(∀x : domdeps• (∀y : randeps•

(y∈ (deps(| {x} |))⇔
(∃mcs: mcsset(x,cn) • y∈mcs))))))

5. The Complexity of Dependence Analysis

A basic question to be answered by a satisfactory cou-
pling theory is,what is the computational complexity of the
required analysis?We contribute a proof that the problem
of computing DSM’s from FDCN’s is NP-complete (NPC).

Space limitations dictate that we give only a proof
sketch. The proof is by reduction fromFDCN satisfiability
(FCSP), deciding whether a FDCN has a solution, which is
NPC [13]. We modify a given FDCN so that its dependence
relation is non-empty if and only if the FDCN is satisfiable.
The idea is to add a new variable and an equality constraint
with an existing variable such that the variables are depen-
dent if and only if the original FDCN is satisfiable.

The conclusion is that reasoning about coupling (and so
modularity) in logical design models is intractable.1 There
is no really scalable solution, but this is not to say that there
are no useful algorithms. As a first step in exploring the
automated application of our model, we have implemented
a brute-force algorithm to compute DSM’s from FDCN’s.

The algorithm directly implements the specification. The
first step is to compute the solution space. We use Al-
loy [17] [16]. The rest of the computation takes the solution
space as input. We omit the details for lack of space.

6. Case Study: Parnas’s KWIC

As an early test of the claims that our approach promises
to support expressive modeling and useful analysis for soft-
ware engineering, we tested it on Parnas’s analysis of two
design spaces for thekey word in context(KWIC) prob-
lem [23]. Parnas presents two design spaces: a structured
design (SD) in which proto-modules embody steps in trans-
forming input to output, and an information hiding (IH)
design, in which interfaces decouple design decisions—
modules—that should be able to change independently.
Parnas presents a comparative design analysis, postulating
likely changes in environment variables and assessing their
ripple effects in the respective design spaces.

1If the constraints in a notation as expressive as first-order logic with
arithmetic, as might be used to model design spaces where resource con-
sumption is critical, it is likely the problem is unsolvable, e.g., by reduc-
tion from the unsolvable problem of deciding whether a variable value is
forced to zero [10]. If true, there is no effective procedure for reasoning
about coupling in logical models.

We developed complete CN models for each design and
environment space and then used our analysis method to
compute DSM’s. The KWIC example is particular use-
ful because, as the subject of our earlier, informal work on
DSM modeling and value-based reasoning [32], it provides
a baseline for evaluating the current approach.

6.1. Modeling the KWIC Design Spaces

For the SD, Parnas describes five modules: Input, Circu-
lar Shift, Alphabetizing, Output, and Master Control. Par-
nas viewed each interface as providing two parts: an ex-
ported data structure and a function signature to be invoked
by Master Control. Given choices for these parameters, pro-
grammers produce function implementations. We modeled
the choices of function signature, data structure, and im-
plementation as design variables. Variablesinput fun sig
(ifs), circ fun sig (cfs), alph fun sig (afs), output fun sig
(ofs), and master fun sig (mfs)model the function sig-
natures. The choices of implementation are modeled by
the variablesinput fun impl (ifp), circ fun impl (cfp),
alph fun impl (afp), output fun impl (ofp) and mas-
ter fun impl (mfp). Finally, the choices of data struc-
tures are modeled by the variablesinput data structure
(idss), circ data structure (cdss), alph data structure
(adss) and output format data structure (ofss). We an-
alyzed the first two data structure variables in the previous
section. The short forms of variable names are used to con-
serve space in our DSM figures.

In the IH design, a new module, Line Storage, is present.
Its data structure variablelinestorage data structure re-
places theinput data structureof the sequential design.
The IH input module has no separate data structure. In
the IH design, each module is also equipped with an ab-
stract data type interface, the choice of which we also
model in the standard way. As the result, the variables
modeling interface choices are:linestorage ADT (ladt),
input ADT (iadt),circ ADT (cadt), alph ADT (aadt), out-
put ADT (oadt), andmaster ADT (madt). Those model-
ing implementation choices arelinestorage impl (lp), in-
put impl (ip), circ impl (cp), alph impl (ap), output impl
(op), and master impl (mp). Finally, those that model
data structure choices remainlinestorage data structure
(ldss), circ data structure (cdss), alph data structure
(adss) andoutput format data structure (ofss).

