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ABSTRACT

Given a set P of n points in the Euclidean plane, consider the convex polygons determined by
subsets of P. We show that the problem of selecting the k™ largest-area convex polygon is NP-
hard by a reduction from the problem of finding the k™ largest m-tple [3] determined by m sets
X1.X3....,X,. The problem of finding the convex polygon with k* largest area was
introduced by Chazelle [1] as an example of a multidimensional selection problem for which the
time complexity of selecting the median seems inherenily difficuli,

Introduction

The following open problem was submitted by B. Chazelle {1]: given n points in the Euclidean plane, how
hard is it o compute the k™ largest-area convex polygon formed by any subset of the points? We answer this

question by proving that this problem is, in fact, NP-hard.

Geometric selection problems are of relatively recent interest, and there are basically two paradigms for
constructing efficient selection algorithms. The first of these was introduced by Chazelle [1], but it has roots in
earlier selection literature. This technique consists of mapping the geomelr_ic problem onto some type of
constrained matrix with a known sublinear-time selection algorithm. The second technique was introduced by [2]
and is based on the idea of using parallel algorithms to create efficient sequential algorithms [S]. [6] describes and

applies both techniques to construct selection algorithms,

Chazelle noted that for the problems he studied, the time complexity of selecting the largest or smallest

element (extremal selection) was approximately the same as the time complexity of selecting the median. At the



end of his paper, Chazelle mentioned the largest-area convex polygon problem as one in which the extremal cases
are computationally tractable, but for which the selection of the median seems difficult. Note that, disregarding 2-
gons, the smallest-area convex polygon determined by a set of n points in the plane is given in O(n?) time by the
smallest-area triangle, and the largest-area convex polygon is given in O(n log n) time by the convex hull. For

general &, we show that Chazelle was correct in suggesting that the problem is inherently difficult.

The Result

We show that the problem of finding the k™ largest-area convex polygon determined by a set of » points in
the Euclidean plane is NP-hard by reducing the problem of finding the k* largest m-tuple. We begin with a precise

statement of both problems; notationally, let conv (P) denote the convex hull of point set P.

k* LARGEST m-TUPLE [3,4]

INSTANCE: Sets X1.X,,....X,cZ" asizes(x)e Z* foreachx € X;, 1 i <m, and positive integers k and B.

QUESTION: Are there k or more distinct m-tuples (x1,%5,....X,) in X, XX, % -+ xX,, for which is(x,—) zRB?

i=l

k" LARGEST-AREA CONVEX POLYGON

INSTANCE: Set P of n poinis in the Fuclidean plane, positive real B.

QUESTION: Are there & or more distinct subsets P ¢ P for which P’ equals the extreme points of conv (P*) and

the area of conv (P") is greater than or equal to B?

It is not clear whether the k* largest-area polygon problem is in NP.

‘The transformation is based on the the following idea. Consider a circle of large radius centered at the origin,
and place a representation of each set along the circumference at intervals of —-25— radians, starting from polar angle
0. In addition, place "enforcing” points along the radius of the circle at intervals of %:i radians, starting at polar

angle 7’;— More precisely, let 8=max{s(x):x € Xy - 1 Xn}, and let the radius of the circle be r. Input



element x; € X;, s(x;) = o, is mapped to the point with polar coordinates (r +%§-, 2’5—‘-), so that the representation

of set X; is placed along the line segment with endpoints (r,gﬁ-i) and (r+~g~, %). The m enforcers are located at

positions (r, 2t ;;1 i

). We refer to the points (r, %) as basepoints,

Call a subset of the transformed point set good if it contains exactly one point from the image of each input
set as well as all of the enforcers; otherwise, the subset is called bad, Note that a bad subset may or may not
determine a convex polygon--those that are not the extreme points of a convex polygon were carefully excluded in
the definition of the probiem, If we assume that ¢ is large enough so that the enforcers are not contained in the

convex hull of the points (r+%, -21-)11—”), then the convex polygons determined by good subsets can be put in a one-

to-one correspondence with the m-tuples, In addition, the value of ¢ is chosen so that the area of a convex polygon
determined by a good set of points is strictly larger than the area of a convex polygon determined by a bad set of
points.
Lemma 1: Let A, be the smallest possible area of the convex hull of a good set of
points, and Iet A, be the largest possible area of the convex hull of a bad set of points,

provided the bad set consists of the extreme points of its convex hull. Then for every r there
is a sufficiently large ¢ such that A, > A,.

Proof: The area of the smallest polygan determined by a good set of points, A,, is strictly larger than the area

of the convex hull of the basepoints, A = Zmrzsinwéﬁmmcosa%. An overestimation of the largest possible convex

polygon corresponding to a bad set of points is given by the convex hull of a set of 2m—1 points at distance r+~—£—

from the origin. This area is

2m(r+2 )28 S~ — (r+)2sin (1 ~ cos—),
¢ 2m 2m ¢ m m
which can be written' as

2mr? .. = T 2,4 Lo, T n
2 —_ e (A i e — ).
. ( +C)sm2 cOs r (1+c) sin—(1 — cos—)

Algebraic manipulations show that this sum is strictly less than A whenever

A+
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As a result, the area of the convex polygon determined by a particular subset of points is greater than or equal
10 A if and only if the subset is good. We now show that the area of a good set of points accurately refiects the sum

of the corresponding m-tuple.

