Experience With The Xpress
Transfer Protocol

Robert Simoncic,
Alfred C. Weaver,
and
M. Alex Colvin

Computer Science Report No. TR-90-30
October 8, 1990

15th Local Computer Networks Conference
September 30 - October 3, 1990
Minneapolis, Minnesota

EXPERIENCE WITH THE XPRESS TRANSFER PROTOCOL

Robert Simoncic, Alfred C. Weaver, and M. Alex Colvin
Computer Networks Laboratory
Department of Computer Science -
Thornton Hall
University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

, This paper discusses our experience in imple-

menting the Xpress Transfer Protocol. XTP is a tran-
sport and network layer protocol suitable for use as a
Safenet Transfer Service in the Navy's emerging
SAFENET specification. We describe the background
of SAFENET and XTP, the essential features of the
protocol, our implementation environment, our com-
munications architecture, the user interface, a descrip-
tion of some working XTP demonstration programs,
and finally some measured performance results.

1. SAFENET

The U.S. Navy is currently developing a
specification for SAFENET (Survivable Adaptable
Fiber Optic Embedded Network) [4,5] which is
intended to address the communications requirements
-of Navy mission-critical computer resources.
SAFENET is a communications architecture which
uses local area networks and .their protocols to provide
connectivity among computer systems. '

: SAFENET provides a protocol architecture as
shown in Figure 1. In the upper layers of the OSI
.- Reference Model (layers 5-7), SAFENET User. Ser-
vices may be provided by either a MAP Application
" Interface (including FTAM and ACSE) in the Applica-
tion. Layer and the standard ISO protocols in the
Presentation and Session layers, or by a Lightweight
Application Interface and Lightweight Support Ser-
vices. In the middle layers (layers 3-4), SAFENET
Transfer Services may be provided by either the ISO
transport (connection-oriented and connectionless) and
ISO network (connectionless) protocols, or by the
Xpress Transfer Protocol (XTP). In the lower layers
" (layers 1-2), SAFENET 1 specifies the IEEE 802.5C
token' ring, operating at 16 Mbit/s, using a dual
counter-rotating ring topology and all fiber optic media.
SAFENET II specifies the ANSI Fiber Distributed Data
Interface (FDDI) LAN, again using a dual counter-
rotating ring topology and all fiber optic media, and
operating at a data transmission rate of 100 Mbit/s.

SAFENET USER] .
.......
wan AmpUCATION | SanTWEGHT [
| .
........ INTERFACE PPLICATION
SO LAYER 1 l
CTAM et .)
7 IR | i |
ACSE
........ sAFENET |
LIGHTWEIGHT
‘SO LAYER SAESENTATION ¥SER
5 LAYER SUPPORT SERVICES
SEAVICES %
-------- . ‘
1SO LAYER 2E3SION . l |
LAYER
5 | ‘
-------- “RANSFER SERVICES INTERFACE 1 r
SO LAYER
s0co 'socL A
4 TRANSPORT | TRANSPORT |
........ XPRESS SAFENET
TRANSFER TRANSFER
180 LAYER CONNECTIONLESS PROTOCOL !
NETWORK IEAVICES
3 pROTOCOL
1SO LAYER LOGICAL LINK CONTROL '
2 ----f---
"""" FODI TOKEN AING SAFENET I
SO LAYER
tAvel LOCAL AREA NETWORK LAN SERVICES
1 ! L
l SAFENET PHYSICAL MEDIUM
.
Figure 1.
SAFENET Protocol Profile

" Since the lower layer services are provided by
hardware and the layer 3-7 ISO protocols are available -
commercially, the research component of SAFENET is
the Xpress Transfer Protocol which spans the OSI tran-
sport and network layers. While the ISO protocols are
provided to achieve interoperability, XTP is included
specifically for real-time applications which typically
néed only the services of the transport layer and below.
The emphasis of XTP is high throughput, low latency,
and close coupling between the (presumably real-time)
application process and its communications server.