We extend each design variable domain withunknown
to permit the solver to find designs using unelaborated new
values. Parnas assumes original designs in each case and
studies the impact of change. We use valueorig in most of
the domains to model Parnas’s original choices. For exam-
ple, theinput fun sigwill have domain{orig, unknown}.

We encoded the design constraints based as closely as
possible on Parnas’s presentation, in the style described ear-

6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1:eif . x

2:eis . x x x x x x x x

3:ecs x . x x

4:eap . x x x

5:ifs . x x

6:cfs . x x

7:afs . x x

8:ofs . x x

9:mfs . x

10:idss x x . x x x x x x

11:cdss x x x . x x x x

12:adss x x x x . x x

13:ofss . x

14:ifp x x x x .

15:cfp x x x x .

16:afp x x x x x x .

17:ofp x x x x x x x .

18:mfp x x x x x .

Figure 2. Structured Design Space

lier. The available space does not permit a full listing of the
resulting CN model.

Parnas evaluated his designs in an environment of
change drivers. In addition toenvr input size (eis)and
envr core size (ecs), above, we useenvr input format
(eif) and envr alph policy (eap) to model the environ-
ment’s choices of input format and alphabetizing policy.

6.2. Computing the DSM Models

We present our computed DSM’s for the SD and IH de-
sign spaces in Figures 3 and 2, respectively. The shading
distinguishes kinds of variables. In each DSM, variables 1–
4 are environment variables. The gray submatrix in the up-
per left marks dependences among these variables. The next
run of variables in each DSM are the design rule variables.
The final run models the remaining open design choices.

Consider the SD case. Parnas noted, “All of the inter-
faces between the four modules must be specified before
work could begin.”. These are the choices of function signa-
tures (5–9) and data structures (10–13). The gray submatrix
marks dependences among these choices. The dark sub-
matrix beneath marks how changes in design rules impact
the remaining variables (14–18): implementation choices
made by the programmers. We see that this design is in-
deed modular: relative to the design rules, the implementa-
tion choices are independent, as shown by the lower right
block-diagonal submatrix.

In the IH design space, the design rules (5–10) model
choices of abstract data type interfaces. These design rules
serve to (mostly) decouple independent pairs of interdepen-
dent decisions of data structures and procedure implemen-
tations (11–20), as seen in the block-diagonal submatrix in
the lower right.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1:eif . x

2:eis . x x x x

3:ecs x . x x
4:eap . x x

5:ladt . x x x x x x x

6:iadt . x x

7:cadt . x x x x

8:aadt . x x x x

9:oadt . x x x

10:madt . x

11:ldss x x x . x x

12:lp x x x .

13:ip x x x .

14:cdss x x x x . x

15:cp x x x .

16:adss x x . x

17:ap x x x x x .

18:ofss x . x

19:op x x x x .
20:mp x x x x x x .

Figure 3. Information Hiding Design Space

7. Experimental Results

Our experiment with KWIC produced results in three ba-
sic dimensions: semantic validation of the modeling and
analysis technique, including identification of some unre-
solved issues; the value of intermediate results (minimal
change sets); and performance and scalability data.

7.1. Semantic Validation

To evaluate the generated DSM’s, we compared them
with the ones we produced manually in our earlier work
[32]. Overall, our computed DSM’s are largely consistent
with the earlier results, validating the modeling and analysis
concept. There are differences, which we now address.

