Hybrid Protocols Using Dynamic
Adjustment of Serialization Order
for Real-Time Concurrency Control

Sang H. Son,
Juhnyoung Lee
and YiLin

Computer Science Report No, TR-92-06
March 13, 1992

Hybrid Protocols Using Dynamic Adjustment of Serialization Order
for Real-Time Concurrency Control B

- Sang H. Son - '
Juhnyoung Lee -
. YiLin

Department of Computer Science
University of Virginia
Charlottesville, VA 22903

Abstract

A real-time database system differs from a conventional database system because in
addition to the consistency constraints of the database, timing constraints of individual
transaction need to be satisfied. Various real-time transaction scheduling protocols have
been proposed which employ either a pessimistic or an optimistic approach to con-
~ currency control. In this paper, we present new real-time transaction scheduling proto- .
cols which employ a hybrid approach, ie., a combination of both pessimistic and
optimistic. approaches. These protocols make use of a new conflict resolution scheme
called dynamic adjustment of serialization order, which supports priority-driven schedul-
ing, and avoids unnecessary aborts. -

Key words: real-time database system, scheduling, concurrenéy control, deadline

This work was supported in part by ONR, by NRaD, and by IBM.

1. Introduction

A real-time database system (RTDBS) differs from a conventional database System because
in addition to the consistency constraints of the database, timing constraints of individual transac-
tion need to be satisfied. In order to provide a real-time response for queries and updates while
maintaining the consistency of data, real-time concurrency control should involve efficient
integration of the ideas from both database concurrency conirol and real-time scheduling. Vari-
ous real-time concuirency control protocols have been proposed which employ either a pessimis-
tic or an optimistic approach to concurrency control.

Most of the initial work in real-time concurrency control has been conducted on utilizing
Two-Phase Locking (2PL) as the base of real-time concurrency control. The two-phase locking is
termed as being pessimistic, because it, in anticipation of data conflicts, tends to delay the opera-
tions in order to avoid aborting them later. However, the very idea of delaying an operation is
opposed to real-time systems. Besides, the degree of concurrency is low in the two-phase locking
based protocols because concurrent read and write locks on the same data object by several tran-
sactions are not possible. Furthermore, two-phase locking has some inherent problems such as
" the possibility of deadlocks and unpredictable blocking times, which are serious problems for
real-time concurrency control, |

Optimistic Concurrency Control (OCQC) is a natural alternative. An optimistic scheduler
aggressively schedules all operations, hoping that nothing will go wrong, such as a non-
serializable execution. Later when the transaction is ready to commit, conflicts are checked for
and a conflict resolution scheme is then applied to resolve the conflicts, if any. Ideally an
optimistic approach has the properties of non-blocking and deadlock freedom, which make it suit-.
able 1o real-time transaction processing. In addition, it has a potential for high degree of parallel-
ism. However, the use of aborting for conflict resolution in optimistic schedulers results in a
problem that transactions can end up aborting after having paid for most of the transaction’s exe-
cution. This problem can particularly be serious for real-time transaction scheduling, where tim-
ing constraints of transactions should be satisfied. For conventional database systems, it has been
shown that optimal performance can be achieved by combining blocking and aborting {Yu90l.
We expect the same with RTDBS. .

In this paper, we present two hybrid real-time concurrency control protocols which combine
‘pessimistic and optimistic approaches to concurrency control in order to control blocking and
aborting in a more effective manner. Concurrency control protocols induce a serialization order
among conflicting transactions. For a concurrency control protocol to accommodate the timing
_ constraints of transactions, the seriatization order it produces should reflect the priority of transac-
_ tions. However, this is often hindered by the past execution history of transactions. A higher
priority transaction may have no way to precede a lower priority transaction in the serialization
order due to previous conflicts. For example, Ty and 7y, are two transactions with Ty having a
higher priority. If T, writes a data object x before Ty read it, then the serialization order between
Ty .and Ty, is determined as Ty, — Ty. Ty can never precede Ty, in the serialization order as long
as both reside in the execution history. Most of the current (real-time) concurrency control proto-
cols resolve this conflict either by blocking Ty until Ty, releases the writelock or by aborting 7, in
‘favor of the higher priority transaction Ty. Blocking of a higher priority transaction due to a
.lower priority transaction is contrary to the requirement of real-time scheduling.” Aborting is also
not desirable because it degrades the system performance and may lead.to violations of timing
constraints. Furthermore, some aborts can be wasteful when the transaction which caused the
abort is aborted due to another conflict. The objective of our hybrid approach is 10 avoid such-
unnecessary blocking and aborting.

The first protocol, called integrated real-time locking, is a combination of OCC and locking.
This protocol uses a priority-based locking mechanism to support real-time scheduling by adjust-
ing the serialization order dynamically in favor of high priority transactions. Also this protocol

2

uses the phase-dependent control of optimistic approach to support dynamic adjustment of serial-
ization order. : ' o :

The second protocol presented in this paper is a combination of OCC.and timesatmp order-
ing. This protocol also takes the advantage of the phase-dependent control of optimistic approach
to apply the notion of dynamic timestamp allocation [Bay82] and dynamic adjustment of seriali-
zation order using timestamp interval [Bok87), with which the ability of earty detection and reso-
lution of nonserializable execution is improved, and unnecessary aborts are avoided. Further-
* more, since this protocol is based on OCC with forward validation scheme in which the valida-
tion test is conducted against active transactions in their read phase, it can be easily extended to
support real-time scheduling by adopting priority-based conflict resolution schemes such as prior-
ity abort, priority sacrifice, and priority wait [Har90, Hua911.

The remainder of the paper is organized as follows. Section 2 summarizes recent related
work on the scheduling problem in RTDBS. In Section 3, we present our first protocol,
integrated real-time locking. First, we describe the basic concepts and the protocol. Then we
present an argument on the correctness of the protocol, and provide an example to show how the
protocol works. Our second protocol, a real-time OCC protocol using timestamp, is described in
Section 4. Each component of the protocol such as OCC with forward validation scheme,
dynamic timestamp allocation, and dynamic adjustment of serialization order using timestamp
interval is explained in each subsection. Finally, concluding remarks appear in Section 5.

2. Related Work

A RTDBS is a transaction processing system designed to handle workloads where transac-
tions have completion deadlines. The objective of such a system is to meet the deadlines. The
real-time performance of an RTDBS depends on several factors such as the database system
organization, the underlying processors and disk speeds. For a given system configuration, how-
ever, the primary determinants for the real-time performance are the policies used for scheduling
transaction accesses to system resources, because these policies determine when service is pro-
vided to a transaction.

Recently, research on the scheduling problem in real-time database systems has been active
[Abb88, Buc89, Coo91, Har90, Hua90, Hua%1, Lin90, Shad1, Son%0]. As mentioned earlier,
most of the current real-time concurrency control schemes are based on two-phase locking
[Abb88, Hua%0, Shadl]. Abbott and Garcia-Molina [Abb83] described a group of lock-based
real-time concurrency control schemes for scheduling soft real-time transactions, and evaluated
the performance of those protocols through simulation.

Some inherent problems of two-phase locking such as the possibility of deadlocks and
unpredictable blocking times are serious for real-time transaction scheduling. In addition, a
" priority inversion can occur when a lower priority transaction blocks the execution of a higher
priority transaction. Sha et al. [ShaS1] proposed a conservative real-time concurrency control
scheme called priority ceiling, which prevents deadlocks and transitive blocking.