The Computer Networks Laboratory at the
University of Virginia, with funding from Sperry
Marine Inc. (Charlottesville, Virginia), the Naval
Ocean Systems Center (San Diego, California), and the
Office of Naval Research (Arlington, Virginia), has
developed two implementations of XTP—one for PCs

running MS-DOS and operating with an [EEE 802.5
token ring, and one for Motorola 68020s running the
'pSOS real-time operating system and using the
Martin-Marietta FDDI LAN; see [7]. The remainder of
this paper describes our implementation experience
with XTP in these environments.

2. Xpress Transfer Protocol

XTP is defined in [8,9] and discussed in [1,2,3];
a 66-page tutorial is provided in [6]. As a transport
layer protocol, XTP has the same overall goal as DoD’s
TCP or ISO's TP4—namely, reliable end-to-end
delivery of information. However, XTP represents a
significant departure from TCP or TP4 with regard to
the mechanisms and services which it provides. These
characteristics are briefly summarized here.

(1) XTP uses a combination header/trailer PDU format.
Since TCP and TP4 are header-based protocols, the
transport checksum can only be located in the header.
This forces the protocol processor to make at least two
passes over the data, one to compute the checksum and
install it in the header, and another to deliver the data to
the network interface. By putting the transport check-
sum in a trailer, XTP can compute the checksum on the
fly, thereby requiring only one pass through the data.

(2) For connection-oriented transport services, ISO
TP4 requires a six-way packet exchange to set up the
connection, send and acknowledge the data, and finally
tear down the connection. XTP provides equivalent
reliability with only a three-way handshake.

(3) In addition to standard error detection and flow con-
trol algorithms, XTP also provides rate and burst con-
tol. XTP allows the receiver to specify a rate
(bytes/second) and burst (bytes/transmission) which the

transmitter may not exceed. Whereas flow control is -

. used to manage the receiver’s buffers, rate control pro-

vides pacing information about the state of the receiv- .
"ing system. Burst control limits the total size of a

multi-packet transmission, which helps prevents buffer
starvation when the receiver must handle back-to-back
packets. -~ . :

(4) TCP and TP4 recover from out-of-sequence data by
using a "go-back-n" protocol; XTP uses selective
~ retransmission. XTP allows the receiver to retain out-

of-sequence data while the transmitter resends only lost
packets, thereby avoiding the retransmission of data
already correctly received.

(5) XTP suﬁpons several addressing modes, including
a-very efficient direct addressing mode, as well as the
standard Internet and ISO Network addressing conven-

tions. Only the first packet on a connection need’

contain the full network address; subsequent packets
refer to that address with a four-byte key field, thereby
reducing overall frame size and address processing
time.

(6) XTP supports multicast. If a single message is to
be sent to n receivers, it can be sent with one multicast

_ transmission rather than n unicast transmissions. Mul-

ticast is valuable for multi-destination file transfer,
RPC-style: transactions, event synchronization, global
time distribution, and management of multiple redun-
dant data objects and devices (e.g., hot spares).

(7 To support real-time communications, XTP pro-
vides an internal priority system. XTP defines up to
2% static priorities, with the lowest numerical value
having the highest processing priority. At every
scheduling opportunity, XTP chooses the highest prior-
ity waiting packet to process next. This scheme.is
operational at both the transmitter and receiver so that
high priority data will not only be preferentially
transmitted, but will also be expedited upon receipt.

(8) Most importantly, all of XTP’s functions can be
described as a finite state machine whose complexity is
compatible with VLSI implementation. XTP is
currently implemented as software, but in 1991 will be
available as a VLSI chip set which interfaces directly
with FDDIL.

3. Environment

Our project for Sperry Marine Inc. was to imple-
ment the XTP portion of SAFENET I in the environ-
ment of personal computers. Our XTP is operational
across a range of low-end and high-end PCs, from the
4,77 MHz Intel 8088 to the 25 MHz Intel 80386. Our
performance measurements were made on a pair of
ALR FlexCache machines which feature 25 MHz
80386 CPUs, 128K of 25 ns cache, and 4 MB of 80 ns

- main memory. Our LAN is the Proteon ProNET-4, an
" IEEE 802.5 compliant token ring operating at 4 Mbit/s.

As reported in a later section on performance, the LAN
interface proved to be the bottleneck in our system, i.e.,
our XTP could generate data faster than the ProNET-4
could accept it.

