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ABSTRACT
We address the dependence of critical infrastructures—
including electric power, telecommunications, finance and
transportation—on vulnerable information systems. Our
approach is based on the notion of control.  We envision
distributed, hierarchical, adaptive, multiple model, discrete-
state control systems to monitor infrastructure information
systems and respond to disruptions (e.g., security attacks)
by changing operating modes and design configurations to
minimize loss of utility.  Controlling legacy information
systems presents some significant challenges.  To explore
and evaluate our approach, we have developed a toolkit for
building distributed dynamic models of infrastructure
information systems. We used this toolkit to build a model
of a simple subset of the United States payment system and
a control system for this model information system.
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1. INTRODUCTION
The survivabilit y of critical infrastructure systems, such as
electric power distribution, telecommunications, freight rail
and banking, has become a major concern of the United
States government, and will garner increasing concern from
private industry [5, 15, 18]. The intuitive notion of
survivabilit y is clear: we want infrastructure systems that
continue to provide acceptable service levels to customers
in the face of disturbances, natural, accidental or malicious.

It is now believed that the reliance of infrastructure systems
on fragile information systems puts our infrastructures at
risk of catastrophic failure.  Threats arise from reliance on
commercial (COTS) components of unquantified reliability
and security, legacy software that defies comprehension
and evolution, wide-area distribution, strict performance
requirements, complex networks, and openings to outside
manipulation through networks and outsourcing of design.

The vulnerabil ity of criti cal infrastructure systems to
failures in underlying information systems creates new
challenges for software engineering research, as well as
research across many related disciplines, including systems
engineering, computer security, real-time systems, and so
forth.  In software engineering, architectural support for
survivabilit y emerges as a top research priority.

Defensive architectural design, e.g., computer security and
disaster recovery planning, is an aspect of a comprehensive
architectural approach to infrastructure survivabilit y.
However, when defenses fail to prevent disturbances, then
reaction will be necessary to minimize the loss of utility
provided by an infrastructure.  In this paper, we address the
reactive element of survivabil ity.  For example, in reacting
to a coordinated security attack, computers hosting critical
databases might be disconnected from a network.
Reconfiguration wil l involve  changes in operating modes,
module implementations and interconnection structure.

We describe our approach, which is based on a control
systems perspective and our previous work [10].   Control
theory [1] provides a vocabulary for reasoning about how
to keep systems operating as desired, and for structuring
information-based mechanisms to effect such control.

The characteristics of the systems that we seek to control
imply novel control systems.  Infrastructure systems and
their information systems are large and distributed; so
control must be decentralized.  System-wide monitoring,
reporting, and control implies some centralization, and so a
hierarchical structure. Controlled systems change (e.g., as
hardware fail s and as they evolve over time), so a control
system must be adaptive. Finally, we seek to control not
physical but information systems, whose behaviors are
described not by differential equations but by discrete state
transitions; so we need discrete state control systems. These
considerations take us beyond canonical control theory.
We recognize that our appeal to control theory begins at the
metaphorical level. Strong theorems, e.g., on stabil ity,
robust control, etc, are unli kely to hold in our context.

Section 2 presents the rationale for a control approach.
Section 3 introduces a toolkit for building dynamic models
of infrastructure information and systems. Section 4
presents a simple model of one information system; and
Section 5, its controller. We summarize insights in Section
6 and related work in 7. Section 8 presents our conclusions.

2. SURVIVABILITY CONTROL SYSTEMS
An infrastructure provides to its customers a service stream
over time.  For example, the electric grid provides a stream
of electricity to each home and business. Such a stream has
a value or utility to a customer depending on its particular
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needs.  Provision of energy to homes is more valuable in
winter than summer, for example.   At some level, there is
an aggregate value added that depends on the reliance of
customers on service and the criticality of each customer in
a broader context, as defined by societal or business poli cy.

The direct consequence of a disruption of an infrastructure
system is a reduction in the service stream to customers.
The key consequence is a loss of value over time. The value
lost to a given customer depends on its reliance on the
service, and the kind and duration of disruption.  Individual
loss sums to an aggregate loss.  Survivabilit y means that
this aggregate loss is minimized and judged acceptable
under defined adverse circumstances.