- Huang et al. [Hua%0] developed and evaluated a group of real-time protocols for handling
CPU scheduling, data conflict resolution, deadlock resolution, transaction wakeup, and transac-
tion restart. Their study is based not on simulation but by actual implementation on a testbed sys-
tem called RT-CARAT. They concluded that CPU scheduling protocols have a significant
impact on the performance of RTDBS, that they dominate all other protocols, and that the over-
head incurred in locking is non-negligible and cannot be ignored in real-time concurrency contiol
analysis.

Recently, real-time concurrency control protocols based on optimistic method have been

proposed and studied [Har90, Hua®1, Lin90, Coo91]. Haritsa et.al. [Har90] proposed a group of
optimistic real-time concurrency control protocols and evaluated them on a simulation model.

They have also conducted a study on the relative performarnce of locking-based protocols and
optimistic protocols, and concluded that OCC protocols outperform two-phase locking-based pro-
tocols over a wide range of system utilization. Huang et al. [Hua91] also conducted a similar per-
formance study of real-time OCC protocols, but on a testbed system, not through simulation.
They examined the overall effects and the impact of the overheads involved in implementing
real-time OCC on the testbed system. Their experimental results contrast with the results in
[Har90], showing that OCC may not always outperform a two-phase locking-based -protocol
which aborts the lower priority transaction when a conflict occurs. They pointed out the fact that
the physical implementation-schemes have a significant impact on the performance of real-time
OCC protocol. :

3. Integrated Real-Time Locking Protocol

3.1. Introduction

The first protocol, Integrated Real-Time Locking, combines locking and OCC, By using a
priority-dependent locking protocol, the serialization order of active transactions is adjusted
dynamically, making it possible for transactions with higher priority to be executed first so that
higher priority transactions are never blocked by uncommitted lower priority fransactions, while
lower priority transactions may not have to be aborted even in the face of a conflict. The adjust-
ment of the serialization order can be considered as a mechanism to support real-time scheduling.

This protocol is an integrated protocol because it uses different solutions for read/write (rw).
and write/write (ww) synchronization, and integrates the solutions to the two subproblemnis 10
yield a solution to the entire problem,

The protocol is similar to OCC in the sense that each transaction has three phases, but
unlike the optimistic method, there is no validation phase. This protocol’s three phases are read,
wait, and write phases. The read phase is similar to that of OCC wherein a transaction reads from
the database and writes to its local workspace. In this phase, however, conflicts are also resolved
by using transaction priority. While other optimistic real-time concurrency control protocols
resolve conflicts in the validation phase, this protocol resolves them in the read phase. In the wait
phase, a transaction waits for its chance to commit. Finally, in the ‘write phase, updates are made
permanent to the database.

The following is the outline of a transaction execution:

transaction = { thegin();

read phase,

rwait();

mwrite();

)

Each procedure will be described in detail later in this section. In this protocol, there are various
data stractures that need.to be read and updated in a consistent manner. Therefore we assume crit-
ical sections to group the various data structures to guarantee mutual exclusion and to allow max-
imum concurrency. We also assume that each assignment statement of global data is executed
atomically. Table 1 summaizes some useful notations. :

The environment we assume for the implementation is a single processor with randomly
arriving transactions. Each transaction is assigned an initial priority and a start-timestamp when
it is submitted to the system. The initial priority can be based on the deadline and the criticality
of the transaction. The start-timestamp is appended to the initial priority to form the actual prior-
ity that is used in scheduling. When we refer to the priority of a transaction, we always mean the
actual priority with the start-timestamp appended. Since the start-timestamp is unique, so is the
priority of each transaction. The priority of transactions with the same initial priority is

notation) meaning
‘read_trser | setof transactions in the read phase
wait_trset | set of transactions in the wait phase
write_trset | set of transactions in the write phase

s_count serialization order count

t(T) final-timestamp of transaction T’
priority(T) | priority value of transaction T
riix] transaction i reads daia object x,

w; [x] transaction { writes data object x.
pw;l x] transaction { prewrites data object x.

rlock(T x) transaction T holds a read lock on data object x
wlock{T x)} | transaction T holds a write lock on data object X

Tabie 1. Notations

distinguished by their start-timestamps.

All transactions that can be scheduled are placed in a ready queue, R_(Q. Only transactions
in R_Q are scheduled for execution. When a transaction is blocked, it is removed from R_Q.
When a transaction is unblocked, it is inserted into R_Q again, but may still be waiting to be
assigned the CPU. A transaction is said to be suspended when it is not executing, but still in
R_Q. When. a transaction is doing I/O operation, it is blocked. Once it completes, it is usually
unblocked.

3.2. Read phase

The read phase is the normal execution of a transaction except that all writes are on private
data copies in the local workspace of the transaction instead of on data objects in the database.
Such write operations are called prewrites. The prewrites are useful when a fransaction is
aborted, in which case the data in the local workspace is simply discarded. No rollback is
required.. . :

- In this phase read-prewrite and prewrite-read conflicts are resolved using a priority based
“locking protocol.” A transaction must obtain the comesponding lock before it reads or prewrites.
According to the priority locking protocol, higher priority, transactions must complete before
lower priority transactions. If a low priority transaction does complete before a high-priority
transaction, it is required to wait until it is sure that its commitment will not lead 1o the higher
priority transaction being aborted. : :

" Suppose Ty and T, are two active transactions and Ty has higher priority than Ty, there are
four possible conflicts as follows. '

(1) rg, [x], pwr, [x] ,

' The resulting serialization order is Ty — T}, hence satisfies the priority order, and does not need
to adjust the serialization order.

(2) pwr, [x), rr, [x] .
Two different serialization orders can be induced with this conflict; 7. — Ty with immediate
reading, and Ty — T with delayed reading. Certainly, the latter should be chosen for priority
scheduling. The delayed reading in this protocol means blocking of rr, [x] by the writelock of
Ty onx. ,

3 rr, [x], pwr, [x] ,

The resulting serialization order is Ty — Ty, which violates the priority order. If T is in read
phase, abort Ty,. If Ty is in its wait phase, avoid aborting Ty, until Ty commits in the hope that Ty,
gets a chance to commit before Ty does. If Ty commits, T is aborted. But if Ty is aborted by
some other conflicting transaction, then T is committed. With this policy, we can avoid
unnecessary and useless aborts, while satisfying priority scheduling.

) pwr, [x], rr, [x] ;
Two different serialization orders can be induced with this conflict; Ty — Ty, with immediate
reading, and Ty, —» Ty with delayed reading. If 7} is in its write phase, delaying Ty is the only
choice. This blocking is not a serious problem for Ty because 7}, is expected to finish writing x
soon. Ty can read x as soon as Ty, finishes writing x in the database, not necessarily after T;, com-
pletes the whole write phase. If 77 is in its read or wait phase, choose immediate reading.

As transactions are being executed and conflicting operations occur, all the information per-
taining-to the induced dependencies in the serialization order needs to be retained. In order 1o
maintain this information, we associate the following with each transaction; two sets, before_trset
and after_trset, and a count, before_cnt. The before_trset (tespectively, after_trset) of a transac-
tion contains all the active lower priority transactions that must precede (respectively, follows)
this transaction in the serialization order. The before_cnt of a transaction is the number of the
higher priority transactions that precede this transaction in the serialization order. When a
conflict occurs between two transactions, their dependency is determined and then the values of
their before_trset, after_trset, and before_cnt are changed accordingly.)

