Data Compression and Gray-code Sorting
by
Dana Richards
Computer Science Report #TR-85-24

November 1985

Submitted for publication in Information Processing Letters.

Data Compression and Gray-code Sorting

Dana Richards
University of Virginia

Introduction

Data compression techniques have been studied many years. We are concerned with
file compression when all the records of the file have the same field structure. In particu~
lar we assume each record has m fields, f(fo -+, fm. The field f; has integer values in
the range O to N;~1, so that for a record X = (xy, x2, * * -, %), We have 0Xx; SN;—1, for

1€j€m.

The compression scheme we analyze here, known as differencing .was discussed by
Ernvall [ErNv84]. The idea is to arrange the records in some order and output the first
record. For each successive record we output only those fields which differ from the previ-
ous record. If most successive records have many identical fields then the output file
should be much shorter than the original file. Note that there is some overhead for speci-
fying which field is being output and end-of-record delimiters, so that output file could be
longer. (If we were allowed to reference any record, not just the previous one, then a
non-lingar structure develops and leads to the use of minimum spanning trees

[ERNVT9, KANGTTL)

The initial ordering of the records is important and Ernvall chooses a generalized Gray
code order discussed below. To motivate this consider the case when all the N; =2 and
the file consists of the 2™ possible records, ie. every m-bit sequence. If these where
arranged in Gray code order, by definition, each successive record would differ in exactly
one field giving m + 2™—1 output fields, as opposed to the m2™ of the naive method. If

we had simply put the records in lexicographic order then the number of ouiput fields

m—1 7
would be m +2™ } %r = 2" —2 which asymptotically is just twice as bad. However
fe=0

in the worst case we could have an ordering such that each successive record differs in

m—1 fields [ROBI81] giving an unfavorable 2"{m—1) + 1 output fields.

The problem Ernvall explored is how to sort the records initially so that they are in
& Gray-code order. This does not mean that each successive record differs in just one field.
Instead it means the records that do appear in the file are in the same order as they appear
in a Gray-code ordering of all potential records, over the ranges specified. We present an
improvement to Ernvall's algorithm and extend it to the full mixed-radix case and i)resent
another algorithm. In the next section we give definitions and some results which are

interesting by themselves.

Preliminaries

ILet S; be an ordered sequence of n; elements, denoted [$:(0), $,(1), -, 5;(n;~1)]
Let §,(i)S,(j) represents an ordered pair formed by concatenating the respective elements of
two sequences; and Si(i)S, is the sequence [§;(i)S,(0), S1{i)S,(1), - -+, S3(D)S,(ny—1)]. Let
Sy X S, =[8,(0)S5, 8:(1)S;. §:(2)S5, -+, §;(n;—1)S,] be a sequence of njn, ordered pairs
where all the elements of one subsequence proceeds the next subsequence. Finally
51 @8, = [5,(008,. $:(1)SE, 81(2)85. 5:(3)S8. -+, 51(n1—1)S{%] where S§*’ denotes either
S, or 8%, ie. the reversal of S, depending on whether n;—1 is even or odd. respectively.
As an example let §;=1012] and S,=[{A.B]l then $;@®S,=[04,08,18.14,24 28]

Further §; ® (8, ® §)) is, arranged in two columns:

QA0 1A2
0A1l 1Al
0A2 1AQ
0B2 2A0
OB1 2A1
0BO 2A2
1BO 282
1B1 2B1
1B2 2B0

It is easy to derive rules for indexing into these compound sequences. We sgee

i

Sy % Sz(i) = Sl(il}Sz(iz). where by = e

and i =& modn,. Similarly,

S ®8,6) = 8,(:,)S,(i,), where i; = and i, =i modn, or i; = n,~1—{(mod n,) when

na2

i1 is even or odd, respectively. For example, with n; =3, n; =2, and §; and S; as above,

S ®(8, DB = 5;(1)8, @ §,(2x3—1-2) = §4(1)5,(1)§4(3—1—-0) = 1B2.