Society now finds itself in a doubly dangerous situation in
which infrastructure survivabilit y is not ensured (assuming
reasonable definitions of acceptable and knowledge of
failure modes that have become possible, neither of which,
however, might ever have been made explicit).  Massive
computerization has enabled eff iciencies through tightened
coupling.  Just-in-time delivery of automotive parts by rail
has enabled dramatic inventory reductions; but
manufacturers are now more reliant on a highly reliable
stream of timely deli veries.  The cost of interruptions grows
more rapidly in time now than before computerization. At
the same time, increasing reliance on computers increases
vulnerability to disruption.  The problem is to devise
approaches to infrastructure information systems design
and evolution that simultaneously enable the efficiencies
that computers make possible while ensuring that the costs
of service stream interruptions remain acceptable in the
face of disruptions to underlying information systems.

2.1 Control system perspective of survivability
In this paper we present a control systems approach to
infrastructure survivabilit y in the information age.  The
information systems that run our infrastructures appear to
be vulnerable to disruption—by natural disaster, accident,
mismanagement, design error, malicious attack, etc.  In the
face of such disruptions, actions must be taken to ensure
that a managed infrastructure system continues to meet its
survivabilit y requirements, specified in terms of acceptable
reductions in value added under defined circumstances.

When disrupted, an information system must be adjusted so
as to continue to provide information services on which the
acceptable provision of infrastructure service depends.
Adjustment wil l involve reconfiguration of the information
system. To be reconfigured, an information system must be
reconfigurable.  System reconfigurabil ity can occur at
many levels, including operating parameters, module
implementations, and physical devices. We refer to the set
of all possible configurations as a design space.
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Survivability
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context

Social
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Design
space

Service
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The traditional approach to managing complex systems,
such as avionics platforms, to ensure continued acceptable
provision of service is to use a control system. We envision
the use of control to manage information systems based on
data from infrastructures, their information systems, and
their operational environments.  In essence, such a control
system is responsible for choosing a configuration at each
point in time based on current conditions to minimize the
loss of aggregate value, with assurances that under defined
circumstances loss of value will not exceed defined limits.

As illustrated in Figure 1, a given design configuration
supports some level of infrastructure service.  A given level
of service is related to value through context as discussed
above  (is it winter?).  The design space determines the
extent to which a control system can manage loss of value
in the face of disturbances. An information system for a
survivable infrastructure system must have a configuration
enabling service provision that meets value requirements
for each defined hazard or circumstance to which the
infrastructure and its information system is subject.

The notion of using control systems to manage information
systems is not entirely new, as we discuss in Section 7.
Our contributions are: (1) interpreting survivability as a
large-scale control and optimization problem; (2) deriving
basic characteristics of control systems from properties of
infrastructure information systems; (3) presentation of an
experimental systems framework and methodology for
research on infrastructure information system survivability;
and (4) insights arising from the control perspective.

2.2 Hierarchical adaptive control
We frame decentralized, hierarchical, discrete-state,
adaptive control as an architectural style for survivable
infrastructure information systems. A control system
manipulates a controlled system on the basis of sensor data
from the controlled system, predictions of its behavior, and
other such information (including, in stochastic control,
estimates of probabilities of future states of nature) to
maintain acceptable levels of system operation.  Examples
are familiar to every engineer.

Figure 1. Survivability control system concept
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A decentralized control system is one in which parts of the
control system control parts of the underlying system
autonomously. An adaptive control system is one that can
continue providing control in the face of changes to the
controlled system and to the control system.  For example,
an adaptive control system for an avionics application can
ensure that an aircraft remains under control even if it loses
part of a wing and some sensors in an air engagement.  A
hierarchical control system is one in which control actions
are determined at a number of levels in a hierarchical
system, with low-level control system elements influencing
and being influenced by higher levels of control.  Tactical
decisions might be made close to individual components in
a controlled system, while strategic decisions are made at a
higher level based on aggregated global system state.

In our formulation, the controlled system is the information
system automating an infrastructure system.  In freight rail,
for example, the physical system comprises rails, cars and
locomotives.  This infrastructure is controlled by a complex
information system that manages train assembly, dispatch,
scheduling, motion control, billing and so on to meet
performance, safety, business and other objectives.  We
envision superimposing a survivabilit y control system atop
such an information system.  Among a wide variety of
survivabilit y properties achieved by this structure, such a
control system would implement intrusion monitoring and
response; system-wide fault tolerance; and controlled
service degradation under adverse conditions.

