University of Virginia, Department of Computer Science Technical Report CS-2004-19, September 1, 2004.
This paper has been submitted to the 27th International Conference on Software Engineering. Revised on 09/23/2004.

Software Design Spaces: Logical Modeling and Formal Dependence Analysis

Yuanfang Cai Kevin J. Sullivan
Dept. of Computer Science Dept. of Computer Science
University of Virginia University of Virginia
Charlottesville, VA, 22904-4740 USA Charlottesville, VA, 22904-4740 USA
yc7a@cs.virginia.edu sullivan@cs.virginia.edu
Abstract changed in a given way. Two design variables are defined

to be pairwise dependent if, for some design, there is some
We lack a useful, formal theory of modularity in abstract change to the first for which the second is in some MCS.

software design. A missing key is a framework for the ab- .)
stract representation of software design spaces that sup- N earlier work [32] we showed that Baldwin and Clark’s
ports analysis of design decision coupling structures. We réal-options model of the value of modularity shows some
contribute such a framework. We represent design spaced’romise of contributing to a value-based theory for soft-
as constraint networks and develop a concept of design deWare design. Following their lead, we represented design
cision coupling based on timinimal change setsf a vari- ~ SPaces adesign structure matricg®SM's) [30] [12], with
able. This work supports derivation, from logical models, design variables on the rows and columns, and pairwise
of design structure matrices (DSM’s), for which we have a dependence marks in the cells. The coupling structure is
promising but inadequate theory of modularity. We present S€€n in the matrix, with modularity in the form of block-
complexity results and a brute force algorithm. To test for diagonality.
potential software engineering utility, we analyzed the de-
sign spaces of Parnas’s 1972 information hiding paper, with
positive results that were surprising in several ways.

Unfortunately, DSM'’s are expressively weak. They do
not model design choices or the semantics of dependences,
and they only model pairwise dependences. It's often hard
to know what a mark in a DSM means, or whether one
should even be presentin a given case. We show that DSM'’s
are lossy summaries of the MCS’s of a CN, and that deriv-
ing them is NP-complete. We developed a brute-force algo-

The motivation for this work is in the need for a value- ithm, which we used in the experiments described in this
based theory of software design [9]. A key source of value paper.

is adaptability through modularity in the coupling of de-
sign decisions [7]. Today we have no formal, useful theory To evaluate our approach for potential engineering util-
of modularity in abstract design spaces. The contribution ity, we tested its ability to expressively represent and use-
of this work is such a theory based on constraint network fully analyze the design space structures in Parnas’s infor-
(CN) [20] representations of software design spaces and anation hiding paper [23]. The results were positive and in-
logical formulation of design decision interdependence. teresting. The rest of this paper is organized as follows.
We use variables to represent dimensions in which de-Section 2 reviews DSM’s. Section 3 reviews CN modeling
sign decisions are made, values to represent design deciin design. Section 4 formalizes our notion of variable de-
sions, and constraints to model required relations. The sefpendences in CN’s and presents a mapping from CN’s to
of consistent assignments constitute the design space, anBSM’s. Section 5 analyzes the computational complexity
a consistent assignment, a design. The key idea is in theof this mapping. Section 6 and 7 present our results. Sec-
minimal change setdVCS’s) for a design decision in a de- tion 8 discusses related work. Section 9 evaluates this work,
sign: the set of minimal subsets of variables that could beincluding open problems for future research. Section 10
changed to restore consistency when the given decision isconcludes.

1. Introduction

A-DS | B-Alg | B-DS

B-Alg A-DS

B-DS

B-Alg

B-DS

(a) (b)

Figure 1. DSM for a design of three variables

2. Design Structure Matrices

The DSM—developed by Steward [30], extended by
Eppinger [12], and now supported by tools such as De-
Maid [18]—is used for design task structuring and opti-
mization in a range of industries. The DSM is also the basis
for Baldwin and Clark’s concept of modularity. This section
reviews the DSM and its role in the that conception.

Figure 1 presents an example. The design variahles
DS B-Alg and B-DS represent choices of values for the
data structure for some program A, and two dimensions for
a program, B: its algorithm and its data structure. Marks in
a row show what decisions a given decision depends upon

DSM'’s represent design spaces. A set of design variablesformal, abstract terms as CN's.

can be clustered as @oto-module a set of decisions to
be made collectively. A proto-module is in essence a com-
posite variable. In Figure 1 (a), gray blocks denote proto-
modules. Algorithm and data structure choices for B are
made as one, for example.

Decisions made in collaboration are said toifverde-
pendent Hierarchical dependencarises where one deci-
sion influences but is not influenced by anothierdepen-
dentdecisions can be made without communication. Algo-

of a shared interface. Here we have the essential concept
of modularity in Baldwin and Clark’s workindependence
modulo design rulesA design rule is a decision that serves
to decouple others decisions. Dark shading of ARADT
variable in Figure 1 (b) denotes th&tADTis a design rule

for this design. Modularity appears as block-diagonality in

a submatrix governed by a set of design rules.

3. Modeling Design Spaces with Constraints

In our earlier work we developed DSM’s manually and it
was hard to be sure they were valid. We now introduce con-
straint networks (CN’s) as a far more expressive modeling
notation. Using CN’s in design is not new. Typical appli-
cations use constraint solvers to find designs under com-
plex constraints. Our goal, by contrast, is a new coupling
theory. Subsection 3.1 develops the idea informally. Sub-
section 3.2 uses Z [26] to formalize the CN model we use.
Subsection 3.3 explains how we represent design spaces as
CN's. Subsection 3.4 describes how we represent them in
Alloy [17], in particular.