Our project for NOSC/ONR was to implement

~ the XTP portion of SAFENET II using Motorola

68020s and FDDI. We acquired four identical systems
which duplicated hardware already acquired at NOSC;
these systems included a 9-slot Force VME chassis and
power supply, Motorola 133XT board with 25 MHz
68020 CPU and 4 MB memory, the pSOS real-time
operating system and pROBE real-time debugger from
Software Components Group, and the Martin Marietta

 FDDILAN. ,

4. Software Architecture

4.1 Gengral

The general architecture of the XTP implementa-
tion consists of three layers as shown in Figure 27

S
calls upcalls : contexts
: /I_\ T

request !
eques response fr ames
A

DEVICE PROCESSOR

@ crrerrensnraninianed

Figure 2,
Software Architecture

" The lowest layer is the Device Processor which

is implemented in hardware and drives the Proteon .

ProNET-4 or FDDI token ring. The middle layer is the
Context Processor which implements the XTP protocol
itself. There is a request/response type of communica-
tion between the Context Processor and the Device
Processor and. they both operate on shared data struc-
tures called frames. The highest layer is represented by
our XTP Drivers; Drivers provide various interfaces for
XTP users. The communication between XTP Drivers
and the Context Processor is based on calls and upcalls
- and they both share context structures,

Our XTP implementation provides two different

interfaces for the XTP user: (a) a low level XTP inter-

face and (b) a higher-level XTP Driver. The low level
XTP interface provides access to all the complex ser-
vices that the XTP protocol offers, The user accesses
the Context Processor directly and shares context struc-
* tures with it. In this case the user communicates with

- XTP as an XTP Driver would, Since this interface
reveals all the XTP functions, it ig necessarily complex
and difficult to.use; this interface is primarily intended

~ memory-to-memory transfer,

for knowledgeable programmers and is used to write
XTP Drivers. ' :

Most applications will obtain their communica-
tions services through use of one or more XTP Drivers.
XTP Drivers are implemented using the low level inter-
face and provide a simpler interface for the application
writer. Example XTP Drivers. include file transfer,
STDIO (standard
input/output), and timer services. These Drivers are
€asy to use and are intended for application writers
who have no need to know the internal details of XTP.

The whole XTP system consists of two software
libraries which represent the two main components of
the system: :

Xtpl.lib This library consists of modules implementing
the XTP protocol and the MAC layer. It also
provides the low level XTP interface as C sub-
routine calls. '

Drvl.lib This library consists of modules implementing

the XTP Drivers.. The services of the XTP
Drivers are also implemented as C subroutine
calls, '

Applications using, the services of the low level
interface must be linked with the Xipllib software
library, while application using XTP Drivers must be
linked with both the Xipllib and Drvllib software
libraries,

4.2 Low Level Interface

In the low level interface the XTP user (an XTP
driver) communicates with the XTP system through
two loosely coupled channels: the data channel and the
event channel. The data channel handles the user’s
data which is being transferred through the network.
Data is sequenced by bytes, so a unique sequence
number is associated with each byte in the data stream.

. The event channel handles various .events associated
-with the data. Each event refers to a certain sequence

number in the data byte stream,

As a transmitter, a driver will send data bytes
through the data channel in sequence; at the same time
it will send events through the event channel which
describe how to represent the information that is being
transferred on the data channel. Asa receiver, a driver
will receive data bytes in sequence from the data chan-

.nel and at the same time will receive events from the

event channel which determine how to interpret the
received data.

The data and event communication between the
XTP driver (CLIENT) and the low level interface
(SERVER) is implemented using shared ring buffers as
shown in Figure 3: S

" used by application

Figure 3.,
Data and Event Communication

There are two separate rings, one for data and
one for events. Both rings are shared between the
CLIENT and the SERVER. If the CLIENT is a
transmitter it submits data and events to the SERVER
through data and event rings; if the CLIENT is a

receiver it reads data and events from both the data and

event rings.

All rings have the same structure and each of

them is associated with three pointers:

head Points to the last byte of data or last event that

" was written into the ring. On the transmitting
side, CLIENT writes to the ring and SERVER
reads from the ring; on-the receiving side,
SERVER reads- from the ring and CLIENT
writes into the ring. In the case of the
transmitter, the head pointer is moved by the
CLIENT, whereas in the case of receiver it is
moved by the SERVER. :

tail . Points one byte beyond the last byte of data or
event information that was read from the ring.
In the case of the receiver the tail pointer is
moved by the CLIENT, whereas on the
transmitting side it is moved by the SERVER.