By summarizing what we discussed above, we define the locking protocol as follows:

LP1l. Transaction T requests a read lock on data object X.

for all transactions t with wlock(t,x) do
if (priority (t) > priority (T) or t is in write phase) / *Case 2,4 %
then deny the lock and exit; '
endif

enddo

for all transactions t with wlock(t,x) do /* Case 4 */

if ¢ is in before_trsety then abortt;

else if (1 is notin after_trsety)

then :
include t in after_trsety;
before_cnt, = before_cnt, + 1;
endif

~ endif

enddo ‘

grant the lock;

LP2. Transaction T requests a write lock on data object x.

for all transactions t with rlock(t,x) do
if priority (t) > priority (T)
then /* Case 1 %/
if (T is not in after_trset;)
then
include t in after_trsety;

before_cntr = before_cntr + 1;
endif
else
if ¢ is in wait phase /¥ Case 3 */
then
if (¢ is in after_trsetr)
then abort &;
else
include t in before trserr,
endif
else if tis in read phase
then abort t;
endif
endif
endif
enddo
grant the lock;

- LP1 and LP2 are actually two procedures of the lock manager that are executed when a lock
is requested. When a lock is denied due to a conflicting lock, the request is suspended until that
conflicting lock is released. Then the locking protocol is invoked once again from the very
beginning to decided whether the lock can be granted now. Figure 1 shows the lock compatibil-
ity tables in which the compatibilities are expressed by possible actions taken when conflicts
occur. The compatibility depends on the priorities of the transactions holding and requesting the
lock and the phase of the lock holder as well as the lock types. Even with the same lock types,
different actions may be taken, depending on the priorities of the lock holder and the lock reques-
ter. Therefore a table entry may have more than one block reflecting the different possablc
actons.

Wlth our locking protocol, a data object may be both read locked and write locked by
several transactions simultaneously. Unlike 2PL, locks are not classified simply as shared locks
and exclusive locks. Figure 2 summarizes the lock compatibility of 2PL with the High Priority
scheme in which high priority transactions never block for a lock held by a low priority transac-
tion [Abb88]. By comparing Figure 1 with Figure 2, it is obvious that our locking protocol is
much more flexible, and thus incurs less blocking and fewer aborts. Note that in Figure 1, abort-
ing low priority transactions in the wait phase is also included. In our locking protocol, a high
priority transaction is never blocked or aborted due to conflict with an uncommitted lower prior-
ity transaction. The probability of aborting a lower priority transaction should be less than that in
2PL under the same conditions. An analytical model may be used to estimate the exacL probab11~
ity, but that is beyond the scope of this paper.

Transactions are released for execution as soo1n as they arrive. The following procedure is
executed when a transaction ¢ is started:

tbegin = (
before_trset ;= J;
“after_trset =,
before_cnt ;= 0;
include t in read_trset;
puttinthe R_Q;
).

Now ¢ is in the read phase. When it tries to read or prewrite a data object, it requests the lock. -

tock lock held lock | lockheld
requesied |- read write ‘ requested | read write
read ; read
v
write write .
lock requester has lower priority - lock requester has higher priority |
lock granted
lock requester blocked
lock holder aborte&,

Figure 1 Lock Compatibility Table

lock __lock held lock lock held
requested | read Write requested | read write
read read
write write
lock requester has lower priority lock requesier‘has higher priority

] tock granted
lock requester blocked

B :ock holder aborted

Figure 2 Lock Compatibility Table of 2PL

The lock may be granted or not according to the locking protocol. Transactions may be aborted
when lock requests are processed. To abort a transaction T, the following procedure is called:

tabort = {
. release all locks, :
for all transactions t in after_trsetr do
before_cnt, := before_cnt—1;
" if before_cnt, = 0 and t is in wait phase;
then unblock t,
endif
enddo

if T is in read phase
then delete T from read_trset,
else if T is in write phase
then delete T from write_trset;
else if T is in wait phase
then delete T from wait_irset;
endif
endif
endif

).

3.3. Wait Phase

The wait phase allows a transaction to wait until it can commit. A transaction in the wait
phase can commit if all transactions with higher priority that must precede it in the serialization
order, are either commiited or aborted. Since the before_cnt of a transaction is the number of
such transactions, the transaction can commit only if its before_cnt becomes zero.

A transaction in the wait phase may be aborted due to two reasons; if a higher priority tran-
saction requests a conflicting lock or if a higher priority transaction that must follow this transac-
tion in the serialization order commits.

Once a transaction in its wait phase finds a chance to commit, then it commits and switches
to its write phase and releases all readlocks. The transaction is assigned a final imestamp which
is the absolute serialization order. The wait procedure for transaction T is as follows:

twait = (
include T in wait_trset;
delete T from read_trset,
waiting := TRUE;
while(waiting) do
if (before_cnty = 0)
then /* switching into write phase */
include T in write_trset;
delete T from wait_trset;
ts(T) ;= s5_count;
§_count:=35_count + I;
for all t in before_trsetr do
. if ¢ is in read phase or wait phase
then abortt,
endif
enddo

waiting := FALSE

else block,
endif
enddo
release all read locks;
for all t in after_trsetr do
if t is in read phase or wait phase
then before_cnt, := before_cnt—1; :
if (before_cny, = 0 and t is in wait phase)
then unblock t; ‘
endif
endif
enddo
).

After a transaction commits, all the transactions in its before_trset need to be aborted
because they must commit, if they can, before this transaction. The critical section of class 1 in
the procedure guarantees that transactions cannot switch into the write phase concurrently, and
once a transaction is committed and assigned a final-timestamp, no transaction in its before_trset
can commit. Note that LP1 is also in the critical section of the same class. This achieves mutual
exclusion on before_cnt and write_trset. The critical section of class 3 in the procedure has the
same effect as that of the critical section in the procedure tabort.

3.4. Write Phase

Once a transaction is in the write phase, it is considered to be committed. Al committed
transactions can be serialized by the final-timestamp order. In the write phase, the only work of a
transaction is making all its updates permanent in the database. Data items are copied from the
local workspace into the database. After each write operation, the corresponding write lock is
released. The Thomas’ Write Rule (TWR) [Bern87] is applied here. The write requests of each
‘transaction are sent to the data manager, which carries out the write operations in the database.
Transactions submit write requests along with their final-timestamps. The write procedure for
transaction T is as follows:

twrite = { ‘
for all x in wlock(T x) do
for all t in write phase do
if wiock(tx) and ts(t) < ts(T)
then release t's write lock on x;
endif
enddo
send write requést on x and wait for
acknowledgement;
if (acknowledgement is OK)
then release the write lock on x;
else abort T;
. endif
enddo
delete T from R_Q;
).

For each data object, write requests are sent to the data manager only in ascending times-
tamp order. After a write request on data object x with timestamp 7 is issued tQ the data manager,

10

no other write request on x with 2 timestamp smaller that n will be sent. The write requests are
buffered by the data manager. The data manager can work with the first-come-first-serve policy
or always select the write request with the highest priority to process. When a new request
artives, if there is another buffered write request on the same data object, the request with the
smaller timestamp is discarded. Therefore for each data object there is at most one write request
in the buffer. This, in conjunction with the procedure mwrite, guarantees TWR.

