
The NAS Parallel Benchmark Kernels in MPL

Adam Ferrari, Adrian Filipi-Martin, and Soumya Viswanathan

[ferrari,adrian,vsv5y]@virginia.edu

Department of Computer Science, University of Virginia

Charlottesville, Virginia 22903

CS-95-39

September 1995

Abstract

The Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks are a set of
algorithmically specified benchmarks indicative of the computation and commu-
nication needs of typical large-scale aerodynamics problems. Although a great
deal of work has been done with respect to implementing the NAS Parallel
Benchmark suite on high-end vector supercomputers, multiprocessors, and multi-
computers, only recently has the possibility of running such demanding applica-
tions on workstation clusters begun to be explored. We implemented a subset of
the NAS benchmarks using the Mentat Programming Language, and ran perfor-
mance tests on a cluster of workstations using the Mentat system. We compared
our performance results to previous NAS benchmark tests using the Parallel Vir-
tual Machine (PVM) system in a similar hardware environment. We found that
due to algorithmic improvements, efficient communications provided by the Men-
tat system, and low introduced overheads even at the higher level of program-
ming abstraction provided by Mentat, we observed significantly improved
performance in a number of cases.

The NAS Parallel Benchmark Kernels in MPL 2

1. Introduction

The Numerical Aerodynamic Simulation (NAS) Program is an ambitious effort to signifi-
cantly advance the state of high performance computing in order to facilitate research and devel-
opment in the area of aerospace engineering.Towards this end, NAS has put forth the NAS
Parallel Benchmarks, a collection of five kernels and three full applications indicative of the com-
putation and communication needs of typical large-scale aerodynamics problems. These bench-
marks are unique in their “pencil and paper” specification - the requirements, input sets, and
reference results are describe entirely in [1]. This strategy is desirable in that it allows the pro-
grammer freedom to exploit the strong points of a target system while not being constrained by
code portability issues. The algorithmic specification does introduce additional demands on pro-
grammer expertise, however, which can seriously affect the performance achieved on a given sys-
tem.

Although a great deal of work has been done with respect to implementing the NAS Paral-
lel Benchmark suite on high-end vector supercomputers, multiprocessors, and multicomputers,
only recently has the possibility of running such demanding applications on readily available
workstation clusters begun to be explored. Previous work in this area using the PVM[2] system
demonstrated the feasibility of achieving performance levels within an order of magnitude of a
Cray Y/MP-1 using a cluster of 8 mid-range workstations[3]. Unfortunately, the implementation
of these relatively complex parallel applications is a difficult task in a low level programming
environment such as PVM. In PVM, the programmer implements a set of cooperating processes
which interact using send and receive primitives. Managing the state of such a collection of dis-
tributed, asynchronous processes “manually” is naturally quite difficult.

Given the great deal of computing power available in relatively inexpensive workstation
clusters, and the degree to which the available performance is constrained by the complexity
involved in low level message passing systems, it is clearly desirable to investigate the utility of a
higher level programming model for use in such environments. A natural candidate for such an
investigation is the Mentat system and associated Mentat Programming Language (MPL). MPL is
an object-oriented language based on C++ intended to simplify the design and implementation of
parallel programs. The programmer specifies C++ classes (with slight modifications) whose
member functions may operate with various degrees of concurrency, yet may be used in the same
natural fashion as sequential C++ routines[4]. The MPL compiler translates Mentat Programming
Language code, and generates standard C++ source with embedded calls to Mentat system library
routines. When the program runs, these embedded library calls interact with the Mentat run-time
system to handle data dependencies, message passing, scheduling, and synchronization. This run-
time system employs a macro-dataflow model which defines program execution as a dynamically
constructed graph of data dependencies and computation vertices.

This model offers an attractive balance between exploiting the programmer’s knowledge
of the application and the compiler’s ability to manage a complex state space with communication
and synchronization constraints. We investigated the utility of this environment by implementing
a subset of the NAS Parallel Benchmark suite in MPL. The use of a higher level programming
system typically implies additional overhead, but often allows algorithmic refinements that would
have been difficult to perceive at a lower level. It was our hope to find cases where higher levels
of sophistication allowed performance improvements over the low-level, raw speed strategy.