Mark is set in both cases by the CLIENT. On
the transmitting side, if data or events read
from the ring by the SERVER pass the mark
pointer, CLIENT is signalled at'a defined
location. On the receiving side, the CLIENT
is signalled when data or events written to the
ring by the SERVER pass the mark pointer.

mark .

. A ring is always divided into two pan;ts by the
head and tail pointers; one part belongs to the CLIENT

while the other belongs to the SERVER. The location
of these two parts varies as the head and tail pointers
are moved. The mark pointer is added for synchromza-
tion.

The low level interface provides subroutine calls
for allocating ring buffers for data and event communi-

~ cation. Each ring buffer has these atiributes:

address is the location of the ring buffer structure,
size is the size of the ring. For the data ring it
is in units of bytes; for the event ring it is
in units of events.
pointers are head, tail, and mark as shown in Fig-
~ ure 4,
address
size .
- ring
buffer
head
tail ring cursors
mark
Figure 4.
Ring Buffer Descriptors

Items in an event ring describe events occurring
at a certain byte in the sequenced data. Each event is
described as shown:

cursor - size header trailer
bits 32 8 ‘ 4 4
where
cursor is the sequence number of the data byte where
this event occurs. ‘

size is the size of this event. Some events have a
. known size.

header is the event bits that will be carried in the XTP .
packet header.

trailer is the trailer bits that will be carried in the
XTP trailer.

Some examples of events are beginning of con-
nection, end of connection, end of message, and user-
tagged data. Each event ring is associated with some
data ring by a data structure as shown below.

btag| info |etag info . etag| dataring
A T _eventring

FIRST EOM EOM -
EOC.

¢

where

btag s user-tagged data that may be interpreted by
some higher protocol. It refers to out-of-band
data at the beginning of the XTP packet.

etag is user-tagged data that may be imefpreted by
some higher protocol. It refers to out-of-band
data at the end of the XTP packet.

info is the user data being transmitted.

FIRST is the event representing opening of a new
" connection.

EOM is the event representing end of message.

EOC s the event representing end of connection.

Communication through XTP is represented by

an active connection between two endpoints. At each

" end of the connection there is a context associated with
_it. A context is represented as a shared structure

accessed both by the CLIENT and the SERVER. Each

new connection will have two new contexts, one at
each end. Each transmitting and receiving CLIENT is
associated with a unique context: One SERVER serves
many contexts. An XTP driver may in fact establish
many connections with other XTP drivers on the net-
work; for each connection a new context has to be
reserved and two rings on each side have to be allo-
cated. One XTP driver may represent more than one
CLIENT.

4.3 Xtpl Library

The XTP services of the low level XTP interface

~ are provided by the software library Xtpl.lib. This must
be linked in with any program using these services. All
services are implemented as C subroutine calls and are

logically divided into several groups. Services of the
Xtpl library are used for writing XTP drivers.

4.3.1 General XTP Operations

"These calls. provide general services for XTP
users to initialize, open, start, stop, and close the XTP
application.

XTP_init()

This call will initialize the XTP application. It
should be called before any other XTP service is called.

XTP _start()

The XTP protocol engine is implemented as
several processes runing at different priority levels.
XTP_start() will initialize and start all the internal XTP
processes. An XTP driver using this call is a CLIENT
and will have its own process with the same priority
level. Before calling XTP_start(), the programmer
must define a C subroutine which will represent the
client process (the main body of the XTP driver itself),

. and the name of this subroutine is passed as a parame-
ter to the XTP_start() function. The user may also

define more processes with priority levels; however,
these have to be forked from the client() procedure.

 XTP_start() should be the second XTP call after

XTP_initQ.

XTP_open(locadr fadr, gadr, devn)

Initialize and start the MAC interface process at
the device with node, group, and functional address
given by the caller. This subroutine should be called
only after XTP_init() and XTP_start(), since the XTP
processes have to be already started.

