Distributed Algorithms for Efficient
Deadlock Detection and Resolution
Using Resource Allocation Graphs

Yiechan Yang,
Lifeng Hsu
and
Sang H. Son

Computer Science Report No, TR-92-06
February 24, 1992

Distributed Alglorithms for Efficient Deadlock Detection and Resolution
Using Resource Allocation Graphs

Yiechan Yang, Lifeng Hsu, and Sang H. Son

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

In this paper we present two efficient distribuied deadlock detection and resolution algorithms
which combine both path-pushing and edge-chasing techniques to detect and resolve deadlocks in a distri-
buted database system. By locally building up the PRAG (Partial Resource Allocation Graph) informa-
tion for every transaction on each site through edge-chasing and path-pushing, these algorithms not only
have transactions wait-for information but also have resources allocation information. Therefore, as soon
as a deadlock cycle is going to form on a site, these algorithms can immediately detect it. The first algo-
rithm starts the deadlock resolution right away whenever a "potential” deadlock cycle is detected. Thus,
this algorithm can not completely avoid the detection of false deadlocks. However, it uses an efficient
cleanup mechanism to reduce the probability of detecting false deadlocks. The second algorithm does not
start the deadlock resolution immediately when a forming of deadlock cycle is detected. Instead, it vali-
dates if the potential deadlock cycle is a true deadlock. It starts the deadlock resolution only when a true
deadlock is detected. Although this algorithm satisfies the correctness criterion of no false deadlock
detection, it delays the true deadlock detection and resolution. We claim that both algorithms are very
efficient while comparing them with other distributed deadlock detection algorithms in the literature.

Key Words: distributed database, deadlock detection, transactiot, resource allocation graph

This work was supporied in part by Office of Naval Research, by NRaD, and by Department of Enerpy.

1. Introduction

To detect a true deadlock with low communication cost and delays in a distributed database system
is very difficult and challenging, because each site of the system simply cannot have complete and up-to-
date knowledge of the current state of the system and every inter-site communicgtion involves a finite but
unpredictable delay. A simple way to detect a deadlock in a distributed database system i$ to use a cen-
tralized global deadlock detector which periodically takes the union of each site’s local TWFG (Transac-
tion Wait-For Graph) to produce a global TWFG and checks it for cycles. However, the single point of
failure, the significant communication delay and overhead in assembling all the local TWFGs at the site
of global deadlock detector, and the high possibility of detecting a phantom deadlock due to the out-of-
date global TWFG make global deadlock detection less attractive than a decentralized algorithm [Bem87)
{Chou90].

There are many decentralized (distributed) deadlock detection algorithms in the literature. They can
be classified into four categories: path-pushing, edge-chasing, diffusing computations, and global state
detection [Knapp87]. In general, the responsibility of detecting a global deadlock in distributed deadlock
detection algorithms is shared equally among the sites. The global state of the system is spread over the

“sites and several sites may parnticipate in the detection of the same deadlock cycle simultaneously.
Though distributed algorithms are not vulnerable to a single point of failure and each site will not be
swamped with deadlock detection messages, many of them were found to be incorrect by not detecting
true deadlocks, or detecting phantom deadlocks, or both. Many more were found very expensive 1o be
implemented, in terms of performance and complexity. And lots of them did not address the problem of
deadlock resolution [Chou89] [Knapp87] [Sing89]. It usually ends up that a separate and expensive
deadlock resolution phase must be executed for selecting a proper victim to abort when a deadlock is
detected, because the site(s) that detect the deadlock may not have enough knowledge of knowing how
many transactions are actually involved in the deadlock. This further deteriorates the cost of implement-
ing these algorithms.

In this paper, we present two distributed algorithms which not only detect deadlocks but also
resolve the deadlocks they detect immediately without any extra exchanges of messages to select & victim
to abort. Both algorithms use edge-chasing and path-pushing techniques to build up resource allocation
graph (which includes transaction wait-for information, per se) for every transaction initiated at a site,
Instead of starting a probe computation while a transaction enters a wait state {Chan83], these algorithms
start a sequence of transaction PRAG (Partial Resource Allocation Graph) updates along the edges of vir-
tual TWFGs. Although these algorithms do not build TWFGs for each site of the system, if we consider a
transaction PRAG as a partial collection of paths of TWFGs then a transaction PRAG update is just a
path-pushing. Hence, our algorithms can be considered as the hybrid approaches that combine both
edge-chasing and path-pushing techniques into one unique kind of distributed deadlock detection and
resolution algorithms.

The first algorithm in this paper does deadlock resolution immediately whenever the forming of a
- deadlock cycle is detected. Due to the unpredictability of message delay and the intention to minimize
the delay of deadlock resolution, this algorithm does not eliminate the possibility of detecting false (phan-
tom) deadlocks. In order to reduce the probability of detecting false deadlocks, a fast cleanup mechanism
is incorporated in the algorithm to cleanup any affected transaction PRAGs after the deadlock victim is
aborted. The second algorithm takes one step farther from the first algorithm. It validates the suspicious
deadlock cycle whenever the cycle is detected. It starts the deadlock resolution only if the cycle is
confimed to be a true deadlock cycle. It pays the price of one extra round- tnp message delay to satisfy
the correctness criterion of no false deadlock detection.

By using these algorithms, the integration of deadlock detection and deadlock resolution is easily
achieved. The quickness of detecting a deadlock cycle and resolving it gives our algorithms a significant
leading edge when compared them with other algorithms in the literature. These algorithms reduce the
delays and communication costs of detecting distributed deadlocks to a great extent. They also minimizes
the delays and costs of deadlock resolution and any subsequent processing of transactions. Although our

algorithms may consume more memory space on each site due to the construction of transaction PRAGs,
and the size of a transaction PRAG update message may be a little bigger than a probe message, we
believe that such overhead is negligible while considering the significant performance benefits.

The rest of this paper is organized as follows. In Section 2, we briefly discuss the distributed data-
base model we use in this paper and the underlying assumptions. We also give the definition of a transac-
tion PRAG and its data structure, In Section 3, we present our first distributed deadlock detection and
resolution algorithm followed by some examples to demonstrate how the algorithm works. In Section 4,
we modify the first algorithm to become the second algorithm which does not detect false deadlocks.
Section 5 covers the anatomy of the algorithms. The correctness of the algorithms will be analyzed and
discussed in this section. Section 6 gives comparisons between our algorithms and other distributed
deadlock detection algorithms in the literature. Finally, Section 7 summarizes the paper.

2. The Distributed Database Model: Definitions and Assumptions

Two types of deadlock have been modeled in the literature. In a resource model, a set of processes
is deadlocked if each process in the set requests a resource held by another process in the set. In a com-
munication model, a set of processes is deadlocked if each process in the set is waiting for a message
from another process in the set but no process in the set ever sends a message [Chan83] [Sing89]. In this
paper, we use the resource model as our distributed database model.

A resource is a passive data item (object) and may be represented by a simple vanabic or a complex
data structure, ie., it represents an independently accessible piece of information. In this paper, we
assume that each resource (data item) is nonreplicated, has its own unique identification, and is stored at a
site. And a distributed database system is a network, consisting of sites which communicate through mes-
sages.

Insucha d:smbuted database system, the user accesses data items of the database by executing tran-
sactions, A transaction is viewed as a process that performs a sequence of reads and writes on data items.
Thus, data items are requested and released by transactions through inter-site or inira-site message
exchanges. The network is assumed to deliver messages error-free. It means that all messages sent from
the source sites will arrive at their destination sites in finite time and in the order they are sent. In essence,
we assume that there aren’t any communication failures and messages are pipelined at their destination
sites, neither lost nor duplicated. We also assume that no site failures would occur, which may cause
spontaneous transaction aborts. -

Each site has a TM (Transaction Manager) to manage those transactions initiated from it and a DM
(Data Manager) 1o manage exclusively the data items stored there. We assume that each TM has the
mapping information of the entire system's database, i.e., a TM can always determine where the data item
is located based on its identification. We also assume that each DM provides the same locking mechan-
ism which is 2PL (two phase locking protocol) and manages the lock table in the same fashion. The 2PL
protocol implies that a transaction must lock a data item before accessing it and cannot release a lock
until all requested locks are granted. Locks can be exclusive locks (write locks) or share locks (read
locks)

A transaction which has locked the data item is called the holder of the data item. When the lock
request of a transaction for a data item is rejected by a DM, the DM will put the request transaction in the
waiting queue associated with the data item. When a holder unlocks a data item, the DM of that data item
. chooses a request transaction from the waiting queue and grants the lock to that requester. In our algo-
rithms, the scheduling scheme used by a DM is FCFS (First Come First Serve).

