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ABSTRACT

We address the dependence of critical infrastructures—
including eledric power, telecommunications, finance and
trangportation—on vulnerable information systems. Our
approach is based on the notion of control. We eavision
distributed, hierarchical, adaptive, multiple model, discrete-
state control systems to monitor infrastructure information
systems and respond to dsruptions (e.g., searity attacks)
by changing gperating modes and design configurations to
minimize loss of utility. Controlling legacy information
systems presents some significant challenges. To explore
and evaluate our approach, we have developed a todkit for
building didributed dynamic models of infrastructure
information systems. We used this tod kit to build a model
of a simple subset of the United States payment system and
acontrol system for thismodel information system.
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1. INTRODUCTION

The survivability of critical infrastructure systems, such as
eledric power distribution, telecommunicaions, freight rail
and banking, has beaome a major concern of the United
States government, and will garner increasing concern from
private indwstry [5, 15, 18]. The intuitive notion of
survivability is clea: we want infrastructure systems that
continue to provide acceptable service levels to customers
in the face of disturbances, natural, acddenta or malicious.

It isnow believed that the reliance of infrastructure systems
on fragile information systems puts owr infrastructures at
risk of catastrophic failure. Threds arise from reliance on
commercial (COTS) components of unquantified reli ability
and seaurity, legacy software that defies comprehension
and evolution, wide-area distribution, strict performance
requirements, complex networks, and gpenings to autside
manipulation through networks and autsourcing of design.

The wvulnerability of criticd infrastructure systems to
failures in underlying information systems creates new
challenges for software engineering research, as well as
reseach acrossmany related disciplines, including systems
engineering, computer seaurity, red-time systems, and so
forth. In software engineaing, architedural support for
survivability emerges as atop reseach priority.

Defensive architedura design, e.g., computer seaurity and
disaster recovery planning, is an asped of a comprehensive
architedura approach to infrastructure survivahility.
However, when defenses fail to prevent disturbances, then
reaction will be necessary to minimize the loss of utility
provided by an infrastructure. In this paper, we addressthe
reactive dement of survivability. For example, in reacting
to a coardinated seaurity attack, computers hosting critical
databases might be disconneded from a nework.
Reanfiguration will involve danges in operating modes,
modul e implementations and interconnedion sructure.

We describe our approach, which is based on a control
systems perspedive and aur previous work [10]. Control
theory [1] provides a vocabulary for reasoning about how
to keep systems operating as desired, and for structuring
information-based medchanismsto effed such control.

The daracteristics of the systems that we seek to control
imply nove control systems. Infrastructure systems and
their information systems are large and distributed; so
control must be decentralized. System-wide monitoring,
reporting, and control implies ome centralization, and so a
hierarchical structure. Controlled systems change (e.g., as
hardware fail s and as they evolve over time), so a @ntrol
system must be adaptive. Finally, we seek to control not
physical but information systems, whose behaviors are
described not by differential equations but by discrete state
trangitions; so we nedl discrete state amntrol systems. These
considerations take us beyond canonical control theory.
We reagnize that our apped to control theory begins at the
metaphoricd level. Strong theorems, eg., on stability,
robust control, etc, are unlikely to hold in our context.

Sedion 2 presents the rationale for a control approach.
Sedion 3 introduces a todkit for building dynamic models
of infrastructure information and systems. Sedion 4
presents a simple model of one information system; and
Sedion 5, its controller. We summarize ingghts in Sedion
6 andrelated work in 7. Sedion 8 presents our conclusions.

2. SURVIVABILITY CONTROL SYSTEMS

An infrastructure provides to its customers a service stream
over time. For example, the dedric grid provides a strean
of eledricity to each home and business Such a stream has
avalue or utility to a astomer depending on its particular



needs. Provision of energy to homes is more valuable in
winter than summer, for example. At some levd, thereis
an aggregate value added that depends on the reliance of
customers on service and the criticdity of each customer in
a broader context, as defined by societal or businesspoalicy.

The dired consequence of a disruption of an infragtructure
system is a reduction in the service stream to customers.
The key consequenceis aloss of value over time. The value
lost to a given customer depends on its reliance on the
service and the kind and duration of disruption. Individual
loss sIms to an aggregate loss  Survivability means that
this aggregate loss is minimized and judged acceptable
under defined adverse drcumstances.