3.1. Informal Introduction

. Software design spaces are naturally representable in
Variables represent di-
mensions of design decisions, sometimes caltech-
cerns[11]. The domain of a variable represents possible
design choices. Bindings reflect actual choices. Variables
can also represent conditions in taevironmenthat affect
design decisions [32]. Constraints express arbitrarily com-
plex dependences among design and environment variables.
We conjecture that a key advantage of logical models
is that any concern can naturally and separately be repre-
sented as a variable: from choice of a real time response

rithm and data structure choices are often interdependenttime, to logging or security policy, to type signature, data

The symmetric marks in ro-Alg, columnB-DSand in
the symmetric cell(B-DS, B-Alg) in the first DSM model

structure, algorithm, or code body. Separation of concerns,
a seemingly complex issue requiring aspects [19] in imple-

this condition: an efficacious choice of either depends on mentation, becomes a choice of a set of variables in logi-
the other. The X inB-Alg, A-DS)models a dependence of cal modeling. Here, we focus on kinds of choices faced in
B’s algorithm on A's data structure, as might arise in struc- object-oriented design, deferring exploration of the broader
tured design. The lack of symmetry indicates a hierarchi- potential to future work.
cal dependence: As choice of data structure dominates B’'s Consider a simple design space comprising the choice
choice of algorithm. of a function signature and implementation. A CN model
Whereas a proto-module can depend on other variablesould include two variablesignatureandimplementation
(as B depends on A), a true module, in Baldwin and Clark’s Their domains represent the choices under consideration.
view, is independent, with no marks in the rows or columns We could include a specialnknownvalue to model pos-
outside its bounding box, except as explained below. To sible but as yet unelaborated choices. Suppose a designer
obtain a modular design, any dependencies across protohas developed a particular signature and an implementation,
modules must be broken. In Figure 1 (b) the dependence ofmodeled by valuesig_1 andimpl_1. The domain oigna-
B-Alg on A-DSis eliminated in favor of a hierarchical de- tureis {sig_1, unknown; and, ofimplementation{impl_1,
pendence of A and B on a new decisidrADT: the choice unknowr}.

A key constraint is that the choice of implementation as- medium input sizes:
sumes a choice of a signature. We can model this relation _ _ _ _
usingimplication The binding of the assuming variable nPutdatastructure=disk= envrinput size= large-input,
. h L. S input_data_structure= unpacked=- envr_input_size= smalLinput A
|mpl|es the a_ssumeo_l bmdmgnplementatlon =impll = core_size— large_core
signature = sig-1. This model captures the idea that chang- input_data structure= packed=- envr_input size= smalLinput
ing the signature can forces a change in implementation, Vv envrinputsize= mediuminput
but changing the implementation doesn’t necessarily force
a change in signature. Iplementatioris unknown for Parnas also discusses choices for the circular shift store.
instancesignaturecan take any value of its domain. In his first information hiding design, only indices into in-

In his information hiding paper [23], Parnas informally put data are stored. In an alternative, cqpies of shifted
framed design decisions, environment conditions, and con-liN€s are stored. Parnas says, “for a small index or a large
straints among them. For example, when describing an in-COré, writing them out [copying] may be ... preferable [to
put module, he said, “This module reads the data lines fromindexing]...” We thus have another value for variable
the input medium and stores them in core for processingCirc-data_structurg copy and a constraint: copying as-
by the remaining modules. The characters are packed foufUmes small inputs or a large memory.
toa WQI’d. ’ '“'_ We find an |mportant deSIQn variable and circ_data_structure= copy=- envr_core_size= large_core
one of its possible values: the input data structure specifica- \ envr_input_size= smalLinput
tion, and a choice to pack four to a word. We can formalize
this idea using a design variahigput data_structurewith It's no surprise that Parnas’s informal design space de-
packedas one of its values. scription is incomplete. As stated, it permits at least one set

Similarly, his statements on the circular shift module, of design decisions that makes little sense: packing inputs
“...Itprepares anindex... Itleave its outputin core...,” can and copying shifts in the case of a small input and small
be represented by a design variable representing the choiceore. This problem could be repaired by changing the con-
of circular shift data structure, and a particular value, index straint above to state that copying shifts assumes a large
in core, modeled by the variablérc_data_structureand memory, by adding a constraint that copying assumes un-
the valueindex packed inputs, or in other ways.

Variables can also represent aspects of the environment e addunknownto the domains of selected variables to
that drive design decisions. One of the main change driversmodel choices not yet elaborated but that likely exist. The
in Parnas’s case study is the size of inputs in relation to yariables and their domains are as follows. The constraints

memory. Parnas makes several points. First, in his origi- are all given above. We have thus developed a CN model of
nal desug_n, input chargc_ters were packed four to a word, S0 small part of Parnas’s example.
that the input would fit in memory. Second, Parnas notes
that “[ijn cases where we are working with small amounts input-data structure: {packedunpackeddisk unknowr
of data it may prove undesirable to pack the characters. . . »C"c-datastructure: {index copy unknowr _
. “ .)) envrinputsize: {smallLinput, mediuminput, large_input, unknowr}
Thlr_d, he opserves_ that, “For large JObe It may prove INCOoN- envr_core size: {smallcore large_core unknowr
venient or impractical to keep all the lines in core....” In

this case, data will be stored on disk.