Our algorithms are based on the simplest possible distributed database model in which a transaction
can have at most one outstanding resource request at a time, it is called one-resource model in [Knapp87].
Thus, the PRAG (Partial Resource Allocation Graph) of a transaction is a directed graph that can be
represented as a tree-like structure. The root is the transaction itself. The second layer consists of nodes
which denote the resources (data items) having been locked by the root transaction except one node

2.

denotes the outstanding data item that is currently being requested by the root if the situation arises. The
third layer, if there is any, consists of nodes which denote the transactions that are waiting for the data
items being locked by the root. If any transactions of the third layer themselves also hold some data
items while they are waiting for the root transaction to release locks, we will have the fourth layer con-
sisting of nodes of data items again, and so forth. Hence, a transaction PRAG tree consists of altemate
layers. The odd layers are transaction nodes and the even layers are resource nodes (see Figure 1). A
transaction PRAG tree can be divided into branches based on the data items it holds and requests. There
could be many holding branches, but at most one request branch. Apparently, each PRAG tree has not
only transaction wait-for information but also resources allocation information (see Figure 1). The TM of
each site manages those transaction PRAG trees which form a forest, since every transaction has its own
PRAG tree,

A transaction can be in one of two states: active or waiting. The state of a transaction changes from
active to waiting when its lock request for a data item propagates through its TM to the DM of the data
item and is queued by the DM, i.e., the lock request is denied. The state of a transaction changes from
waiting to active when the DM schedules the transaction from the waiting queue, i.c., the lock is granted.
An active transaction can commit or abort, However, a waiting transaction cannot abort itself. If we

t1 factive

ot \
a

‘ 11 jactive .) V1 waiting
ng T\ _ - de:V T\

t3

Ok

Figure 1: Three types of PRAG trees.

allow a waiting transaction abort itself anytime then there is no way to eliminate the phantom deadlock
phenomenon. ‘

Since we use 2PL protocol for concurrency control, the active state of a transaction can be furthe
divided into two substates: growing and shrinking. The state change of a transaction between active and
waiting is actually either from growing to waiting or from waiting to growing, Once a transaction enters
a shrinking state it cannot change its state. An aclive transaction changes its state from growing to
shrinking when it is committing, aborting, or being aborted (when a deadlock is detected and the transac-
tion is the selected victim). A waiting transaction can be aborted as well if it is chosen as the victim of
deadlock resolution.

We use events to model our distributed database system behaviors. Each event occurs with an action
of sending or receiving messages. We assume that every site has a logical clock that is monotonicaily
increasing and the various clocks are loosely synchronized such that all of the events of the system can be
totally ordered {L.am?78]. Each transaction is assigned a unique timestamp when it is initiated from a site.
We shall consider the timestamp of a transaction as a part of its identification. We will use the timestamp
of a transaction as the priority of the transaction. That means a transaction has higher priority than
another-transaction if it has smaller timestamp (i.¢., it is older). We will use priority to determine the vie-
tim of deadlock resolution if a deadlock cycle is detected by a waiting transaction PRAG update. This
guarantees that if more than one site detect a deadlock cycle, they will pick the same transaction in the
cycle as the victim to abort. When an aborted transaction is restarted, a new timestamp is generated for it.
In our algorithms, we do not attempt to reuse the old timestamp for 4 restart transaction.

Based on the occurrences of events, in this paper, we classify the messages used in the algorithms
into the following categories: lock request messages, lock grant messages, lock deny messages, lock
release messages, transaction commit messages, transaction abort messages, transaction not-wait-for
messages, transaction PRAG cleanup messages, transaction PRAG update messages, transaction validate
messages, transaction not-exist messages, and transaction exist messages. The last three types of mes-
sages are only used in the second algorithm for deadlock validations.

3. The First Algorithm and Examples

3.1. The Netations
. The following notations will be used throughout this section:
‘TM(i): The Transaction Manager at site i.
DM(i): The Data Manager at site i.
t(i,j): The jth transaction initiated at site 1.
d(i,j): The data item j stored at site i. |
i, <-ddk, by
Transaction 1(i,j) holds a lock on data item d(k,}).
(i, j)->dk
Transaction t(i,j) requests a lock on data item d(k 1), same as Ak, D<-t(i,j).

d{m,n)<-1(i,jy<-dk,1): .
Transaction t(i,j) holds a lock on data item d(k,!) and requests a lock on data item d(m,n); if lock
request for data item d(m.n) is granted then the arrow direction will be reversed from "request” to
“*hold" and t(i,j) remains/becomes active; otherwise, 1(i,j) enters/remains waiting.
i(i,<-ddk D<-t(m n)<-d(p,q)
Transaction t(i,j) is active, holds a lock on data d(k,I) which is requested by transaction t(m,n) that
is holding a lock on data d(p,q); therefore t(m,n} is waiting for t(i j).

4

{ X }: A message, sent or received by an event, where X can be any of the following information:

lock request information
Either t(i,j)->d(k,l) received by a TM or REQUEST(PRAG((i,j))) received by a DM, where
PRAG(i(i,j)) denotes the PRAG tree of transaction t{i,j) with an outstanding request branch.

lock grant information
GRANT(PRAG((,j), d(.1))), where PRAG(1(i,j), d(k.1)) denotes the new granted ddk,D) ho'idmg
branch for transaction i,j) PRAG tree.

lock deny information
DENY({,j)->d(k.1)), where 1(i,j)->d(k.I) denotes transaction t(i,j) is requesting for lock on data
item d(k,1).

lock release information
RELEASE(PRAG((,}), dk.D)), where PRAG(I([,}) d(k.1)) denotes the existing d(k 1) holding
branch of transaction 1(i,j) PRAG tree.

transaction commit information
COMMIT(t(i,j)).

transaction abort information
ABORTQ,i)).

transaction not-wait-for information
NOTWAIT((,j)->d(k,.1)), denotes that transaction t(i,j) is no longer waiting for data item d(k.l)
and should be removed from the waiting queue of d(k,1).

transaction PRAG cleanup information
Either CLEANUP(t{i,j), t(k,)) received by a TM or CLEANUP(d(@.j), «(k.1)) received by a DM.
The former one denotes that the waiting-for transaction t(k,l} and its subsequent subtree should be
removed from t(i,j) PRAG tree, because t(k,]) is the selected deadlock victim. The later one
denotes that the cleanup actions must occur to the holder(s) of d(i,j) such that the deadlock victim

t(k,1) and its subsequent subtree will be removed from the PRAG tree(s) of the holder(s), if they
are found.

transaction PRAG update information '
Either UPDATE(PRAG((i,)))) received by a DM, where PRAG(1(i,))) denotes the new updated
PRAG tree of 1(i,j) and ready to be propagated to the next transaction for which it is waiting, or
UPDATE(PRAG(t(i,j), d(k.,1))) received by a TM, where PRAG(t(i.j), d(k,1)) denotes a partial
d(k.l) holding branch which may have new resource allocation information for adding to transac-
tion t(i,)) PRAG tree.

3.2. The Algorithm’

Now, we present our first algorithm as follows. Note that in the following presentation, any actions
that TMs and DMs must perform but are not related to deadlock detection are omitted.

A) Initialization: for each site i,
Creates process TM(i) and initializes an empty transactibn PRAG tree table;
Creates process DM(1) and initializes an empty lock table;
Sets every data item waiting queue in DM(I) to empty.

B) For each transaction t(i.j), if

-a. t(1,j) is active and requests a lock on data item d{k,b):
Sends a lock request message [t(i,j)->d(k,) } to TM().

b. t(i,j) commits:
Sends a commit message { COMMIT((i,j)) } to TM().

c. t(i,j) is active and wants 1o abort:
Sends an abort message { ABORT((i,j))] to TM(i).

d. t(i,j) is wgiting:
qus nothing.

C) For each transaction manager TM(), if
a. TM() receives a lock request message { t(i,j)->d(k,1) } from transaction t(i,j) :

Searches the PRAG tree of t(i,j) in the current PRAG tree table to see if d(k,}) is locked by other
transaction that is waiting for t(i,j) directly or transitively;

If search succeeds then /* it means that a deadlock is detected while t(i,j) is active */
Sends lock release messages { RELEASE(PRAG(t(i,j), d(x,y))) } to corresponding DM(x),
where d(x,y) represents any of the data items currently being locked by 1(i,j);

Removes t(i,j) PRAG tree from PRAG tree table;

Kills transaction t(i,j) and triggers the restart countet/timer;

Else
Adds the request branch: (i,j)->d(k,]) to t(i,j) PRAG tree and sends the lock request message {
REQUEST(PRAG(t(},;))) } to DMk

Endif

b. TM(i) receives a commit message [COMMIT(1(i,j)) } or abort message { ABORT(t(i,j)) } :

If t(i,j) is in the transaction PRAG tree table then /* ignores abort message if t(i,j) does not exist */
Sends lock release messages { RELEASE(PRAG((i.)), d(x,y))) } to corresponding DM(x),
where d(x,y) represents any of the data items currently being locked by t(i.j);

It is waiting then /* means that t(i,j) is selected as the deadlock victim */
Sends not-wait-for message { NOTWAIT((,j)->d(m,n)) } to DM(m) to remove t(i,j} from
the waiting queue of d{m,n), where d(m,n) is the data item requested by ((i,j); »

~ Kills transaction t(i,j) and triggers the restart counter/timer;
Endif

Removes t(i,j) PRAG tree from PRAG tree table;
Endif.