Society now finds itself in a doubly dangerous stuation in
which infrastructure survivability is not ensured (assuming
reasonable definitions of acceptable and knowledge of
fail ure modes that have become possble, neither of which,
however, might ever have been made eplicit). Masdve
computerization has enabled efficiencies through tightened
coupling. Just-in-time delivery of automotive parts by rail
has enabled dramatic inventory reductions, but
manufacturers are now more reliant on a highly rdiable
stream of timely deliveries. The st of interruptions grows
more rapidly in time now than before mmputerization. At
the same time, increasing reliance on computers increases
vulnerability to disruption. The problem is to devise
approaches to infragtructure information systems design
and evolution that simultaneously enable the dficiencies
that computers make possble while ensuring that the costs
of service stream interruptions remain acceptable in the
face of disruptionsto underlying information systems.

2.1 Control system per spective of survivability

In this paper we present a control systems approach to
infragtructure survivability in the information age. The
information systems that run our infrastructures appea to
be vulnerable to dsruption—by natural disaster, accident,
mismanagement, design error, mdlicious attack, etc. In the
face of such disruptions, actions must be taken to ensure
that a managed infrastructure system continues to med its
survivability requirements, spedfied in terms of acceptable
reductions in value added under defined circumstances.

When disrupted, an information system must be adjusted so
as to continueto provide information services on which the
acceptable provision of infrastructure service depends.
Adjustment will involve reconfiguration of the information
system. To be recnfigured, an information system must be
reonfigurable.  System remnfigurability can occur at
many levels, including operating parameters, module
implementations, and physical devices. We refer to the set
of all posgble configurations as a design space.
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Figure 1. Survivability control system concept

The traditional approach to managing complex systems,
such as avionics platforms, to ensure continued acceptable
provision of service isto use a control system. We envision
the use of control to manage information systems based on
data from infrastructures, their information systems, and
their operationa environments. In essence, such a control
system is responsible for choosing a configuration at each
point in time based on current conditions to minimize the
loss of aggregate value, with assurances that under defined
circumstances loss of value will not exceed defined limits.

As illustrated in Figure 1, a given design configuration
supports some level of infrastructure service. A given level
of service is related to value through context as discussed
above (is it winter?). The design space determines the
extent to which a control system can manage loss of value
in the face of disturbances. An information system for a
survivable infragtructure system must have a configuration
enabling service provision that meets value requirements
for each defined hazard or circumstance to which the
infrastructure and its information system is subject.

The notion of using control systems to manage information
systems is not entirely new, as we discuss in Section 7.
Our contributions are: (1) interpreting survivability as a
large-scale control and optimization problem; (2) deriving
basic characteristics of control systems from properties of
infragtructure information systems; (3) presentation of an
experimental systems framework and methodology for
research on infrastructure information system survivability;
and (4) insights arising from the control perspective.

2.2 Hierarchical adaptive control

We frame decentralized, hierarchical, discrete-gate,
adaptive control as an architectural style for survivable
infragtructure information systems. A control system
manipulates a controlled system on the basis of sensor data
from the controlled system, predictions of its behavior, and
other such information (including, in stochagtic control,
estimates of probabilities of future states of nature) to
maintain acceptable levels of system operation. Examples
are familiar to every engineer.



A decentralized control system is one in which parts of the
control system control parts of the underlying system
autonomoudly. An adaptive control system is one that can
continue providing control in the face of changes to the
controlled system and to the cntrol system. For example,
an adaptive @ntrol system for an avionics application can
ensure that an aircraft remains under control even if it loses
part of a wing and some sensors in an air engagement. A
hierarchical control system is one in which control actions
are determined at a number of levels in a hierarchicd
system, with low-level control system eements influencing
and being influenced by higher levels of control. Tactical
dedsions might be made close to individual componentsin
a controlled system, whil e strategic dedsions are made at a
higher level based on aggregated global system state.

In our formulation, the mntrolled system is the information
system automating an infrastructure system. In freight rail,
for example, the physical system comprises rails, cars and
locomatives. Thisinfrastructureis controlled by a complex
information system that manages train assembly, dispatch,
scheduling, motion control, billing and so on to med
performance, safety, business and other objedives. We
envision superimposing a survivahility control system atop
such an information system. Among a wide variety of
survivability properties achieved by this structure, such a
control system would implement intrusion monitoring and
response; system-wide fault tolerance and controlled
servicedegradation under adverse mnditions.

2.3 Why hierarchical and adaptive?

The nedal for a hierarchical structureisimplied by the size
and dstribution of infrastructure information systems. Itis
implausible, for example, to have a single mmputing node
monitoring the entire United States banking system. Each
major bank would have a local control system interacting
through abstract interfaces with higher-level (e.g., Federd
Reserve) and lower-level (e.g., branch) control systems.