We found that our results were quite positive. In some cases, performance reported for the
low level PVM implementation was quite similar to our own, as no significant basic algorithmic

The NAS Parallel Benchmark Kernels in MPL 3

improvements were found. In other cases, most notably the integer sorting example, our perfor-
mance significantly exceeded that of PVM. These speedups were due to algorithmic optimizations
and refinements. Our overall conclusion was that, while the raw computational power available
on workstation clusters is quite significant, harnessing this power is a difficult task which will be
made more tractable by a high level programming system such as Mentat. Before discussing our
performance results at length, we move to describing the benchmark kernels implemented and our
experiences porting them.

2. Overview of Implemented Kernels

We implemented a subset of the NAS kernel level benchmarks consisting of the Embar-
rassingly Parallel Kernel (EP), the Integer Sorting Kernel (IS), the Multigrid Solver Kernel (MG),
and the Conjugate Gradient Solver Kernel (CG). We now describe each of these benchmark ker-
nels and our experiences implementing them in MPL.

In general, we took the strategy of modifying working versions of the code provided by
NAS in order to ensure adherence to the NAS rules and specifications, and in hopes of avoiding
duplication of much of the sequential numeric code already written for this benchmark set. We
obtained versions of the entire benchmark suite implemented sequentially, for the Intel iPSC/860,
and for PVM. The iPSC/860 and PVM versions are in most cases nearly identical. In some cases,
these “legacy” codes were written in Fortran77 and were not suitable for code re-use. In all cases,
however, the NAS implementations were a great aid in determining opportunities for parallelism.
In all cases, we chose to parallelize the same elements of the benchmark as the NAS implementa-
tions, the difference primarily lying in the mechanisms used for expressing parallelism.

2.1. Kernel EP

Problem Description
The first and simplest benchmark implemented was the Embarrassingly Parallel Kernel

(EP). The algorithm required by EP involves the generation of pairs of Gaussian random deviates
and the tabulation of the number of pairs in successive square annuli. This process is performed
by selecting random pairs (x, y) wherex andy are evenly distributed on the interval (-1, 1). If the
inequality is satisfied, independent Gaussian deviatesX andY with mean zero
and variance one are generated by letting

After all such pairs are generated, the number of pairs lying in unit width square annuli centered
at the origin (within 10 units on each dimension) must be tabulated and output along with and

 over allX and Y. All operations from start to finish should be timed.
This algorithm is termed “Embarrassingly Parallel” as it requires minimal communication

among processors operating in parallel to perform the required calculations. Since there are no
inter-iterational dependencies, processors may simply execute a portion of the iterations in paral-
lel, and combine results at the end. This problem is representative of a large class of Monte Carlo
simulations.

t x
2

y
2

+ 1≤=

X x
2 tlog–()

t
-----------------------= and Y y

2 tlog–()
t

----------------------- .=

ΣX
ΣY

The NAS Parallel Benchmark Kernels in MPL 4

Code Description
Our Mentat version of EP employs a regular Mentat object class with a single public

member function to perform the prescribed computation. This mentat class is called ep_object
and its public interface is the single member function kernelEP(). This member function
accepts a record containing the range of iterations to perform, and returns a record containing the
10 sums described above and the object execution time. The ep_object has private member
functions which implement the random number generation process described in [1].

The user interface to our Mentat EP kernel is implemented in the ep_driver program.
This simple program accepts user input of the problem size parameters, generates the work parti-
tions for the specified number of object invocations, invokes the kernelEP() member function
the appropriate number of times, then gathers reference counts and performance results.

This simple version of the EP benchmark could be improved to allow objects to perform
dynamic self scheduling or some other load balancing scheme, as load balance is certainly the pri-
mary issue for good performance here. Planned enhancements to the Mentat scheduling facilities
in the near future (such as sender initiated dynamic scheduling for regular objects) may address
this problem transparently to the use code.

2.2. Kernel IS

Problem Description
The Kernel IS benchmark is a parallel sort of N integer keys in a specified range meant to

capture characteristic behaviors common to “particle method” codes. The keys to be sorted are
generated by a sequential algorithm and then uniformly distributed among any worker processors,
except in the case that the number of keys does not divide evenly. In this case, one worker will
receive slightly fewer keys, as specified in the NAS benchmark. The initial distribution of these
keys over the processors is rigidly specified as it can greatly affect the performance of the bench-
mark.