6~

é. TM(i) receives a lock grant message { GRANT(PRAG(1(i,j), d(k,1))) } from DM(k) :

Replaces the request branch of t(i,j) PRAG tree with the new holding branch embedded in the
received lock grant message;

If1(i,j) is-in waiting state then changes its state back to active.
d. TM(i} receives a PRAG update message { UPDATE(PRAG((,j), d(k,1))) } from DM(K) :

If 1(,j) is active then
If the PRAG update message is not out of date then /* To know if the message is out of date, we
need to check if any data items locked by t(i,j) also appear in the PRAG update message, */
Updates the dkl) holding branch of t(i,j) PRAG tree based on the mismatches found
between the received PRAG update message and the d(k,1) holding branch;
Endif
Else /* t(i,j) is waiting */ : ,
Searches the PRAG update message to see if the data item for which ti.)) is waiting, say
d(m,n), is locked by other transaction; '

If search succeeds then /* deadlock is detected while t(i,j) is idle */
Determines the deadlock victim by comparing the timestamp of each transaction involved in
the cycle and selecting the youngest one, say t(p,q), as the victim;

/* Note that the selected deadlock victim tp.q) may be i(i,j) itself. In our algorithm, we
assume that TM(i) can send any messages to itself. In the actual implementation, if t(i,j) is
not t(p,q) then TM() needs to cleanup PRAG tree of t(i,j) and sends an abort message to
T™M(p). If t(i.,p) is «p,q) then TM(i) must abort 1(i,j) the same as the case when it gets an
abort message from other site. */

For other transaction t(x,y), not t(p,q), in the deadlock cycle
Sends a PRAG cleanup message { CLEANUP(x,),1(p.Q)) } to TM(x);
Endfor

Sends a transaction abort message { ABORT((p,q)) } to TM(p);

Else '
Updates the d(k,D holding branch of 1(i,j) PRAG tree based on the mismatches found
between the received PRAG update message and the d(k,]) holding branch;

If the PRAG tree of t(ij) is updated then /* propagate the new info. */
Sends a PRAG update message { UPDATE(PRAG((G,))) } to DM(m) in where the
requested data item d(m,n) is locared;
.- Endif
Endif
Endif.
e. TM(i) receives a lock deny message { DENY(t(i,j)->d(k,1)) } from DM(k) :
Sets state of t(i,j) to waiting.

f. TM() receives a PRAG cleanup message { CLEANUP(t(i,j), t(k,])) } :

7.

If 1(k,]) is in the PRAG tree of t(i.,j) then
Cuts off entire t{k,1) branch;

If t(i, j) is waiting then /* cleanup stops if t(i,j) is active */
Sends a cleanup message { CLEANUP(d(m,n), t(k.1)) | to DM(m), where d(m,n) is the data
item being requested by transaction t(i,j);
Endif
Endif.

D) For each data manager DM(), if

a. DM(i) receives a lock request message { REQUEST(PRAG(t(k.1))) } from TM(k), requesting data
item d{i,j) : , '

/# Note that the requested lock can be either exclusive lock or share lock, */

If lock is available then
" Sends a lock grant message { GRANT(PRAG(t(k.1), d(i.j))) } to TM(K) and adds 1(k.}) to d(i,j)
lock holder list;
. Else _
Sends a lock deny message { DENY(i(k,1)->d(,j)) } to TM(k) and puts t{k,]) to the end of the
waiting queue of d(i.j); o :

For each lock holder t(x,y) of d(i,j) /* may be more than one holder if lock is share lock */
Constructs a PRAG update message { UPDATE(PRAG(t(x.y), d(i,})) } based on the PRAG
tree of t(k,1) found in the received lock request message;

Sends this new PRAG update message to TM(x);
Endfor
Endif.
b. DM(i) receives a PRAG update méssage { UPDATE(PRAG{H(K.1))) } from TM(k) :
Gets the data item d(i.f) requested by t(k,1) from the received message;
For each lock holder t(x,y) of d(i,j) /* may be more than one holder if lock is share lock */
Constructs a new PRAG update message { UPDATE(PRAG((x,y), d(i,j))) } based on the
PRAG tree of t(k,]) found in the received PRAG update message;

Sends this new PRAG update message to TM(x);
Endfor. ‘

. DM(i) receives a lock release message { RELEASE(PRAG(t(k,1), d(i,j))) } from TM(k) :
Updates the lock table such that t(k,1) is no longer locking d(i.j);

if d(i,j) is free and its waiting queue is not empty then
Puts the first transaction in the waiting queue into the lock holder list of d(i,j);

If the requested lock of the first transaction in the waiting queue is share lock then
Scans the waiting queue of d(i,j) and removes transactions from it to the holder list untﬂ a

8-

transaction which lock request type is exclusive is found;
Endif

For any transaction t(x,y) in the holder list of d(i,j) /* may be just one */
Builds a holding branch PRAG(t(x,y), d(i,j)) by replacing t(k.I) in the received message;

Sends the lock grant message { GRANT(PRAG((x,y), d(i,}))) } to TM(x); /* this is neces-
sary because (x,y) must also inherit up-to-date PRAG information. */
Endfor
Endif.

d. DM(i) receives a not-wait-for message { NOTWAIT(t(k,1)->d(i,))) } from TM(k) :
Deletes t(k,]) from the waiting queue of d(i,j).
¢. DM(i) receives a cleanup message { CLEANUP(d(i.j), 1,1} } from T™M(m) :

For each lock holder t(x,y) of d(i,})
Sends a cleanup message { CLEANUP((X,y), t((k.1)) } to TM(x);
Endfor

3.3. The Examples

Now, let us show how this algorithm works by simple examples. Note that the event occurrence
time in the following examples are idealized for the purpose of demonstration. Also, all of the locks
granted or being requested are exclusive locks. In reality, the algorithm itself shall be able to handle any
possible event occurrence sequences and either type of locks: exclusive or shared.

Example 1: Assume there are three sites, Each site has one transaction,
one data item, at certain time interval. Thus, we have:
site 1; TM(1), DM(1), £(1,1), d(1,1)
site 2: TM(2), DM(2), 1(2,1), d(2,1)
site 3: TM(3), DM(3), 1(3,1), d(3,1)
.and the priority order is t(1,1) > t(2,1) > t(3,1).

At timestamp V, assume that the system state is as follows:

site " TM: PRAG tree table
1 (1,1)<-d(3,1); active
2 1(2,1)<-d(1,1); active
3 1(3,1)<-d(2,1); active

“gite DM: lock table
1 d(E,1): 1(2,1); waiting queue etnpty
2 d(2,1): t(3,1); waiting queue empty
3 d(3,1): 1(1,1); waiting queue emnpty

At tirriestamp V+1, assume the event: t(2,1)->d(3,1) occurs (see Figure 2).

Actions triggered:

site 1 site 2 site 3

t(1,1) |:active t(2,1) hactive ractive

i request-fo

\)

Figure 2: Event t(2,1)->d(3,1) occurs.

{H t(2,1) sends lock request message { t(2,1)->d(3,1) } to TM(2);

(2) TM(2) checks if d(3,1) is in t(2,1) PRAG tree; then it sends lock request message { d(3, 1)<~
t(2,1)<-d(1,1) } to DM(3) since it finds no one is holding d(3,1) in its PRAG tree;

€)] DM(3) puts t(2,1) into waiting queue of d(3,1) and sends lock deny message { DENY((2,1)-
>d(3,1)) } to TM(2); it also sends PRAG update message { ©(1,1)<-d(3,1)<-1(2,1)<-d(1,1) } to
TM(1) since t(1,1) is the holder of d(3,1); :

{4) TM(2) changes t(2,1) state from active to waiting;

&) TM(1) updates t(1,1) PRAG tree 10 t(1,1)<-d(3,1)<-t(2,1)<-d(1.1).

So, at timestamp W, the system state becomes:

site TM: PRAG tree table
1 #{1,D)<-d(3,1)<-1(2,1)<~d(1,1); active
2 d3,D<(2,1)<-d(1,1); wamng
3 (3, D<-d(2,1); acuve

site _ DM: lock table
1 d(1,1): «(2,1); waiting queue empty
2 d(2,1); 1(3,1); waiting queue empty
3 d(3,1): (1,1}, waiting queue {t{2,1}] .

At timestamp'WH, assume event: t(3,1)—>d(1,1)‘occurs (see Figure 3).