We can now formalize this description, making a few 3.2. Finite-domain Constraint Networks
assumptions where necessary to fill gaps in the informal
presentation. The environment varial®avr_core_size) _ o
represents memory size, with valugfarge_core} and In thg (_je5|gn spaces we consider, gach choice is made
{small_core}. The environment variablenvr_input_size ~ from a finite set. Many designs have this form. We model
represents the input data size, with vallege_input (too Such spaces dite-domain constraint networkEDCN’s).
big even for a large memory)smalLinput (fits packed ~ We now formalize, in Z [27], a cleaned up version of
in a small memory or unpacked in a large memory), and Tsang's formulation of FDCN's [33]. We start witvari-
medium.input (fits in either memory if packed). The de- ablesand theirvalues Each variable takes values from a
sign variableinput_data_structure represents a choice of domain,and valid assignments respect these domains.
a input data structure, with valuespacked, packedind Variable Valu
disk Constraints express the conditions under which vari- '
ous decisions are valid. The effort to store data on disk is
worthwhile only for large inputs; the choice to store data -Domains
unpacked works only for small inputs and large memories; | domain: Variable— Value
and the choice to pack data makes sense only for small and

_Assignment
Domains
valueof: Variable -+ Value

Vv : domvalueofe valueof(v) € domair(| {v} |)

A set of variables may be subject to a set of constraints.

(implementation, unknowhjs valid, as is{(signature, un-
known), (implementation, unknown)vhich says there are
valid combinations of signatures and implementations not
yet considered. An infinite set of choices is thus represented
by a small, finite model.

V = {signatureimplementatiof;

Each such constraint is modeled as a set of assignmentsy — {(signaturesig_1), (signatureunknown,

bindings of values to variables that the given constraint al-
lows. Theconstraintsrelation defined here maps a given
subsets of variables to a set of constraints on the variables.

_ Constraints
constraints F Variable— F Assignment

Vvarset: IF Variable asgnset (IF Assignmerjte
(asgnset (constraintg {varset |))) =
(Vasgn: asgnse® (domasgnvalueof= varse})

A FDCN is atriple (V, D, C), with V, a finite set of vari-
ables; D, theidomains and C,constraintson subsets of V.
A valuationassigns values to variables respecting domains.
The functionvaluationsmaps a FDCN to its valuations. A
valuationsatisfiesa constraint if and only if the valuation is
consistent with at least one permitted assignmensol-
tion of a FDCN is a valuation satisfying all constraints. The
set of solutions is theolution spaceThe functiorsolutions
maps a FDCN to its solution space.

_ ConstraintNetwork
V : FVariable
Domains
Constraints

domdomain=\V
domconstraints=FV

valuations: ConstraintNetwork— F Assignment

Vcn: ConstraintNetworle valuationgcn) =
{asgn: Assignment (domasgnvalueof) = cn.V}

solutions: ConstraintNetwork— F Assignment

Vcn: ConstraintNetworle solutiongcn) =
{asgn: Assignmentasgne valuationgcn) A
(Vasgnset (rancn.constraints e
(3conasgn asgnse® conasgrvalueof C asgnvalueof))}

3.3. Modeling Design Spaces with Constraints

(implementationmpl_1), (implementatiorunknown}.
C = {{(signaturesig_1), (implementationmpl_1)},

{(signaturesig_1), (implementatiorunknown},

{(signatureunknowr), (implementatiorunknown} }

3.4. Representing Design Spaces using Alloy

Enumerating the assignments that each constraint per-
mits is impractical. We need to state them declaratively. We
chose to use Alloy (Version 2) [16], a first order relational
logic, for its balance of expressiveness and tractability and
its existing solver. At this stage of research, we didn't re-
quire high performance. We now show how we represented
our design spaces as FDCN's in Alloy.

In Alloy, sig defines a set, anstatic partpartitions the
set followingextendsnto subsets, each of which has only
one instance. We use these constructs to model design
choices for a variable. The following definition defines the
domain for the input data structure specification variable.
The other domains are defined similarly.

sig input.DS sped}
static part sig unpackegackeddisk unknowninput_data_structure
extends inputDS sped}

We partition a model into disjoint sets of design
and environment variables. Th#esign signature spec-
ifies two design variables: input_data_structure and
circ_data_structure Theenvrsignature specifies two envi-
ronment variablesenvr_input_sizeandenvr_core_size A

We can now formalize the models developed above. Themodelcombines the two. Finally, we represent constraints

design space for the function example is given by the FDCN
that follows. A valid design is modeled as a solution of
such a FDCN. A valuation that is not a solution models an
invalid design. For examplg|(signature, unknown), (im-
plementation, impl1)} is not valid. Designs in our model
can havainknowrvalues. For examplé(signature, sig1),

as Alloy facts. Having represented the FDCN, we can use
the Alloy solver in computing the solution space.

sig desiginput_data_structure: input_ DS _spec
circ_data_structure: circ_DS_speg

sig envfenvrinput_size: input_size envr_core_size: core_size

sig mode{e: envr,d : desigr}

fact {
all s: modellall x:s.d.input_data_structure|
all y:s.eenvrinputsize|
X = cored => y = mediuminput or y=smalLinput
all s:model| all x:s.d.input_data_structure|
all y:s.eenvrinputsize|all z:s.eenvrcoresize|
X = cored =>y = smalLinput and z=large_core
all s: modellall x:s.d.input-data_structure|
all y:s.eenvrinputsize| x = disk=> y = large_input
all s:model| all x:s.d.circ_data_structure|
all y:s.eenvrinputsize|all z:s.eenvr_core size|
X = copy=>Yy=smallLinput or z=large_core }

4. Formal Dependence Analysis

Changing a design decision can violate given con-
straints. In our function example, starting with the design,
{(signature,sig1),(implementation, impll)} and chang-
ing signatureto unknownviolates a constraint, producing