Throughout the duration of the benchmark, the value associated with each key may never
move from its originating worker’s memory. Instead, copies of the keys are transferred, and ranks
for each key are computed (i.e. what the resulting key index would be in a sorted array). The
resulting ranks need not correspond to a stable sort. An outline of the algorithm is:

1. Sequentially generate the keys on a single worker.
2. Distribute the keys to the other workers.
3. Begin timing.
4. do i = 1...10

a. Modify the sequence of keys, making the following two changes:

b. Compute the tank of each key, as described below.
c. Perform a partial verification test.

5. End timing.

As indicated, this ranking process must be performed 10 times during the course of the
benchmark, using an NAS specified permutation of the array for each iteration. As a direct result
of the nature of this algorithm, it is expected that the majority of its run-time in a distributed envi-

Keyi i Keyi 10+ 219 i–←,←

The NAS Parallel Benchmark Kernels in MPL 5

ronment will involve network communication. The pattern of communication is a fully connected
graph with communication typically being frequent and relatively low-volume. As a result, this
algorithm is better suited to shared memory systems. Despite this fact, the benchmark is very use-
ful for comparing the relative communication overheads of different distributed memory parallel
processing systems.

Code Description

The basis of our implementation was the PVM version of the kernel used to generate
results reported in [2]. This code was written in ANSI C and thus provided us with a direct
launching point for the C++/MPL version. During the course of the implementation, we devised a
number of refinements which resulted less overall communication. The work of the benchmark is
encapsulated in the sequential mentat class, is_object. A front end driver program,
is_driver, was implemented to interact with the benchmark user, initialize worker objects,
and gather performance results.

It is worth noting that because of the specified key generation scheme, there is an uneven
distribution of keys. Because the range is 16 times smaller than the number of keys, and the keys
are generated using a linear congruential recursion random number generator, there will be more
numbers in the middle of the range. As we will describe, this has load balance implications for our
implementation which are not addressed. This is an area of possible improvement in our version
of IS.

The basic job of the is_object is to perform the key ranking phase described above in
parallel. In order to achieve data parallel style execution of this activity, objects are assigned sub-
ranges of the global key range which they are responsible for ranking. Prior to the ranking phase,
the objects send copies of all local keys in the appropriate range to the object at which they should
be ranked. Similarly, each object receives a set of keys from each other object containing keys in
the locally assigned range. After the rankings are performed by each object for their respective
range, the results are returned to their owners and the process is complete. It is in this basic
method where we found the PVM version used un-needed messages requiring extra synchroniza-
tion. Key member functions of the is_object class include:

is_init()
The purpose of this method is to allow the is_driver process to communicate the prob-

lem parameters to the worker objects.

create_seq()
This method is invoked on a designated worker object to perform the sequential key gen-

eration algorithm required by the benchmark. After the keys are generated, they are distrib-
uted to the other workers using the give_sequence() member function.

nas_is_benchmark()
This member function performs the main loop of the algorithm described above. There are

three main activities performed during each iteration in order to facilitate the parallel ranking
strategy. First, the local keys are partitioned into sub-arrays based on the object by which they
should be ranked. After being partitioned, the keys are sent to their appropriate destination
using the give_keys() member function. Next, after all of the keys in the object’s ranking

The NAS Parallel Benchmark Kernels in MPL 6

range have been obtained, the object ranks the keys. This phase represents the computation
element of the benchmark – a relatively undemanding bucket sort which can easily result in a
very fine granularity. The third phase is the transfer of the ranks to the appropriate key owners.

We observed correct reference counts using our version of IS on smaller problem sizes, but had
trouble running the largest problem size due to memory constraints. This problem was also
encountered by the PVM group that reported results for a reduced IS problem size in [2].