 Actions triggered:
{6) t(3,1) sends lock request message { t(3,1)->d(1,1) } to TM(3);

N TM(3) checks if d(1,1) is in t(3,1) PRAG tree; then it sends lock request message [d(1,1)<-
1(3,1)<-d(2,1) } to DM(1) since it finds no one is holding d(1,1) in its PRAG tree;

-16-

site 1 site 2 site 3

actwe %2, 1)‘ wwaiting 13,1) {:active

j denied \ requesl—fcir/

12,1}

I

Figure 3: Event 1(3,1)->d(1,1) occurs.

(8)

©)
(10)

an

(12)

DM(1) puts %(3,1) into waiting queue of d(1,1) and sends lock deny message { DENY(i(3,1)-
>d(1,1)) } to TM(3); it also sends PRAG update message { 1(2,1)<-d(1,1)<-1(3,1)<-d(2,1) } t0
TM(2) since (2,1) is the holder of d(1,1);

TM(3) changes t(3,1) state from active to waiting;

Since t(2,1) is waiting, upon receiving the PRAG update message from DM(1), TM(2) checks if
d(3,1) requested by (2,1) can be found in the message; it fails, so it updates t(2,1) PRAG tree to
d(3,D<=t(2, D<-d(1,1)<-1(3,1)<-d(2,1) and propagates this PRAG tree to DM(3),

DM(3) adds the holder of d(3,1), which is t(1,1), to the received PRAG tree and sends the new
PRAG as a PRAG update message to TM(1);

Since (1,1) is ‘still active, TM(1) simply updates t(1,1) PRAG tree to t{1,1)<-d(3, 1)< t2,1)<-

- d(1,D<1(3,1)<-d(2,1) and stops the processing of PRAG tree updates.

So, at timestamp X, the system state becomes:

site TM: PRAG tree table
1 (1, D<-d(3,1)<-t(2, 1)<-d(1, D<-1(3,1)<-d(2,1); active
2 d(3,1)<-12,1)<-d(1,1)<-1(3,1)<-d(2,1); waiting

3 d(1,D<t(3,D<-d(2,1); waiting

site DM: lock table

i d(l 1) 1(2,1); waitmg queue [1(3,1)]

.11~

(13)
(14)

(15)

(16)

2 d(2,1): 1(3,1); waiting queue empty
3 d(3,1): t(1,1); waiting queue [(2,1)]

At timestamp X+1, assume event: t(1,1)->d(2,1) occurs (see Figure 4).

Actions triggered:
£(1,1) sends lock request message { 1(1,1)->d(2,1) } to TM(1);
TM(1) checks if d(2,1) is in 1(1,1) PRAG tree; it finds that d(2,1) is currently locked by t(3,1)
which in turn is waiting for t(1,1), shown in {1,1) PRAG tree; thus, it aborts t(1,1) by sending
lock release message to DM(3) and deleting t(1,1) PRAG tree from PRAG tree table;
DM(3), upon reb,eiving the lock release message, removes t(1,1) from the lock holder list of d(3,1)
and grants d(3,1) to t(2,1) by sending a lock grant message t0 TM(2);
TM(2) updates t(2,1) PRAG tree by converting the request branch to a holding branch and
changes the state of t(2,1) from waiting to active.

site 1 site 2 site 3
. (1 1) :active t(2, 1) :waiting 1(3,1) | :waiting
request-for denied / dente% \
l‘ 12,1} (3,1}

3 .
o 3
R

%3 ? '

3.1}

3
1
)
L)
1
by
'
L1
Y
"
| .H

Figure 4: Event t(1,1)->d(2,1) occurs, forming a deadlock cycle.

2.

So, at timestamp Y, the system state becomes:

site TM: PRAG tree table
1 empty /*1(1,1)is aborted ¥/
2 1(2,1)<-d(1,1)=<-1(3, 1)<-d(2,1); active
<-d(3,1}
-3 d(1,D<-1(3,1)<-d(2,1); waiting

site DM: lock table

1 d(1,1): (2,1); waiting queue [1(3,1)]
2 d(2,1): «3,1); waiting queue empty
3. d(@3,1): «2,1); waiting queue empty

Notice that up to this point, the algorithm has detected a deadlock and
resolved it immediately so that the system won’t be deadlocked (see Figure 5).

At timestamp Y+1, assume event t(2,1)->d(2,1) occurs.

Actions triggered:
(17 «2,1) sends lock request message { t(2,1)->d(2,1) } to TM(2),
(18) TM(2) checks if d(2,1) is in t(2,1) PRAG tree; since it finds that d(2,1) is currently locked by

(3,1) which in turn is waiting for t(2,1), shown in #(2,1) PRAG tree, it aborts t(2,1) by sending a
Jock release message to DM(1) and another lock release message to DM(3); also, it deletes t(2,1)

site 1 ~ site2 site3
{empty) 1(2,1} | :active o :wai!ing

. / \ ' dénie:/
(3,1)

i

Figure 5: Deadlock is resolved by aborting t(1,1).

13-

PRAG tree from PRAG tree table;

(19) DM(1) removes #(2,1) from the lock holder list of d(1,1) and grants d(1,1} to (3,1} by sending
lock grant message to TM(3);

(20) DM(3) removes t(2,1) from the lock holder Hst of d(3,1) and d(3,1) becomes free;

(21) TM(3) updates t(3,1) PRAG tree by converting the request branch to a holding branch and
changes the state of 1(3,1) from waiting to active. :

So, at timestamp Z, the system state becomes:

site TM: PRAG tree table
1 empty /*1t(1,1)is aborted */
2 empty /*1(2,1) is aborted */
3 1(3,1<-d(2,1); active
‘ <-d(1,1)

site ' DM: lock table

Tood(L1): 1(3,1); waiting queue emptly
2 d(2,1): 1(3,1); waiting queue empty
3 d(3,1): free; waiting queue empty

In the above example, the events occurred in a perfect timing fashion such that only the active tran-
sactions detect deadlocks. In reality, a distributed deadlock detection algorithm shall be able to handle all
of the possible event orderings. Now let us use a different event ordering to demonstrate how our algo-
rithm works when the waiting transactions detect deadlocks and multiple sites detect the same deadlock.

Example 2: same configuration as Example 1.
At the same timestamp W as in Example 1, the system state is:

site TM: PRAG tree table
1 (1, D)<-d(3,D=<-1(2,1)<-d(1,1); active
2 d(3,D<1(2,1)<-d(1,1); waiting
3 1(3,1)<-d(2,1); active

site DM: lock table
1 d(1,1): t(2,1); waiting queue empty
2 d(2,1):1(3,1), waiting queue empty
3 d(3,1): ¢(1,1); waiting queue [t(2,1)]

At timestamp W-+1, assume event: £3,1)->d(1,1) occurs and at timestamp W+2,
event: t{1,1)->d{(2,1) also occurs (see Figure 6).

Actions triggered:

1 3,1 sends lock request message { t(3,1)->d(1,1) } to TM(3); t(1,1) sends lock request message {
(1,1)->d{2,1) } to T™M(1);

site 1 site 2. site 3

:active

t{1,1) |:active 12,1} | :waiting

request‘-y \ denied \ request—fir/

t(2,1)

Figure 6: Events 1(3,1)->d(1,1) and ¢(1,1)->d(2,1) alrnost occur simultaneously.

@

3

@

SN

6

TM(3) checks if d(1,1) is in 1(3,1) PRAG tree; nothing is found, sends lock request message {
d(1,D)<t(3,1)<-d(2,1) } to DM(1); TM(1) checks if d(2,1) is in (1,1) PRAG tree; nothing is
found, sends lock request message { d(2,1)<-t(1,1)<-d(3,1)<-t(2,1)<-d(1,1) } to DM(2);

DM(1) puts t(3,1) into waiting queue of d(1,1), sends lock deny message { DENY(1(3,1)->d(1,1))
} to TM(3), and sends PRAG update message { 1(2,1)<-d(1,1)<-1(3,1)<-d(2,1) } to TM(2); DM(2)
puts t(1,1) into waiting queue of d(2,1), sends lock deny message { DENY(1(1,1)->d(2,1)) } to
TM(1), and sends PRAG update message { «(3,1)<-d(2,1)<-t(1,1)<-d(3,1)<-t(2,1)<-d(1,1) } to
TM(3);

TM(3) changes 1(3,1) state from active to waiting; TM(1) changes t(1,1) state from active to wait-
ing; : ‘ : ‘

Since t(2,1) is waiting, upon receiving the PRAG update message from DM(1), TM(2) checks if
d(3,1) requested by 1(2,1) can be found in the message; it fails, so it updates t(2,1) PRAG tree to
be: d(3,1)<-1(2,D<-d(1,1)<-1(3,1)<-d(2,1) and sends this new updated PRAG tree to DM(3);
Since t(3,1) is waiting too, TM(3) checks if d(1,1) requested by t(3,1) can be found in the received
PRAG update message; it does, therefore, it selects the lowest priority transaction: ((3,1) to abort,
by sending cleanup messages to TM(1) and TM(2), sending lock release message to DM(2) to
release d(2,1) from being locked by t(3,1), and sending not-wait-for message to DM(1) to remove
t(3,1) from the waiting queue of d(1,1); it also deletes t(3,1) PRAG tree from the PRAG tree table
(see Figure 7);

DM(3) adds the holder of d(3,1), which is t(1,1), to the received PRAG tree and sends the new
PRAG update message to TM(1);

-15-

site 1 site 2 site 3

(1, 1) waiting 1(2,1) | 'waiting :waiting

3,
demed denied \ 'denie<f/
Q D @

] ;

S £(1.1)
Y2,1) {(3,1) T

e

] %4

, %
%F d(3,1)

S

1(2,1)
]

Y
)
S
)
)
)
)
)
3
| .u

Figure 7: TM(2) propagates PRAG update while TM(3) detects the deadlock.