2.3 Why hierarchical and adaptive?
The need for a hierarchical structure is implied by the size
and distribution of infrastructure information systems.  It is
implausible, for example, to have a single computing node
monitoring the entire United States banking system.  Each
major bank would have a local control system interacting
through abstract interfaces with higher-level (e.g., Federal
Reserve) and lower-level (e.g., branch) control systems.

A hierarchical structure is natural to support scalabilit y
through local control and the passing of aggregated status
information up and down a hierarchy.  Such information
flows will be needed in practice to implement system-wide
reconfiguration poli cies with acceptable performance. Such
a structure enables local control nodes to implement
policies based on local information and aggregated global
state passed from above.  In addition to performance,
hierarchy enables abstraction and complexity control in
control system implementation.  Detail s of local application
nodes are abstracted by local control nodes.  Higher level
control nodes are specified and implemented in terms of the
observable and controllable aspects of control nodes at the
next level down the control hierarchy. Hierarchy is also
intended to foster evolvabilit y of the control poli cies.  Such
evolvabilit y will be critical to effective “learning” by a
system over time, and as the underlying information and
infrastructure systems evolve.

A disciplined approach to the modular design of the control
system will also be criti cal in building adaptive control
systems that can tolerate the loss, addition, or modification
of control and controlled nodes. The control theoretic
notion of multiple-model adaptive control—in which the
control system views the controlled system as being in one
of a number of possible distinct operating regimes in which
distinct control rules apply—offers especiall y attractive
prospects. Our dynamic modeling toolkit, which we
describe next, provides a monitoring capabilit y that is used
to connect control nodes in such a way as to ensure that
nodes within the control system have a model of both the
controlled and control system.

3. A TOOLKIT FOR EXPERIMENTAL SYSTEMS
A serious impediment to research on infrastructure
survivabilit y is that researchers can neither experiment with
nor even measure infrastructures or their information
systems because they generall y have li ttle or no direct
access to them.  Our approach is to build dynamic models
of these systems, and to explore, develop and evaluate our
control systems approach in the context of these dynamic
models.  The idea of building infrastructure simulations is
not a new idea: it is done routinely in the electric power
industry, for example; and such simulations are typicall y
used as subjects of and elements in control systems [27].
We know of no other work using simulations of
infrastructure information systems to serve as subjects of
control systems for infrastructure survivabil ity research.

In this section, we describe briefly our toolkit for building
dynamic models of infrastructure systems and their
superimposed control systems.  The basic building block in
this toolkit is what (for historical reasons) we call the L-
node. L-nodes provide a flexible mechanism for building
distributed dynamic models and control systems.

An L-node is a multi-threaded message dispatching process
that can be programmed to support an object-oriented
design style. L-nodes communicate by passing Message
objects, which are structured, application-level messages
that are serialized for network communication. An L-node
is implemented as a Windows NT process. A dynamic
model of an infrastructure system is implemented as a set
of communicating L-nodes.  In the next section, we
describe a highly simplified dynamic model of the United
States payment system that we built in this style.  Each L-
node in such a system has an address represented as an
integer.  At the application level, L-nodes send messages to
each other using these addresses.  At the network level, the
TCP network protocol is used to transmit such messages.

A key property of the design of our toolkit is that a new L-
node can be inserted transparently between any two nodes
in a system.  (At present, each application L-node has
exactly one such associated L-node.) Messages passed
between the two nodes are then routed through these
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interposed shell [10] or mediator [20, 21, 23] nodes.
Because messages are represented as application-level
semantic objects, shell nodes can process communications
between application nodes at the application level and so
can reason about the system state and behavior in its own
terms (as opposed to having to reconstitute application
semantics from low-level network traff ic, for example).
The ability that this structure gives us to build model
systems that transparently reflect upon and modify their
own operation models the kind of approach that we would
want for real survivable infrastructure information systems.

We use this “shell” mechanism in a variety of ways in our
dynamic models. Modeling the transparent wrapping and
monitoring of legacy systems is one such use.  Other uses
are merely implementation detail s within our dynamic
models. We use shell processes to receive messages from
L-nodes that are programmed to simulate failures of and
attacks upon application nodes, for example.

We implemented this “modeling middleware” on Pentium-
based machines running Windows NT and using TCP/IP
for communication. The programming language
environment is Visual C++ 5.0 and its Microsoft
Foundation Class (MFC). We have experimented with
running programs built using this toolkit on an
“infrastructure” consisting of about a dozen machines
distributed across the United States and connected via the
Internet. The machines were in Charlottesvill e (VA),
Portland (OR), Tucson (AZ), and Pittsburgh (PA).