2.3. Kernel MG

Problem Description
The Multigrid Solver Kernel (MG) involves executing four iterations of the V-cycle multi-

grid algorithm described below to obtain an approximate solution u to the discrete Poisson prob-
lem

on a three dimensional grid with specified boundary conditions (possible grid dimensions are 32,
64 and 128 and 256). The algorithm starts by setting v = 0 except at certain NAS specified
points[1]. The iterative solution begins by setting u = 0. Each of the four iterations consists of the
following two steps, in which k = log2(grid_size):

 Here Mk denotes the V-cycle multigrid operator, defined to by:

zk = Mkrk:
if k > 1

rk-1 = P rk (restrict residual)

zk-1 = Mk-1rk-1 (recursive solve)
zk = Q zk-1 (prolongate)
rk = rk - A zk (evaluate residual)
zk = zk + S rk (apply smoother

else
z1 = S r1 (apply smoother)

The coefficient vectors A, P, Q and S here are constants specified by NAS. Each vector has
four coefficient values c0, c1, c2 and c3. The c0 coefficient is the central coefficient of the 27-point
operator, when these coefficients are arranged as a 3x3x3 cube. Thus c0 is the coefficient that mul-
tiplies the value at the grid-point (i, j, k), while c1 multiplies the six values at grid points which
differ by one in exactly one index, c2 multiplies the next closest twelve values that differ by one in
exactly two indices, and c3 multiplies the eight values located at grid points that differ by one in

∇2 u⋅ v=

r v A u⋅()–=
u u Mk r⋅+=

The NAS Parallel Benchmark Kernels in MPL 7

all three indices. The residual norm is then calculated using the formula:

The value of this residual should agree with the reference value provided by NAS.

Code Description
The framework of our Mentat MG implementation is a master-worker model employing

data parallel execution. A main driver program calledmg_driver interacts with the user, cre-
ates worker objects, initializes their state and then collects results and reports residuals and per-
formance statistics. The real work of the kernel is encapsulated in themg_object sequential
mentat class. A collection of these worker objects cooperate to perform the multigrid operations
described above. The data movement requirements of this algorithm form a logical ring where
communication is primarily to and from nearest neighbors. The problem data consists of

 grids which are partitioned into chunks where , N being the number
of objects for a given run (i.e. partitioning is done along one dimension only). Any operations on
the border values of a worker objects’s data set require values assigned to another processor. This
implementation resolves this issue by keeping a neighboring processor’s border points “in
shadow” using a scheme to update them before they go out of date.

The mg_object class implements a worker object that will cooperate with other
mg_objects in solving the multigrid problem specified. Thusmg_object contains private
variables and member functions that are required for the execution of the kernel including three
dynamically allocated three dimensional, double precision floating point arrays that representu, v
andr. Private data members also include four statically allocated, single dimensional, double pre-
cision floating point arrays that represent the coefficient vectorsA, P, Q andS. There are also
member variables for the dimensions of the grid, dimensions of each worker’s data set, number of
objects being used, and Mentat names of other workers. The member functions include an initial-
ization function, a function to begin the iterative process, functions for each phase of the V-cycle
multigrid, routines for communication of border values and functions to gather and integrate
norm values computed by each worker. The key member functions of themg_object include:

mg_init():
This function initializes internal data of themg_object class, including the dimension

of the grid (N), and the number of objects used (p).
Once the data members have been initialized, the three 3-dimensional, double precision

arrays are allocated with dimensions . The coefficient arraysA, P, Q andS
are initialized with values specified in the benchmark. Thev grid is initialized with zeroes in
all positions except where specified by the benchmark, where the initial value is either +1.0 or
-1.0 (see the Kernel Description section for details).

kernelMG():
This function encompasses the main operations required to solve the multigrid problem.

First the norm is computed prior to beginning the iterative process. The next step is to go
through four iterations of two main steps viz. evaluating the residual and applying correction
via the V-cycle multigrid operator. The evaluation of the residual is done by functionresid()

r 2 ri j k, ,
i j k, ,
∑

 N3⁄ 1 2⁄=

n n× n× k n× n× k n N⁄=

my_N N× N× p⁄

The NAS Parallel Benchmark Kernels in MPL 8

and function multigrid() carries out the recursive multigrid operations. At the end of four iter-
ations, the norm is computed again and the results are reported.