D

(8)

®

(10)

Assume TM(1) receives PRAG update message for t(1,1) from DM(3) first. Since t(1,1) is wait-
ing, TM(1) checks if d(2,1) requested by 1(1,1) can be found in the PRAG update message; the
search succeeds, so it also picks t(3,1) as the victim to abort by sending cleanup message {
CLEANUP((2,1), (3,1)) } to TM(2), cutting off t(3,1) branch from t(1,1) PRAG tree, and sending
a transaction abort message { ABORT((3,1)) } 1o TM(3); Note that TM(1) could receive the

. cleanup message from TM(3) first. In this case, the cleanup message is discarded since ¢(3,1) is

not in t(1,1) PRAG tree yet. Later, when it receives the PRAG update message from DM(3), the
same actions described above would occur,

TM(Z) cleans up t(2,1) PRAG tree, based on the cleanup message from TM(3); TM(1) discards.
the cleanup message from TM(3); DM(2) removes (3,1) from d(2.1) holder list and sends a 1ock
grant message to TM({1); DM(1) removes t(3,1) from the waiting queue of d(1,1);

TM(2) discards the second cleanup message received from TM(1); TM(3) discards the abort mes-
sage received from TM(1);

TM(1) wakes up t{1,1), upon receiving the lock grant message from DM(2).
So, at timestamp X', the system state becomes (see Figure 8):

site TM: PRAG tree table

-16-

site 1 site 2 site 3

1 1) sactive :Waiting {empty)
/ denied ‘
& &

2,1}

Figure 8: Deadlock is resolved by aborting t(3,1).

[V o

site
1
2
3

t(1,D<-d(3,D<-1(2, 1)<-d(1,1); active

<-d(2,1) _
d(3,1)<-1(2,1)<-d(1,1); waiting
empty /*t(3,1) is aborted */

DM: lock table

d(1,1); «(2,1); waiting queue empty
d(2.1): «(1,1); waiting queue empty
d(3,1): t(1,1); waiting queue [t(2,1)]-

4. The Second Algorithm:

4.1. Additional Messages and States

To develop the second algorithm that can completely eliminate the detection of false deadlocks,
based on the first algorithm, we need to add two additional transaction states and three types of messages

They are defined as follows:

A transaction changes its state from active to active-validating if it is active and requesting a data
item which causes its PRAG tree form a potential deadlock cycle. After deadlock validation, an active-

validating transaction may become waiting or be aborted as the déadlock victim.

A transaction changes its state from waiting to waiting-validating if it is waiting and its TM finds a
potential deadlock cycle while trying to update its PRAG tree. A waiting-validating transaction would
not propagate (push) any updates to its PRAG tree to other transactions. After deadlock validation, a

17

waiting-validating transaction may change back to waiting or trigger a deadlock resolution.

transaction validate message
In the form of { VALIDATE((,j), t(k,1)) }, where t(i,j) denotes the transaction which PRAG tree
is found to form a deadlock cycle and t(k.1) is one of the waiting transaction found in the cycle.

transaction not-exist message
In the form of { NOTEXIST((i.j}, k1)) }, where t(i,j) denotes the transaction which PRAG tree
is found to form a deadlock cycle and t(k,l) is one of the waiting transaction found in the cycle,
but has been validated that it does not exist in TM(k) any more.

transaction exist message
In the form of [EXIST((.)), (k1))], where 1(i,j} denotes the transaction which PRAG tree is
found to form a deadlock.cycle and t(k,l) is one of the waiting transaction found in the cycle
which has been validated its existence in TM).

4.2. The Algorithm

Now, we present our second algorithm as follows, Note that in the following presentation, only the
modified portions of the first algorithm and the additional portions are shown.

C) For each transaction manager TM(), if
a. (modified) TM() receives a lock request message { t(ij)->d{k,1) } from transaction t{i,j) :

Searches the PRAG tree of t(i,j) in the current PRAG tree table to sce 1f dik.l) is locked by other
transaction that is waiting for t(i,j) directy or transitively;

If search succeeds then /* it means that a potential deadlock is detected while t(i,j) is active */
Sets t(i,j) state to active-validating;

Collects the deadlock cycle members, other than t(i,j), into a list and sets total-count equal to
. the list size; also, sets message-count equal to total-count;

-For every transaction 1(x,y) in the deadlock cycle member list
Sends transaction vahdate message { VALIDATE((i,j), t(x,y)) } o TM(x);
Endfor
Else
Adds the request branch: (i,j)->d(k,}) to t(i,j) PRAG tree and sends the lock request message |
REQUESTPRAG(1(i,))) } to DM(k);
Endif

d. (modified) TM(i) receives a PRAG update message { UPDATE(PRAG(1(1.j), d(k.1))) } from DM(K)

I t(i,}) is active or active-validating then
If the PRAG update message is not out of date then /* To know if the message is out of date, we
need to check if any data items locked by t(i,j) also appear in the PRAG update message. */
Updates the d(k,}) holding branch of t(i,j) PRAG tree based on the m:smatches found
between the received PRAG update message and the d(k.1) holding branch;
Endif
Else /* 1(i,j} is waxtmg or waiting-validating */
Updates the d(k.!) holding branch of t(i,j) PRAG tree based on the mismaiches found between

-18-

the received PRAG update message and the d{k.!) holding branch;

If t(i,j) is waiting and 1(i,j) PRAG tree is changed then
Searches t(i,)) PRAG tree to see if the data item for which t(i,j) is waiting, say d(m.n), is
locked by other transaction;

If search succeeds then /* deadlock is detected while 1(i.j) is waiting, */
Sets 1(i,j) state to waiting-validating;

Collects the deadlock cycle members, other than t(i,}), into a list and sets total-count
equal to the list size; also, sets message-count equal to total-count;

For every transaction t(x,y) in the deadlock cycle member list
Sends transaction validate message { VALIDATEQG.J), t(x,y)) } 10 TM(X);

Endfor

Else
Sends a PRAG update message { UPDATE(PRAG((.j)) } to DM(m) in where the
requested data item d(m,n) is located;

Endif

Endif
Endif.

g. (new) TM(i) receives a transaction validate message { VALIDATE(t(k,D, t(i,j)) } from TM(k) :

If t(1,j) is in the transaction PRAG tree table then

Sends a transaction exist message { EXIST(t(k,1), t(i,j)) } to TM(k):
Else

Sends a transaction not-exist message { NOTEXIST((k 1), 1(i,j) } o TM(k);
Endif.

h. (new) TM(i) receives a transaction exist message { EXIST((,j), t(k,1)) } or a transaction not-exist
message { NOTEXIST((,)), t&,1)) :

If the message is exist message then
Decrements t(i,j) total-count of deadlock members by 1; -
Else
Remove t(k,1). branch from t(i,j) PRAG tree;
Endif

Decrements t(i,j) message-count of deadlock validation by 1;
If total-count becomes 0 then /* this is a true deadlock */
If t(i,)) is active-validating then /* abort t(i,j) */
~ Sends lock release messages { RELEASE(PRAG(t(i,j), d(x,y))) } to corresponding DM(x),
where d(x,y) represents any of the data items currently being locked by t(i,j);
Removes £(i,j) PRAG tree from PRAG tree table;
Kills transaction t(i,j) and triggers the restart counter/timer;

Else /*1(i,j) is waiting-validating */
Determines the deadlock victim by comparing the timestamp of each transaction involved in

~19-

the cycle and selecting the youngest one, say t(p,q), as the victim;

For other transaction t(x,y), not {p,q) or {i,j), in the deadlock cycle
Sends 2 PRAG cleanup message (CLEANUP((x.y).Kp,q)) } to TM(x);
Endfor

Sends a transaction abort message { ABORT(t(p,Q)) I to T™M(p);

If t(i,)) is not t(p,q) then
Removes t(p,q) branch from t(i,j) PRAG tree;

Searches t(i,j) PRAG tree again to see if the data item for which (i,J) is waiting, say
d(m,n), is locked by other transaction; '