In formalizing these ideas, we use a utility functigurb-
space that maps a given valuation and a set of variables to
the set of valuations obtained by allowing the given one to
vary on each of the given variables.

subspace ConstraintNetworks Assignment
FVariable— F Assignment

Vcn: ConstraintNetworkgiven: Assignment
vs: FVariable gotten: Assignmené
gottene subspacéen, givenvs) =
(Vv:enV|vévse
gottenvalueof(v) = givenvalueof(v)) A
givene valuationgcn) A gottene valuationgcn)
AvsC cnV

The key function isncsgroup Here, the conditions state

an invalid dgsign state. If sgch an invalidating change must ¢ changing the value ofto v invalidates the desigisol,
stick, consistency restoration demands changes t0 SOMqqiting in a valuatiomotsol Among all the valuations

subset of other variables. Here we can changgdementa-
tion to unknown(when a function signature is changed, its
implementation has to be revisited), and we can sayiitinat
plementation dependm signature Not all changes cause
ripples. Starting with{(signature, sig1), (implementation,
impl_1)} and changingmplementatiorio unknown for ex-
ample, yields a valid design.

Any sensible definition will define variables to be depen-
dent only if a change to one in some sefmeesa change
in the other. We don't want a definition of dependence

that makes every variable depend on every other merely bet

cause weouldchange every decision in response to a given
change, but only because, in some sensemustchange

a given variable. The situation is complicated because, in
general, there are several ways to compensate for a change
These observations lead to the basis for our definition of
pairwise dependence, in the notion of minimal change sets.

The key idea is that to each solution and invalidating

change in the value of a variable there corresponds a set 0
minimal subsets of variablesiinimal change sefdICS’s),
such that consistency can be restored by some changes {
all of those variables, but not by changes to any proper sub-
set. For a given design state and invalidating change—for

that differ from notsolin the values of all variables in a
MCS there must be at least one solution. None of the valua-
tions that differ frormotsolonly in the values of any proper
subset of théviCSconstitute a valid solution.

mcsgroup (ConstraintNetworkk Variablex Assignmenk Value) +
(F(FF Variable))

¥cn: ConstraintNetworkx : Variable sol: Assignmentv : Valuee

(sol € solutiongcn)) A (x € cn.V) A

(ve cndomain(| {x} |)) A (sol.valueof(x) # v) A

mcsgrougcn, X, sol,v) = {mcs: F Variable|

(3notsol: (valuationgcn) \ solutiongcn)) e

(notsolvalueof(x) = v) A (Yy:cnV\{x} e

notsolvalueof(y) = sol.valueof(y)) A

((subspacgen, notsol meg Nsolutiongcn)) # 0) A

(Vsubmcs F Variable | submcsZ mcse

g (subspacgen, notsol submcgn solutiongcn)) = 0))

mcsset (Variable x ConstraintNetwork -~
(F(FF Variable))

VX : Variable cn: ConstraintNetworle
0 mcssex, cn) = {amcs: F Variable|
(3sol: solutiongcn); v: cn.domair(| {x} |) e

amcse mesgrougen, x, sol, v))

f

anyinvalidating design state transitierwe call the set of
MCS’s theMCS group for the transition We then define
the MCS set of a variablas the union of the MCS groups
over all invalidating transitions for that variable in the space
of valuations. Finally, we will say that one variable depends
on another if the former is in some MCS set of the latter.
We formalize the key notions in the functiomsgsgroup
andmcsset The first maps an FDCN, a solution, one of its
variable, and an invalidating new value for the variable—an

We can now formalize design variable dependence for a
FDCN, and thus, in essence, the DSM for a FDCN, as a bi-
nary relation on variables, as described above. The function
dsmmaps a given FDCN to the required binary relation:

invalidating design state transition—to the set of MCS's for y) belongs to the DSM of a FDCN if and onlyyfis present

the transition. The second defines the union operation.

in some element of the MCS setxf

dsm: ConstraintNetwork— (Variable — Variable) We developed complete CN models for each design and

(¥cn: ConstraintNetworkdeps: Variable < Variables environment space and then used our analysis method to

dsm{cn) = depse compute DSM's. The KWIC example is particular use-
((domdepsC cn.V) A ful because, as the subject of our earlier, informal work on
(randepsc cnV) A DSM modeling and value-based reasoning [32], it provides
(Vx: domdepse (Vy: randepse . .

(ye (depd| {x}) = a baseline for evaluating the current approach.

(3mes: messex,cn) oy € mes)))))