4. A MODEL OF THE U.S. PAYMENT SYSTEM
In this section, we describe as an example a distributed
dynamic model of the United States payment system [11]
together with a variety of malicious attacks to which it
might be subjected.  Our model is grossly simpli fied in
relation to the real banking system, of course, but it
captures some essential function and architecture.  In the
next section, we describe how we use this system as a
testbed for survivabilit y research.

Our “payment system” implements the payment activities
of a three-level hierarchical banking system with branch
banks as leaves, money-center banks in the middle, and the
Federal Reserve at the root of a tree. Depositing “checks”
at a branch bank results in requests for transfers of funds
among accounts. When a check with a source-account
number, destination-account number, and amount is
deposited in a branch bank, the check is handled internall y
at the branch bank if both accounts are within that branch.
If not, the check is passed up to the money center.  If the
source-account number of the check is at a branch bank that
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Branch
bank

Request
generator

Fault
injection

Fault

is connected to the money center in question, then the
check deposit request is routed there. If not, then the check
must be routed through the Federal Reserve.  Checks for
small amounts are aggregated at the money centers for
processing through the Federal Reserve in a batch clearing
process. Large checks are handled individually as they are
deposited. The Federal Reserve transfers funds as
necessary.  When a check reaches the branch bank holding
the source account, the check either clears or bounces and
the status is routed back through the system accordingly.
The money-center banks maintain balances in their
accounts at the Federal Reserve Bank to allow the
necessary funds transfers.  This model is based on our
domain study of the banking system [11], and models the
payment reasonably well at a gross level.

Figure 2 illustrates our experimental infrastructure model in
a form simplified slightly for presentation. The actual
model comprises 11 application nodes: one Federal
Reserve Bank node, three money-center bank nodes, and
seven branch-bank nodes.  Each runs on its own computer.
In addition, a request-generator node simulates bank
customers depositing checks. The request generator sends
check deposit requests randomly to branch banks at a
specified frequency.  Another node is responsible for
injecting faults into the system, in this case simulating
attacks on banks. Currently, the simulated intruder can
launch several kinds of attacks:

• penetration of a single node,

• simultaneous penetration of several nodes either within
the same bank company or on several companies, and

• penetration of several nodes within a specified time
interval either within the same bank company or across
several companies.

The intent of the first type of attack is to model a simple
hacker scenario. The intent of the other two is to model
coordinated attacks in which either one organization is the
target or several are simultaneous targets.

Figure 2. Payment system model and ancillary nodes
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5. A SURVIVABILITY CONTROL SYSTEM
To explore, develop, and evaluate control-system based
survivabilit y architectures, we have designed and
implemented a prototype control system to manage our
dynamic model of the banking system when it is under
attack. The prototype system includes the payment system
model and a control system that reconfigures the payment
system in response to several types of attack.

5.1 System structure
Figure 3 illustrates the structure of the payment system and
superimposed hierarchical control system, omitting the
fault injection and application load generation nodes. The
payment system (application) nodes are white.  The bbij are
branch banks.  The mcbi  are money-center banks.  And frb
models the Federal Reserve Bank.  Elements of the control
system are depicted as circles and ovals in gray.
Successively higher levels of control appear in successively
darker shades.  The scope of control of each level of the
control system is indicated by the nesting in the diagram.
Each of the model application and control system nodes is
implemented as an L-node.

In our system, each bank including branch banks, money-
center banks, and the Federal Reserve has a local control
node to enforce poli cies for that bank.  These nodes detect
and report potential intrusions into the bank’s information
system and monitor communication traff ic, both incoming
and outgoing, for the node. Each money-center bank has a
control node whose scope is the money-center bank and
subordinate branch banks.  This higher control level
manages the system rooted at and including the money
center bank.  This higher-level control node communicates
with subordinate control nodes, accepting reports from
them and passing aggregate system-level information to
them.  Finall y, the system has a control node whose scope
is the Federal Reserve’s local control node and the control
nodes of the money-center banks.

In addition to communicating with higher and lower level
control nodes, each control node provides a user interface
at the bank at that control node’s level in the hierarchy.
This monitoring and control interface reports status to
human management, and provides for human-initiated
control actions in addition to automated control actions.

5.2 Hierarchical, distributed, multiple model control
Figure 4 gives a more detailed view of the hierarchical
nature of the control system. The control system building
block is the control component. The control system is
decomposed into several layers of control components.
Each controls an application node or a set of control
components—a controlled component.  The dotted lines
indicate feedback from lower level to higher level controls.