If search succeeds then /* another deadlock is detected */
Collects the deadlock cycle members, other than t(i,j), into a list and sets total-count
equal to the list size; also, sets message-count equal to total-count;

For every transaction t(x,y) in the deadlock cycle member list ‘
Sends transaction validate message { VALIDATE((,j), 1(x,y)) 1 to TM(x);
Endfor
Else .
Sets the state of t(i,j) back to waiting and sends a PRAG update message {
UPDATE(PRAG(1(,j))) } to DM(m), where d(m,n) is the data item requested by t(i.j);
Endif
Endif
Endif
Else if message-count becomes 0 then /* a false deadlock */
Searches t(i,j) PRAG tree again to see if the data item for which 1(i,j) is waiting, say d(m,n), is
locked by other transaction;

If search succeeds then /* another deadlock is detected */]
Collects the deadlock cycle members, other than t(ij), into a list and sets total-count equal to
the list size; also, sets message-count equal to total-count:

For every transaction (x,y) in the deadlock cycle member list
Sends transaction validate message { VALIDATE((i,}), t(x,y)) } to TM(x);
Endfor . '
. Else .
If transaction t(i,j) is active-validating then
Set 1(i,j) state back 1o active:

Adds the request branch: 1(i,j)->d(k,D) to t(i,j) PRAG tree and sends the lock request mes-
sage { REQUEST(PRAG((i,))) } to DM(k);

Else .
Sets the state of t(i,j) back to waiting and sends a PRAG update message |

- UPDATE(PRAG((i,)))) } to DM(m), where d(m,n) is the data item requested by t(i,j);
Endif
Endif
Endif.

-20-

5. Anatomy of The Algorithms

A deadiock detection algorithm is said to be correct if it satisfies 1) no undetected deadlocks and 2)
no false deadlocks. The first criterion must be enforced in any deadlock detection algorithm. However,
the second criterion sometimes can be relaxed if the detection of false deadlocks would be rare. In facts,
the tradeoffs between a complicate algorithm (e.g., our second algorithm) that detects no false deadlocks
and a less complicate algorithm (e.g., our first algorithm) that fails to meet this criterion but can minimize
the delays and costs of deadlock detection and resolution, usually lead us to favor the simpler approach.
In this section, we present observations and analyses of our two algorithms to discuss their properties,
correctness, and differences.

In our algotithms, deadlock can be detected in two occasions {events). The first deadlock detection
occurs when an active transaction is making a lock request and its TM detects that the lock request will
form a deadlock cycle in its PRAG tree. The other deadlock detection occurs when the TM of a waiting
transaction receives a PRAG update message and detects the forming of a deadlock cycle in that transac-
tion PRAG tree.

In the first case, only the site where the active transaction resides in would detect the deadlock and
the active transaction is selected to abort. We do not use priority to choose the victim for deadlock reso-
lution in this case, because aborting the top transaction of the wait-for chain is the cheapest and simplest
way to resolve the deadlock. No cleanups are necessary since all the PRAGs on other sites are still valid
after the deadlock is resolved. However, if the cost of aborting the current active transaction outweighs
the cost of aborting anyone of other involved waiting transactions for resolving a deadlock, we can
_ modify our algorithms by adding a mechanism that can select the best victim to abort. This mechanism
can be more sophisticated than simple priority.

In the second case, once a deadlock cycle is detected all transactions involved in the deadlock are in
the waiting state because an active transaction never appears in the PRAGs of other transactions. There-
fore, it is possible that several sites detect the same deadlock at different time before the deadlock is
resolved. We use priority to solve this problem by selecting the involved transaction with the lowest
priority (i.e., the highest timestamp) as the victim o abort. Hence, the site which detects the deadlock
first can start the deadlock resolution right away. It does not need to worry about whether other sites may
detect the same deadlock and they may select a different victim to abort because there is only one lowest
priority transaction in the deadlock cycle. With regard to the redundant transaction abort messages, our
algorithm simply discards them, In fact, the operation of a transaction abort in our algorithm is idempo-
tent since the restart of an aborted transaction does not use the same transaction identification (times-
tamp). :

It is also possible for those sites which are involved in a deadlock or those sites which have transac-
tions that own share locks on the same data items locked by the members of a deadlock, to contain out-
of-date, invalid transaction PRAGs due to the abort of the deadlock victim and the unpredictable delays
. of message passings. Thus, in our algorithms, when a TM detects a deadlock and starts the deadlock reso-
lution, transaction PRAG clean-up messages are sent to other involved siles as well. This implies that
there are possible redundant clean-up messages queued up on a deadlocked site. Fortunately, the opera—
tion of clean-up in-our algorithms is idempotent too.

In our algorithms, the transaction PRAG update messages and ciearmp messages stop their propaga-
tions when the target transactions of the messages are active or waiting but the messages do not affect
their PRAG trees (i.e., their PRAG trees are already up-to-date).

Because our algorithms use edge-chasing mechanism to build up PRAG trees and we don’t allow
any transaction in waiting state to abort itself, the PRAG trees would truly record the wait-for relationship
among existing transactions. Though, some PRAG trees may not reflect the current state of the system
due to message delays, none of them would contain "invalid" wait-for information among existing tran-
sactons. The only possible invalid wait-for information recorded in a transaction PRAG tree comes from
a deadlock resolution. When the system is resolving deadlocks, the out-of-date wait-for data in a

21-

transaction PRAG tree due to the abort of a deadlock victim (nonexisting) can only result in the detection
of a phantom deadlock. In other words, the first criterion of algorithm correctness: no undetected |
deadlocks, is met in both algorithms. The formal proof of the correctness of probe based edge-chasing
algorithm can be found in {Chan82}. In terms of detecting a deadlock, our algorithms works the same as
Chandy’s algorithm if we consider PRAG update messages the same as probe messages. The differences
between theirs and ours are that their algorithm is only for deadlock detection, hence it avoids dealing
with the problems of deadlock resolution that would affect the subsequent deadlock detections, and that
their algorithm tends to send more probe messages (more cost) and is slower to detect a deadlock (more
delays) than ours.

Can our algorithms satisfy the second criterion of correctness: no false deadlocks? If our algorithms
had separated deadlock detection from deadlock resolution and during the deadlock resolution those
deadlocked sites were halt (i.e., no active transactions were allowed to proceed untl the deadlock was
resolved), then the second criterion of correctness were ease to met. Because our algorithms use 2PL to
synchronize the accesses of data items in the database, unless spontaneous transaction aborts occur due to
site failure, it is impossible to have phantom deadlocks [Berm87]. However, the algorithms would be
mediocre. As a matter of fact, our algorithms aggressively integrate deadlock resolution into deadlock
detection. They allow the deadlocked sites to continue processing of active transactions. while the
deadlock resolution is underway. Also, they allow data locks to be exclusive (write) locks or share (read)
locks. The first algorithm minimizes the cost and the delay of detecting and resolving a deadlock, but
fails to guarantee that every deadlock it has detected is a true deadlock. The second algorithm achieves
the goal of detecting no false deadlocks by validating each deadlock cycle it detects before starting a
deadlock resolution.

Although the first algorithm has the problem of possibly detecting phantom deadlocks due to
unpredictable cleanup message delays and the acquisitions of share locks by some deadlocked transac-
tions, we believe that the probability of detecting a phantom deadlock which could resuilt in an unneces-
sary transaction abort, would be very low. In our algorithm, when a deadlock cycle is detected, the
cleanup messages are multicasted to all the involved deadlocked sites before the deadlock victim is actu-
ally aborted. The process of cleanup should be very efficient because cleanup messages are processed in
parallel, not in a slow, serial fashion. Besides, when multiple sites detect the same deadlock cycle, an
identical victim is selected to abort. Thus, even though the deadiocks they detect are phantom deadlocks,
no additional transactions are aborted for this kind of phantom deadlocks. Furthermore, the out-of-date
PRAG information can only leak out of the deadlock cycle through the share locks, not through the tran-
sactions involved in the deadlock. Because when a deadlock cycle is broken, the transaction wait-for
states in the cycle remain unchanged except the transaction which was waiting for the aborted victim.
This transaction becomes the end transaction of a wait-for chain, If this transaction obtains the released
lock and becomes active then it will throw away any out-of-date PRAG update messages it receives 1o

- stop the propagation. If it remains waiting because the released lock is assigned to somecne else then any
out-of-date PRAG update messages will eventually stop there as well. Because when the invalid update
message arrives, the same deadlock will be detected again and another round of redundant, harmless
deadlock resolution will begin. Therefore, the invalid PRAG information will remain inside the deadlock
cycle until it is cleaned up, if there are not any share locks involved in the deadlock. All of these cer-
tainly reduce the probability of detecting a phantom deadlock which would cause unnecessary transaction
abott.