First, the computed DSM’s revealed subtle conceptual
errors in our manually produced DSM’s, suggesting that
logic modeling and automated analysis is more reliable.
Cells with differences are marked in white with black back-
grounds. For example, our manual SD DSM had no depen-
dence betweenoutput fun impl, andcirc data structure.
Parnas’s paper confirms its presence, owing to two con-
straints:

output fun impl = orig⇒ alph data structure= orig
alph data structure= orig⇒ circ data structure= index

Similarly, cells (17, 7) and (19, 8) in our computed IH
DSM (and the symmetric cells) revealed dependences miss-
ing from our earlier model. The computed DSM also lacked
two dependences that should not have been present in the
earlier version. An extra variable,input data structure, re-
dundant withlinestorage data structure, was removed. Fi-
nally, The environment variablescore sizeand input size
are also now shown as dependent, in that a change in one
can be compensated for by a change to the other.

7

Second, our computed DSM’s are symmetric, whereas
our earlier work modeled hierarchical dependence of mod-
ules on design rules by the absence of marks in the dark,
upper right submatrices. Our new DSM’s are symmetric
because logical constraints are symmetric. We lack a way
to expresshierarchical dependence,which we now see as
an extra-logical construct. Our DSM’s model design pro-
cesses in which interface changes can be driven by imple-
mentation decisions as much as the other way around. In
practice, this is often the case, with true design rules arising
only when interfaces are immutable. We leave the declar-
ative representation of asymmetric propagation as an issue
for future work, with the observation that Borning’s notion
of read-only constraints [2] provides a possible solution.

Third, our results indicate a surprising non-modularity
in the IH design space. The off-diagonal dependence, (14,
11) and (11, 14), betweencirc data structureandlinestor-
age data structureshows these ostensibly independent de-
cisions to be interdependent. This unexpected result was
cause for concern. There are three possible explanations:
the non-modularity is real but previously unrecognized; our
IH logical model is flawed; or the marks are artifacts of
some aspect of our analysis method. We investigated and
found our logic model to be valid. The explanation is that
the design decisions are coupled through the environment,
due to symmetry in the following constraints.

input data structure= disk⇒ envr input size= large input;
linestoragedata structure= packed⇒ envr input size= small input
∨ envr input size= mediuminput;

circ data structure= copy⇒ envr core size= large core
∨ envr input size= small input;

In a nutshell, an invalidating change to a design decision
can be compensated by a change in an environment variable
that, in turn, demands a change in another design variable.
Starting with the design,{(linestorage data structure,
packed), (envrinput size, small input), (envr core size,
small core), (circ data structure, copy)}, and chang-
ing linestorage data structure to disk, yields an in-
valid state. To restore consistency,envr input size has
to change large input; but this violates the last con-
straint. A remedy is to changecirc data structure to
index, putting circ data structure in a MCS of linestor-
age data structure, creating a dependence.

Design dependences that arise through mutual depen-
dence on environment variables are meaningful, in general.
In practice, environmental conditional can sometimes be
adjusted to resolve design problems, with further ripple ef-
fects in a design. In such cases, design decisions that appear
independent, and designs that appear modular, might not be.

In our case, the dependence arguably is spurious. A deci-
sion to store data on disk might be made in response to, but
not as a driver of, the environment’s choice of the input size.

Our inability to express hierarchical dependence—the im-
plementation choice cannot drive the environment choice—
can lead to such dependences. What the DSM does show is
that there are changes requiring coordinated updates to two
design decisions. On the other hand, the designer might
learn that a disk-based store is too costly, and ask the cus-
tomer to accept an initial system taking only smaller inputs.
Acceptance could then drive changes elsewhere in the de-
sign. We would then have a real dependence between ap-
parently independentdesignvariables. There is thus noth-
ing wrong with our modeling approach, but it would be im-
proved by an extension for representing hierarchical depen-
dences.

Finally, we formulated the environment variables some-
what differently in our earlier work. The current model
maps Parnas’s paper directly. The differences in this di-
mension do not change our basic results.