- 3.5, Correctness

Having described the basic concepts and the protocol, we now prove the correctness of the
protocol. First, we give the simple definitions of history and serialization graph (SG). For the
formal definitions, readers are referred to [Bem87]. A history is a partial order of operations that
represents the execution of a set of transactions. Any two conflicting operations must be compar- -
able. Let H be a history. The serialization graph for H, denoted by SG(H), is a directed graph
whose nodes are committed transactions in H and whose edges are all T; — T (i#/) such that one
of T;’s operations precedes and conflicts with one of T;’s operations in H. To prove a history H
serializable, we only have to prove that SG(H)is acyclic (Bemng&7].

Theoreml; Every history H produced by the protocol is serializable.

Proof: Let T, and T be two committed transactions in a history H produced by the algorithm.
‘We argue that if there is an edge Ty — T in SG(H), then 5 (T'1) < #s(T3). Since Ty — Ty, The
two must have conflicting operations. There are three cases.

Case 1: wy{x] = walx] |

Suppose ts {T'y) < s (T1). Therefore T'; enters into the write phase before 7'y, If wilx] is sent to
the data manager first, T’s write lock on x must be released before w[x] is sent to the data
manager. If wp[x] is sent to the data manager first, it will either be processed before wy[x] is
sent to the data manager, or be discarded when the data manager receives wy fx], because wolx}
has a smaller timestamp. Therefore wi[x] is never processed before wy[x]. Such confiict is
- impossible. A contradiction. :

Case 2: ry{x] — walx] ‘

If T, holds the write lock on x when T réquésts the read lock, we must have
priority (Ty) > priority (T) and T, is not in the write phase, because otherwise Ty would have
been blocked by LP1. By LP1, T; is in after_trsetr,. T, will not switch into the write phase
~ before T'; does, because- before_cntr, cannot be zero with 7' still in the read or wait phase.
Therefore ts (T') < ts(T'3). If T, holds read lock-on x when T requests the write lock, by LP2,
we have either T, is in after_trsetr, or Ty is in before_trsetr,, depending on the priorities of the
two transactions. In either case, Ty must commit before T,. Hence we also have s (Tyy<ts (T2). -
Case 3: wi[x]— rolx] _

Since T is already in the write phase before T, reads x, we must have ts (T <ts(Ty).

Suppose there is a cycle Ty =Ty — -+ = T, Ty in SG(H). By the above argument, we
. have 15(Ty) <s(Tr) < :-r <5 (T,) < ts(T). Thisis impossible. Therefore no cycle can exist
in SG(H) and the algorithm only produces serializable histories. [' ‘

Theorem 2: There is no mutual deadlock under the real-time 10_cking protocol.

Proof: In the algorithm, a high priority transaction can be blocked by a low priority transaction
only if the low priority transaction is in the write phase. Suppose there is a cycle in the wait-for
graph (WFG), T;->T3—> -+ =T, —T;. For any edge T;—7; in the cycle, if
priority (T;) > priority (T;), T; must be in the write phase, thus it cannot be blocked by any other

11

transactions and cannot appear in the cycie. Therefore we must have priority (I;) < priority (T}
and thus priority(Ty) <priority(T2) < -+ < priority(T,) < priority{T1). This is.impossible.
Hence a deadlock cannot exist. UJ ‘

3.6. An Example

In this section, we give-a simple example to show how the protocol works. The example is
depicted in Figure 3. A solid line at a low level indicates that the corresponding transaction is
doing /O operation due to a page fault or in the write phase. A dotted line at a low level indi-
cates that the cormesponding transaction is either suspended or blocked, and not doing any I/O
operation either. A line raised to a higher level indicates that the transaction is executing. The
absence of a line indicates that the transaction has not yet arrived or has already completed.®

, There are three transaction in the example. T’} has the highest priority and T3 has the

Jowest. T3 arrives at time ¢y and reads data object 2. This causes a page fault. After the 1/O
operation, it prewrites . Then T, comes in at time ¢, and preempts 73. At time't, it reads ¢ and
causes another page fault. So it is blocked for the [fO operation and T3 executes. After Ty
prewrites d, T finishes 1/O and preempts T3 again. It prewrites d which is only write locked by
T;. Attime t3, T artives and preempts T5. T first reads d, which is write locked by both T
and T5. Therefore, before_trsety, becomes {To, T3} and both before_cnir, and before_cntr,,
become 1. Then T, reads b, which is write locked by T3. Since T3 is already in before_trsetr ,
‘nothing is changed. Then T'; prewrites b and prewriies d. Since these two data objects are not
read locked by any other transactions, the write locks are granted to Ty directly. At time #4, T4
switches into the write phase. Both before_cntr, and before_cntr, go back to 0. Now T, should
be executed, but it needs to read b, which is being write locked by T'1; hence T3 is executed
instead. It reads c, which is read locked by T. Attime tg, T finishes writing b and releases the
write lock so that T, can preempt T3 to continue its work. It reads b, which is write locked by
T3. Now before_trsety, becomes {73} and before_catr, becomes 1. After T, prewrites b, it
switches into the write phase and before_cnir, becomes O again. Then Ty executes and also

Tz | o
dal ool pwlb] pwld]

. .

: rle] pwid] bl pwlb]
ffa] pwib] pwl(d] tlc] pwic]
fo o R '3 ta ts time

Figure 3 An Example

12

switches into write phase after prewriting ¢.

In this example, Ty, which is supposed to be the most urgent transaction, finishes first
although it is the last to arrive. T3, which is supposed to be the least urgent one, is the last one to '
' commit. None of the three transactions need to be aborted. Assume we use 2PL in the above
example. When a high priority transaction requests a lock which is held by a low priority tran-
saction, we either let the high priority transaction to wait or abort the low priority transaction.
Suppose we choose the first alternative, then both Ty and 7, would be blocked by T3 because Ty
holds a write lock on d. If we choose the second alternative, T3 will be aborted by T, when T
© prewrites d and then T, will be aborted by 7'y when Ty reads d. :

4, A Real-Time Optimistic Concurrency Control Using Timestamp

4.1. Introduction

This protocol is a combination of OCC and timestamp ordering. As discussed earlier, one
major problem of OCC is wasted resources and time. Because OCC is usually dependent on
restart-based conflict resolution, and data conflicts are detected and resolved only at transaction -
commit time, i.e., validation phase, transactions can end up aborting after having paid resources
and time for most of the transaction’s execution. The situation becomes even worse when the
transaction is restarted because previously performed work has to be redone. The problem of the
wasted resources and time becomes even more. serious for real-time transaction scheduling,
because it reduces the chances of meeting deadlines of transactions.

Another problem of QCC is unnecessary aborts. When a transaction is ready to commit, if
is checked whether this transaction is involved in any nonserializable execution. This validation
test is usually conducted based on the read sets and write sets of transactions, rather than on
actual execution order. Hence sometimes the validation process using the read sets and write sets
erroneously concludes that a nonserializable execution has occurred, though it has not in actual
execution. For example, in a forward validation [Haed84, Har90, Hua91}, a conflict is said to
occur between a validating transaction 7; and an active transaction T if

readset (T;) nwriteset (T}) # &,

and conflicts are resolved using aborts. However, as we will see later, this validation condition
- can sometimes abort transactions whose execution doe not necessarily violate serializability.
Thus this validation condition solely based on read sets and write sets can induce unnecessary
aborts. The problem of unnecessary aborts is serious because it results in waste of resources and
time. ‘ Co ' -

The problem of wasted resources is partly remedied with forward validation scheme,
because the validation test is conducted against active transactions in their read phase [Har90,
Hua91]. -Early detection and resolution of conflicts can reduce the wasted resources and time.
Our protocol presented here also utilizes OCC with forward validation to take the advantage of
the early detection and resolution of ponserializable executions. Furthermore, this protocol
employs the notion of dynamic timestamp allocation [Bay82} and dynamic adjustment of seriali-
* zation order using timestamp interval [Bok87}, with which the ability of early detection and reso-
_ lution of nonserializable execution is improved, and unnecessary aborts are avoided as much as

possible. : ' -

It should be pointed out that the proposed protocol is completely different from OCC proto-
cols that uses timestamp-based validation technique such as one proposed in [Car87]. In those
protocols, timestamp is used for set intersection operation to make the complexity of validation
test independent of the number of committed transactions, and does not provide any ability to
adjust the serialization order dynamically.