A hierarchicd dructure is natural to support scalability
through local control and the passng o aggregated status
information up and down a hierarchy. Such information
flows will be neaded in practiceto implement system-wide
reconfiguration poli cies with acceptable performance Such
a dructure enables local control nodes to implement
policies based on local information and aggregated gobal
state pased from above. In addition to performance
hierarchy enables abstraction and complexity control in
control system implementation. Detail s of local application
nodes are abstracted by local control nodes. Higher level
control nodes are spedfied and implemented in terms of the
observable and contrall able aspeds of control nodes at the
next level down the @ntrol hierarchy. Hierarchy is also
intended to foster evolvability of the @ntrol policies. Such
evolvahility will be aitical to effedive “learning’ by a
system over time, and as the underlying information and
infrastructure systems evol ve.

A disciplined approach to the modular design of the cntrol
system will also be aiticd in building adaptive control
systems that can tolerate the loss addition, or modification
of control and controlled nodes. The ntrol theoretic
notion of multiple-model adaptive control—in which the
control system views the controll ed system as being in one
of anumber of possble distinct operating regimesin which
digtinct control rules apply—offers espedally attractive
prospeds. Our dynamic modeling todkit, which we
describe next, provides a monitoring capability that is used
to conned control nodes in such a way as to ensure that
nodes within the @ntrol system have amode of both the
controll ed and control system.

3. ATOOLKIT FOR EXPERIMENTAL SYSTEMS
A serious impediment to research on infrastructure
survivability is that researchers cen neither experiment with
nor even measure infrastructures or their information
systems because they generaly have little or no dired
accessto them. Our approach isto kuild dynamic models
of these systems, and to explore, develop and evaluate our
control systems approach in the mntext of these dynamic
models. The idea of building infrastructure simulations is
not a new idea it is done routindy in the dedric power
industry, for example; and such simulations are typically
used as sbjeds of and eements in control systems [27].
We know of no ahe work using simulations of
infragtructure information systems to serve as subjects of
control systems for infrastructure survivabil ity research.

In this sedion, we describe briefly our todkit for building
dynamic models of infrastructure systems and their
superimposed control systems. The basic building block in
this todkit is what (for historicd reasons) we @l the L-
node. L-nodes provide a flexible medchanism for building
distributed dynamic modd s and control systems.

An L-node is a multi-threaded message dispatching process
that can be proggammed to support an ohjed-oriented
design style. L-nodes communicate by passng Message
objeds, which are structured, application-level messages
that are serialized for network communication. An L-node
is implemented as a Windows NT process A dynamic
model of an infrastructure system is implemented as a set
of communicating L-nodes. In the next sedion, we
describe a highly simplified dynamic modd of the United
States payment system that we built in this gyle. Each L-
node in such a system has an address represented as an
integer. At the applicaion level, L-nodes nd messges to
each other using these addresses. At the network level, the
TCP network protocal is used to transmit such messages.

A key property of the design of our todkit is that a new L-
node can be inserted trangparently between any two nodes
in a system. (At present, each applicaion L-node has
exactly one such assciated L-node) Messages passed
between the two nodes are then routed through these



interposed shell [10] or mediator [20, 21, 23] nodes.
Because messges are represented as application-level
semantic objects, shell nodes can process communications
between application nodes at the gplication level and so
can reason about the system state and behavior in its own
terms (as opposed to having to rewmnstitute application
semantics from low-level network traffic, for example).
The ability that this Structure gives us to huild modd
systems that transparently refled upon and modify their
own operation models the kind of approach that we would
want for real survivableinfrastructure information systems.

We use this “shell” medchanism in a variety of ways in our
dynamic models. Modeling the transparent wrapping and
monitoring of legacy systems is one such use. Other uses
are medy implementation details within our dynamic
models. We use shell processes to recéve messages from
L-nodes that are programmed to simulate failures of and
attacks upon application nodes, for example.

We implemented this “modding middieware’” on Pentium-
based machines running Windows NT and wsing TCP/IP
for communication. The programming language
environment is Visuad C++ 5.0 and its Microsoft
Foundation Class (MFC). We have eperimented with
running proggams built using this todkit on an
“infrastructure’ consisting o about a dozen machines
distributed across the United States and conneded via the
Internet. The machines were in Charlottesville (VA),
Portland (OR), Tucson (AZ), and Pittsburgh (PA).