The example of S; & (5, ®S,;) produced a sequence of ordered triples that is a Gray
code sequence, i.e each differs from the preceding in exactly one position. We can uge this
same approach to generate a Gray code sequence of all possible records with m fields, as
described in the preceding section. Recall N, is the number of values in field f, and let
Nf=N,N,u; "+ N,, the number of possible subrecords with the contiguous fields
fa.' . fs. Let GZ be a Gray code sequence for those N! subrecords, wherfe GZ is just
the ordered sequence [0, 1, -, N,—1]. We want G{. The following recursive definition is

2 simple generalization of the well-known binary reflecied Gray code (e.g. [BITN76,GILB58]

).. Let
GE =GE QG
A simple induction argument establish that each of the N? possible records appear exactly
once and it is, in fact, a Gray code sequence. To generate the lexicographically ordered
sequence of the same records we use the straightforward definition Li=L2x L2,,, where
Ls=GE.
We wish to establish an algebraic property of these sequences. We Dbegin with this

result for arbitrary sequences S$:.52.5; of lengths ni.n,n;.

Lemma (S5;®S5,)Q@8;=5;8(5,885,)
Proof: Let ¢ be the mixed-radix [REIN77] number <ii,iz> with radices ni, ng nj ie
i =iqnona +isng +is. where 0 < iy <n; for j=1,2,3 . Using the indexing scheme

above we find (5§, ®5,)®5,6) =5, ®S.(a)S3(as) = S{a)S(a)S:(as) where

a' = e | = ign, t i
P o T i
! mod ny =is a' even
a = + . r
37 ma—1—(mod nay = n,—l—iz a' odd
S0
aq = @’ =i
1 7 1

a' mod n,=1i- iy even
an =

n,—1—(a’ mod n,) = n,—1—i, i odd.

Similarly 5, ® (5, ®S)E) = §5,(54)S, ® Sib)= S48 1)52(52)33(53) where

_ H o ;
b1 = nin; '
i mod nynps=iang, + i3 by even
b= nota—1—(mod rnongy b odd
50
" iy by even
bz”‘ -f_?:; = nz_.i__.iz b1 odd
is by even, by even
b3 =b' modnz= na—1—i, b4 odd. b, even
n3-—-—1——i3 bl evern, bg odd
by =ns—1—(b' mod na) =i, by odd, b, odd

By a case analysis we find, in all cases, a; = by, az = b, ,andaz =b;. O

Theorem GS =G ®GE. a <b <c.

Proof: A simple induction proof, on & = ¢c--a+1, can be made using the cbservation.
Gt ®G§+1 =G¢ @Gfi’f ®G(f+2 = Gh ®G§+2

where b+1<c¢. [J

This theorem allows us to appreach the Gray code by decomposing it in other ways
than the typical left-to-right fashion. In a similar but simpler manner we find

(S; X8, %x83=8; X (8, X83) and LE=LEX Lfy, a <b <c.

In the next section we will need to know the parity of the rank of a record X in the

Gray code order. The following result generalizes a result in [ERNV84].
Lemma If X =G2i)=(x,, ', x,) then

5
i=)y x; mod2.
j=a

Proof We prove it by induction on k& =c—a+1. Recall X = G @ Gi(E) = GEMi)GEG L),

where {; = 1~——— , ix=i mod N, or i, = Np—1~{i mod N,) as i; is even or odd. Note

Ny

that x, = Gfi,) =i, and (i mod Np) = (iy—1)iz + Go—Ny+1)i; mod 2. Hence

i =iN, +{i mod N,) mod 2
=iy~ i, mod 2
b

—1
2%

J=1

+x, mod2. O

It is interesting that this result does not extend to the lexicographic order, ie. for the
record ¥ = LEG) =(y,. -*.ys). It is easy to show that, in this case. i is equal to the
mixed radix number <y, ' - -y, > with the radices N,, Ngy1. -, Np. If desired, the mul-
tiplications required to calculate i can be bypassed by using a series of parity checks, in
the Horner's rule fashion to calcuiéte the parity of i{. Further the parity calculation is

trivial when all radices are even.

Sorting with Generalized Comparisons

Recall our goal is to sort the file in Gray code order, ie. record X precedes record
Y iff X precedes ¥ in GY. Ernvall [ERNV84] used the approach of simply employing some
known good sorting algorithm and augmenting the notion of a comparison. In particular,
he proposes using a boolean function grayorder(X,Y) for every comparison step, which

returns whether X precedes ¥. When X #Y let d be the least integer such that

d
Xg41 ¥ Ya+1 and let totaly = ¥ x;. He gave the following procedure, which we have general-
j=1

ized to the mixed-radix case,
grayorder (X,Y) = if total; is even then
return(c;. g < vgep)
else

return(yd +1 < Xz .;.1)

This follows because both X and Y are in the same subsequence G (i)GR{’, where the
(R) indicates reversal iff i; odd. Recall i; = total; mod 2. Since Gy =G ®GH, it

follows that ranking within GJ{? determines the ranking in GJy; and the result follows.

