Simple Machine Description Grammars
Jack W. Davidson

Computer Science Technical Report 85-22
November 26, 1985

Simple Machine Description Grammars

Jack W. Davidson

Department of Computer Science
University of Virginia
Charlottesville, VA 22903

ABSTRACT

Many recent automatic code generators use descriptions of the target
machine’s instruction set to simplify development of high-quality back ends.
This paper describes the machine descriptions that are used with PO, a retar-
getable peephole optimizer. These machine descriptions are written in a
manner similar to the grammars used to describe the language being com-
piled. Indeed, they are unigque in that conventional parser generators used
to process the grammar for the front end can be used to build the back
end. These machine descriptions are flexible, easy to write, and produce
optimizers that vuse a small amount of memory.

November 26, 1985

Department of Computer Science
The University of Virginia

Charlottesvilie, VA 22901

Simple Machine Description Grammars

1. Introduction

Most compilers can be logically divided into two phases. The analysis phase, often
called the front end, performs lexical, syntax, and semantic analysis and produces an infer-
mediate representation of the source program. Building a front end is a well understood
process and many high-quality tools are available to assist in its development. The syn-
thesis phase, or back end, translates the intermediate representation of the source program
into object code for the target machine. In contrast to the front end, building high-quality
back ends traditionally has been the most difficult and least understood aspect of compiler

- construction.

Several approaches have been devised recently to ease the difficulty of developing back
ends. One of the most promising techniques involves writing a description of the target
machine’s instruction sef. This technique, known as table-driven code generation, offers
several advantages over other methods of code generation [Gana82a,Glan78,Grah80,Grah82].
Conceptually retargeting the back end simply requires presenting a description of the new
target machine to the code generator’s table construction routines. While the above is sel-
- dom the case in practice, table-driven code generators do provide a well-structured and con-
sistent framework for the construction of back ends.

A different approach is taken with compilers developed using PO, a retargetable peephole
optimizer [Davi80,Davi84a]. The traditional model of compilation places code optimization
before code generation [Abo86]. Compilers developed using PO optimize after code genera-
tion [Davi84b]. To enhance portability, the front end emits code for a simple abstract
machine. This allows a clean separation between the language and machine aspects of the
compiler. A naive code generator expands the abstract machine codes to simple object code
sequences that are subsequently improved by PO. A schematic of a retargetable compiler
constructed using PO is shown in Figure 1. Compilers developed using PO are particularly
easy to retarget and produce object code that is comparable to other automatic code genera-
tion techniques.

PO is similar to table-driven code generators in that retargeting is achieved by writing a
description of the target machine’s instruction set. This paper describes these machine
descriptions and how they are written. They are unique in that they are similar to a
grammar and actions that describe the syntax and semantics of the source language. For a
machine description, a grammar and actions that describe the syntax and semantics of the
target machine's instruction set are written. Indeed, the same tools used to process the
grammar describing the source language can be used to process the grammar describing the
machine's instruction set. This technique has been used to describe the instruction sets of

seven different machines and wused in retargetable compilers for three different languages.
One major computer manufacturer is using these machine descriptions and PO in a large
in-house compiler project.

Source language

l

Front
End

intermediatellanguage

code
expanders
vax,pdp-11,c6c,68000

register |transfers

[T ———— |
1 1
1 1
! '
: Cacher :
machine descriptions 5 \
: & RTLs ;
PDP-11 —7 Machine /;’____.a Combiner : PO
68000 —>1 Description : }
Dec-10 s ;S pLio ! &R’I‘Ls :
CDC ——————2] Processor t :
370 / . :
! Assigner !
]]
] 1
1 i
1]
J

assembly language
for target machine

Figure 1. Schematic of a Retargetable Compiler Developed using PO

2. PO

PO is made up of three distinct phases called Cacher, Combiner, and Assigner (see Figure
1). Each phase operates on register transfer lists (RTLs’) which describe an instruction’s
effect. Cacher eliminates common subexpressions, identifies dead variables, and computes the
logical adjacency of instructions. Combiner symbolically simulates logically adjacent pairs
of instructions to learn their combined effect. It then determines if a single instruction

exists with the same effect. If it finds one, it replaces the original instruction with the
equivalent singleton. After Combiner has finished, Assigner performs register assignment
and translates the now optimized RTLs to assembly language. Other documents offer more
complete treatments of the implementation and operation of PO [Davi81] and its use in
building retargetable compilers [Davi84al.