4, A MODEL OF THE U.S. PAYMENT SYSTEM

In this sedion, we describe as an example a distributed
dynamic modd of the United States payment system [11]
together with a variety of malicious attacks to which it
might be subjected. Our model is grosdy simplified in
relation to the red banking system, of course, but it
captures me esential function and architedure. In the
next sedion, we describe how we use this g/stem as a
testbed for survivability research.

Our “payment system” implements the payment activities
of a threelevel hierarchicd banking system with branch
banks as |eaves, money-center banksin the middle, and the
Federal Reserve at the roat of a tree Depositing “cheds”
at a branch bank results in requests for transfers of funds
among acoounts. When a chedk with a source-acoount
number, destination-account number, and amournt is
deposited in a branch bank, the ched is handed internally
at the branch bank if bath accounts are within that branch.
If not, the ched is passed up to the money center. If the
source-account number of the chedk isat a branch bank that
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Figure 2. Payment system model and ancillary nodes

is conneded to the money center in question, then the
ched deposit request isrouted there. If not, then the chedk
must be routed through the Federal Reserve. Chedks for
small amounts are aggregated at the money centers for
processng through the Federal Reserve in a batch cleaing
process Large dedks are handed individually as they are
deposited. The Federal Reserve transfers funds as
necessry. When a ched reaches the branch bank holding
the source acoount, the ched either cleas or bounces and
the status is routed back through the system accordingly.
The money-center banks maintain balances in their
acoounts a the Federal Reserve Bank to dlow the
necessry funds transfers. This mode is based on our
domain study of the banking system [11], and models the
payment reasonably well at agrosslevel.

Figure 2 illustrates owr experimenta infrastructure model in
a form smplified dightly for presentation. The actua
model comprises 11 application nodes: one Federa
Reserve Bank node, three money-center bank nodes, and
seven branch-bank nodes. Each runs on its own computer.
In addition, a request-generator node simulates bank
customers depositing cheds. The request generator sends
chedk deposit requests randomly to kranch banks at a
spedfied frequency. Another node is responsible for
injeding faults into the system, in this case simulating
attacks on banks. Currently, the simulated intruder can
launch several kinds of attacks:

e penetration of asingle node,

e simultaneous penetration of several nodes either within
the same bank company or on several companies, and

o penetration of several nodes within a spedfied time
interval either within the same bank company or across
several companies.

The intent of the first type of attack is to modd a simple
hacker scenario. The intent of the other two is to model
coordinated attacks in which either one organization is the
target or several are simultaneous targets.



Figure 3. Superimposed hierar chical control system

5. A SURVIVABILITY CONTROL SYSTEM

To explore, develop, and evaluate wntrol-system based
survivability —architedures, we have designed and
implemented a prototype control system to manage our
dynamic mode of the banking system when it is under
attack. The prototype system includes the payment system
moded and a @ntrol system that remnfigures the payment
system in response to several types of attack.

5.1 System structure

Figure 3 illustrates the structure of the payment system and
superimposed hierarchicd control system, omitting the
fault injedion and applicaion load generation nodes. The
payment system (application) nodes are white. The bb; are
branch banks. Themch, are money-center banks. And frb
models the Federal Reserve Bank. Elements of the aontrol
system are depicted as circles and ovals in gray.
Successvely higher levels of control appea in successvely
darker shades. The scope of control of each level of the
control system is indicaed by the nesting in the diagram.
Each of the model application and control system nodes is
implemented as an L-node.

In our system, each bank including branch banks, money-
center banks, and the Federal Reserve has a local control
node to enforce policies for that bank. These nodes deted
and report potential intrusions into the bank’s information
system and monitor communication traffic, both incoming
and outgoing, for the node. Each money-center bank has a
control node whose scope is the money-center bank and
subordinate branch banks.  This higher control leve
manages the system roated at and including the money
center bank. This higher-level control node communicaes
with subardinate ntrol nodes, accepting reports from
them and passng aggregate system-level information to
them. Finaly, the system has a control node whose scope
is the Federal Reserve's local control node and the @ntrol
nodes of the money-center banks.
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Figure 4. Onelevel of hierarchy in the control system

In addition to communicating with higher and lower level
control nodes, each control node provides a user interface
at the bank at that control node's level in the hierarchy.
This monitoring and control interface reports status to
human management, and provides for human-initiated
control actionsin additi on to automated control actions.

5.2 Hierarchical, distributed, multiple model control

Figure 4 gives a more detailed view of the hierarchicd
nature of the mntrol system. The @ntrol system building
block is the control component. The @ntrol system is
decomposed into several layers of control components.
Each controls an application node or a set of control
components—a controlled component. The dotted lines
indicae feedback from lower level to higher level controls.