A given control poli cy will perform well under a limited
range of operating conditions. For example, an eff icient but
fragile configuration might be controlled under one policy,
but under a different one in a less eff icient but more secure
configuration (e.g., in which new nodes are prohibited from
entering the system).

This observation leads us to the notion of multiple-model
control [14].  In traditional control theory, multiple-model
control is used to partition non-linear systems into piece-
wise linear systems, with each piece subject to a different
analyzable control poli cy.  To explore and il lustrate this
idea in the context of information-systems control, we have
decomposed the operating range of our dynamic model into
four regimes based on the kind of attacks with which we
are concerned. We use this factor as the variable to
characterize the operating regimes:

• No-attack. The system is running in its normal state.

• Single-attack. The system is experiencing scattered
attacks on individual nodes. The nodes may be branch,
money-center, or Federal Reserve Bank nodes.

• Regional-attack. There are coordinated attacks on
multiple nodes belonging to the same company.

• Widespread-attack. The system is experiencing
coordinated attacks on multiple bank nodes across
several companies.
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m c b 1C.S.
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Figure 3. Superimposed hierarchical control system

Figure 4. One level of hierarchy in the control system
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For purposes of exploration, we adopt the simplistic view
that loss of value is minimized by shutting down banks that
are under attack, rather than letting them operate with a risk
of corrupting the banking system. In the no-attack regime,
controllers monitor payment system nodes. In this regime,
the control system must be efficient and affect the payment
system minimally. The goal is to maintain close to full
service under a single attack, and to secure trusted nodes
under regional or coordinated attack. The control actions
for these regimes are specified as different control poli cies.

Multiple-model control is implemented using multiple
control components running at various levels of the control
hierarchy. The structure of a single control component is
shown in Figure 5. A control component is composed of a
set of models of the controlled system, a model selector, a
set of controllers each implementing a control poli cy, and a
controller scheduler. The controlled-component behaviors
are compared against multiple models by the model
selector, which determines the regime (model) in which the
controlled component is currently operating. Using the
selected model and other controlled component
information, the controller scheduler chooses a suitable
controller (control poli cy) to control the component.

A control component reports local model information both
up and down the control hierarchy. Higher level control
nodes collect information about nodes within their scope of
control, form models, and propagate them to subordinates.
The scheduler in each control component selects a local
controller based on the global model it has, the local model
of the system it controls, and information on other
controlled components. The selected local controller
remains active until the scheduler replaces it.

5.3 Model and policy representation
At present, our control system nodes are based on finite
state machines (FSMs) with abstract-data-type interfaces.
One potential advantage of this choice is that it wil l
preserve a degree of analyzabilit y—e.g., using model

checking—not feasible with a richer computational model.
However, analysis itself remains as future work.  If we find
that a richer computational model is needed (e.g., abstract
data types or adaptive agents), encapsulation of
implementations behind interfaces will ease the transition.

Each local control node is in one of the four operating
regimes described above: one in which there is no attack;
one in which there is a local attack on its controlled node
but no other attacks elsewhere, to the best of its knowledge;
one in which the money center bank to which it belongs is
under attack (the Federal Reserve belongs to no such bank);
and one in which the whole banking system is under attack.

Our current design is intended to permit exploration of the
issues in passing information up and down the control
hierarchy to enable proper switching among these modes,
i.e., selection of a model of the banking system and an
associated local control rule.  In practice, a local control
system would behave differently in different modes:
perhaps reporting attacks with less provocation in the face
of attacks on other nodes of the same money center bank,
or even disconnecting itself from the network under severe
threat, e.g., under coordinated attack on the whole system.

In our implementation, the local control nodes receive the
information from parent nodes needed to drive switching
among models; however, we have not yet designed control
rules that use this information in a reali stic way.  Our local
control nodes use a single poli cy.  Each has a “sensor”
logicall y inserted into the local banking application.  In our
case, the sensor models an intrusion detection system
running within a banking organization (branch, money
center, or Federal Reserve) that signals whether that bank is
under a security attack or not. Our sensor sends under-
local-attack and not-under-local-attack notifications.  At a
detailed implementation level, these events are sent in
response to directions from the “fault injection node” in our
model, which simulates effects of intruder behaviors.