13

Before we provide a procedural description of the protocol, we explain briefly the idea of
each component of the protocol,

(1) OCC with Forward Validation

This protocol is an OCC protocol. The execution of each transaction in this protocol consists of
three phases; read, validation, and write phase, as in other OCC protocols. This protocol uses for-
ward validation scheme, rather than backward validation scheme. As mentioned earlier, in for-
ward validation, the validation test is conducted against active transactions in their read phase.
When a conflict is detected, either the validating transaction or the conflicting active transaction
can be aborted, It is this property that makes OCC with forward validation flexible and easily
combined with the priority mechanism. The phase-dependent control of QCC and the property of
forward validation scheme provide a framework for the following components of the protocol.

(2) Categories of Conflicting Transactions

Since this protocol uses forward validation that is conducted against active transactions, when a
validation test is performed for a transaction, say T,, active transactions in the system can be
divided into several sets according to their execution history (with respect to that of T,). First,
the set of the active transactions are divided into two sets; conflicting set, that contains transac-
~tions in conflict with T,, and nonconflicting set, that contains transactions not in conflict with T,.
The conflicting set can be further divided into two sets; Reconcilably Conflicting (RC) set and
Irreconcilably Conflicting (IC) ser. Transactions in the RC set are in conflict with 7,, but the
conflicts are reconcilable, i.e., serializable. However, transactions in the IC set are in conflict
with T, and the conflicts are irreconcilable, i.¢., nonserializable. The formal description of the
conditions to categorize these sets of active transactions and the definitions of the terms such as
reconcilable conflict and irreconcilable conflict will be given in the later sections. For now, intui-
tive meaning of these terms is sufficient to understand the protocol.

The RC transactions do not have to be aborted, but their execution history have to be
adjusted with timestamp interval facility of this protocol. This is the topic of the subsection (4)
below. The IC transactions should be handled with priority-based real-time conflict resolution.
This is the topic of the subsection (5) below.

(3) Dynamic Timestamp Allocation

* Another important aspect of this protocol is dynamic timestamp allocation. Most timestamp-
based concurrency control protocols use static timestamp allocation scheme, i.e., each transaction

* transaction is aborted even when it requests its first data access [Bay82]. Besides, the total order-
ing of all transactions is too restrictive, and degrades the degree of concurrency considerably.
~ With dynamic timestamp allocation, serialization order among transactions are dynamically con- -
structed on demand whenever actual conflics are occurring. Only necessary partial ordering
among transactions is constructed instead of a total ordering from the static timestamp allocation.

This dynamic timestamp allocation scheme is possible, because OCC provides a phase-
dependent structure of transaction execution. During the read phase, a transaction builds gradu-
ally its serialization order with Tespect to committed transactions on demand whenever a conflict
with such transactions occurs, Only when the transaction commits (after passing the validation
test), its permanent timestamp, i.e., the final serialization order is determined.,

4) Dynamic Adjustment of Serialization Order with Timestamp Interval

. The dynamic timestamp allocation scheme is made further efficient with timestamp interval facil-
ity [Bok87]. More flexibility to adjust serialization order can be obtained using a timestamp
interval (initially, the entire range of the timestamp space) assigned to each transaction instead of -
single value for timestamp. The timestamp intervals of active transactions preserve’ the partial

14

ordering constructed by serializable execution. The timestamp interval of each transaction is
adjusted (shrunk) whenever the transaction reads or writes a data object to preserve the serializa-
tion order induced by committed transactions. When the timestamp interval of a transaction
shuts out, it means the transaction has been involved in a nonserializable execution, and the tran-
saction should be restarted. With this facility, it is possible to detect and resolve nonserializable
execution early in read phase. . '

Besides, when a transaction, say T, commits after its validation phase, the timestamp inter-
vals of those transactions categorized as reconcilably conflicting are adjusted, i.e., the serializa-
tion order between the validating transaction T, and its RC transactions are determined. Since
the permanent serialization order (final timestamp) of these active transactions is not determined,
all we have to do is just determine the partial ordering between T, and these active transactions
by adjusting their timestamp intervals. Thereby these transactions do not have o be aborted
though they are in conflict with the committed transaction, i.e., unnecessary aborts are avoided,
unlike other OCC protocols.

(5) Real-Time Conflict Resolution

In order to resolve irreconcilable conflicts of active transactions with validating transaction, either
one has to be aborted, because an irreconcilable conflict means a nonserializable execution. As
mentioned, since this protocol is based on OCC with forward validation scheme, either the vali-
dating transaction or the conflicting active transaction can be aborted. Hence to determine which
transaction to abort, we can employ priority-based conflict resolution schemes such as priority
abort, priority sacrifice, and priority wait [Har90, Hua91]. With these schemes, we can extend
our protocol to real-time concurrency control protocols, that are corresponding to the real-time
OCC protocols presented in {Har90, Hua%1].

4.2. Procedural Description

We now provide a more detailed, procedural description of the proposed'protocol. To exe-
cute the proposed protocol, the system maintains an object table and a transaction table. The
object table entries maintain the following information:

RTS: the largest timestamp of the committed transactions that read the data object; and
WTS: the largest timestamp of the committed transactions that wrote the data object.

The transaction table entries maintain the following information:

RS (T): read set of transaction T,
WS (T): write set of transaction T; and
TI(T): timestamp interval of transaction 7.

We assume that the write set of a transaction is a subset of its read set and there is no “blind
write". In addition to the timestamp interval assigned to each active transaction, a final times-
tamp, denoted as 7S (T), is assigned to each committed transaction, 7T that has passed the valida-
tion test. :

Figure 4 provides a procedural description of the read, validation and write phase of tran-
saction execution with the proposed protocol. ‘

" At the start of the execution of a transaction, T, its timestamp interval T7(T) is initialized as

[0, «) (the entire range of timestamp space). For each read or write of a data object made by T,

- TI(T) should be adjusted to represent the dependencies induced by the operation, i.€., the adjust-
ment of TI(T) should preserve the order induced by the timestamps of all committed {ransactions
which have accessed that data object. One method to accomplish this adjustment is that when T
reads a data object, the order of the read operation is adjusted to place after all the write.