6.1. Modeling the KWIC Design Spaces
5. The Complexity of Dependence Analysis
For the SD, Parnas describes five modules: Input, Circu-
A basic question to be answered by a satisfactory cou-lar Shift, Alphabetizing, Output, and Master Control. Par-
pling theory iswhat is the computational complexity of the nas viewed each interface as providing two parts: an ex-
required analysisAVe contribute a proof that the problem ported data structure and a function signature to be invoked
of computing DSM'’s from FDCN’s is NP-complete (NPC). by Master Control. Given choices for these parameters, pro-
Space limitations dictate that we give only a proof grammers produce function implementations. We modeled
sketch. The proof is by reduction froRDCN satisfiability the choices of function signature, data structure, and im-
(FCSP) deciding whether a FDCN has a solution, which is plementation as design variables. Variablgsut fun_sig
NPC [13]. We modify a given FDCN so that its dependence (ifs), circ_fun_sig (cfs) alph_fun_sig (afs) output fun_sig
relation is non-empty if and only if the FDCN is satisfiable. (0fs) and masterfun_sig (mfs)model the function sig-
The idea is to add a new variable and an equality constraintnatures. The choices of implementation are modeled by
with an existing variable such that the variables are depen-the variablesinput_fun_impl (ifp), circ_fun_impl (cfp)
dent if and only if the original FDCN is satisfiable. alph_fun_impl (afp) outputfun_impl (ofp) and mas-
The conclusion is that reasoning about coupling (and soter—fun_impl (mfp) Finally, the choices of data struc-
modularity) in logical design models is intractaBl&here ~ tures are modeled by the variablagput data structure
is no really scalable solution, but this is not to say that there (idss) circ_data structure (cdss) alph_data structure
are no useful algorithms. As a first step in exploring the (adss) and output format data_structure (ofss) We an-
automated application of our model, we have implementedalyzed the first two data structure variables in the previous
a brute-force algorithm to compute DSM'’s from FDCN’s. ~ section. The short forms of variable names are used to con-
The algorithm directly implements the specification. The Serve space in our DSM figures.
first step is to compute the solution space. We use Al- Inthe IH design, a new module, Line Storage, is present.
loy [17] [16]. The rest of the computation takes the solution Its data structure variablénestorage data_structure re-
space as input. We omit the details for lack of space. places theinput_data_structure of the sequential design.
The IH input module has no separate data structure. In
6. Case Study: Paras’s KWIC the IH design, each module is also equipped with an ab-
stract data type interface, the choice of which we also
) ._model in the standard way. As the result, the variables
As an early test pf the clalms that our approach'promlsesmode”ng interface choices ardinestorage ADT (ladt),
to support expressive modeling and useful analysis for SOﬁ'inpuLADT (iadt)circ_ADT (cadt) alph_ADT (aadt) out-

ware engineering, we tested it on Parnas’s analysis of tWOpuLADT (oadt) andmaster ADT (madt) Those model-
design spaces for thiey word in contex(KWIC) prob- ing implementation choices afmestorage impl (Ip), in-

lem [23]. Parnas presents two design spaces: a structure ut_impl (i o . :
, _ _ _ pl (ip), circ_impl (cp), alph_impl (ap), output.impl
design (SD) in which proto-modules embody steps in trans- (op), and masterimpl (mp) Finally, those that model

forming input to output, and an information hiding (IH) data structure choices remadiimestorage data_structure

design, in which interfaces decouple desig_n decisions—(ldss) circ_data_structure (cdss) alph_data_structure
modules—that should be able to change independently. adss) andoutput format data_structure (ofss)

Parnas presents a comparative design analysis, postulatin We extend each design variable domain witiknown
likely changes in environment variables and assessing thelrto permit the solver to find designs using unelaborated new

ripple effects in the respective design spaces. values. Parnas assumes original designs in each case and
1)f the constraints in a notation as expressive as first-order logic with Studies the impact of change. We use valug in most of

arithmetic, as might be used to model design spaces where resource conthe domains to model Parnas’s original choices. For exam-

sumption is critical, it is likely the problem is unsolvable, e.g., by reduc- le. theinput_fun_siawill have domain{orig. unknow

tion from the unsolvable problem of deciding whether a variable value is pie, P 9 . n{ 9 I}

forced to zero [10]. If true, there is no effective procedure for reasoning VW& encoded the design constraints based as closely as

about coupling in logical models. possible on Parnas’s presentation, in the style described ear-

1 11] 12] 13] 14] 15[16] 17] 18 11][12]13[14]15

1:eif
2:eis
3:ecs
4:eap
5:ladt
6:iadt
7:cadt
8:aadt
9:0adt
10:madt
11:Idss
12:p
13:ip X
14:cdss
15:cp
16:adss
17:ap
18:0fss
19:0p
20:mp

1:eif
2:eis

3:ecs
4:eap
5:ifs
6:cfs
7:afs

8:0fs

9:mfs
10:idss
11:cdss
12:adss
13:0fss
14:ifp X
15:cfp
16:afp
17:0fp
18:mfp

Figure 2. Structured Design Space Figure 3. Information Hiding Design Space

lier. The available space does not permit a full listing of the /- Experimental Results
resulting CN model.

Parnas evaluated his designs in an environment of Ourexperimentwith KWIC produced results in three ba-
Change drivers. In addition tenVLinpuLsize (eis)and sic dimensions: semantic validation of the modeling and
envr_core_size (ecs) above, we usen\/rﬁinpuLformat analysis technique, including identification of some unre-
(e|f) and enVLa|p|'Lpo|icy (eap) to model the environ- solved issues; the value of intermediate results (mlnlmal
ment’s choices of input format and alphabetizing policy. ~ change sets); and performance and scalability data.

6.2. Computing the DSM Models 7.1. Semantic Validation
To evaluate the generated DSM’'s, we compared them
We present our computed DSM's for the SD and IH de- with the ones we produced manually in our earlier work
sign spaces in Figures 3 and 2, respectively. The shadind32]. Overall, our computed DSM’s are largely consistent
distinguishes kinds of variables. In each DSM, variables 1—with the earlier results, validating the modeling and analysis
4 are environment variables. The gray submatrix in the up-concept. There are differences, which we now address.
per left marks dependences among these variables. The next First, the computed DSM'’s revealed subtle conceptual
run of variables in each DSM are the design rule variables.errors in our manually produced DSM'’s, suggesting that
The final run models the remaining open design choices. logic modeling and automated analysis is more reliable.
Consider the SD case. Parnas noted, “All of the inter- Cells with differences are marked in white with black back-
faces between the four modules must be specified beforegrounds. For example, our manual SD DSM had no depen-
work could begin.”. These are the choices of function signa- dence betweeoutput fun_impl, andcirc_data_structure
tures (5-9) and data structures (10-13). The gray submatrixParnas’s paper confirms its presence, owing to two con-
marks dependences among these choices. The dark sulstraints:
matrix beneath marks how changes in design rules impact _ _ _
the remaining variables (14—18): implementation choices CUPULiun-impl = orig = alph-data structure=orig