XTP_close(devn)

Closes the MAC interface. XTP_close() should
always be called before an XTP driver exits. If this is
not called and the XTP driver exits, all the interrupt
handlers will still be installed and the operating system
may not function correctly. I :

XTP_stop(devn)

Release XTP buffers. This should be called only
after XTP_close() because the buffers released are still
used by AXTP_closeO.

4.3.2 Context Services -

All the context calls provide access to the inter--
nal structures of the XTP engine and those parts of the
context that the XTP driver needs to access.

C_get_ctx(next, db, eb, dl, el, typ, devn)

Tries to allocate the context next. If successful, it
allocates data and event ring buffers and returns those
in data and event ring structures provided by a caller. It
also allocates buffers for the receiving and transmitting

frames and returns the context number. If the context

next is already open or the allocation was not success-
ful, it returns CTXON or CTXALC as an error code.
C_get_ctx() is called once for each new context before
the connection is established.

C_set_net(nadr,next)

Sets the network address on the side of the
receiver. The format is described in section 2.3 of the
. XTP Protocol Definition [8]. The address is set for a

particular context, which will then listen to all the .

FIRST packets destined to this network address. The
network address is transmitted as a part of the first data
packet and is used only for establishing a connection.

" C_set_dadr(dest,src,next)

~ Set the direct network address of the transmitting
or receiving context. The direct addressing scheme can
be used for systems with a fixed communication topol-
ogy where the key field is interpreted as a direct
address. In the direct addressing scheme the address is
included in each packet.

C_put_ctx(next)

Returns the context next to the free context list.
Buffers associated with this context will be deallocated.

C _set_len(len, devn)

Sets the frame length for the device (the network
interface). The frame size includes all the headers and
“trailers (MAC, LLC, and XTP). The maximum value
is 2025 for ProNET-4, which is used as a default if
C_set_len() is not called. '

C_set_rate(burst, rate, next)

. Burst determines the maximum number of bytes
in one burst transmission, while rate determines the
maximum rate in bytes per second. C_set_rate() sets
burst and rate for the context next. On the transmit size
it will set the initial value and is then changed accord-
ing to the value received in the control information
from the réceiver.

C _set_delay(delay)-

Delays the transmit engine for a certain time. It
may be used instead of C_set_rate() or as a supplement
to it.

C_act_ctx(next)

Denotes the context as active. The receiving con-
text is always active, while the transmitting context is
active only if it has more work to do.

C _dec ctx(next)

Denotes the context as not active, so the protocol
engine will not serve it until it becomes active again.

C_get_ack(next)

The ack indicator is set on the arrival of new
control information on the transmitting context.
C_get_ack(returns the ack value and clears it.

- C_set_options(opt,next)

Sets the options for the context.

C_set_flags(flag,next)

- Sets SREQ and DREQ ﬂags, and these will go
out with the next XTP packet prepared for transmis-
sion.

4.3.3 Scheduler ZEK

ZEK is a simple and fast scheduler used for
scheduling XTP protocol engine processes. The user
writing XTP drivers may want to use ZEK to schedule
the processes of the XTP driver itself. ZEK handles 16
processes, each on a different pnonty level. Our proto-
col engine uses four different priority levels, leaving
twelve others free for use by the XTP Driver designer.

levon(new)

This call will activate the process running on
level new; if a process with higher priority (lower
number) is currently runmng, the new process will be
set pending, otherwise, if it is the highest pnonty ready

) run, it wrll start running.

levoff()

Passivate the. process which calls levoffO If the
process was set pending by levon() while it was active,
it will drop its pending bit and stay running.

levfor(new, body, stack, depth)

Creates a new process on the priority level lev.
The body of the new process is the procedure body().

levto(new)

Changes the running level of the existing pro-
cess. If some other process was previously active on
this level, it is discarded.

5. XTP Drivers

We provide several XTP drivers for those users
who do not want to write their own applications usmg
the low level interface. Our drivers include:

(1) STDIO
Contains three standard [/O subroutines:

X _putc() is equivalent to putc() in STDIO,
X_getc(is equivalent to getc() in STDIO,
X print() is equivalent to printf() in STDIO.

(2) FILETRANS

" This driver is for file transfer applications and
uses block read/write. It has two subroutines:

X_putf() is for block write.
X _getf() is for block read.