The local control nodes implement a poli cy that responds to
a under-local-attack status by switching the controlled
bank node to an off-line mode, modeling a bank closure.  In
this mode, the banking node buffers checking requests but
does not process them.  When not-under-local-attack is
detected, the control node puts the bank back in operation.

In addition to reconfiguring bank nodes, local control nodes
forward under-attack and not-under-attack notifications to
their parents.  If two or more subordinate control nodes
report under-attack, then the parent control node concludes
that its domain is under coordinated attack, so it sends
bank-under-attack to its subordinate control nodes, and
under-attack to its parent.  Thus, for example, if a branch
bank and its money center bank both report local attacks,
then the money center control node reports to the local
control nodes for both the money center bank and for both
branch banks that the bank as a whole is under attack.

Figure 5. Structure of a control component.
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Similarly, if the top-level control node sees two or more
banks under-attack (e.g., the Federal Reserve and a money
center bank), it sends coordinated-attack to its subordinate
nodes, which then forward this event to their subordinates.
Forwarding of bank-attack and coordinate-attack messages
enable switching of models and control rules at all levels.

5.4 Implementation status
We have completed implementation of our banking system
model using the L-node toolkit, and have implemented a
simple control poli cy in a single L-node node. We are now
implementing the distributed control system. Each L-node
implements either application-specific (banking) or control-
system-specific code.

6. INSIGHTS FROM EXPLORATORY WORK
Work to date has provided insights into research methods
for information survivabilit y, the design of applications for
survivabilit y, and the design of survivabilit y control
systems.  We now discuss a number of these insights.

6.1 Application design for survivability
For an information system to be subject to control, so as to
ensure continued provision of the information services on
which an enterprise depends, it appears that the information
system must be designed for reconfiguration. That is, the
application must provide a suff iciently rich design space to
provide scope for a control system to reconfigure it to
handle specified adverse conditions. The need for design
flexibilit y is reminiscent of Parnas’s notion of design for
ease of extension and contraction [16]. Our situation is
different in at least two ways.  First, survivabilit y demands
run-time not just design-time reconfiguration.  Second, it
demands flexibility to respond to adverse conditions related
to information systems operation, not just for market
segmentation or incremental delivery.

How best to determine and specify requirements for such
flexibilit y is an open research question in our opinion.  The
problem appears complex.  It requires an understanding of
the impact on customers of service stream interruptions,
how information system failures can cause interruptions,
and how hazards to information systems lead to failures.
Moreover, the costs of such flexibilit y have to be balanced
against benefits, the latter of which, like insurance policies,
are contingent on the flexibil ity being needed at some time.

6.2 Flexibility requirements analysis and specification
Information systems that run infrastructures systems should
be amenable to reconfiguration under all kinds of plausible
adversity. Unfortunately, an information system that has
not been designed for flexibilit y in a specific dimension is
unlikely to be flexible. The extent to which existing
infrastructures were so designed in the dimensions needed
for control in the face of emerging hazards and threats is
unclear.  Although some flexibil ity is obviously present,
e.g., often for standard fault tolerance or disaster recovery,
the ability of these systems to handle the novel and

emerging threats is questionable. Some operational systems
clearly were not designed or tested for such flexibil ity. In
the future, we envision a systematic approach to the design
of infrastructure information systems that integrates
mechanisms which: (a) mask certain disruptive events
(such as hardware failure); (b) limit certain events (such as
security violations); and (c) provide design alternatives to
allow controlled reconfiguration.

6.3 Subjecting legacy systems to novel forms of control
While analysis and specification of flexibilit y requirements
appear to present significant challenges, implementing the
requirements presents additional diff iculties. One especiall y
diff icult problem is presented by legacy infrastructure
information systems. Legacy software systems are an
essential part of most infrastructures. The problem is two-
fold. First, these systems were presumably not designed to
have the kinds of flexibilit y needed in the face of novel
threats. In our domain analysis of several applications we
have observed such cases.  Second, these systems are
generally old, complex, and structurally degraded, and thus
hard and costly to change—often infeasibly so because they
are under tight monetary and intellectual capital-budgeting
constraints.  What can we do with legacy systems whose
design space is poor and that cannot easily be changed?

One partial answer appears to lie in transparent extension
of the design space of existing systems.  To make the point
concrete, consider our banking dynamic model. Our
original banking nodes had operations permitting the nodes
to be either on-line or not, but the nodes had no function for
buffering requests during periods of suspended operation.
We achieved transparent extension of the space of
operating modes using the shell structure provided by our
L-node mechanism.  In particular, by “wrapping” the bare
banking nodes behind transparent wrappers that added a
buffering function, we enriched the design space enough
for our control system to meet its objectives.