15

Read Phase:

for every data object x in RS (T) do
read(x)
TI(T) := TI(T) N [WTS (x)+]1, o)
if TI(T) = & then restart(T)-
endif

enddo

for every data object x in WS (T') do
write(x)
TI(T) := TI(T) O [WTS (x)+1, w2} N [RTS (x)+1, o)
if T1(T) = & then restart(T)
endif ‘
- enddo '

Validation and Write Phase:

find RC_set(T) from active_transaction_set
find IC_set(T) from active_transaction_set -
ifIC_set() # D _ :
' then invoke real-time_conflict_resolution(IC_sei(T))
endif o '
if not aborted(T)
then choose TS (T) from TI(T)
update RTS (x) and WTS (x) for every x in RS (T) and WS (T)
adjustment(RC_set(T))
execute write phase
endif

v Figure 4. A Real-Time OCC Using Timestamp

operations made by committed transactions, and when T writes a data object, the order of the
write operation is adjusted to place after all the read and write ‘operations made by commitied
‘transactions. As we see in the given procedure, this adjustment is done by intersection operation
on timestamp intervals. We assume timestamp intervals contain only integers. Also this adjust-
ment is efficiently accomplished using the final timestamps of committed transactions retained in
data objects as RTS and WTS. '

Any operation of an active transaction 7" which introduces a nonserializable 'execuﬁo_n cah
be detected by checking whether the execution of the operation results in TI(T) = . A transac-
tion T must be restarted if 77 (T) = ©. ' :

When a transaction, T finishes the read phase and reaches the validation phase, the RC set
and the IC set of T can be found, using the information in the transaction table. This categoriza-
tion procedure is the topic of the next section.

If there is one or more IC transaction in the systen, the protocol invokes a real-time conflict
resolution scheme to resolve the conflict between T and the active transaction. Application of
real-time conflict resolution scheme will be discussed in detail in Section 4.4.

16

If T is not aborted during the real-time conflict resolution (if any), then it is validated and
committed. Now the execution of T should be reflected to the serialization order of committed
transactions. Thus a final timestamp for T should be chosen such that the order induced by the
final timestamp should not destroy the serialization order constructed by the already committed
- transactions. In fact, any timestamp in the range of 77 (T) satisfies this condition because 77 (T')
preserves the order induced by all committed transactions. Hence any timestamp from 77(T) can
be chosen for the final timestamp. Then RTS and WTS for data objects T accessed should be
updated, if necessary, and finally, the timestamp intervals of all the RC transactions should be
adjusted. The adjustment of the tlmestamp intervals of RC transactions will be discussed in detail
in the next section.

Finally, there are two notes related with this process of vahdatmn First, the choice of final
timestamp 7.5 (7") from timestamp interval 77 (T') can be conducted in favor of high priority tran-
- sactions. When choosing the final timestamp for a validating transaction, the protocol can check
the priority of its conflicting transactions, and decide the timestamp in such a way that higher
priority transactions are left with larger timestamp intervals. Because a larger timestamp interval
means less possibility of restarting the transaction in some sense, a transaction with higher prior-
ity needs to have a larger timestamp interval than a transaction with lower priority. Second, the
final tmestamp does not have to be a specific number. The entire timestamp interval can be the
final timestamp of a committed transaction. Then RTS and WTS can also be intervals of times-
‘tamps, instead of a specific timestamp. This generalization of the final timestamp may provide
more flexibility for adjustment of serialization order.

4.3. Categories of Conflicting Transactions

Let 7; be a validating transaction and 7, (j = 1,2,...,n, j # i) be transactions in their read
phase. Then, the testing for conflicts can be done by looking at intersections of read sets and
write sets of T; and 7 as follows: :

L RS (T n WS(T;) # @ (read-write conflict)
2 WS (T Y M WS(T;) # & (write-write conflict)
L3 WS (T YRS Ty = & (write-read conflict)

Before discussing the categonzatlon of transactions in the system with respect to the vali- -
dating transaction 7;, we first explain how to identify the state of an active transaction using .
these conditions. For notational convenience, we introduce a simple notation as the following,
When a conflict condition, ¢, is satisfied, it is denoted just as ¢, and when a condition, ¢, i§ not
satisfied, it is denoted as ~c. Then the state of an active transaction is denoted as a triple, in
which each element indicates whether the corresponding conflict condition is satisfied or not. For
example, if a transaction satisfies conditions 1 and 3, but does not satisfy condition 2, i.e., it has
both read-write and write-read conflicts with, the validating transaction, but it does not have any
write-write conflict, then it is denoted as (1, ~2, 3). ‘

Using this notation and Venn diagrams, Figure 5 shows the six possible states of active
transactions under the assumption that the write set of a transaction i§ a subset of its read set. In
the figure, RS; and WS; indicate RS(T;) and WS (7)) of the validating transaction T}, respectively.
Also RS; and WS; indicate RS(T;) and WS (T}) of an active transaction 1}, respectively. There
are two Venn diagrams of the combination (~_1, ~2, ~3) in (a) and (b). They indicate (a) no
access to common data objects at all and (b) only read operation on common data objects, respec-
tively. Both cases do not produce any conflict between 7; and T;. The combination (1, ~2, ~3) in
(c) means that there is only read-write conflict, and no write-write or write-read conflict between
T; and T;. The combination (~1, ~2, 3) in (d) indicates the case when there is only write-read
conﬂlct between T; and T;. The combination (1,~2, 3) in () indicates the case when there are .
read—wnte conﬂzct and write- read conflict, but not write-write conflict between T and 7:.

17

RS; RSi

@ (~1,~2,~3) (b} (~1,~2,~3)

RSj o RSi
© (1,~2,~3) @) (-1,~2,3)
) o 3)
' 9,
© (1,-2,3) 01,23

Figure 5. Six Possible States of Active Transaction

Fipally, the combination (1, 2, 3) in (f) means that between T; and T, all the three possibie
- conflicts, i.e., read-write, write-write, and write-read conflicts exist. Besides these combinations,
there are three more combinations of conditions, (~1, 2, ~3), (1, 2, ~3}, and (~1, 2, 3) which are
impossible to occur under the given assumption for the relationship of read set and write set of
. transactions, and hence they are not included in the figure.

Now we can categorize the active transactions in the system according to their states. First,
the transactions are divided into two sets;

set of nonconflicting transactions, and
set of conflicting transactions.

Obviously, trahsaptions whose state satisfies the condition (~1, ~2, ~3) belong to the first set.
The latter contains the rest, (1, ~2, ~3), (~1, ~2, 3), (1, ~2, 3) and (1, 2, 3).
As mentioned, the set of conflicting transactions are further divided into two sets;

set of reconcilably conflicting transactions (RC), and
set of irreconcilably conflicting transactions (1C).

Because of the dynamic serialization order determination mechanism we employed in the pro-
posed protocol, we can make some conflicts reconcilable, i.e., we can serialize these conflicts
without aborting. Before discussing how to distinguish RC transactions from IC transactions, let

18

us consider how each conflict type given above can be serialized.

(DRS(T) NWS(T) =D (read -write conflict)

- The read-write conflict between the validating transaction, T;, and the act:ve transaction, 77, can
be-serialized by the following timestamp interval adjustment of T;;

TI(T;) e« TI{T;) " {0, TS (T))-1].

This adjustment of the timestamp interval of T; makes a parﬁai ordering between T; and T; as T
— T}, and is called forward adjustment. The meaning of this operation is that the read of T; pre-
cedes the write of T; on the same data object, i.e., the data read by T; have been not written by 7.

RYWS(T;)) " WS(T;) + Z} (write-write conflict)
The write-write conflict between 7' .and T}, can be serialized by

TI(T)) & TI(T;) N [TS(T)+1,).