A given control policy will perform well under a limited
range of operating conditions. For example, an efficient but
fragile configuration might be cntrolled under one policy,
but under a different onein alessefficient but more seaure
configuration (e.g., in which new nodes are prohibited from
entering the system).

This observation leads us to the notion of multiple-model
control [14]. In traditional control theory, multiple-model
contral is used to partition non-linea systems into pece
wise linea systems, with each piecesubject to a different
andyzable contral policy. To explore and illustrate this
ideain the context of information-systems control, we have
decomposed the operating range of our dynamic modd into
four regimes based on the kind o attacks with which we
are oncaned. We use this factor as the variable to
characterize the operating regimes:

* No-attack. The system isrunningin itsnormal sate.

* Singeatack. The system is experiencing scatered
attacks on individual nodes. The nodes may be branch,
money-center, or Federal Reserve Bank nodes.

* Regiona-attack. There ae coordinated attacks on
multiple nodes bel onging to the same company.

* Widespread-attack. The system is experiencing
coordinated attacks on multiple bank nodes across
several companies.
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For purposes of exploration, we adopt the simplistic view
that lossof value is minimized by shutting down banks that
are under attack, rather than letting them operate with arisk
of corrupting the banking system. In the no-attack regime,
controllers monitor payment system nodes. In this regime,
the ontrol system must be dficient and affed the payment
system minimally. The goal is to maintain close to full
service under a single attack, and to seaure trusted nodes
under regional or coordinated attack. The @ntrol actions
for these regimes are spedfied as different control policies.

Multipleemodel control is implemented using multiple
control componentsrunning & various levels of the cntrol
hierarchy. The structure of a single control component is
shown in Figure 5. A control component is composed of a
set of models of the cntrolled system, a model seledor, a
set of controll ers each implementing a control policy, anda
controller scheduler. The @ntroll ed-component behaviors
are ompared against multiple models by the model
seledor, which determines the regime (model) in which the
controlled component is currently operating. Using the
sdeded modd and other controlled component
information, the @ntroller scheduler chooses a suitable
contraller (contral policy) to control the component.

A control component reports local model information bath
up and down the @ntrol hierarchy. Higher level control
nodes colled information about nodes within their scope of
control, form models, and propagate them to subordinates.
The scheduler in each control component seleds a local
controll er based on the global model it has, the local model
of the system it controls, and information on other
controlled components. The sdeded local controller
remains active until the scheduler replacesiit.

5.3 Model and policy representation

At present, our control system nodes are based on finite
state machines (FSMs) with abstract-data-type interfaces.
One potential advantage of this choice is that it will
preserve a degree of anayzability—eg., usng model

chedking—not feasible with aricher computational model.
However, analysis itsdf remains as future work. If we find
that a richer computational modd is neaded (e.g., abstract
data types or adaptive agents), encapsulation of
implementations behind interfaces will ease the transti on.

Each local control node is in one of the four operating
regimes described above: one in which there is no attack;
one in which there isa local attack on its controlled node
but no ather attacks elsewhere, to the best of its knowledge;
one in which the money center bank to which it belongsis
under attack (the Federal Reserve belongs to no such bank);
and one in which the whole banking system is under attack.

Our current design is intended to permit exploration of the
isaes in passng information up and dwn the @ntrol
hierarchy to enable proper switching among these modes,
i.e, sdedion of a model of the banking system and an
associated local control rule. In practice a local control
system would behave differently in dfferent modes:
perhaps reporting attacks with less provocation in the face
of attacks on other nodes of the same money center bank,
or even disconneding itself from the network under severe
threat, eg., under coardinated attack on the whole system.

In our implementation, the local control nodes receave the
information from parent nodes needed to drive switching
among models;, however, we have not yet designed control
rules that use this information in aredigtic way. Our local
control nodes use a single policy. Each has a “sensor”
logically inserted into the local banking application. In our
case, the sensor models an intrusion detedion system
running within a banking aganization (branch, money
center, or Federal Reserve) that signals whether that bank is
under a seaurity attack or not. Our sensor sends under-
local-attack and not-under-local-attack notifications. At a
detailed implementation level, these events are sent in
response to dredions from the “fault injedion node”’ in our
model, which simulates effeds of intruder behaviors.