A target machine description is used by PO in two ways. It is used to build the recog-
nizer used by Combiner to identify legal instructions and the transducer used by Assigner
to translate RTLs to assembly language. The correct operation of the recognizer and trans-
ducer is essential to the correct operation of PO. In addition, the time to write and debug
a new machine description is a substantial portion of the time required to retarget the com-
piler. Consequently, the ability to quickly and accurately describe a machine’s instruction
set and correctly convert the description to a recognizer is extremely important.

3. Machine Descriptions

A machine description ('MD’) is a grammar and actions that describe the syntax and
semantics of a machine’'s instruction set. Writing a MD is similar to writing a lexical
analyzer and parser for a programming language. Using MDs that are written and pro-
cessed in a manner similar to grammars and semantic actions for programming languages
has two benefits. First, it permits the compiler writer to conceptualize building the front
end and back end as similar tasks. To build the front end, a grammar and semantic
actions that describe the source language are written. Similarly, to build the back end, a
grammar and semantic actions that describe the target machine’s instruction set are written.
Second, because they are similar tasks the same theory and tools can be used to construct
both phases. Most compiler writers are very familiar with the theory and implementation
of parsers and the use of a parser generator. The MDs described here are processed using
the familiar tools, Lex [Lesk79] and Yacc [John78].

In abstract terms to write a MD we must write a grammar, M, that generates a
language, L{M), that contains only the RTL strings (sentences) that represent legal instruc-
tions for the target machine. Due to the simple syntactic structure of a well-formed RTL
string that represents a machine instruction, a MD grammar is usually much easier to write
than a grammar for a programming language. Similarly, the actions to check the semantics
of a machine instruction are particularly simple.

Just as the front end of a compiler consists of a lexical analyzer and a parser, a recog-
nizer for the instruction set consists of a lexical analyzer to break a RTL string into tokens
and a parser to analyze the syntiactic structure of the string. Each of these parts is built
by writing a specification that is fed into a program generator that automatically constructs
the lexical analyzer and the parser. These specifications form the MD. The following sec-
tions describe these specifications.

3.1 Lexical Specification

The lexical analyzer for the RTL language is built using the program generator Lex.
Lex was chosen for several reasons. A lexical analyzer built using Lex interfaces nicely to
a parser that is constructed using the program generator Yacc. Both of these programs are
popular, easy to use tools available under most implementations of Unix. In addition, it is
simple to modify a Lex specification to recognize the tokens of a new machine’s instruction
set. Typically, the lexical specification describes the form of identifiers, labels, and special
machine symbols such as registers and the program counter. In addition, it identifies the
operators used 1o describe common machine operations such as addition. subtraction, multi-
plication, etc., and the operators used to denote more complex operations such as pushing an
operand on a stack, normalizing a floating point number, or performing an indexed jump.

The simplest form of a Lex specification consists of a set of rules. A rule consists of a
regular expression and an action. An action is a program fragment that is executed when-
ever the regular expression matches some portion of the input string. 'The actions for a
MD specification perform two operations. It installs the string matched in a string table,
and returns the token number that denotes the type of token recognized. A sample of a
rule from the MD for the Ridge 32 [Ridg84] is:

[o—~zA~Z_]]{a~2A~Z0-9_]* §
yyival = install{yytext);
return{ID);

i

The above rule and action specifies an assembly language identifier on the Ridge. The value
returned by Install is assigned to the variable yylval to allow the parser constructed by
Yacc to examine the string. This is often necessary because the semantic actions of Yacc
must check the context-sensitive aspects of a RTL.

Typically a lexical specification is quite small. In addition, the lexical structure of the
RTL language varies little from machine to machine. Consequently, the lexical specification
for one machine can often be used for a new machine with little or no modification. For
instance, the lexical specification for the Ridge is 97 lines, while the lexical specification for
the PDP-11 is slightly larger consisting of 110 lines. However, 80 percent of the two
specifications is identical.

3.2 Syntax Specification

The parser to recognize legal machine instructions is built using the parser generator
Yace. Yace has one quality that makes it useful for building a recognizer for a machine’s
instruction set. It permits the controlled use of ambiguous grammars. These ambiguities
are resolved using a set of disambiguating rules. The use of ambiguous grammars allows a
grammar for machine’s instruction set to be writlen in a perspicuous style.