Based on the first algorithm, we know that a detected deadlock cycle could be a phantom deadlock
and since a true deadlock would be persistent, the second algorithm validates each detected deadlock
cycle to eliminate the possibility of detecting phantom deadlocks. The validation procedure is very
efficient as well. Like the cleanup messages, the validate messages are multicasted to every site that is
involved in the deadlock cycle. Therefore, we minimize the extra delay of detecting a true deadlock to
not greater than the worst-case round-trip message delay in the system. However, due to the validation
delay, the algorithm becomes more complicate. Two intermediate states are needed during the process of

22

validation. While a TM detects the forming of a deadlock cycle in one of its transaction {active or wait-
ing) PRAG trees and starts the deadlock validation, it needs to keep that transaction PRAG tree up-to-date
during the validation, if there are any related transaction PRAG update messages arrive. Otherwise, some
useful wait-for information may be lost such that the phenomenon of undetecting true deadlocks may
arise. Also, after the validation, if the deadlock is proved to be false or the transaction is not the victim of
a true deadlock, we need to search the PRAG tree again to make sure that there is no other cycle exists
before we release the leash of updates propagation. This becomes necessary for the second algorithm
because the PRAG updates during the validation delay could form another deadlock cycle. Even though
the deadlock validation itself can cleanup out-of-date information from the existing transaction PRAG
tree if the deadlock is proved to be false, we don't bother to eliminate the cleanup process from the algo-
rithm because we think that the cleanup process can prevent a lot of expensive but unnecessary deadlock
validations from execution.

Our algorithms present a simple solution to both problems: deadlock detection and deadlock resolu-
tion. When a deadlock resolution starts, the deadlocked sites need not put other active transactions on
halt or prevent new transactions from being initiated until the deadlock is resolved. They do not throw
away those accumulated, useful PRAG trees either, as long as they remain valid after a victim is aborted.
By utilizing the same PRAG information, the algorithms can detect subsequent deadlocks very fast and
minimize the cost of communications to a great extent. It makes the separation of deadlock detection and
deadlock resolution totally unnecessary.

- Our algorithms use an event-driven, message passing, client-server model to accomplish the distri-
buted decision making. Every process is triggered by an event. Once a process receives the triggering
message, it does not need any more information through communications to make progress. Once a pro-
cess completes its task, it either terminates itself or starts other event(s) by sending message(s) to the
appropriate process(es). There are two types of message passing: intra-site and inter-site message pass-
ing. We shall only consider the cost of inter-site communications. Most of the messages used in our
algorithm can be either intra-site or inter-site. The size of each message varies. Since for typical applica-
tions, over 90% of WFG cycles are of length two [Bemn87], most of the PRAG trees we use in our algo-
rithms is very small. This implies that most of the messages generated by our algorithms will not exceed
the size limit of a message packet imposed by the underlying communication links. Thus, although we
generate PRAG update messages instead of probe messages for detecting deadlocks, the message size
overhead shall be ignorable. Whereas, the savings on reducing the number of inter-site messages and on
the quickness of detecting a deadlock and resolvmg it, far outweigh the extra cost of using larger mes-
sages. .

6. Comparisons with Other Distributed Algorithms

-In this section, we compare our algorithm to other distributed deadlock detection (with/without
deadlock resolution) algorithms. The comparisons are based on the four classes of distributed deadlock
detection algorithms, defined in [Knapp871.

6.1, Comparison to Edge-chasmg Algorithms

In [Chan83], an edge-chasing distributed deadlock detection algorithm was presented in a similar
resource model. We would use our model to interpret their algorithm. We don’t intend to compare the
differences between their model and our model.

In order to determine if a waiting transaction is deadlocked, its TM initiates a probe computation. In
a probe comiputation, controllers (TMs + DMs) send messages called probes to one another. A probe is a
triple (i, j, k) denoting that it belongs to a probe computation initiated for transaction i, and is being sent
from TM j to DM k or from DM j to transaction k. Probes are concermned exclusively with deadlock
detection and are distinct from resource requests and replies. Probe computations may be initiated for
several transactions by their TMs when these transactions become waiting, and the same transaction may
have several probe computations initiated for it in sequence.

-23.

Their algorithin works as follows. When a transaction becomes waiting, its TM initiates a probe
computation for it and sends a probe message to the DM, where the waiting-for resource resides. The
DM updates and passes the probe message to the TM, where the holder (transaction) of that resource
resides. The TM records the dependency of the two transactions. If the holder transaction is active then
the probe message is discarded; otherwise, if the dependency is a new one, then the TM updates and pro-
pagates the probe message to the DM, which has the resource that is requested by the holder but owned
by other transaction, and so forth. Notice that the initiator (transaction) in the probe computation is never
changed. When a waiting transaction becomes active, its TM discards all the recorded dependency data of
that transaction. It follows that if the TM of the initiator receives a probe (i, j, i) for any j, then a deadlock
is detected.

When we compare their algorithm to our algorithms, the differences are as follows. They use fixed
length probe messages and we use variable length PRAG update messages. They need an guxiliary
dependency set for each transaction to record which transactions are waiting-for it. We don’{ need those
since the PRAG trees have that kind information already. The number of PRAG update messages gen-
erated by our algorithms is less than the number of probe messages generated by theirs, Because our
algorithms detect a deadlock as soon as the deadlock cycle is formed, the PRAG update computation need
not go back to the initiator site. In their algorithm, a deadlock is detected whenever the first probe com-
putation completes its cycle. For example, in the case of an active transaction making a request that
forms a deadlock cycle, our algorithms will detect the deadlock immediately without any message
exchanges. But, their algorithm needs to start a complete round of probe computation in order to detect
the same deadlock. Their algorithm is only for deadlock detection because it lacks of enough information
t0 know which transactions are actually involved in the deadlock. Therefore, it cannot select a proper
victim to start the deadlock resolution. On the contrary, our algorithms can resolve deadlock immediately
after the deadlock cycle is found. There is no need to have a separate phase for deadlock resolution. This
further speeds up detection and resolution of future deadlocks.

In {Sinha85], another edge-chasing algorithm was presented. It was a priority based distributed
deadlock detection algorithm. I tried to reduce the number of probe messages generatéd for probe com-
putations by introducing priorities (timestamps) for transactions and only allowing those transactions that
have antagonistic conflicts 10 initiate probe computations. An antagonistic conflict occurs when a transac-
tion waits for a data item locked by a lower priority (younger) transaction. The algorithm provides
deadlock resolution as well. However, the algorithm was proved incorrect by [Chou89]. It fails to satisfy
both criteria of correctness: no undetected deadlocks and no false deadlocks.

In [Chou89], a modification to Sinha’s priority based probe algorithm is proposed to correct the
problems they identified. But, the modified algorithm has to separate deadlock detection from deadlock
resolution again and the message overhead is greatly increased because after a deadlock is resolved, all
members of the cycle discard all the probes from their probe queues and thus, probes need 10 be
retransmitted. In addition to the delay introduced due to reinitiation and retransmission of probes, the
modified algorithm also "suggests” that a deadlock victim releases its resources only after its cleanup
message retumns to itself. Therefore, transactions waiting on resources held by the victim cannot acquire
the resources even though the deadlock has been detected and resolved. This further increases the delay
of deadlock resolution. In addition, their cleanup method has to chase the edges of deadlocked TWFG
again due to the lack of TWFG information. This is a serial method. It is slow and affected by the length
of deadlock cycle. And the suggestion of waiting for the cleanup message to return to itself then the
deadlock victim can release its resources, is incorrect either. Because when a deadlock victim receives its
own cleanup message, it still can not guarantee that the cleanup process is done. That means their algo-
rithm will suffer phantom deadlock problems as well. we believe that our algorithm not only would out-
perform their algorithm but also is casier to implement.

.24.

6.2. Comparison to Path-pushing Algorithms

The basic problem for a path pushing algorithm is that in general each site does not know where to
send its paths. If each site needs to send its paths to all other sites then the communications cost could
easily overshadow the benefit of detecting short deadlock cycles more quickly [Bern87]. In {Ober82], two
optimizations that reduce the path pushing message traffic are employed. One optimization ensures that
potential deadlock cycle information is transmitted in a single direction along the path of an elementary
cycle. The second optimization uses the lexical ordering of the transaction identifiers to reduce the aver-
age number of messages by half.

A more serious problem is that because each site maintains a local TWFG, whenever a site decides
to push paths to other sites it needs to decompose the local TWFG into paths and selectively sends por-
tions of the list of paths to other sites. Not to mention the overheads of decomposition and optimization,
by the time the pushed paths arrive the destination sites the snapshots of local TWEFGs may be out-of-date
already. Therefore, the problems of failing to detect true deadlocks or detecting false deadlocks or both,
can be found in many path-pushing algorithms. In [Ober82], an unrealistic assumption was made: por-
tions of-the distributed TWFG transmitted as Strings will remain frozen until afier global deadlock has
either been determined or the piece has reached somie "final” destination.