In a sense, then, our recipe for survivabilit y hardening of
existing legacy infrastructure information systems is first to
extend (and perhaps also restrict) their design spaces using
a wrapping technique; then subject the modified systems to
survivabilit y control.1  We have demonstrated this approach
in the context of a simple dynamic model. We have not
proven the approach for real infrastructure systems; but
wrapping is a well known and widely used technique for
encapsulating and extending legacy systems. We have
formulated and provided a proof of concept for a principled
approach to an extremely complex  problem.

                                                       
1 See a sister submission to this conference for related work
on behavioral extension and restriction—M. Marchukov
and K.J. Sulli van, Reconciling Behavioral Mismatch
through Component Restriction.
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6.4 Security of the control system
Adding complexity to a complex system in an attempt to
make it better often makes it worse.  This principle applies
to our approach very clearly.  A design that inserts into a
critical system a control system able to manipulate it in
dramatic ways presents an obvious risk: the control system
becomes a rich target for a potential adversary.

Securing the control system thus becomes a key objective.
A particularly interesting issue is that sensors that report
information on the controlled system to the control system,
on which the decisions of the control system are based,
often run on the same platforms as the controlled system.
If those platforms are vulnerable to attack, then so are the
sensors.  By spoofing sensor data, an adversary could
mislead the control system into taking an action that serves
the objectives of the adversary.

This observation has led our research team to focus on a
li ttle studied security problem: running trusted code on
untrusted platforms, a problem dual to the “Java security
problem” of running untrusted code on trusted platforms.
We believe that, in general, there is no solution to the
problem we have formulated, but that means can be used to
raise the cost to spoof to a discouraging level.  In practice, a
broad range of security and other measures would be taken
to provide defense in depth of such a control system.

6.5 Control structure determined by information flows
One of the things that we learned when taking the control
systems perspective is that the information that has to be
passed within a control system depends in large part on the
control rules to be enforced. A poli cy declaring a global
bank holiday if any bank is attacked requires the
propagation only of a Boolean value indicating whether any
bank is under attack, for example; while our richer poli cy
requires richer flows. Thus, there is li kely no one
architecture for survivabilit y control.  Rather, we envision
an architectural style for survivabilit y control based on
concepts and structures from the intellectual discipline of
control theory.

6.6 Need to reason about relative dynamics
Another observation is that the dynamics of a control
system have to be sufficiently faster than those of the
controlled system in order for time-sensitive control rules
(survivabilit y poli cies) to be enforced. For example, a
policy might require that a subtree be spli ced out of the
network before a disturbance within that subtree can
propagate to other parts of the application system.
Functional properties are not enough; real-time control
appears li kely to emerge as an important issue.

7. RELATED WORK
Control theory [1] provides a mature way of thinking about
and designing information flows and feedback to maintain
complex systems under desired behavioral conditions over
time.  For traditionally engineered systems, control theory

provides a rich and beautiful set of modeling and analysis
methods based on advanced mathematical analysis.  At
present we have in control theory a metaphor that can guide
us to a novel software architectural style and to a deeper
understanding of the nature of the important but inchoate
concept of information survivabilit y.

The simple control system that we presented implements a
static optimization scheme: a precomputed policy that
defines the action to take under specified circumstances.
Control theory suggests an appeal to the idea of stochastic
optimal control, with a control system using a probabili stic
model of possible future conditions to choose an action that
yields best expected results.  Management of uncertainty
appears to be a key problem for infrastructure suvivabilit y.
However, it is too early to know whether stochastic control
has a significant role.  One problem is that poli cy-makers
might not be will ing to permit probabili stic control rules.

A second problem is that it might be (and seems quite
li kely to be) difficult to formulate an explicit objective
function (cost) for a control system to minimize in the
tremendously complex and policy-dependent domain of
infrastructure protection.  Nevertheless, the metaphor
seems to lead to interesting structuring techniques and to
useful albeit still imprecise problem formulations.

We will thus continue to pursue connections between
software design for survivable infrastructures and the clean
but not always directly applicable concepts of control.  In
one related project, we are applying concepts from options
theory—an application of stochastic optimal control, and of
optimal stopping theory in particular—to reason about the
value of flexibilit y in software products and processes [24].
In a second thrust, we appeal to the concept of economic
optimization under uncertainty to reason about the nature of
software evolvabilit y [22].