Once kernelMG() is done executing, the kernel operations have been performed and the
required norm has been computed.

multigrid():
Multigrid() is the implementation of the V-cycle multigrid algorithm specified in the

definition of Mk above. This is a recursive function, where the recursion stops when .
Each phase of the operator corresponds to a different function call. From the definition of Mk,
we see that if , the only operation to be carried is smoothing. This corresponds to the
function smooth(). This function takes two grids z and r and adds the product of the coeffi-
cient vector S and r to z. The product is carried out as a 27-point operator as explained in the
Kernel Description section.

If , then a series of calls are made to functions corresponding to the operations
described above. The first call is to restrict(). This function takes in two grid parameters
rk and rk-1. The size of rk-1 is 1/8 the size of rk. The residual is then restricted by taking the
product of coefficient vector P with rk. Since the dimensions of rk-1 and rk are not the same,
only every other value of rk is considered in the product.

After restricting the residual, a recursive call is made to multigrid(). The function
“recurses in” till . The function then “recurses out” and a function call is made to pro-
longate(). Prolongate() again is a straightforward coding of the prolongate step speci-
fied in Table 2. The next call is to resid(), which evaluates the residual and then a call to
smooth() is made. Once the “recursion out” process is complete, the function multigrid()
ends.

Since this is a stencil problem, all the communication takes place between neighboring
processors and during computation of border values. A worker running on processor p will be
communicating with workers on processors p-1 and p+1, where additions are done modulo num-
ber of processors1. Each worker object has a “shadow region” which contains neighboring values
that it might need and these values are continuously updated. At end of each phase of the V-cycle
multigrid operation, border values have to be communicated.

2.4. Kernel CG

Problem Description
The NAS Conjugate Gradient Kernel (CG) estimates the largest eigenvalue of a symmetric posi-
tive definite sparse matrix with a random pattern of non-zero elements. The basic algorithm
employed towards this end is:

x = [1, 1,..., 1]T;
(start the timer here)
do it = 1, niter

Solve the system Az = x and return as described below

1. Note: The terms worker p and processor p are used interchangeably

k 1≤

k 1≤

k 1≥

k 1≤

r

The NAS Parallel Benchmark Kernels in MPL 9

Record it, , and

od
(stop the timer here)

This process results in the computation of the eigenvalue estimate, and the residual,
on each iteration. The final values computed for these should conform to NAS supplied values.
The solution to the system Az = x is to be performed in the following way

z = 0, r = x

p = r
do i = 1, 25

q = Ap

od
compute residual norm given by

They key opportunities for parallelism in this process are the matrix-vector multiplication (e.g.
the first line of the loop above), dot product (e.g. the second line of the loop above), and vector-
vector addition operations (e.g. the third line of the loop above). NAS rules require that the sparse
array representation data structures used in their sample implementation be used, as well as their
provided Fortran77 routine makea() which constructs this structure.

Code Description
Our code design for CG follows the basic data-parallel master-slave pattern used in the

NAS sample implementation. A cg_driver routine interacts with the user, creates and drives
cg_object workers, and finally gathers performance results. Of the operations mentioned
above, our implementation performs the matrix-vector multiplication and dot product in parallel,
while serializing the vector-vector addition.

The data members of the CG object class include the sparse A matrix being solved (stored
as a one dimensional array of non-zero elements), arrays corresponding to the vectors utilized in
the algorithm above, double precision floats storing the current eigenvalue estimate and residual,
and vectors describing the objects problem partition’s global problem indices. Additional data

ζ λ 1 x
T
z

⁄+=

r ζ
x z z⁄=

ζ r

ρ r
R

r=

α ρ ρT
q

⁄=

z z αp+=

ρ0 ρ=

r r αq–=

ρ r
T
r=

β ρ ρ0⁄=

p r βp+=

r x Az–=

The NAS Parallel Benchmark Kernels in MPL 10

members are included to facilitate cooperation including the number of objects for the run, an
array of other cg_object workers with whom to work, and various performance statistics.