A Yacc specification for a machine’s instruction set is divided into three sections. These
sections describe the addressing modes, the individual effects of instructions, and finally the
instructions. The following sections describe the three logical parts of a MD grammar using

-4 -

excerpts from the MD for the PDP-11 as examples.

3.2.1 Addressing Modes
The addressing modes for the PDP-11 are defined by the following Yacc rules:

%token LB RB /* left ond right brocket */
/* source cddressing modes */
sre¢ : dst
| expr § $% = addr(ANY, IMMED, $1, NULL, NULL); }

/* destination addressing modes */

dst : REG § $$ = addr(ANY, REGISTER, $1, NULL, NULL); &
| mt LB expr RB § $% = addr($1, DIRECT, $3, NULL, NULL); }
i mt LB REG '+’ expr RB § $$ = addr($1, INDEX, $3, $5, NULL);
i mt LB REG PLUSPLUS RB § $$ = addr($1, AUTOINC, $3, NULL, NULL); 3}
i mt LB MINUSMINUS REG RB § 3 = addr($1, AUTODEC, $4, NULL, NULL); $
| mt LB REG RB § $% = addr($1, INDIR, $3, NULL, NULL); }
| mt LB *w’ LB REG PLUSPLUS RB RB § $% = addr($1, AUTOINCOFR, $5, NULL, NULL); }
| mt LB 'w* LB MINUSMINUS REG RB RB § $$ = addr($1, AUTODECDFR, $6, NULL, NULL); }
| mt LB 'w’ LB REG '+’ expr RB RB § $% = addr{$1, INDXDFR, $5, $7, NULL);
| mt LB 'w' LB expr RB RB § $$ = addr{$1, DIRECTDFR, $5, NULL, NULL); }
| mt LB 'w' LB REG RB RB § $$ = oddr{$1, INDIRDFR, $5, NULL, NULL); }

/* assembly—time expressions */

expr : expr ‘+' expr § $% = addr(ANY, EXPR, '+', $1, $3): }
| expr '=' expr § $$ = addr(ANY, EXPR, '-', $1, $3); }
I "= expr %prec 'x' § $% = oddr(ANY, EXPR, '—', $2, NULL): }
| ID § $$ = addr(ANY, ID, $1, NULL, NULL); }
| CoN § 3% = addr(ANY, CON, $1, NULL, NULL): }
S § $% = addr(ANY, CON, $1, NULL, NULL); }
i ‘e § $$ = addr(ANY, CON, $1, NULL, NULL); }
mt o 'w? i $% = WORD; ¢
L § $3 = BYTE; }

The actions for the addressing modes calls the routine oddr that builds a record that con-

tains information about the addressing mode. A pointer to the record constructed is
returned as the value associated with the nonterminal or rule.

By factoring the grammar it is often possible to write concise MDs. In the above exam-
ple, by factoring out whether the addressing mode is referencing a word or byte (denoted
by ‘w or ‘v’), one set of rules defines both the word and byte addressing modes of the
PDP-11.

3.2.2 Instruction Effects

The second section describes the individual effects of instructions. The individual effects
for some of the arithmetic instructions on the PDP-11 are shown below.

/* add instruction effects »/

addi : dst '=’ dst '+ src '’ § $% = addsubi($1, $3, $5); t ;
addn ¢ NZ '=' dst '+" src '?' '@’ ' $ 33 = addsubn($3, $8); 1 :

/* compiement instruction effects »/

comi : dat ‘=* ‘s’ dst ;' § $% = unopi($1, $4): ¥ ;

comn : NZ '=* '~ dst *;’ § $3 = record($4, NULL, NULLY; }

/* increment instruction effects »/
inci @ dst *=' dst 4" "1* "7

: $$ = unopi($1, $3): 1
inen ¢ NZ *=" dst 4" *1* *'7?* '@ *';*

$% = record($3, NULL, NULL): }

/% subtract Tnstruction effects +/

subi : dst '=' dst '~' sr¢ ';' § $3 = oddsubi($1, $3, $5);: § ;

subn @ NZ *=" dst '~' sr¢ '?’ ‘@' ‘';°* § $% = oddsubn($3, $5); I ;
In the above examples, there are two rules for each instruction. One rule describes the
computation of the result, while the second rule describes the setting of the condition codes.