7.2. Performance and Scalability

The sequential design model has 18 variables, and the
IH model, 20. For SD, it took Alloy about an hour on a
Pentium 1.5 GHz, 512 MB PC to find the 12018 solutions
and 1.5 hours more on two timeshared, 2-CPU UltraSPARC
IIIi running Solaris to compute MCS’s (and DSM). For the
IH model, Alloy took about three hours to find 34907 so-
lutions. MCScomputation with our brute-force algorithm
took another 21 hours.

7.3. Intermediate Analysis Results

A final point is that our intermediate results—the MCS
groups for design transitions and MCS sets summarizing
them for variables—are potentially useful. The complete,
detailed impact analysis is present only in the MCS groups,
which tell us, for a given design state transition our mini-
mal compensation options. A DSM by contrast cannot sup-
port anything like this level reasoning about change impact.
MCS sets provide summary data between MCS groups and
DSM’s in level of detail. Here is the MCS set forlinestor-
age data structurein the IH design, for example. Chang-
ing circ data structureand envr input size is a minimal
remedy for some change, but it’s never enough to change
circ data structurealone.

mcsset(linestoragedata structure,kwic) = {
{linestorageimpl},{envr input size},{envr core size}
{linestorageimpl,envr core size,envr input size}
{linestorageimpl,envr input size},{linestorageADT}
{envr core size,envr input size}
{circ data structure,envr input size}
{linestorageimpl,envr core size}
{linestorageADT,envr input size}
{circ data structure, linestorageimpl,envr input size}}

8

8. Related Work

The idea that coupling structure is a key to adaptability
and value in design is old [3, 7, 6, 25, 29]. Using CN’s in
design is also familiar, although it’s not well developed in
software engineering. To our knowledge, a coupling theory
for logical design spaces as a basis for a formal account of
modularity in design is new. Our work complements Bald-
win and Clark’s [7] with expressive representations, a for-
mal notion of dependence, and a mapping to their DSM’s.

We have provided a precise notion ofimpact analysisfor
logical design models. Traditional impact analysis research
focuses on change issues at program level, as summarized
in [5]. Advantages of our approach include a precise se-
mantics of dependence, and the ability to reason about the
ripple effects of changes in high-level design decisions.

Batory [8] uses formal models of software design spaces
for systems that vary in component implementations. His
work aims to support system generation and reuse. Jack-
son [15] used Alloy for object modeling with the goal of be-
ing able automatically to prove properties of given models.
Garlan et al. [14, 1] used Z to formalize architectural styles
in order to prove mainly behavioral properties of systems
in these styles. Other researchers are exploring the use of
CN’s in design space search and optimization for complex
embedded system design. The goal is to find good designs
under constraints (e.g., [22]). Our aim and contribution, by
contrast, is a logical theory of coupling in logical design
space models.

Axiomatic design [31] uses matrices to represent rela-
tionships between design variables and functional require-
ments in design space search. It is largely geared to continu-
ally varying values in phyiscal system design. The approach
is only tangentially related to the DSM’s of this work.

Our work is related to work on software architec-
ture [1] [4] [21]. Most such work is committed to an on-
tology of components and connectors. Logical variables
and constraints are more general and expressive. Our mod-
els do capture a notion of architecture in the sense of de-
sign decisions (especially design rules) on which much de-
pends. Stafford and Wolf [28] studied architectural depen-
dence analysis for architecture definition languages. Our
work, in contrast, is not confined to an architectural level,
and is entirely formal.

9. Overall Evaluation

In this section we evaluate the novelty and significance
of this work, including shortcomings and remaining prob-
lems.

Our contributions appear novel in several dimensions.
The first is our formalization of variable dependence in con-
straint networks. The second is the provision of a formal ba-

sis for dependence markings in DSM’s. The third is a case
study supporting the potential utility of constraint-based ap-
proaches in software design. The fourth is a formal model
and analysis of Parnas’s important but informal work. Fi-
nally, we put a new emphasis on the design of designspaces
and their underlying coupling structures, as opposed to the
design of individual points in design space, the focus of
most current design methods.