(3) MEMTRANS

This driver is for memory-to-memory transfer
applications. It contains two subroutines for byte
transfer and two for block transfer:

X_putb() reads one byte from memory and passes it to
the network.

X _getb() reads one byte from the network and stores it
in memory.

X_putm(} reads one block from memory and passes it |

. to the network.
X _getmO reads one block from the network and stores
it in memory.

(4) TIMER

This driver. is for applications whxch need
timeout services; it can be used to implement the WTI-

‘MER and CTIMER within XTP drivers. It has two.

_subroutines:

. XTwtime will set up the timer for a context.
XTwoff will turn off the timer for a context.

6. XTP Demonstrations

. XTP is most unpmswe when seen in action. To
convey a sense of its power and speed, we have
. developed a set of demonstration programs

(1) Integruy test. Data is generated by a random pro-
cess -with a known seed, then framed and transmitted.
The screen displays data content and the state of the
protocol state machine. The receiver checks the

expected data byte-by-byte. This test has run for weeks’

without error.

(2) Memory-to-memory transfer. Joystick data is col-
lected on one machine, translated into navigation
instructions for a simulated ship, and transmitted as
XTP packets using STDIO. The receiver moves the
ship on the screen in accordance with the remote joys-

tick commands.

(3) Performance test. Using memory-to-memory
transfers on the Proteon ProNET-4 token ring (4 Mbit/s
capacity), XTP sustains 1.8 Mbit/s in NOERR mode.
Using Western Digital WD8003E Ethernet interfaces,
throughput rises to.over 4 Mbit/s. See section 7 below
for more details.

(4) Pipes. Data mput on one machine’s keyboard is

piped to the screen of another.

(5) File transfer. A megabyte of data can be
transferred disk-to-disk in approximately 10 seconds,
for a throughput rate of 800 Kbit/s (including disk I/O
time).

(6) Multicast file transfer. The same megabyte of data
can be transferred to any number of receivers (in our
demo, five) simultaneously using multicast. After our
multicast negotiates and enumerates the group
membership, the megabyte of data moves to all
receivers in approximately 20 seconds. Recall that this
is a transport multicast, not a link level multicast, and
so it is entirely reliable. Any loss of data (or the loss of
a receiver) can be detected and corrected transparently.

 (7) Image transfer. Video frames, captured by a video

camera and stored on disk, are. transferred to a remote
screen where gray-scale thresholding is performed.
The overhead of the XTP transmission is negligible;
the transfer operates at the speed of the disk access and
the display computations.

®) Real-time image trand'er. As above, except the
video image is captured in real-time by the video cam-
era. Visitors to the lab often find themselves being
multicast on their next visit!

(9) Multicast polygons. Randomly placed and colored
polygons are distributed via multicast. Again, the time
needed to draw and color the polygons overshadows
XTP transmission time. The muiticast scréens update
in unison about 10 times per second.

(10) Multicast images. Multiple video images are mul-
ticast from an "image server" to any number of
receivers. Each receiver displays an image in one of
five areas of the screen. Figure 5 is a photograph of
one of our multicast receiver screens.

(11) XTP over FDDI. We use our own real-time: net-
work monitors (WireTap for Ethernet and token ring;
FiberTap for FDDI) to capture performance data and
packet iraces from the network. Using the Motorola
68020s and the Martin Marietta FDDI interface, our
XTP sustains a transmission rate (in NOERR mode) of
about 20 Mbit/s; the FDDI MAC alone sustains approx-
imately 30 Mbit/s.

7. XTP Performahce on PCs

The following data are measured on the ALR

FlexCache (25 MHz Intel 386 processor) using the Pro-
teon ProNET-4 token ring.

7.1 Datalink Layer Limits .

No transport protocol will operate any faster than
its underlymg datalink layer. While our ProNET-4
LAN operaies with a signalling speed of 4 Mbit/s, no
single station can generate that much data; interfacing
to the board, handling: mnerrupts and copying frames to
and from the token ring interface board all consume
time. The best performance of the ProNET-4 is
obtained using 2000-byte packets, and the highest sus-
tained throughput we observed was 1.80 Mbit/s. Thus,
in this particular implementation, XTP throughput is
constrained by the LAN interface to be less than or
equal to 1.80 Mbit/s. Other interfaces (e.g., Ethemet,
FDDI), of course, would impose different limits on
single-station throughput at the datalink layer.