The actions for the individual effects perform two operations. They check the semantics
of the instruction if necessary. For example, since the PDP-11 is a two-address machine,
the action for the addi rule must check that both occurrences of dst denote the same loca-
tion. It also insures that the operands dst and src¢ denote word operands. The second
operation that is performed by all individual effect rules is to produce a semantic record
that contains information about the operands and operation to be performed.

Again by noting the similarity of instructions, it is possible to reduce the amount of
code that must be written to implement the semantic actions. For example, the add and
subtract instructions share the same semantic action routines. Similarly, all the unary
instructions share the same semantic action routines.

3.2.3 Imstructions

The third section of a MD grammar composes the previously defined individual instruc-
tion effects into instructions. The left hand side of the first grammar rule in this section
is the start symbol for the grammar. For example, using the individual effects defined in
the previous section, the instruction definitions for the PDP-11 are:

inat : addi addn i binop(“add", $1, $2);
addn addi $ binop(“add", $2, $1); ¢
addi { binop("add", $1, NULL); }
addn $ binop("add", NULL, $1); 1}
comi comn § unop("com”, $1, $2); ¢
comn comi $ unop{("com", $2, $t); }
comi § unop("com®, $1, NULL); }
| comn $ unop(“com", NULL, $1); }
inci incn § unop("inc", $1, $2);
inen inci $ unop{“inc®, $2, $1); $
inci $ unop{"inc”, $1, NULL); }
incn $ unop(“inc", NULL, $1); }
subi subn $ binop(“sub®, $1, $2);
subn subi $ binop(“sub”, $2, $1); i
subi § binop(“sub™, $1, NULL): }
subn § binop(“sub"™, NULL, $1): }

For instructions that have several effects, all possible combinations of the effects must be
described. Using the add instruction with two effects as an example, the four possible
combinations that must be described are:

1. dst = dst 4 srec; NZ = dst + sre 7 ©;
2, NZ = dst + src ? 9; dst = dst + sro;
3. dst = dst + sre; (NZ dead)
4. NZ = dst + src ? @; (dst dead)
While there are a few instructions with three effects (15 combinations), fortunately we

have not encountered any instructions that required four individual effects.

The actions for an instruction definition have two functions. During the optimization
phase when instructions are combined, the actions must check and enforce instruction
semantics. During the register assignment phase, the actions convert the RTL to the
corresponding assembly language instruction.

The optimization phase actions normally perform two types of semantic checks. The
first type of semantic check insures that the context sensitive requirements of an instruction
are satisfied. For example, the semantic action for the add instruction, binop, must check
that the portion of the input that matched the nonterminal dst in the first effect is identi-
cal to the input that matched dst in the second effect. The second type of semantic check
insures that when only one effect of an instruction appears that the left hand side of the
missing effect appears on the dead variable list.

3.3 Ambiguous Grammars

One of the qualities that distinguishes Yacc from other conventional parser generators. is
that it allows the controlled use of ambiguous grammars. This allows the MD grammar to
be written in a straightforward natural style. 'To handle ambiguous grammars, Yacc
invokes two disambiguating rules by default.

1. In a shift/reduce conflict, the default action is to do the shift.

2. In a reduce/reduce conflict, the default action is to reduce by the grammar rule appear-
ing first in the input specification.

It is up to the grammar writer to determine if the default action chosen by Yacc is the
correct action.

Our experience with writing MDs has been that it is possible to avoid reduce/reduce
conflicts entirely. In the case of shift/reduce conflicts, the default action, shift, is usually
the correct one. In the few cases where the obvious description of an instruction resulted
in erroneous shift/reduce conflict resolution, it was a simple matter to modify the grammar
to avoid the conflict.

4. Experience

The MDs described here were developed as a replacement to the MDs previously used
with PO [Davi81,Davi84al. The major motivation for the development of these new MDs
were problems and limitations encountered with the old descriptions [Crow82,Hanc85). The
following section compares the new MDs to the old MDs.