Thelocal control nodes implement a poali cy that responds to
a under-local-attack status by switching the controlled
bank node to an off-line mode, modeling a bank closure. In
this mode, the banking node buffers cheding requests but
does not process them. When not-under-local-attack is
deteded, the @ntrol node puts the bank back in operation.

In addition to remnfiguring bank nodes, local control nodes
forward under-attack and not-under-attack notifications to
their parents. If two a more subordinate ntrol nodes
report under-attack, then the parent control node @ncludes
that its domain is under coordinated attack, so it sends
bank-under-attack to its sibordinate ntrol nodes, and
under-attack to its parent. Thus, for example, if a branch
bank and its money center bank bah report local attacks,
then the money center control node reports to the loca
control nodes for bath the money center bank and for bath
branch banksthat the bank as awhole is under attack.



Similarly, if the top-level control node sees two a more
banks under-attack (e.g., the Federal Reserve and a money
center bank), it sends coordinated-attack to its subordinate
nodes, which then forward this event to their subordinates.
Forwarding of bank-attack and coordinate-attack messages
enable switching of models and control rulesat al levels.

5.4 Implementation status

We have completed implementation of our banking system
mode using the L-node todkit, and have implemented a
simple @ntrol palicy in asingle L-node node. We ae now
implementing the digtributed control system. Each L-node
implements either application-spedfic (banking) or control-
system-specific code.

6. INSIGHTSFROM EXPLORATORY WORK
Work to date has provided insights into research methods
for information survivability, the design of applications for
survivability, and the design of survivahility control
systems. We now discussa number of these insights.

6.1 Application design for survivability

For an information system to be subjed to control, so asto
ensure mntinued provision of the information services on
which an enterprise depends, it appeas that the information
system must be designed for reconfiguration. That is, the
application must provide a sufficiently rich design spaceto
provide scope for a control system to reamnfigure it to
handle spedfied adverse mnditions. The neal for design
flexibility is reminiscent of Parnas's notion of design for
ease of extension and contraction [16]. Our situation is
different in at least two ways. First, survivability demands
run-time not just design-time recnfiguration. Seand, it
demands flexihility to respond to adverse mnditions related
to information systems operation, not just for market
segmentation or incremental delivery.

How best to determine and spedfy requirements for such
flexibility is an open reseach question in our opinion. The
problem appeas complex. It requires an understanding of
the impact on customers of service strean interruptions,
how information system failures can cause interruptions,
and how hazards to information systems lead to fail ures.
Moreover, the costs of such flexibility have to be balanced
against benefits, the latter of which, like insurance poli cies,
are ontingent on the flexibil ity being needed at some time.

6.2 Flexibility requirements analysis and specification

Information systems that run infrastructures g/stems sould
be amenable to reconfiguration under dl kinds of plausble
adversity. Unfortunately, an information system that has
not been designed for flexibility in a spedfic dimension is
unlikely to be flexible The etent to which existing
infrastructures were so designed in the dimensions needed
for control in the face of emerging hazards and threds is
unclea. Although some flexibility is obviously present,
e.g., often for standard fault tolerance or disagter recovery,
the ability of these systems to hande the novel and

emerging threats is questionable. Some operationa systems
clearly were not designed o tested for such flexibility. In
the future, we envision a systematic approach to the design
of infrastructure information systems that integrates
medhanisms which: () mask cetain disuptive events
(such as hardware failure); (b) limit certain events (such as
seaurity violations); and (¢) provide design alternatives to
allow controll ed reconfiguration.

6.3 Subj ecting legacy systemsto novel for ms of control
While analysis and spedfication of flexibility requirements
appea to present significant challenges, implementing the
reguirements presents additiona difficulties. One espedally
difficult problem is presented by legacy infrastructure
information systems. Legacy software systems are an
esential part of most infrastructures. The problem is two-
fold. Fird, these systems were presumably not designed to
have the kinds of flexibility needed in the face of novel
threats. In our domain analysis of several applicaions we
have observed such cases. Semnd, these systems are
generally old, complex, and structurally degraded, and thus
hard and costly to change—often infeasibly so because they
are under tight monetary and intellecual capital-budgeting
constraints. What can we do with legacy systems whose
design spaceis poar andthat cannot easily be changed?

One partial answer appeas to lie in transparent extension
of the design space of existing systems. To make the point
concrete, consider our banking dynamic modd. Our
origina banking nodes had operations permitting the nodes
to be @ther on-line or not, but the nodes had no function for
buffering requests during periods of suspended operation.
We achieved trangparent extension of the space of
operating modes using the shell structure provided by our
L-node mechanism. In particular, by “wrapping” the bare
banking nodes behind transparent wrappers that added a
buffering function, we erriched the design space ewough
for our control system to med its objectives.