) . 7~ alph_data_structure= orig = circ_data_structure= index
made by the programmers. We see that this design is in-

deed modular: relative to the design rules, the implementa-Similarly, cells (17, 7) and (19, 8) in our computed IH
tion choices are independent, as shown by the lower rightbSM (and the symmetric cells) revealed dependences miss-
block-diagonal submatrix. ing from our earlier model. The computed DSM also lacked

In the IH design space, the design rules (5-10) modeltwo dependences that should not have been present in the
choices of abstract data type interfaces. These design rulegarlier version. An extra variablmput_data_structure re-
serve to (mostly) decouple independent pairs of interdepen-dundant witHinestorage data_structure was removed. Fi-
dent decisions of data structures and procedure implemennally, The environment variablere_sizeandinput_size
tations (11-20), as seen in the block-diagonal submatrix inare also now shown as dependent, in that a change in one
the lower right. can be compensated for by a change to the other.

Second, our computed DSM’s are symmetric, whereasOur inability to express hierarchical dependence—the im-
our earlier work modeled hierarchical dependence of mod- plementation choice cannot drive the environment choice—
ules on design rules by the absence of marks in the dark,can lead to such dependences. What the DSM does show is
upper right submatrices. Our new DSM’s are symmetric that there are changes requiring coordinated updates to two
because logical constraints are symmetric. We lack a waydesign decisions. On the other hand, the designer might
to expresshierarchical dependencayhich we now see as learn that a disk-based store is too costly, and ask the cus-
an extra-logical construct. Our DSM’s model design pro- tomer to accept an initial system taking only smaller inputs.
cesses in which interface changes can be driven by imple-Acceptance could then drive changes elsewhere in the de-
mentation decisions as much as the other way around. Insign. We would then have a real dependence between ap-
practice, this is often the case, with true design rules arisingparently independerttesignvariables. There is thus noth-
only when interfaces are immutable. We leave the declar-ing wrong with our modeling approach, but it would be im-
ative representation of asymmetric propagation as an issugroved by an extension for representing hierarchical depen-
for future work, with the observation that Borning’s notion dences.
of read-only constraints [2] provides a possible solution. Finally, we formulated the environment variables some-

Third, our results indicate a surprising non-modularity What differently in our earlier work. The current model
in the IH design space. The off-diagonal dependence, (14,maps Parnas’s paper directly. The differences in this di-
11) and (11, 14), betweairc_data_structureandlinestor- ~ mension do not change our basic results.
age_data_structureshows these ostensibly independent de-
cisions to be interdependent. This unexpected result was7 2. Performance and Scalability
cause for concern. There are three possible explanations:
the non-modularity is real but previously unrecognized; our
IH logical model is flawed; or the marks are artifacts of
some aspect of our analysis method. We investigated an
found our logic model to be valid. The explanation is that
the design decisions are coupled through the environment
due to symmetry in the following constraints.

The sequential design model has 18 variables, and the
H model, 20. For SD, it took Alloy about an hour on a
entium 1.5 GHz, 512 MB PC to find the 12018 solutions
and 1.5 hours more on two timeshared, 2-CPU UltraSPARC
11li running Solaris to compute MCS's (and DSM). For the
IH model, Alloy took about three hours to find 34907 so-
input_data_structure= disk= envr_input_size= large_input, lutions. MCS computation with our brute-force algorithm

linestorage data_structure= packed=- envr_input_size= smalLinput took another 21 hours.
V envr_input_size= mediuminput;
circ_data_structure= copy=- envr_core_size= large_core
V envr_input_size= smalLinput 7.3. Intermediate Analysis Results

In a nutshell, an invalidating change to a design decision A final point is that our intermediate results—the MCS
can be compensated by a change in an environment Va”abl'aroups for design transitions and MCS sets summarizing
that, in turn, demands a change in another design variablehem for variables—are potentially useful. The complete,
Starting with the design {(linestoragedata structure, geajled impact analysis is present only in the MCS groups,
packed), (enwrinput size, smallinput), (envrcoresize, \hich tell us, for a given design state transition our mini-
smallcore), (circ.data structure, copy), and chang- a| compensation options. A DSM by contrast cannot sup-
ing linestorage data structure to disk yields an in- 4t anything like this level reasoning about change impact.
valid state. To restore consisten@nvr_input_size has MCS sets provide summary data between MCS groups and
to changelarge_input but this violates the last con- pgwrs in level of detail. Here is the MCS set finestor-
straint. = A remedy is to changeirc_data structure to age data_structurein the IH design, for example. Chang-
index putting circ_data structurein a MCS oflinestor- jnq circ_data_structure and envr_input_sizeis a minimal
age data structure creating a dependence. remedy for some change, but it's never enough to change

Design dependences that arise through mutual depencirc_data_structurealone.
dence on environment variables are meaningful, in general.

In practice, environmental conditional can sometimes be Mcsseliinestoragedata structure kwic) = { .