4.1 Comparison with Old Machine¢ Descriptions

The old MDs were also used to construct a recognizer and transducer for RTLs. The
recognizer and transducer were built by processing the machine specification with a SNO-
BOL4 [Gris71] program that produced Lex input specifications® These specifications were
converted by Lex into set of finite state automatons that recognized legal RTLs for the
described machine. The finite state automata implementation was chosen because measure-
ments indicated that the speed of the optimizer would hinge on the épeed of the instruction
recognition process. The use of a Lex-constructed finite state automaton, however, was the
source of several problems. First, the use of a lexical analyzer limited the size of the MD
that could be processed. While machines with relatively small instruction sets could be
handled (e.g., the PDP-11 or the CDC Cyber series machines), machines with large instruc-
tion sets could not be éompletely described. A second problem was that most all MDs
have constructs that can only be described using context-free grammars. For example, most
MDs contain a specification of the syntax of assembly-time expressions. Consequently regu-
lar expressions were not powerful enough to accurately describe the machine. The result
was that it was possible to write rules that incorrectly identified a RTL string as represent-
ing a legal instruction. In these cases, it is necessary to rewrite the MD to prevent these
erroneous optimizations. The use of a MD based on the theory of context-free languages
and employing a parser generator like Yacc to process the MD specification solves both of
these problems.

Another advantage to the Yacc-based MDs is that the user can write powerful semantic
action routines. These actions can make decisions and perform optimizations that were
difficult to generate automatically. One of the problems with the old MDs and MD proces-
sor was that it was often possible to have a RTL that represented a legal instruction, yet
it was difficult to determine the proper instruction to emit.¥ For example.. consider the fol-
lowing RTL for the VAX-11/780

NZ = r[2] + r[3] ? o;
This RTL specifies that the condition codes (N2Z) are set according to the sum produced by

the addition of register two and register three. If register two appears on the dead-variable
Hst for this instruction, the optimizer can emit the instruction:

$Thanks to Terry Crowley for this example.

addi2 r3,r2

If, however, register two is not on the dead-variable list it is more difficult to determine
the proper instruction to emit. If any other registers appear on the dead-variable list, the
optimizer may generate a three-address add instruction that sets any one of the dead regis-
ters. For example, if register four appears on the dead-variable list, the optimizer may
emit:

add|3 rd,r2,r4

If there are no registers on the dead-variable list, the semantic action could request a free
register and temporarily use it for the result. While the above logic could be generated
automatically by a MD processor, it would be difficult. On the other hand, the code to
perform the above actions is relatively simple to write by hand. Indeed, the code to make
such decisions is part of the MD for the VAX-11/780.

It is also possible to write semantic actions that perform additional machine-gpecific
optimizations. For example, the semantic action routine for the multiply instruction on the
Concurrent Computer 3200 includes a routine that produces the best code sequence for an
integer multiply by a constant. This MD alsc includes semantic actions that emit special
idiomatic multi-instruction sequences that are more efficient than equivalent single instruc-
tions.

The Yacc-based MDs enjoy several other advantages over the original MDs. One of the
motivations for the original implementation was the desire for high-speed. With the intro-
duction of HOP [Davi84c], the requirement for high-speed instruction recognition became less
of an issue. Surprisingly, it turns out that the Yacc-based instruction recognizer runs as
fast as the Lex-based implementation. The Yacc-based optimizers are considerably smaller
than the Lex-based optimizer. An optimizer for the PDP-11 built using a Lex-based MD
occupies 92,388 bytes, while the Yacc-based optimizer occupies 59,560 bytes, a savings of 36
percent. Table 1 presents data on the size of four MDs produced using Yacc.

Machine Description VAX-11 PDP-11 Ridge Concurrent 3200
Grammar Symbols 91 80 65 309
Productions 150 136 72 596
Tables
States 405 370 149 1342
S/R conflicts 12 9 1 7
R/R conflicts 0 0 0]
Size (bytes) 6250 4240 1928 14924
Total Size (bytes)
| Gincluding semantic routines) 5030 5248 2232 - 20876

Table 1. Statistics on Grammar Size

The other advantage of the Yacc-based MDs is that they take much less time to process.
It takes approximately 8.5 minutes of CPU time on a VAX-11/780 to process a Lex-based
MD and produce an optimizer. A functionally identical Yacc-based MD for the PDP-11
requires only 1.5 minutes of CPU time to produce an optimizer. This faster processing

time is particularly important when the MD is being developed and debugged. It is also
important when the MDs are being used to specify, test and evaluate experimental instruc-
tion sets [Davi85].