In a sense, then, our redpe for survivability hardening of
existing legacy infrastructure information systemsis first to
extend (and perhaps also restrict) their design spaces using
awrapping technique; then subjea the modified systems to
survivability control.! We have demonstrated this approach
in the mntext of a simple dynamic modd. We have not
proven the approach for real infrastructure systems; but
wrapping is a wdl known and widely used tedhnique for
encapsulating and extending legacy systems. We have
formulated and provided a prodf of concept for a principled
approach to an extremely complex problem.

! Seea sigter submisson to this conference for related work
on behavioral extenson and restriction—M. Marchukov
and K.J. Sullivan, Reconciling Behavioral Mismatch
through Component Restriction.



6.4 Security of the control system

Adding complexity to a complex system in an attempt to
make it better often makes it worse. This principle applies
to aur approach very clearly. A design that inserts into a
critical system a control system able to manipulate it in
dramatic ways presents an obvious risk: the @ntrol system
becomes arich target for a potential adversary.

Seauring the mntrol system thus becomes a key objedive.
A particularly interesting isale is that sensors that report
information on the controll ed system to the ntrol system,
on which the dedsions of the @ntrol system are based,
often run on the same platforms as the ntrolled system.
If those platforms are vulnerable to attack, then so are the
sensors. By spodfiing sensor data, an adversary could
midead the control system into taking an action that serves
the objectives of the alversary.

This observation has led our research team to focus on a
little studied seaurity probem: running trusted code on
untrusted platforms, a problem dual to the “Java seaurity
problem” of running untrusted code on trusted platforms.
We believe that, in general, there is no solution to the
problem we have formulated, but that means can be used to
raise the cost to spoof to a discouraging level. In practice a
broad range of security and ather measures would be taken
to provide defensein depth of such a control system.

6.5 Contral structur e deter mined by infor mation flows
One of the things that we learned when taking the cntrol
systems perspedive is that the information that has to be
passed within a mntrol system depends in large part on the
contral rules to be enforced. A policy dedaring a global
bank holiday if any bank is attacked reqguires the
propagation only of a Bodean valueindicaing whether any
bank is under attack, for example; while our richer policy
requires richer flows. Thus there is likdy no e
architeaure for survivahility control. Rather, we envision
an architectural style for survivability control based on
concepts and structures from the intdledual discipline of
control theory.

6.6 Need to reason about relative dynamics

Another observation is that the dynamics of a control
system have to be sufficiently faster than those of the
controlled system in order for time-sensitive ntrol rules
(survivability policies) to be enforced. For example, a
policy might require that a subtree be spliced out of the
network before a disturbance within that subtree ca
propagate to ahe parts of the applicaion system.
Functiona properties are not enough; real-time ntrol
appeaslikely to emerge as an important isaue.

7. RELATED WORK

Control theory [1] provides a mature way of thinking about
and designing information flows and feeadback to maintain
complex systems under desired behavioral conditions over
time For traditionally engineeed systems, control theory

provides a rich and beautiful set of modeling and analysis
methods based on advanced mathematical analysis. At
present we have in control theory a metaphor that can guide
us to a novel software achitedura style and to a deeper
understanding o the nature of the important but inchoate
concept of information survivability.

The simple mntrol system that we presented implements a
static optimization scheme: a precomputed policy that
defines the action to take under spedfied circumstances.
Control theory suggests an appeal to the ideaof stochastic
optimal control, with a @ntrol system using a probabili stic
model of posgble future enditionsto choase an action that
yields best expected results. Management of uncertainty
appeasto be akey problem for infrastructure suvivabilit y.
However, it istoo early to know whether stochastic control
has a significant role. One probem is that poli cy-makers
might not be will ing to permit probebili stic control rules.

A second problem is that it might be (and seens quite
likely to be) difficult to formulate an explicit oljective
function (cost) for a ntrol system to minimize in the
tremendoudy complex and policy-dependent domain of
infragtructure protedion.  Nevertheless the metaphor
seams to lead to interesting structuring techniques and to
useful albeit still impredse problem formulations.

We will thus continue to pursue connedions between
software design for survivable infragtructures and the dean
but not aways diredly applicable oncepts of control. In
onerdated projed, we are gplying concepts from options
theory—an application of stochastic optima control, and of
optimal sopping theory in particular—to reason about the
value of flexibility in software products and processes [24].
In a second thrust, we appeal to the @ncept of economic
optimization under uncertainty to reason about the nature of
software evolvability [22].