Cg_object member functions are defined which perform the basic state initialization,
computation direction, and result gathering for a worker. Key member functions include:

cg_init():
This is the first member function invoked on a worker object. It sets up the worker’s inter-

nal state, initializes the sparse matrix data structure, then proceeds to perform the main (outer)
loop described above. After the appropriate number of iterations of this algorithm, the object
records its performance statistics returns.

makea():
As mentioned above, this routine is basically a direct, line for line translation into C++ of

the NAS supplied Fortran77 routine which generates the sparse matrix. Technically speaking,
we ought not have altered the original version of makea. The wording of the NAS rules is
quite specific in requiring that the Fortran77 version remain part of the resulting implementa-
tion verbatim. While it is certainly not difficult to link and call Fortran routines from MPL, it
is unlikely that various Fortran compilers would use the same array indexing conventions as a
C++ compiler. Recall that Fortran arrays by default are indexed from 1 to N, while C deriva-
tive languages index from 0 to N-1. While we found that the standard Sun4 f77 compiler did
employ the same array indexing method at the compiled level, we felt that it was safest and
most portable to translate the routine to C++, and in doing so we did not alter the semantics at
all.

cg_solve():
This member function encapsulates the conjugate gradient sparse system solution

described above (the second algorithm given in the problem description).

dot_product():
The first parallel operation performed by the conjugate gradient method solver is a vector-

vector dot product. This member function first computes the local partial dot product, then
employs additional member functions to gather the results at a designated gatherer object,
which sums them and returns the full dot product. While this can result in some speedup given
the large vector size (14,000), in general, this operation is relatively fine grained and would
not likely perform well with large numbers of objects.

matrix_vector_mutiply():
The next operation required by the conjugate gradient method solver loop is a matrix-vec-

tor dot product. This member function employs related member functions to gather a com-
plete copy of the vector multiplicand at all worker objects. Partial vector results are then
computed, sent to a gatherer object, summed sequentially, and distributed to all objects using a
simple gathering member function.

A number of other member functions are included which perform various sequential
numeric operations and performance calculation. While we were able to verify correct execution
of CG for the small problem size reference value provided, we experienced problems running the

The NAS Parallel Benchmark Kernels in MPL 11

full problem size due to it’s very large memory requirements.

3. Performance of Implemented Kernels

We now move to a discussion of the performance results obtained for the kernel set we
implemented. We ran our tests using Mentat 2.8 and the corresponding version of mplc with
“-O2” optimization.The testbed employed was network of eight Sun4c class workstations with 28
Mb of memory each. The network communication was via 10Mbps Ethernet. The eight worksta-
tions were all on the same subnet. Each of our performance tables includes results for PVM on
various platforms (from [2]), the Intel iPSC/860, and a single processor of the Cray Y-MP
(from[1]) for comparison. Our performance numbers reflect the best time of eight runs of each
application in order to mask the secondary effects of varying user load and background processes.

3.1 EP Kernel Performance

Performance results of the EP Benchmark Kernel are largely determined by the processing
power of the hosts used. The main challenge to good processor utilization in this case is load bal-
ance. For example, the PVM implementation employed a 10 second pilot computation to assign

better load partitions to the participating processes. Our implementation could certainly have been
improved by a static run-time scheme such as this, or a dynamic self scheduling scheme.

In our homogeneous, lightly loaded testbed, we saw good processor utilization. In a heter-
ogeneous environment in the presence of widely variable user loads, this version of the code
would likely suffer from poor efficiency. Despite this obvious opportunity for enhancement, we
spent the bulk of our effort on the more substantial kernels. As mentioned, Mentat scheduling
enhancements will soon be available which will improve the load balance of applications based
on regular objects, which will transparently improve the dynamic load balancing properties of this
application.

3.2 IS Kernel Performance

While the benchmark specifications for the Integer Sort NAS Parallel Benchmark call for
two problem sizes, Class A and the larger Class B, our tests were performed on a smaller problem

Platform Time (secs)

Mentat 8 sun4c Ethernet 1429

PVM 16 SS1+ Ethernet 1603

PVM 8 RS/6000 FDDI 342

PVM 8 SGI Gigaswitch 446

Cray Y-MP/1 126

i860/32 102

i860/64 51

i860/128 26

TABLE 1. Kernel EP Results

The NAS Parallel Benchmark Kernels in MPL 12

size. A problem size of integer keys in a range of was run due to memory con-
straints on local machines. A positive side to this problem size was that it allowed a more direct
comparison with the PVM results presented in [2].