4.2 Machine Description Database

The one disadvantage of the Yacc-based MDs is that they dre not as concise as the Lex-
based MDs. For instance, the Lex-based MD for the VAX-11/780 is 165 lines. The Yacec-
based MD is 780 lines (280 lines for the lexical and syntax specifications, and 505 lines of
C code for the semantic actions). Many of the semantic checks automatically produced by
the MDD processor must be coded explicitly in the Yacc-based implementation. Fortunately,
writing a Yacc-based MD for a particular machine can still be done relatively quickly. The
reason for this is while the assembly language syntax {e.g.. the opcode mnemonics, notation
for addressing modes, etc.) for different machines varies considérably, the RTL description of
a particular operation varies little from machine to machine. For example, a RTL descrip-
tion of a two-address addition for many machines is

dst ’=' dst '+' src ;'
where dst and srec specify the addressing modes.

This similarity of RTLs across machines and the existence of a database of MDs for
seven different machines makes writing a new MD comparatively easy. When developing a
MD for a new machine, it is usually possible to consult the database for an existing MD
that describes 2 similar instruction set or similar architectural feature and extract and
modify parts of that description. For instance, the MD for the VAX-11/780 was developed
in two days by the author by modifying the MD for the PDP-11, a closely related
machine. Similarly, a MD for the Prime 9950 was developed using the MD for the
DECgystem-10. As more machines are described, the MD database becomes more useful.

4.3 Othsr Experience

The largest and most complete MD has been written by Concurrent Computers to
describe its 3200 series processor. The MD describes the entire instruction set which con-
sists of 182 instructions and 8 addressing modes. The MD grammar consists of 600 gram-
mar rules and 1300 lines of C code for the semantic actions. The semantic actions includes
code to perform many machine specific operations such as converting a integer multiplication
by a constant to a series of shifts and adds and emitting more efficient multi-instruction
sequences in place of single instructions. This MD was developed in a month by some one
unfamiliar with PO and the operation of Lex and Yacc. The general feeling is that subse-
quent MDs would require substantially less time to develop.

- 10 -~

5, Discussion

The idea of producing a parser from a machine description is not new. This idea forms
the basis of the Graham-Glanville style code generators [Gana82b,Glan78]. A MD in the
Graham-Glanville system consists of a set of productions where the left-hand side specifies
the results of an operation and the right-hand side specifies the operation.. A target
machine instruction computing the right-hand side is supplied with each production. The
code generator emits instructions for an abstract machine called the Compiler Writer’'s Virtual
Machine (CWVM). The parser produced from the MD converts the CWVM code to the
assembly language of the target machine. Much of the recent research with the Grabham-
Glanville code generators has been concerned with speeding up the parser table construction
algorithms, automatically handling looping conditions and syntactic blocks, and reducing the
size of the parser tables [Aigr84,Grah82].

While PO and the Grabam-Glanville technique present two different methods for develop-
ing retargetable compilers, they are similar in that they both rely on MD grammars. Con-
sequently, it is worthwhile to compare the two description techniques. The meost funda-
mental difference is in what is being described. In the Graham-Glanville system, a MD is a
grammar that defines a mapping between the instruction set of the CWVM and the target
machine. This requires knowledge of the particular parsing technique used and of the
instruction sets of both the CWVM and the target machine. Several specialized programs
are used to assist with the development of a MD and the construction of the parser tables.

In contrast. because PO only requires a recognizer that accepts legal target machine
instructions and rejects those that are not, the job of writing a PO MD is conceptually and
pragmatically simpler. Consequently, we are able to use conventional parsing algorithms
and an existing parser generator to process the grammar. The resulting parser tables are
quite small (see Table 1).

The simplicity of the PO MDs is gained at the expense of requiring code generation to
be performed by a separate phase (the Code Expander, see Figure 1). This phase is nor-
mally written by hand. As noted in a previous paper [Davi84a], several benefits could be
realized if the table-driven code generator were combined with the table-driven peephole
optimizer. The responsibility for the production of high-quality code could then be divided
between the code generator and the peephole optimizer, reducing the sometimes large size of
the .code generation tables and the sometimes slow execution speed of the the optimizer. A
simple, unified MD that would drive both the code generator and the optimizer should be
possible. The development of PO MDs that are processed in a manner similar to the
Graham-Glanville MDs is a first step towards developing such a MD.