. . . - {linestorageimpl}, {envrinput_size, {envr_core_size
adjusted to resolve design problems, with further ripple ef- j;,oqiorageimpl, envr core size envr input size
fects in a design. In such cases, design decisions that appear{linestorageimpl, envr_input_size}, {linestorage ADT}

independent, and designs that appear modular, might not be. {envrcore_size envrinput_size
. . . {circ_data_structure envr_input_sizet
In our case, the dependence arguably is spurious. A deci- fjinestorageimpl, envr_core size

sion to store data on disk might be made in response to, but {linestorage ADT, envr_input_size}
not as a driver of, the environment’s choice of the input size. {circ-data_structurelinestorageimpl, envrinput_size} }

8. Related Work sis for dependence markings in DSM’s. The third is a case
study supporting the potential utility of constraint-based ap-

The idea that coupling structure is a key to adaptability proaches in software design. The fourth is a formal model
and value in design is old [3, 7, 6, 25, 29]. Using CN's in and analysis of Parnas’s important but informal work. Fi-
design is also familiar, although it's not well developed in nhally, we put a new emphasis on the design of desgates
software engineering. To our knowledge, a coupling theory and their underlying coupling structures, as opposed to the
for logical design spaces as a basis for a formal account ofdesign of individual points in design space, the focus of
modularity in design is new. Our work complements Bald- most current design methods.
win and Clark’s [7] with expressive representations, a for- Our work has potential significance in several areas.
mal notion of dependence, and a mapping to their DSM’s. First, it has potential to support a formal abstract theory

We have provided a precise notionigfpact analysisor of modularity in design, and, eventually, to contribute to
logical design models. Traditional impact analysis researcha value-based theory of architectural design. Second, it
focuses on change issues at program level, as summarizegrovides insight into the complexity of design: reasoning
in [5]. Advantages of our approach include a precise se-about coupling in logically expressive models is intractable,
mantics of dependence, and the ability to reason about thén general, and, for models with arithmetic, there is proba-
ripple effects of changes in high-level design decisions. bly no effective procedure for coupling analysis. Third, the

Batory [8] uses formal models of software design spacesMCS concept captures the complex ways in which changes
for systems that vary in component implementations. His can be accommodated in real systems. Fourth, the work
work aims to support system generation and reuse. Jackclarifies the nature of DSM’s, as very lossy models.
son [15] used Alloy for object modeling with the goal of be- This paper leaves many issues open to future work. We
ing able automatically to prove properties of given models. briefly discuss of the most important.

Garlan et al. [14, 1] used Z to formalize architectural styles First, we only considered finite domain constraints in a
in order to prove mainly behavioral properties of systems first-order relational logic. The Alloy language provides
in these styles. Other researchers are exploring the use ohigh expressiveness while retaining some tractability. There
CN’s in design space search and optimization for complex are many other possible notations and analysis tools. Key
embedded system design. The goal is to find good designgiimensions in which results will differ are expressiveness,
under constraints (e.g., [22]). Our aim and contribution, by complexity, and actual performance. The Alloy analyzer
contrast, is a logical theory of coupling in logical design was not designed for the purposes to which we are putting
space models. it—we used it as a convenience—and our runtimes show

Axiomatic design [31] uses matrices to represent rela- that it will not scale to problems much larger than the ones
tionships between design variables and functional require-we present. Trading expressiveness for performance is one
ments in design space search. Itis largely geared to continuway to get scalability to larger models.
ally varying values in phyiscal system design. The approach The fundamental problem though is that design spaces
is only tangentially related to the DSM's of this work. are exponential in the number of variables. Beyond less ex-

Our work is related to work on software architec- pressive notations, we need to find techniques that exploit
ture [1] [4] [21]. Most such work is committed t0 an on- characteristics of special cases that arise in practice. There
tology of components and connectors. - Logical variables are many computationally intractable problems that are nev-
and constraints are more general and expressive. Our Modartheless routinely solved: model checking, fault tree anal-
els do capture a notion of architecture in the sense of de-ysjs, etc. Exploiting known modularity to break large mod-
sign decisions (especially design rules) on which much de-gjs into parts for analysis is a possible approach. Another
pends. Stafford and Wolf [28] studied architectural depen- approach is to use abstraction to reduce large problems to
dence analysis for architecture definition languages. Ourgmgjier ones. There’s no solving the problem in general.
work, in contrast, is not confined to an architectural level, \what we need are techniques that can be useful in practice.
and is entirely formal. We are not yet willing to give up a notation with quan-

tification. We hope to show that our approach accounts for
9. Overall Evaluation aspect-oriented modularity as a special case [19]. Quantifi-
cation appears to be a key in this regard [24].

In this section we evaluate the novelty and significance An orthogonal problem is that design spaces are not
of this work, including shortcomings and remaining prob- static in practices. Designers continually change variable
lems. sets, domains, etc. Environments have been developed that

Our contributions appear novel in several dimensions. support CN evolution. An interesting question is to what
The first is our formalization of variable dependence in con- extent can our coupling analysis results be updated incre-
straint networks. The second is the provision of a formal ba- mentally as constraint networks evolve.

10. Conclusion [7] C. Y. Baldwin and K. B. Clark.Design Rules, Vol. 1: The
Power of Modularity The MIT Press, 2000.

[8] D.Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodol-

In this paper, we contribute an approach to modeling
software design spaces as constraint networks, a formal-

ization of dependence, a formal mapping from declarative ogy, 1(4):355-398, 1992.
_CN’s to D_SM’s by Way,MCS’s, ano! a case study of the [9] B. W. Boehm and K. J. Sullivan. Software economics: a
ideas applied to Parnas's KWIC design study. We analyzed roadmap. IrProceedings of the conference on The future of

the complexity of the analysis problem and implemented a Software engineeringages 319-343. ACM Press, 2000.
brute force algorithm. We found that the ideas contribute to [10] A. Borning. Personal communication with Kevin Sullivan.

our understanding of modularity, and of coupling structure 2004.

more generally, and that they have the potential to lead to [11] E. W. Dijkstra. On the role of scientific thought. Selected

practical analysis methods and tools. Writings on Computing: A Personal Perspecfipages 60—
Our immediate future work will focus on an extension 66. Springer-Verlag, 1982.

e[12] S. D. Eppinger. Model-based approaches to managing
concurrent engineering.Journal of Engineering Design
2(4):283-290, 1991.