7.2 Mémory-to-Memdry Transfer

Our measured performance for XTP, using
NOERROR mode and .2000-byte packets, is 1.74
Mbit/s. This 4% degradation in single-station
throughput (compared to performance of the raw
datalink layer) results from the transmission of the 24-

byte headers and 16-byte trailers which XTP attaches’

to each data frame.

7.3 Ultimate L1m1t

To determine the ultimate thmughput of our

. software implementation, we preserve all the system
overhead (including interrupt processing) except for the
actual transmission of the data itself. This removes the
ProNET-4 interface from the code path and thus simu-
lates an infinitely fast transmitter. In this mode, using

2000-byte packets, our XTP can transmit or receive

about 950 packets/sec which translates to 15 Mbit/s.
Clearly, the bottleneck in our system is the LAN inter-
face.

7.4 File Transfer ;
Moving a large file from one system to another

measures much more than just XTP; file transfer results -

depend upon disk access time, file layout, disk

controller efficiency, and other system-dependent
parameters, Stll, it is an interesting measure since file
transfer is such a common application: Our file transfer
rate between two ALR FlexCache machines runs at 800
Kbits.

7.5 Confirmed Response

Finally, we measured the elapsed time to prepare
and send a small message and then receive its
confirming acknowledgement. This measurement
includes: preparing an 8-byte message, processing of
the message by the Context Processor, transmitting the
message with SREQ set (forces an acknowledgement),

* receiving the message at the destination, protocol pro-

cessing at the destination, preparing a CNTL (control)
packet which includes the acknowledgement, transmit-
ting and receiving the CNTL packet, and advising the
original transmitting context that the message has been
correctly received at its destination. Our measurement
for this confirmed response operanon varies from 4 to 7
ms.

8. Conclusxons

Our expenence with XTP has been very posmve
Qur implementation is stable; it is operational in both
PC and VME bus environments; we are transmitting
reliably over Ethernet, token ring, and FDDI; and our
performance data indicate that our software implemen-
tation is primarily limited by the underlying hardware
MAC interface. [t is our opinion that XTP represents a
major improvement in transport protocol design.

Our next task is to compare our implementation
of XTP with commercially available implementations
of TCP/IP and ISO TP4. Functionality and perfor-
mance measurements, made using identical hardware

- platforms, operating systems, LAN interfaces, test pro-

grams, and timing muunes, should be especxally
illuminating. :

. 9. Acknowledgements

The Computer Networks Laboratory gratefully
acknowledges the financial support and technical -assis-
tance provided by Mr. Ross Bennett of Sperry Marine
Inc. and Mr. Will Gex of the Naval Ocean Systems

Center.

10. References

[1] Greg Chesson, "Protocol Engine Design," Usenix
Conference Proceedings, June 1987,

[2] Greg Chesson, "The Protocol Engine Project," Unix
Review, September 1987, -

[3] Greg Chesson, "XTP/PE Overview," Proc. 13th
Local Computer Networks Conference, October 1988.

[4] Space and Naval Warfare Systems Command, "Sur-
vivable Adaptable Fiber Optic Embedded Network I --

SAFENET 1" MIL-HDBK-0034 (Draft), 31 January .

1990.

~ [5] Space and Naval Warfare Systems Command, "Sur-
vivable Adaptable Fiber Optic Embedded Network II --
SAFENET II," MIL-HDBK-0036 (Draft), 1 March
.1990.

{6] Robert Sanders, "The Xpresé Transfer Protocol
(XTP)— A Tutorial," Department of Computer Science

Report Number TR-89-10, January 1990 (available by-

e-mail request to "weaver@cs.virginia.edu").

(7] Alfred C. Weaver, "UVa XTP Status Report,”
Transfer, Vol. 3, No. 2, March/April 1990.

[8] Protocol Engines Inc., "XTP Protocol Definition,”
version 3.4, 17 July 1989.

[91 Protocol Enginés Inc, "XTP Protocol Definition,”
version 3.4.5, 27 July 1990.

Figure 5.
Multicast Video Images