This adjustment of the timestamp interval of T; makes a partial ordering between T; and T; as T;
—> T}, and is called backward adjustment. Th1s operatzon implies that the write of T; precedes the
wnte of T; on the same data object, i.e., the write of T} is not overwritten by T;. (In fact, write-
write conﬂlcts are automatically resolved in OCC, if I/O operations in the write phase are done
sequentially.) :

BYWST)) RS (T;) # & (write-read conflict)
The write-read conflict between T; and T, can be serialized by

TI(T}) & TI(T}) N (TS (T)+1, o).

Similarly, thlS adjustment of the timestamp interval of T makes a partial ordering between T; and
T; as T; —» T}, and is a backward adjustment. This operation means that the data read by T; have
not been wntteﬂ by T;.

Now we can find the set of RC transactions with this adjustment of serialization order in
mind. RC transactions are transactions involved in conflicts that can be serialized by either for-
ward adjustment only or backward adjustment only, but not both. That is, transactions whose
state is either (1, ~2, ~3) or (~1, ~2, 3) among other possible states, belong to the set of RC tran-
sactions.

We are left with the set of IC transactions. Transactions involved in conflicts that cannot be
serialized by either forward adjustment only or backward adjustment only belong to IC set.
Obviously, a need of both forward and backward adjustment of timestamp interval for serializa-
tion results in the timestamp interval shut out. The transactions belonging to IC set are involved
" in nonserializable execution with the validating transaction. Transactions whose state is either (1,
~2,3)or (1,2, 3) among other possible states, belong to the set of IC transactions.

We employ real-time conflict resolution schemes to resolve these irreconcilable conflicts,
The real-time conflict resolution will be discussed in detail in the next section For the real-time
conflict resolution, it is useful to divide the IC set into two set; ‘

set of conflicting transactions with higher priority (CHP), and
set of conflicting transactions with lower priority (CLP).

19

CHP set contains transactions that are in the IC set and have a higher priority than the validating
transaction. Similarly, CLP set contains transactions that are in the IC set and have a lower prior-
ity than the validating transaction.

Figure 6 summarizes the reiationshlp among the categories of active transactions in the sys-
tem explained in this section.

set of active transactions

set of conflicting transactions set of nonconflicting transaction
set of irreconcilably conflicting transactions (IR) set of reconcilably conflicting transactions (RC)

set of conflicting transactions with higher priority (CHP) set of conflicting transactions with lower priority (CLP)

Figure 6. Categories of Active Transactions

4.4. Real-Time Conflict Resolution Schemes

In order to resolve irreconcilable conflicts, we employ real-time conflict resolution schemes.
In this section, we describe several real-time conflict resolution schemes, and discuss informally
their potential strengths and weaknesses.

These schemes are not basically different from those proposed in [Haed84, Har90, Hua91].
However, they are different in that they handle different sets of conflicting transactions. Those
schemes in {Haed84, Har90, Hua%1] are performed on the set (denoted as §1) of active transac-
tions, T;’s, that are in conflict with validating transaction 7; in the sense that

RS T nWws§ (T)%@

However, the real-time conflict resolution schemes of the proposed protocol are performed on the
- IC transactions as categorized in the previous section. These are transactions that satisfy either’
the condition (1, ~2, 3) or the condition (1, 2, 3), i.e., either

_ RS(T) N"WST) =Dy NWSTHnN ws (T=DYNWST)NRS(Ty)# D)
or | : : : .
RSTHNWST=@)NWST) nWST)# D)y NWST) NRST)#D).

Let 5, be the set of these IC transactions. Then obviously, the set, §; is a subset of the set,'S;.
This is the reason why the proposed protocol can avoid unnecessary aborts in other real-time

OCC protocols using dynamic adjustment of senahzauon order mechanism with the refined
categorization of active transactions.

(1) Commit

' This scheme leads the protocol 10 an OCC with forward validation [Rob82]. With this scheme,
when a transaction reaches the validation phase, it commits and notifies all the IC transactions.
These IC transactions are immediately restarted. A transaction that has reached its validation

20

phase is guaranteed to commit. The advantage of this scheme is that less resources are wasted
because the resources consumed by a validating transaction are never wasted. However, this
scheme does not utilize transaction priority during data conflict resolution.

(2) Priority Abort [Hua91]"

With this policy, when a transaction reaches its validation phase, it is aborted if its priority is less
than that of all the IC transactions. If not, it commits and all the IC transactions are restarted
immediately as with Commit scheme. Though this scheme utilizes transaction priority, it
behaves still like Commit policy most of the time, because the condition for the restart of validat-
ing transaction is too strong and inflexible. '

3) Priority'Sacriﬁce [Har90]

With this policy, when a transaction reaches its validation phase, it is aborted if at least one IC
transaction has a higher priority than the validating transaction; otherwise it commits and all the
IC transactions are restarted immediately. This scheme uses transaction priority in such a way
that the validating transaction sacrifices itself for the sake of IC transactions with higher priority.

With this scheme, many validating transactions can end up aborting after having paid for most of
the transaction’s execution, because of a IC high priority transaction still in its read phase.

- Another problem of this scheme is wasted sacrifice. A wasted sacrifice ocours when a transaction
is sacrificed on behalf of another transaction that is later discarded.

(4) Priority Wait [Har90, Hua91]

With this scheme, when a transaction reaches its validation phase, if its priority is not the hlghest
among the IC transactions, it waits for the IC transactions with higher priority to complete. This .
scheme gives the higher priority transactions a chance to make their deadiines first. - While the
validating transactions is waiting, it may be restarted due to the commit of one of the IC transac-
tions with higher priority.

This scheme keeps the original goal of real-time conflict resclution in that precedence is
given to high priority transactions. There is no wasted restart in this scheme, because all restarts
are made on demand. The blocking effect derived from delaying the validating transaction
instead of immediately committing or aborting, results in the conservation of resources. The
blocking effect also brings drawbacks as well as advantages. If a transaction finally commits
- after waiting for some time, it causes all its IC transactions with lower priority to be restarted ata

later point in time, hence decreasing the chance of these transactions meeting their deadlines, and
“thus wasting resources. This problem can become worse because with this scheme, a chained
blocking is possible. Moreover, while a validating transaction waits, new conflicts can occur and
the number of IC transactions is increased, hence resulting in more restarts,

(5) Wait-50 [Har80]

Wait-50 scheme is a variation of priority wait strategy. With this pohcy, a validating transaction
will wait if at least 50% of IC transactions have a higher priority over the validating transaction,
but otherwise it commits and all the IC transactions are restarted immediately as Commit scheme.
- The purpose of this scheme is to maximize the beneficial effects of blocking, while reducing the
effects of its drawbacks.