Notice that every comparison requires O(m) time. Hence if an opiimal Of{n logn)
comparison-based sorting algorithm is used, as Ernvall recommends, we use O(mnlogn)
time. However if we, during preprocessing, calculate the rank of each record in Gray-code
order, we could then simply sort according to rank. If each rank can be compared in O(1)
time and can be computed in O(m) time then the new algorithm would run in

Olnm + nlogn) time.

To compute the rank of sobrecord X, ie. ¢ where X =GZ(i). we note
X =Gl)GE.1(n) and § = i1Nfyy + i, Where iy =iy or iy = Nf —1—i, as iy is even or
odd. So if we, perhaps recursively, calculate i3 and i, we can return i. The simplest
O(m) implementation of this scheme would involve a left-to-right scan, in the typical

Horner's rule fashion;

P < xq
fori < 2tom do
iy if i even then x; else N;—1—x;
i iN; +i,
endfor
However, our general decomposition approach could easily be implemented by a recursive
Of{m) time approach, with depth O(logm) when the division is by half at each step.
Further if file compression became a bottleneck in a large file system then it may be
economical to design special-purpose hardware to compute ranks. The observations above

lead naturally to an O(logm) time parallel implementation.

If some system is already designed to sort in lexicographic order then we can achieve
the same end by filtering the file before and after sorting. In particular, record X = G}(i)
is transformed into Y = L}{i) before the sort and the reverse mapping is done after sort-
ing. Clearly the result is in Gray-code order. Using the techniques above all the transfor-
mations can be done in O(nm) time. (Such transformations with the binary reflected Gray

code are well-known, e.g. [SALz73])

Radix Sorting

Due to the mixed-radix representation of the records the radix-sort algorithm (e.g.
[REINTT]) naturally suggests itsell. I we wished to sort the records in lexicographic order,

ie. according to LT, then we would use the following algorithm:

form a list L from the set of records
for j « m downto 1 do

form empty lists L4, - - ,LNJ

for each record X from list L do

append X to ij

endfor
form a new L by concatenating L., -~ ,LNj

endfor

Briefly, its correctness is due to the fact that after { iterations I is sorted by its final ¢

positions, i.e. with respect to L7 .i41-

To produce the records in Gray-code order we note that
Gt =G RGE,; =[GH0O)GE,; (GH1)GE,,)%, -+). Hence if we have sorted the records with
respect to GZy; and have divided them into N, lists we find the odd lists need to be
reversed. There are several ways to do this; perbaps the simplest is to replace the

“append’ statement above with:

if x; even then
append X to L,
else
prepend X to L,

endfor.

m
The running time of these radix-sort algorithms are both O(nm + 3} N;). When the second
i=1

term is small this approach should be quite fast.

References

[BITN76]

[ErNVTY]

[Ernv8al

[GiLB58]

J. R. Bitner, G. Ehrlich and E. M. Reingold, Efficient Generation of the Binary
Refiected Gray Code and Its Applications, Communications of the ACM, 19(9), 1976,

pp. 317-521.

J. Ernvall and O. Nevalainen, Compact Storage Schemes for Formatted Files by

Spanning Trees, BIT, 19, 1979, pp. 463-475.

J. Ernvall, On the Construction of Spanning Paths by Gray-code in Compression

of Files, {'echnique et Science Informatiques, 3(6), 1984, pp. 411-414.

E. N. Gilbert, Gray Codes and Paths on the n-Cube, Bell System Technical Journal,

37(9), 1958, pp. 815-826.

[KaNG77] A. N. C. Kang, R. C. T. Lee, C. Chang and S. Chang, Storage Reduction Through

[REINTT]

[RoBI81]

[SaLz73]

Minimal Spanning Trees and Spanning Forests, JEEE Transactions on Computers, C-

26(5), 1977, pp. 425-434.

E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and

Practice, Prentice-Hall, 1977.

J. Robinson and M. Cohn, Counting Sequences, JEEE Transactions on Computers, C-

30(1), 1981, pp. 17-23.

H. Salzer, Gray Code and the =+ Sign Sequence, Communications of the ACM, 16(3),

1973, pp. 180.