The application of control systems concepts in software
design is not new.  Jehuda and Israeli [9] propose a control
system for dynamically adapting a software configuration
to accommodate varying runtime circumstances impacting
on real-time performance.  In contrast to our work, which
leaves the objective function as a qualitative notion, Jehuda
and Israeli use explicit optimization.  In CHAOS [7], real
time systems are adapted with the use of an entity-relation
database modeling system structure. Control systems ideas
have been used in distributed application management.
Meta [13] is an architecture and a tool that uses a non-
hierarchical control system to optimize performance in
fault-tolerant distributed systems using Isis. Distributed
application management (e.g., [2, 25]) employs services
supporting the dynamic management of distributed
applications. Network management uses control concepts
to manage networks and their running software [3, 4].

However, the major objective in such work is to monitor
and improve application or network performance in
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traditional dimensions, e.g., runtime efficiency. By
contrast, our use of control is targeted at enhancing the
survivability of controlled applications.  Many of the
control-based ideas that have been developed by others
promise to contribute to our work on survivability control.

When considered from the perspective of survivability, the
techniques developed in the areas of reliability, availability
and security can contribute to system survivability but they
are not sufficient. Techniques for achieving reliability, for
example, assume different failure models and are aimed at
different target applications. Similarly, security techniques
are used to harden a system but typically do not provide
any solution when the system is compromised.

Intrusion detection provides a way to monitor and control
the abnormal behaviors of a system. EMERALD [17]
introduces an approach to network surveillance, attack
isolation, and automated response. It uses distributed,
independently tunable surveillance and response monitors
as the building blocks, and combines signature analysis
with statistical profiling to provide localized protection. A
recursive framework is proposed for coordinating the
dissemination of analyses from the distributed monitors to
provide a global detection and response capability. We
address disturbances not limited to security.

GrIDS [19] is a graph based large network intrusion
detection system. It collects data about computer activity
and network traffic, and aggregates this information into
activity graphs which reveal the causal structure of network
activity. This is an intrusion detection system. No response
mechanism is discussed. The graph based detection
mechanism could perhaps be used in our architecture.

The Dynamic, Cooperating Boundary Controllers program
[26] is developing a capability to allow traditionally static
and standalone network boundary controllers (e.g. filtering
routers and firewalls) to work cooperatively to protect
networks. The capability is achieved through the use of an
Intruder Detection and Isolation Protocol (IDIP). The work
attempts to address the network intrusion problem only.

Hiltunen and Schlichting propose a model for adaptive
systems [8] that respond to changes in three phases: change
detection, agreement, and action. It is used for performance
and fault-tolerance. Goldberg et al. discuss adaptive fault-
resistant systems and present some examples [6]. Our
approach provides a way to embed adaptation in the system
through multiple model control. Different control policies
may be adaptively used for different operating regimes.

8. CONCLUSIONS
Dealing with the fragility of critical information systems is
a significant problem that must be addressed if disruptions
to our everyday activities are to be prevented. That
disruptions can occur is well illustrated by the many
incidents that have already been reported.

Societal exposure to information systems is increasing as
new applications (such as electronic commerce) are
developed, as existing applications incorporate information
systems to improve their efficiency, and as existing
applications move from expensive closed private networks
to less-expensive open Internet-based communication. The
threats are also increasing. On the horizon is the prospect
that critical information systems will become the targets of
terrorist groups and even unfriendly foreign governments.

Dealing with disruptions that occur, no matter what the
cause, requires diagnostic and corrective actions to be
taken. In almost all cases, minimizing the loss of aggregate
value to users and ensuring that it remains within a range
required to safeguard the public interest is achieved only by
taking a system-wide view.

We claim that one formalism that shows promise to aid in
reasoning about this problem in infrastructure information
systems is hierarchic adaptive control. In this paper, we
have presented the architectural notion of survivability
control systems. We have described some of the details of
this architecture and illustrated the approach using a simple
example derived from the banking domain. The
implausibility of experimenting with actual infrastructures
led us to a research methodology based on dynamic models
as platforms on which to build and evaluate architectures,
with room for expansion through the use of richer models.

Developing highly survivable critical information systems
is not going to come about as the result of any single
advance. These systems pose many challenges that will
require innovation in a number of areas if they are to be
addressed adequately. The control-system architectural
perspective is a general framework for dealing with part of
the problem.
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