- 11 -

6. Summary

This paper has described a novel technique for specifying the instruction sets of
machines. These machine descriptions are part of a powerful peephole optimizer that can be
used to simplify the development of high-quality retargetable compilers. This technigque is
appealing for several reasons. It permits the compiler writer to conceptualize the develop-
ment of a back end as a task similar to the development of the front end. Indeed, the
tasks are so similar that existing well known theories and tools that are used to develop
the front end can also be used to develop the back end. The optimizers developed using
this technique are substantially smaller and run no slower than optimizers developed using
a previous description method. While the machine descriptions are larger than a previous
description method, they actually take no longer to develop due to the existence of a
machine database that describes most architectural features found on contemporary machines.

7. References

[Aho86] A. V. Aho, R. Sethi and J. D. Ullman, Compilers Principles, Technigues, and Tools,
Addison-Wesley, Reading, MA, 1986.

[Aigr84] P. Aigrain, S. L. Graham, R. R. Henry, M. K. McKusick and E. Petegrr—LIopart
Experience with a Graham-Glanville Style Code Generator, Proceedings SIGPLAN
Notices '84 Symposium on Compiler Construction, Montreal, Canada, June 1984, 13-
C 24,

[Crow82] T. R. Crowley, Combining Table-Driven Effect Selection and Description-Driven
Peephole Optimization for Awtomatic Code Generation, M.S. Thesis, Massachusetts
Institute of Technology, Boston, MA, September 1982.

[Davi80] J. W. Davidson and C. W. Fraser, The Design and Apphcatzon of a Retargetable
Peepbole Optimizer, ACM Transactions on Programming Languages and Systems 2, 2
(April 1980), 191-202.

[Davi81] J. W. Davidson. Simplifying Code Generation Through Peephole Optimization, PhD
Dissertation, University of Arizona, December 1981.

[Davi84a] J. W. Davidson and C. W. Fraser, Code Selection through Object Code
Optimization, Transactions on Programming Languages and Systems 6. 4 (October
1984), 7-32.

[Davi84b] J. W. Davidson and C. W. FPraser, Register Allocation and Exhaustive Peephole
Optimization, Software - Practice and Experience 14, 9 (September 1984), 857-866.

[Davi84c] J. W. Davidson and C. W. Fraser, Automatic Generation of Peephole
Optimizations, Proceedings of the SIGPLAN Notices '84 Symposium on Compiler
Construction, Montreal, Canada, June 1984, 111-116.

[Davi8S] J. W. Davidson, Fast Interpretation of Instruction Sets: Implementation and
Applications, Proceedings of the 7th Annual Symposium on Computer Hardware
Description. Languages and their Application, Tokoyo, Japan, August 1985, 179-191.

[Gana82a] M. Ganapathi and C. N. Fischer, Description-Driven Code Generation using
Attribute Grammars, Conference Record of the Ninth Annual Symposium on Principles
of Programming Languages, Albuquerque, NM, January 1982, 108-119.

[Gana82b] M. Ganapathi, C. N. Fischer and J. L. Hennessy, Retargetable Compiler Code
Generation, Computing Surveys 14, 4 (December 1982), 573-592.

-12 -

[Glan78]

[Gran8o0]

[Grah82]

[Gris71]

[Hanc85]
[John78]
[Lesk79]

[Ridgs4]

R. S. Glanville and 8. L. Graham, A New Method for Compiler Code Generation,
Conference Record of the Fifth Annual Symposium on Principles of FProgramming
Languages, Tucson, AZ, January 1978, 231-240.

S. L. Grabam, Table-Driven Code Generation, IEEE Computer 13, 8 (August 1980),
25-34.

S. L. Graham, R. R. Henry and R. A. Schulman, An Experiment in Table Driven
Code Generation, Proceedings SIGPLAN Notices '82 Symposium on Compiler
Construction, Boston, MA, June 1982, 32-42.

R. E. Griswold, J. F. Poage and 1. P. Polonsky, The Snobol4 Programming Language,
Prentice-Hall, Inc, Englewood Cliffs, NJ, 1971.

J. K. Hancock, Experience Using a Retargetable Peephole Optimizer to Achieve Compiler
Portability, M. S. Thesis, University of Colorado, Boulder, CO, January 1985.

S. C. Johnson, Yacc: Yet Another Compiler-Compiler, Unix Programmer’s Manual 2B,
Section 19 (July 1978), 1-34.

M. E. Lesk, Lex - A Llexical Analyzer Generator, Unix Programmer’'s Manual 2B,
Section 20 (January 1979), 1-13.

Ridge Processor Reference Manual, Ridge Computers, Santa Clara, CA, 1984.

- 13 -