Our algorithms do not maintain local TWFEG on each site. Thus, the path decomposition and push-
ing optimization problems do not exist in our algorithms. It uses edge-chasing mechanism to update tran-
saction PRAGs. If we treat each transaction PRAG update message as a decomposed path then the algo-
rithms always know where and when to push the path. They also know where and when to stop the push.
Therefore, we believe that the message overhead and delay of detecting a deadlock in our algorithm are
lower than Obermarck’s algorithm.,

There are two main approaches to the problem of false deadlocks. The first approach is to treat false
deadlocks as if they were real ones. This approach is acceptable as long as the number of false deadlocks
is low. Our first algorithm is a good example for this approach. It makes the number of possible false
deadlocks be very low. An alternate approach is based on the fact that real deadlocks will persist until
broken. When a deadlock cycle is detected, validation of the transaction wait-for relationships that make
up the cycle can be performed. The proposed approach for validation in {Ober82] is: when a global
deadlock cycle is detected by a given site, it can be validated by sending it to each site, in tum, that con-
- tains a local edge of the cycle. If the cycle constitutes a true deadlock, it will return to the detecting site
for validation of the last edge. Unlike this backward, serial edge-chasing method, our second algorithm
uses a parallel approach to do validation. Our method minimizes the delay of detecting a true deadlock to
roughly a round-trip message delay, no matter what is the length of the validating deadlock cycle.

6.3. Comparison to Diffusing Computation Algorithms

The algorithm in {Chan83] for the communication deadlock model is an application of the diffusing
computation technique. The diffusing computation grows by sending query messages and shrinks by
receiving replies. The communication model is also referred to as the OR model in [Knapp87]. The OR
model allows replicated data items on different sites of the system. Therefore, discovery of a cycle is
insufficient for deadlock detection. Since the basic database models are different, we should not compare
these algorithms. For more detailed information about diffusing computation, see [Chan83], (Knapp87].

6.4. Comparison fo Global State Detection Algorithms

The global state detection algorithms are based on the results developed by [Chan85]. A key notion
of global state detection is that a consistent global state can be determined without temporarily suspend-
ing ("freezing") the underlying database computation. If a deadlock is detected in a "consistent” global
state of the system (a carefully taken snapshot, not an arbitrary snapshot, of the system) then the deadlock
must also exist in the real time. [Chan85] shows how to obtain a consistent global state of a distributed

system by propagating markers along the channels of the system. Since such a snapshot of the system by
definition is a static object, there are no problems in conjunction with message delays. Thus, deadlock
detection becomes much easier. In the context of deadlock detection, the consistent global state canbe a
global TWFG.

If we consider that building up transaction PRAG trees is to maintain a consistent global state of the
system, then our algorithms can be classified as global state detection algorithms. In our algorithms, each
site maintains a table of transaction PRAG trees which is always consistent but may not be current during
deadlock detection time. The only time the transaction PRAG trees may not be consistent is during
deadlock resolution time, However, we have proved that the inconsistency can be fixed by imposing
deadlock validation in our second algorithm.

The global state detection algorithm in [BRA84] is applied to the very generalized distributed data-
base model, the (n,k) model. The (n,k) model allows the specification of requests to obtain any k avail-
able resources.out of a pool of size n. A transaction becomes blocked upon sending out n request mes-
sages. It becomes executing again when it receives k grant messages. Since our algorithms use one-
- resource model (i.e., a transaction can have at most one outstanding resource request at a time), it will be
inappropriate to compare our algorithms to their algorithm here.

7.- Conclusions

In this paper, we have presented two distributed algorithms that solve both deadlock detection and
deadlock resolution problems, using -a simple distributed resource model. The algorithms lay their
theoretical ground on edge-chasing, path-pushing, and PRAGs (Partial Resource Allocation Graphs), in
term of deadlock detection. The first algorithm is very attractive while comparing it to other distributed
deadlock detection algorithms in the literature. Although, it may consume more local memory than other
algorithms since each transaction on a site owns a PRAG tree and the PRAG update messages may be
longer than probe messages generated by other algorithms, the overall benefits are countless, It not only
requires less inter-site message communications but also detects deadlocks and resolves them very fast.
The only drawback in our first algorithm is that it can not completely eliminate the detection of false

deadlocks which may cause unnecessary transaction aborts.

The second algorithm satisfies both criteria of correctness. Unlike the first algorithm, this algorithm
does not start the deadlock resolution immediately when the forming of a deadlock cycle is detected.
Instead, it validates every potential deadlock and only resolves those deadlocks that have been proved to
be true deadlocks. While comparing it to the first algorithm, the second algorithm merely pays the price
of an extra round-trip message delay to achieve the goal of no false deadlock detections. Therefore, while
comparing both algorithms to other algorithms in the literature, we believe that our algorithms have a lot
of advantages in terms of communication costs and the delays of deadlock detection and resolution.

Currently we plan to conduct a performance study on our algorithms and other related distributed
algorithms under the categories such as the algorithm complexity, the average message size, the number
of inter-site messages required fo detect the same deadlock, the memory size required for each site to do
deadlock detection, the time delay to detect 'a deadlock, and the time delay to resolve a deadlock, etc.
With such experiments, we will be able to provide quantitative results to show the power of our algo-
rithms. ,

There are a number of issues remain to be addressed. Future researches should focus on developing
a formal proof of the algorithm correctness, generalizing the algorithms to accommodate the AND model,
the OR model, and the AND-OR model [Knapp87], if possible. Other possible research area is extending
the algorithms to handle site failures and communication failures.

.26-

References

{Bern81] P. A Bernstein and N. Goodman, "Concurrency Control in Distributed Database Systems",
ACM Computing Surveys, Vol. 13, June, 1981.

[Bern87] P. A. Bemstein, V. Hadzilacos, and N. Goodman, Concurrency Control and recovery in Data-
base Systems, Addison Wesley, 1987.

[Bra84] G. Bracha and S. Toueg, "A Distributed Algorithm for Generalized Deadlock Detection",
Proc. ACM Symp. on Principles of Distributed Computing, August, 1984,

[Chan82] K. M. Chandy and J. Misra, "A Distributed Algorithm for Detecting Resource Deadlocks in
Distributed Systems" Proc. ACM Symp. on Principles of Distributed Computing, August,
1982.

[Chan83] K. M. Chandy, J. Misra, and L. M. Haas, "Distributed Deadlock Detection”, ACM Transac-
tions on Computer Systems, Vol. 1, No. 2, May, 1983.

{Chan85] K. M: Chandy and L. Lamport, "Distributed Snapshots: Determining Global States of Distri-

buted Systems", ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1,
F@hnmr}r 1085,

[Chou89] A. N. Choudhary, W. H. Kohler, J., A. Stankovic, and D. Towsley, "A Modified Priority Based
Probe Algorithm for Distributed Deadlock Detection and Resolution”, IEEE Transactions on
Software Engineering, Vol. 15, No. 1, January, 1989.

" "[Chou90] A. N. Choudhary, "Cost of Distributed Deadlock Detection : A Performance Swudy”, Sixth
IEEE International Conference on Data Engineering, Febrary, 1990.

[Ho82] G.S. Hoand C. V. Ramamoorthy, “Protocols for Deadlock Detection in Distributed Database
Systems", IEEE Transactions on Software Engineering, Vol. SE-8, No. 6, November, 1982,

[Knapp87] E. Knapp, “Deadlock Detection in Distributed Databases", ACM Computing Surveys, Vol. 19,
No. 4, December, 1987,

-[Lam78] L. Lamport, "Time, Clocks and Ordering of Events in Distributed Systems", Communications
of ACM, Vol. 21, No. 7, July, 1978.

[Mena79] D. A. Menasce and R. R. Muntz, "Locking and Deadlock Detection in Distributed Databases",
[EEE Transactions on Software Engineering, Vol, SE-S, May, 1979,

[Mltch84] D. A. Menasce and R. R. Muntz, "A Distributed Algorithm for Deadlock Detectlon and Reso-
lution", Proc. ACM Corgf Principles of Distributed Computing, August, 1984.

[Ober82] R. Obermarck, "Distributed Deadlock Detection Algorithm", ACM Transactions on Database
Systems, Vol. 7, No. 2, June, 1982.

[Sing89] M. Singhal, "Deadlock Detection in Distributed Systems", IEEE Computer, November, 1989,

[Sinha84] M. K. Sinha and N. Natarajan, " A Distributed Deadlock Detection Algorithm Based on Times-
' tamps", Proc. of the 4th [nternational Conference on Distributed Computing Systems, IEEE,
New York, 1984, pp. 546-556.

[Sinha85] M. K. Sinha and N. Natarajan, "A Priority Based Distributed Deadlock Detection Algorithm",
{EEE Transactions on Software Engineering, Vol. SE-11, No. 1, January, 1985.

[WuuSS] G. Wuu and A. Bemnstein, “False Deadlock Detection in Distributed Systems", IEEE Transac-
tions on Software Engineering, August, 1985,

w27