Our work has potential significance in several areas.
First, it has potential to support a formal abstract theory
of modularity in design, and, eventually, to contribute to
a value-based theory of architectural design. Second, it
provides insight into the complexity of design: reasoning
about coupling in logically expressive models is intractable,
in general, and, for models with arithmetic, there is proba-
bly no effective procedure for coupling analysis. Third, the
MCS concept captures the complex ways in which changes
can be accommodated in real systems. Fourth, the work
clarifies the nature of DSM’s, as very lossy models.

This paper leaves many issues open to future work. We
briefly discuss of the most important.

First, we only considered finite domain constraints in a
first-order relational logic. The Alloy language provides
high expressiveness while retaining some tractability. There
are many other possible notations and analysis tools. Key
dimensions in which results will differ are expressiveness,
complexity, and actual performance. The Alloy analyzer
was not designed for the purposes to which we are putting
it—we used it as a convenience—and our runtimes show
that it will not scale to problems much larger than the ones
we present. Trading expressiveness for performance is one
way to get scalability to larger models.

The fundamental problem though is that design spaces
are exponential in the number of variables. Beyond less ex-
pressive notations, we need to find techniques that exploit
characteristics of special cases that arise in practice. There
are many computationally intractable problems that are nev-
ertheless routinely solved: model checking, fault tree anal-
ysis, etc. Exploiting known modularity to break large mod-
els into parts for analysis is a possible approach. Another
approach is to use abstraction to reduce large problems to
smaller ones. There’s no solving the problem in general.
What we need are techniques that can be useful in practice.

We are not yet willing to give up a notation with quan-
tification. We hope to show that our approach accounts for
aspect-oriented modularity as a special case [19]. Quantifi-
cation appears to be a key in this regard [24].

An orthogonal problem is that design spaces are not
static in practices. Designers continually change variable
sets, domains, etc. Environments have been developed that
support CN evolution. An interesting question is to what
extent can our coupling analysis results be updated incre-
mentally as constraint networks evolve.

9

10. Conclusion

In this paper, we contribute an approach to modeling
software design spaces as constraint networks, a formal-
ization of dependence, a formal mapping from declarative
CN’s to DSM’s by way MCS’s, and a case study of the
ideas applied to Parnas’s KWIC design study. We analyzed
the complexity of the analysis problem and implemented a
brute force algorithm. We found that the ideas contribute to
our understanding of modularity, and of coupling structure
more generally, and that they have the potential to lead to
practical analysis methods and tools.

Our immediate future work will focus on an extension
of our model to express hierarchical dependences. We are
considering in particular to represent hierarchy in aninflu-
encerelation,I , on variables, where(x,y) /∈ I indicates that
changes inx cannot be compensated for by changes iny.
Second, we plan to investigate more efficient algorithms for
mapping solution spaces to MCS groups and dependence
relations. Third, we will investigate more scalable analysis
techniques, based on modular analysis of models for which
we can infer a decomposition into relatively independent
parts. Finally, we plan to develop new tools to support our
research, its evaluation, and perhaps eventually its appli-
cation. Once we have a formal, abstract, useful theory of
modularity in design, we plan to return to the question of
the value of modularity, with a new set of tools for making
our ideas precise.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under grant ITR-0086003. We thank Alan
Borning for valuable comments on the ideas in this paper.
We also thank Vibha Sazawal for her careful reviewing.

References

[1] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style
to understand descriptions of software architecture.ACM
Transactions on Software Engineering and Methodology,
4(4):319–64, Oct. 1995.

[2] M. W. Alan Borning and B. Freeman-Benson. Constraint
hierarchies.Lisp and Symbolic Cmoputation: An Interna-
tional Journal, 5:223–270, 1992.

[3] C. W. Alexander.Notes on the Synthesis of Form. Harvard
University Press, 1970.

[4] R. Allen and D. Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, 6(3):213–49, July 1997.

[5] R. Arnold and S. Bohner.Software Change Impact Analysis.
Wiley-IEEE Computer Society Pr, first edition, 1996.