We define a canonical wedge to be the triangle formed by enforcer {r, Q%})_n), basepoint {r, %—?—) and

point (r+-§£~, 2’2‘5)_ The intent is to have the area of this wedge represent %. That is, the convex hall of the
o

50 2—;?—) should have an area which is a constant times ¢ units larger than the area A.

basepoints and point (r+
The area of the canonical wedge is calculated as follows. The base of the canonical wedge is the line

I

2m

. The angle at basepoint (r, _Z;J_n_n_) is £+-::? As a result, the

connecting the basepoints, and it has length 2rsin )

height of the cancnical wedge is %gwcos%, so the area of the canonical wedge described above is

r 2 sin—2-cos -
S 2m m’

This observation and the lemma are used to derive the stated reduction.

Theorem 1: The problem of finding the polygon with k% largest area is NP-hard.

Proof: For input sets X;,...,X,, m = 2, use the mapping above to construct an instance of the k™ largest-area

_convex polygon problem. If ¢ is large enough so that the enforcers are outside the convex hull of the points

(r+%, %:1—7:), then, by Lemma 1, one can increase ¢ so that all convex polygons determined by bad point sets have

area strictly less than A, the area of the convex hull of the basepoints. Furthermore, all convex polygons determined
by good point sets have area larger than A, so each m-tuple can be matched with a convex polygon whose area is

greater than A.



m
Suppose that for a given m-taple, (x1.X2,. %m), $(x;} = o, and ¥ oy =B. Then the area of the corresponding

i=]

o,r

2
5 stinwﬁmcos%. Consequently, if there are k m-tuples whose

m
polygonis A + B, B'=¥.2r 50 S~

i=1

T T i
e oo =B 52
szn2 cos Y
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sum is B or larger, then there are exactly &k convex polygons with area A + B or larger. On the other hand, a

polygon whose area is equal to A + B’ corresponds to a subset whose sum is Es {(x;) = B, so if there are &k polygons

i=l
with area A + B’ or larger, then there are k m-tuples whose sum is B or larger. In conclusion, the test for whether k
or more m-tuples have sum greater than or equal to B is resolved by testing whether or not there are & or more

convex polygons in the transformed problem with area greater than or equal to 4 + B’. [

Remarks

The enumeration problem corresponding to the problem of finding the £* largest m-tuple, "How many
distinct m-tuples have sum greater than or equal to B?" is #P-complete. Our transformation to the k™ largest-area
convex polygon problem is parsimonious [3] in thg sense that the number of m-tuples with sum greater than or equal
to B is precisely the number of convex polygons with area greater than or equal to A + B’. As a result, the
enumeration problem, "How many convex polygons determined by subsets of P have area greater than or equal to

BY" is #P-hard. Since it is easily seen to be in #P, the enumeration problem is #P-complete,

We also remark that it is possible to construct a psendo-polynomial time algorithm for the &™ largest-area
convex polygon problem. For a given set of points, algorithm SELECT has time complexity which is a polynomial
in k and n, assuming that we can add and multiply real numbers at constant cost (see Figure 1). If we don’t make

this assumption, an appropriate adjustment to the time complexity can be made.

The general idea of this algorithmis to list & point sets whose convex hulls fort k distinct convex polygons of
area greater than or equal to B. If fewer than k point sets are listed, then the corresponding point set has fewer than
k distinct subsets that determine convex polygons of area greater than or equal to B. The method of enumerating
subsets starts with the convex hull of P; it is clear that the convex hull of the point set has the largest area. It is also

clear that only candidates for the convex polygon with second largest area are the convex polygons determined by



SELECT (P, B, k)

0.8 0
1. Consguct conv (P}

2. If area(conv (P)) = B then
Add P to expand -queue

Add P 10 checklist
Fekt+]
3. While expand ~quene = & and k" < k
3a. Dequeue front element P’ from expand —queue
3b. For each extreme point p in conv (P")
3ba. Calculate conv (P'—p)
3bb. i area (conv (P'—p)) =B and

P’—p is not in checklist then
Add P'~p to expand —queue
Add P'—p to checklist
Fek+1

4. 1f & = k then
Return ("yes™)
Else
Return ("no")

Figure 1 — Algorithm SELECT

removing an extreme point from the convex hull. There are two possibilities for the convex polygon with third
largest area. One possibility is that it is one of the convex polygons determined by removing an extreme point from
the convex hull of P, and the second possibility is that it is one of the convex polygons determined by removing an

extreme point from the polygon with second largest area. Algorithm SELECT systematically implements this idea.

With each iteration, an extreme point is removed. If the convex hull of the remaining point set has area
greater than or equal t0 B, it is added to the queue for later expansion. Otherwise, it is the case that the convex hull
has area smaller than B, so no subset determines a convex polygon of area greater than or equal to B. At most &
convex polygons are expanded, and the maximum length of the expand —queue is k. Inspecting the checklist 1o see
whether a set of points was previously expanded takes O(nk) time. One may find the convex hull of a set of points
in O(n log n) time, and then calculate the area by triangulating in time O (n). The overall time complexity of this

procedure is therefore O(kn? log n + k2n?), which is bounded by a polynomial in # and k. Good choices for data

.6



structures and a more careful enumeration of the points would decrease the time complexity.
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