The application of control systems concepts in software
designisnot new. Jehuda and Isragli [9] propose a control
system for dynamically adapting a software @nfiguration
to acoommodate varying runtime drcumstances impacting
on real-time performance In contrast to ou work, which
leaves the objedive function as a qualitative notion, Jehuda
and Isradi use eplicit optimization. In CHAOS [7], red
time systems are alapted with the use of an entity-relation
database modeling system structure. Control systems ideas
have been used in distributed applicaion management.
Meta [13] is an architedure and a tod that uses a non-
hierarchical control system to gptimize performance in
fault-tolerant distributed systems using Isis. Distributed
application management (e.g., [2, 25]) employs srvices
supporting the dynamic management of distributed
applications. Network management uses control concepts
to manage networks and their running software [3, 4].

However, the major objective in such work is to monitor
and improve application or network performance in



traditiona dimensions, eg., runtime efficiency. By
contrast, our use of control is targeted at enhancing the
survivability of controlled applications. Many of the
control-based ideas that have been developed by others
promise to contribute to our work on survivability control.

When considered from the perspective of survivability, the
techniques devel oped in the areas of reliability, availability
and security can contribute to system survivability but they
are not sufficient. Techniques for achieving reliability, for
example, assume different failure models and are aimed at
different target applications. Similarly, security techniques
are used to harden a system but typically do not provide
any solution when the system is compromised.

Intrusion detection provides a way to monitor and control
the abnormal behaviors of a system. EMERALD [17]
introduces an approach to network surveillance, attack
isolation, and automated response. It uses distributed,
independently tunable surveillance and response monitors
as the building blocks, and combines signature analysis
with statistical profiling to provide localized protection. A
recursve framework is proposed for coordinating the
dissemination of analyses from the distributed monitors to
provide a global detection and response capability. We
address disturbances not limited to security.

GrIDS [19] is a graph based large network intrusion
detection system. It collects data about computer activity
and network traffic, and aggregates this information into
activity graphs which reveal the causal structure of network
activity. Thisis an intrusion detection system. No response
mechanism is discussed. The graph based detection
mechanism could perhaps be used in our architecture.

The Dynamic, Cooperating Boundary Controllers program
[26] is developing a capability to allow traditionally static
and standalone network boundary controllers (e.g. filtering
routers and firewalls) to work cooperatively to protect
networks. The capability is achieved through the use of an
Intruder Detection and Isolation Protocol (IDIP). The work
attempts to address the network intrusion problem only.

Hiltunen and Schlichting propose a model for adaptive
systems [8] that respond to changes in three phases. change
detection, agreement, and action. It is used for performance
and fault-tolerance. Goldberg et a. discuss adaptive fault-
resistant systems and present some examples [6]. Our
approach provides a way to embed adaptation in the system
through multiple modd control. Different control policies
may be adaptively used for different operating regimes.

8. CONCLUSIONS

Dealing with the fragility of critical information systems is
a significant problem that must be addressed if disruptions
to our everyday activities are to be prevented. That
disruptions can occur is well illugrated by the many
incidents that have already been reported.

Societal exposure to information systems is increasing as
new applications (such as dectronic commerce) are
developed, as existing applications incorporate information
systems to improve their efficiency, and as existing
applications move from expendve closed private networks
to less-expensive open Internet-based communication. The
threats are also increasing. On the horizon is the prospect
that critical information systems will become the targets of
terrorist groups and even unfriendly foreign governments.

Dedling with disruptions that occur, no matter what the
cause, requires diagnostic and corrective actions to be
taken. In amost all cases, minimizing the loss of aggregate
value to users and ensuring that it remains within a range
required to safeguard the public interest is achieved only by
taking a system-wide view.

We claim that one formalism that shows promise to aid in
reasoning about this problem in infragtructure information
systems is hierarchic adaptive control. In this paper, we
have presented the architectural notion of survivability
control systems. We have described some of the details of
this architecture and illustrated the approach using a simple
example derived from the banking domain. The
implausibility of experimenting with actual infrastructures
led us to aresearch methodology based on dynamic models
as platforms on which to build and evaluate architectures,
with room for expansion through the use of richer models.

Developing highly survivable critical information systems
is not going to come about as the result of any single
advance. These systems pose many challenges that will
require innovation in a number of areas if they are to be
addressed adequately. The control-system architectura
perspective is a general framework for dealing with part of
the problem.
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