[13] M. R. Garey, D. S. Johnson, M. R. Garey, and D. S. Johnson.
Computers and Intractability: A Guide to the Theory of Np-

of our model to express hierarchical dependences. We ar
considering in particular to represent hierarchy iniraftu-
encerelation,|, on variables, wheréx,y) ¢ | indicates that
changes irx cannot be compensated for by changey.in

Second, we plan to investigate more efficient algorithms for CompletenessW.H. Freeman & Company, 1979.

mapping solution spaces to MCS groups and dependencg14] D. Garlan and D. Notkin. Formalizing design spaces: Im-
relations. Third, we will investigate more scalable analysis plicit invocation mechanisms. IRroceedings of the 4th
techniques, based on modular analysis of models for which International Symposium of VDM Europe on Formal Soft-
we can infer a decomposition into relatively independent ware Development-Volumegages 31-44. Springer-Verlag,
parts. Finally, we plan to develop new tools to support our 1991.

research, its eva|uati0n’ and perhaps eventua"y its apph_ [15] D. Jackson. Alloy: a lightweight object modelling notation.
cation. Once we have a formal, abstract, useful theory of _ ACM Trans. Softw. Eng. Methodol1(2):256-290, 2002.
modularity in design, we plan to return to the question of [16] D. Jackson. Micromodels of software: Lightweight model-

; . . ing and analysis with alloy. Feb. 2002.
:)huer }/(;i;l;(; gfrégglmamy’ with a new set of tools for making [17] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodu-

larity mechanism. IfProceedings of the 8th European soft-
ware engineering conference held jointly with 9th ACM SIG-
Acknowledgments SOFT international symposium on Foundations of software
engineeringpages 62—73. ACM Press, 2001.

. . . . [18] R. James L. Demaid/ga - an enhanced design manager’s
This work was supported in part by the National Sci- aid for intelligent decomposition. IiProceedings of 6th

ence Foundation under grant ITR-0086003. We thank Alan AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Borning for valuable comments on the ideas in this paper. Analysis and OptimizatigrSeattle, WA, 4-6 Sept. 1996.

We also thank Vibha Sazawal for her careful reviewing. [19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProceedings of the European Conference
on Object-Oriented Programming (ECOQMinland, June
1997. Springer-Verlag.

[1] G. D. Abowd, R. Allen, and D. Garlan. Formalizing style [20] A.Mackworth. Consistency in networks of relations Ari

References

to understand descriptions of software architectubeCM cial Intelligence, 8 pages 99-118, 1977.
Transactions on Software Engineering and Methodology [21] N. Medvidovic and R. N. Taylor. A framework for classify-
4(4):319-64, Oct. 1995. ing and comparing architecture description langua§¢6-

[2] M. W. Alan Borning and B. Freeman-Benson. Constraint SOFT Software Engineering Not@2(6):60—76, Nov. 1997.
hierarchies. Lisp and Symbolic Cmoputation: An Interna- [22] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid
tional Journal 5:223-270, 1992. design space exploration of heterogeneous embedded sys-

[3] C. W. Alexander.Notes on the Synthesis of FarHarvard tems using symbolic search and multi-granular simulation.
University Press, 1970. SIGPLAN Not.37(7):18-27, 2002.

[4] R.Allenand D. Garlan. Aformal basis for architectural con- [23] D. L. Parnas. On the criteria to be used in decompos-
nection. ACM Transactions on Software Engineering and ing systems into modulesCommunications of the ACM
Methodology 6(3):213-49, July 1997. 15(12):1053-8, Dec. 1972.

[5] R. Arnold and S. BohneSoftware Change Impact Analysis [24] S. C. Robert E. Filman, Tzilla Elrad and M. Aksiéspect-
Wiley-IEEE Computer Society Pr, first edition, 1996. oriented Software DevelopmentAddison-Wesley Profes-

[6] W. Ashby. Design for a Brain John Wiley and Sons, 1952. sional, 2004.

10

[25] H. A. Simon.The Sciences of the Atrtificialhe MIT Press,
third edition, 1996.

[26] J. M. Spivey.The Z Notation: A Reference Manu&rentice
Hall International Series in Computer Science, 2nd edition,
1992.

[27] M. Spivey. The fuzz manual. URLlhttp://spivey.
oriel.ox.ac.uk/ " mike/fuzz/.

[28] J. A. Stafford and A. L. Wolf. Architecture-level dependence
analysis for software systemisiternational Journal of Soft-
ware Engineering and Knowledge Engineeriid(4):431—
451, 2001.

[29] W.P. Stevens, G. J. Myers, and L. L. Constantine. Structured
design.IBM Systems Journal3(2):115-39, 1974.

[30] D. V. Steward. The design structure system: A method for
managing the design of complex systemlEEE Transac-
tions on Engineering Manageme@8(3):71-84, 1981.

[31] N. P. Suh. Axiomatic Design: Advances and Applications
Oxford University Press, May 2001.

[32] K. Sullivan, Y. Cai, B. Hallen, and W. G. Griswold. The
structure and value of modularity in software desi@iG-
SOFT Software Engineering Nofe86(5):99-108, Sept.
2001.

[33] E. TsangFoundations of Constraint SatisfactioAcademic
Pr., London and San Diego, 1993.

11