[6] W. Ashby. Design for a Brain. John Wiley and Sons, 1952.

[7] C. Y. Baldwin and K. B. Clark.Design Rules, Vol. 1: The
Power of Modularity. The MIT Press, 2000.

[8] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodol-
ogy, 1(4):355–398, 1992.

[9] B. W. Boehm and K. J. Sullivan. Software economics: a
roadmap. InProceedings of the conference on The future of
Software engineering, pages 319–343. ACM Press, 2000.

[10] A. Borning. Personal communication with Kevin Sullivan.
2004.

[11] E. W. Dijkstra. On the role of scientific thought. InSelected
Writings on Computing: A Personal Perspective, pages 60–
66. Springer-Verlag, 1982.

[12] S. D. Eppinger. Model-based approaches to managing
concurrent engineering.Journal of Engineering Design,
2(4):283–290, 1991.

[13] M. R. Garey, D. S. Johnson, M. R. Garey, and D. S. Johnson.
Computers and Intractability: A Guide to the Theory of Np-
Completeness. W.H. Freeman & Company, 1979.

[14] D. Garlan and D. Notkin. Formalizing design spaces: Im-
plicit invocation mechanisms. InProceedings of the 4th
International Symposium of VDM Europe on Formal Soft-
ware Development-Volume I, pages 31–44. Springer-Verlag,
1991.

[15] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[16] D. Jackson. Micromodels of software: Lightweight model-
ing and analysis with alloy. Feb. 2002.

[17] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodu-
larity mechanism. InProceedings of the 8th European soft-
ware engineering conference held jointly with 9th ACM SIG-
SOFT international symposium on Foundations of software
engineering, pages 62–73. ACM Press, 2001.

[18] R. James L. Demaid/ga - an enhanced design manager’s
aid for intelligent decomposition. InProceedings of 6th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Seattle, WA, 4-6 Sept. 1996.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProceedings of the European Conference
on Object-Oriented Programming (ECOOP), Finland, June
1997. Springer-Verlag.

[20] A. Mackworth. Consistency in networks of relations. InArti
cial Intelligence, 8, pages 99–118, 1977.

[21] N. Medvidovic and R. N. Taylor. A framework for classify-
ing and comparing architecture description languages.SIG-
SOFT Software Engineering Notes, 22(6):60–76, Nov. 1997.

[22] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid
design space exploration of heterogeneous embedded sys-
tems using symbolic search and multi-granular simulation.
SIGPLAN Not., 37(7):18–27, 2002.

[23] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules.Communications of the ACM,
15(12):1053–8, Dec. 1972.

[24] S. C. Robert E. Filman, Tzilla Elrad and M. Aksit.Aspect-
oriented Software Development. Addison-Wesley Profes-
sional, 2004.

10

[25] H. A. Simon.The Sciences of the Artificial. The MIT Press,
third edition, 1996.

[26] J. M. Spivey.The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science, 2nd edition,
1992.

[27] M. Spivey. The fuzz manual. URL:http://spivey.
oriel.ox.ac.uk/˜mike/fuzz/.

[28] J. A. Stafford and A. L. Wolf. Architecture-level dependence
analysis for software systems.International Journal of Soft-
ware Engineering and Knowledge Engineering, 11(4):431–
451, 2001.

[29] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
design.IBM Systems Journal, 13(2):115–39, 1974.

[30] D. V. Steward. The design structure system: A method for
managing the design of complex systems.IEEE Transac-
tions on Engineering Management, 28(3):71–84, 1981.

[31] N. P. Suh. Axiomatic Design: Advances and Applications.
Oxford University Press, May 2001.

[32] K. Sullivan, Y. Cai, B. Hallen, and W. G. Griswold. The
structure and value of modularity in software design.SIG-
SOFT Software Engineering Notes, 26(5):99–108, Sept.
2001.

[33] E. Tsang.Foundations of Constraint Satisfaction. Academic
Pr., London and San Diego, 1993.

11