4.5. Dynamic Ad justment of Serlahzatlon Order

In Section 4.3, we have already discussed the set of RC Lransac,tlons, and the dynamac seri-
alization order adjustment using dynamic adjustment of the timestamp intervals of RC transac-
tions. In this section, we just provide a pseudo code for the adjustment procedure, which per-
forms the timestamp interval adjustment for the RC transactions in a validation phase of a tran-
saction. Let T; be a validating transaction and T; (f = 1,2,...,, j # i) be transactions in their read
phase. ‘

21

adj ustment(RC_set(T:))

for every data object X in RS(T;) do
for every active transaction T; that has written x do
TI(T;) = TI{Tp O [TS(T)+1, =)
ifTI(T;) = @ then restart(T)
endif
enddo
enddo

for every data object x in wS(T;) do]
for every active transaction T that has read x do
TI(T) =TI THNI0o, TS (T)-1}
if7I(T) = ¢ then restart(T;)
endif
enddo

for every active transaction T that has written x do
TI(T;) =TI (Tpn [(TS(T;)+1, =) ‘
AFTIT) = @ then restart(T})
endif
~ enddo
enddo

}

5. Conclusions

Time-critical scheduling in real-time database systems has two components: real-time
scheduling and concurrency control. While both concurrency control and real-time scheduling
are well-developed and well-understood, there i3 only limited knowledge about the integration of
concurrency Control and real-time scheduling. Though recently the problem has been studied
actively, the solution proposed is gtill at an initial stage. A major source of problems in integrat-
ing the two is the lack of coordination in the development. They are developed on different
~ objectives and incompatible assumptions [Buc89]. '

Most of the proposed work for real-time concurrency control employ a simple method to
utilize one CONCUITEncy control scheme such as 2PL, TO and OCC, and to consider the priority of
operations inherited from the timing constraints of transactions in operation scheduling. This
method has an inherent disadvantage of being limited by the concuirency control method used as
the base. Since neither of pessimistic nor optimistic concurrency control is satisfactory by itself
for real-time scheduling [Son90], this simple method using only one control can hardly satisfy the

timing requirements of RTDBS. Problems such as eXcessive blocking, wasted restarts, and prior-
ity inversion are serious in RTDBS. ' g

In this paper, W& proposed (wo real-time transaction scheduling protocols which employ a
‘hybrid approach, i.e., a combination of both pessimistic and optimistic approaches. These proto-
cols make use of a new conflict resolution scheme called dynamic adjustment of serialization
order, which supports priority-driven scheduling, and avoids unnecessary aborts.

The first protocol is 4 concutrency control protocol which integrates & priority-dependent
locking mechanism with an optimistic approach. It works when no information about data
requirements or execution time of each (ransaction is available. BY delaying the write operations
of transactions, the restraint of past transaction execution on the serialization order is relaxed, -
~ allowing the serialization order among transactions o be adjusted dynamically. in compliance

2.

with transaction timeliness and criticality. The proposed protocol allows transactions 10 meet
timing constraints as much as possible without reducing the concurrency level of the system or
increasing the restart rate significantly. With this protocol, high priority transactions are never
blocked by an uncommitted lower priority transaction, while low priority transactions may not
have to be aborted even in face of conflicts with high priority transactions.

The second protocol is a real-time OCC protocol in which serializability is guaranteed by
dynamic timestamp ordering mechanism as well as validation test of OCC. This protocol has
several advantages over other real-time OCC protocols proposed in {Har90, Hua91]. First, in the-
proposed protocol, the ability to detect and resolve nonserializable execution is further improved
by timestamp interval famhty The ability of early detection and resolution of nonserializable
execution is one of the primary merit of forward validation-based OCC. Early restart is espe-
cially important for real-time database systems, because it can increase the chances of meeting
deadlines of transactions. The proposed protocol utilizes forward validation, and with the times-
tamp interval facility, it can check easily and detect early nonserializable execution. Second, the
proposed protocol can avoid unnecessary aborts in other real-time OCC protocols with a refined
conflict type categorization, a t1meslarnp interval facility, and a dynamic adjustment of serializa-
tion order mechanism.

However, these advantages have brought some overhead such as overhead of managing the
object table, especially maintaining the read and write. timestamp for every data object, and the
overhead associated with identifying the reconcilably conflicting transactions and the irreconcil-
ably conflicting transactions from the transaction table. The second overhead requires many set
intersection operations. The performance of the proposed protocol can be improved by efficient
implementation that reduces the effect of those overheads. For example, the overhead associated
with set intersection operation can be significantly reduced by maintaining the transaction tabie
as a bitmap, in which each bit represents a data object in database. In such implementation of
transaction table, a set intersection operation can be efficiently impelmented as a bit operation.

REFERENCES

[Abb88] R Abbott, H. Garcia-Molina, "Scheduling Real-time Transactions: A Performancé
Evaluatmn," Proceedings of the 14th VLDB Conference, 1988.

(Bay82] Bayer, R., K. Elhardt, J. Heigert and A. Re1ser, “Dynamic Timestamp Alocation for
: ~Transactions in Database Systems," Proc. 2nd Int. Symp. Distributed Data Bases, Sep-
tember 1982, pp 9-20.

[Bem87] Bernstein, P. A., V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison-Wesley, Reading, Mass., 1987.

[Bok87] Boksenbaum, C., M. Cart, J. Ferrie, and J. Pons, "Concurrent Certifications by Inter-
vals of Timestamps in Distributed Database Systems," IEEE Transactions on Software
Engineering, Vol. SE-13, No. 4, April 1987. '

{Buc89] Buchmann, A. et al., "Time-Critical Database Scheduling: A Framework for Integrat-
ing Real-Time Scheduling and Concurrency Control " 5th Data Engineering Confer-
ence, February 1689.

[Carg7] Carey, M. J., "Improving the Performance of an Optimistic Concurrency Conirol
" Algorithm Through Timestamps and Versions," [EEE Transactions on Software
Engineering, Vol. SE-13, No. 6, June 1987. pp. 746 - 751.

23

[Coo91]

[Hae84] -

[Har50]

[Hua%0]}

. [Hua%91]

© [Lin90]

~ [Rob82]
[Sha91]

1Son90]

[Yu90]

Cook, R. P., S. H. Son, H. Y. Oh, and J. Lee, "New Paradigms for Real-Time Data-
base Systems," 8th [EEE workshop on Real-Time Operating Systems and Software (in
Conjunction with) IFAC/IF. 1P Workshop on Real-Time Programming, May 1991.

Haeder, T., "Observations on Optimistic Concurrency Control Schemes,” Information
Systems, Vol. 9, No. 2, 1984, '

j. R. Haritsa, M. J. Carey, and M. Livny, "Dynamic Real-Time Optimistic Con-
currency Control," JEEE Real-Time Systems Symposium, Orlando, Florida, December
1950.

Huang, J., J. A. Stankovic, D. Towsley, and K. Ramamritham, “Real-Time Transac-
tion Processing: Design, Implementation, and Performance Evaluation,” Univ. of
Massachusetts, COINS Technical Report 90-43, May, 1990.

I. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley, "Ekperimental Evalua-
tion of Real-Time Optimistic Concusrency Control Schemes," VLDB Conference, Bar-
celona, Spain, Sept. 1991 '

Y. Lin and S. H. Sen, "Concurrency Control in Real-Time Database Systems by
Dynamic Adjustment of Serialization Order,” [EEE Real-Time Systems Symposium,
Orlando, Florida, December 1950.

Robinson, J. T., "Experiments with Trahsac’tion Processing on Muitiproéessors," IBM
Research Report, RC9725, Yorkiown Heights, NY, December 1982,

Sha, L., R. Rajkumar, S. Son and C. Chang, "A Real-Time Locking Protocol,” IEEE
Trans. on Computers, Vol. 6, No. 7, July 1991.

Son, S. H., and J. Lee, "Scheduling Real-Time Transactions in Distributed Database
Systems," 7th IEEE Workshop on Real-Time Operating Systems and Software, Char-
lottesville, Virginia, May 1550.

Yu, P., and D. Dias, “Concurrency Control Using Lockirig with Deferred Blocking,”
6th Intl. Conf, Data Engineering, Los Angels, Feb. 1990, pp. 30-36.

24