Our time for this benchmark reflects a significant improvement over the numbers reported
for all PVM configurations, even those based on much higher-performance communication sub-
strates. This performance gain is a largely a result of improvements in the key ranking algorithm
facilitated by Mentat, which employed fewer barrier synchronization points than the PVM ver-
sion. In addition to this, the Mentat message passing facilities appear to achieve somewhat better
communication performance in this application. Given that this kernel is communication bound,
the improved message passing performance also led to better results.

3.3 MG Kernel Performance

Our MG implementation was similar in its basic algorithm to both the iPSC/860 and PVM
versions, and thus we expected to achieve roughly similar performance. In fact, somewhat
improved performance was observed (note, we did run on processors configured with more mem-

ory than on the comparable PVM configuration). This result indicates an encouragingly low level

*. Reduced problem size (keys in the range 0 to).

*. Reduced problem size ().

Platform
Time
(secs)

Comm.
Volume

Comm.
Time (secs)

Number
of msgs

Mentat 8 sun4c Ethernet 201* n.a. n.a. n.a.

PVM 16 SS1+ Ethernet 607* 150MB 595 10115

PVM 8 RS/6000 FDDI 674 560MB 610 2491

PVM 8 SGI Gigaswitch 770 560MB 720 2491

Cray Y-MP/1 11

i860/32 26

i860/64 17

i860/128 14

TABLE 2. Kernel IS Results

Platform
Time
(secs)

Comm.
Volume

Comm.
Time (secs)

Number
of msgs

Mentat 8 sun4c Ethernet 104* n.a. n.a. n.a.

PVM 16 SS1+ Ethernet 198* 96MB 154 2704

PVM 8 RS/6000 FDDI 229 192MB 162 1808

PVM 8 SGI Gigaswitch 264 192MB 112 1808

Cray Y-MP/1 22

i860/128 8.6

TABLE 3. Kernel MG Results

219 0 219),[

221 219

128 128 128××

The NAS Parallel Benchmark Kernels in MPL 13

of introduced overhead by Mentat as compared to the lower level, hand-coded version of the
application, as well as better communications performance

3.4 CG Kernel Performance

As in the MG kernel case, our CG implementation was quite similar to the provided NAS version
in its exploitation of opportunities for parallel execution. Unfortunately, we observed memory
constraints which prevented running the full sized tests, making performance comparison diffi-
cult. Given the observed results, however, it seems likely that our performance would compare
favorably to that of the PVM implementation.

4. Conclusions

Given these performance results and our experiences porting the NAS benchmarks, we
have concluded that the Mentat programming model was useful in harnessing the available com-
putational power of local workstation clusters and applying that power to realistic scientific appli-
cations. We found the overhead introduced by Mentat was not large when compared to hand-
coded applications using the low level PVM system. In some cases, the higher level programming
abstraction provided a vehicle for algorithmic refinements which resulted in overall improved
performance. Further work on the NAS benchmarks in MPL could include porting the remaining
kernel, a three dimensional PDE solver using forward and inverse fast Fourier transforms, as well
as the NAS application-level benchmarks.

Platform
Time
(secs)

Comm.
Volume

Comm.
Time (secs)

Number
of msgs

Mentat 8 sun4c Ethernet 46.0* n.a. n.a. n.a.

PVM 16 SS1+ Ethernet 701 370MB 480 37920

PVM 4 RS/6000 FDDI 285 130MB 192 7116

PVM 9 SGI Gigaswitch 130 250MB 101 19756

Cray Y-MP/1 12

i860/128 7.0

TABLE 4. Kernel CG Results

The NAS Parallel Benchmark Kernels in MPL 14

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon, at al. “The NAS Parallel Benchmarks”,
RNR Technical Report RNR-94-007, March 1994

[2] V.S. Sunderam, “PVM: A Framework for Parallel Distributed Computing”, Journal of Con-
currency: Practice and Experience, 2(4), pp. 315-339, December 1990

[3] S. White, A. Alund, V.S. Sunderam, “Performance of the NAS Parallel Benchmarks on PVM
Based Networks” Report RNR-94-008, May 1994

[4] The Mentat Research Group, “Mentat 2.8 Programming Language Reference Manual”

[5] The Mentat Research Group, “Mentat 2.8 User’s Manual”

