The Effect Of Imperfect Error Detection on
Reliability Assessment Via Life Testing

Paul E. Ammann
Susan S, Brilliant
John C. Knight

Computer Science Technical Report No. TR-92-16
May 29, 1992

Submitted to JIEEE Transactions on Software Engineering.

The Effect Of Imperfect Error Detection On
Reliability Assessment Via Life Testing

Submitted To IEEE Transactions On Software Engineering
February, 1992

Paul E. Ammann’+?
Department of Information And Software Systems Engineering
George Mason University
Fairfax, VA 22030

Susan S. Brilliant®
Department of Mathematical Sciences
Virginia Commonwealth University
Richmond, VA 23284

John C. Knight® ¥
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

Abstract

Measurement of sofiware reliability by life testing involves executing the software on large
numbers of test cases and recording the results. The number of failures observed is used to
bound the failure probability even if the number of failures observed is zero. Most analyses
assume that all failures will be observed but in practice this will rarely be the case. In this paper
we examine the effect of imperfect error detection, i.e., the situation in which a failure of the
software may not be observed. If the conventional analysis associated with life testing is used,
the confidence in the bound on the failure probability is optimistic. Qur results show that
imperfect error detection does not necessarily limit the ability of life testing to bound the
probability of failure to the very low values required in critical systems. However, we show that
the confidence level associated with a bound on failure probability cannot necessarily be made as
high as desired unless very strong assumptions are made about the error detection mecharnism.
Such assumptions are unlikely to be met in practice, and so life testing is likely to be useful only
for simations where very high confidence levels are not required.

Index Terms: Error Detection, Software Reliability Assessment, Software Testing, Test Oracles.

! This work supporied in part by the National Science Foundation under grant CCR-90-10036,
2This work supported in part by NASA under grant NAG_1-1123-FDP.

This work supported in part by the National Science Foundation under grant CCR-90-96128.
T Point of contact: email knight@virginia.edu, phone (804) 982-2216

1. INTRODUCTION

An important step in the development of many computing systems is some form of
reliability assessment. In some cases it is essential to have confidence that the system achieves a
required level of reliability before it is put into service. It might be necessary, for example, 10
demonstrate that a safety-critical system achieves the level of reliability prescribed by a

regulatory agency (e.g. [3D.

Reliability can either be estimated from observed behavior or predicted. Estimation can be
achieved by a process known as Jife resting, in which the long-term behavior of the product is
observed and its reliability is estimated from the observations. Life testing is effected by
operating the product as it would be in service. Inputs are supplied from the operational
distribution and outputs consumed as they would be in the target environment. A single “‘use”
of the product under such circumstances is usually referred to as a test, and the number of failures
observed (usually zero)} over an extended period can be used to provide an estimate of the failure
rate per unit time. The estimate takes the form of a confidence interval. The reliability is shown
to be no worse than some specific bound with a certain confidence. The probability that the

reliability is worse than the compuied bound is determined by the confidence level.

The alternative to direct measurement is prediction. Prediction of the reliability of
hardware systems is usually based on a model. Many models use Markov methods to analyze the
effects of component failures (and possibly component repair) [11]. The system’s overall
reliability is estimated by the model based on reliability data of the individual components, The
data for individual componemts is obtained either by life testing or from models of the
components themselves. This procedure is followed because it allows reasonable estimates to be

computed much more quickly than would be possible with system-level life testing.

Software reliability has proved much harder to predict because hardware-like Markov
models cannot be used. Some progress has been made with reliability-growth models [9] but
such models are of limited applicability because they depend upon assumptions that are not
always valid. Life testing at the system level is therefore attractive as an assessment technology,

and has been advocated by many authors 8, 10, 12].

Life testing of software has been criticized by Miller [6, 7] and by Butler and Finelli [2] in
a number of ways. Miller points out, for example, that it is difficult to ensure that the distribution
from which the test cases are selected is identical to the operational distribution. He also
observes that the lower the probability of failure that must be demonstrated, the more tests are
required in the life testing procedure. The amount of testing required for assessing the reliability

of safety-critical systems is, in general, infeasible.

It might be possible to overcome such difficulties in some situations. For example, the large
number of tests required might be executed in a reasonable amount of time by a fast computer or
many computers operating in parallel. However, in this paper we examine a different problem
with life testing of software. We refer to this difficulty as imperfect error detection. Error
detection is the process by which it is determined that a software system has failed. The analysis
used in life testing to estimate the reliability of the software is based on knowledge of the
outcome of some specified number of tests. The traditional analysis assumes the existence of an
oracle, an observer of tests that can determine with absolute certainty whether the software

operates correctly.

Weyuker labels a program non-testable if no oracle exists for the program [13]. She defines
a pseudo-oracle, which might be implemented by an independently written program designed to

satisfy the same specification as the non-testable program, and discusses testing ‘‘non-testable”

programs using a pseudo-oracle. A pseudo-oracle is subject to two types of errors. It may report
a failure when the software is correct, or it may not report an actual failure. The former leads to a
fruitless effort to find a nonexistent deficiency in the software, but has no bearing on the
subsequent reliability analysis. The latter, however, goes unnoticed and leads to a reliability

analysis based on incorrect data.

A premise of this paper is that most programs are ‘‘non-testable’” by Weyuker’s definition,
and thus whatever error detection mechanism is used is likely to exhibit pseudo-oracle behavior.
In this paper we use the term pseudo-oracle broadly to refer to any error detector that is not
known to be perfect. Weyuker’s paper identifies the qualitative result that pseudo-oracles may be
unreliable; in this paper we attempt to quantify the extent of the problem. We examine the effects
of imperfect error detection and show how to compute realistic reliability bounds in the face of

uncertainty about the quality of the pseudo-oracle.

In section 2 we present a model for testing with imperfect error detection. We analyze the
model for the case in which the quality of the pseudo-oracle is known in section 3. Then, in
section 4, we extend the analysis to the more realistic case in which the behavior of the pseudo-

oracle is known only in a probabilistic sense. Finally, in section 5 we present our conclusions.

2. ERROR DETECTION

The goal of life testing is to estimate the reliability of a program P. The reliability
parameter for which we will obtain a confidence interval is the failure probability of P, which we
denote p. We observe P’s behavior on inputs selected at random from an expected usage
distribution, consult a pseudo-oracle to evaluate the output of P, and record the decision. We

need a measure of the quality of the pseudo-oracle in order to incorporate its effects into our

reliability analysis. We define the hidden failure probability, denoted r, to be the conditional
probability that the pseudo-oracle does not reject P’s output, given that P has failed. The hidden
failure probability reflects the ability of the pseudo-oracle to detect the failures of the particular
implementation being tested; its value refects the relationship between the failure behaviors of

the implementation and of the pseudo-oracle.

In order to make our analysis tractable and to focus on the issues of greatest concern, we

restrict our attention in two ways:

(1) We assume that the pseudo-oracle is not repaired. For the few test cases in which the
output of the program is incorrectly rejected, we assume that the output of the program is

validated by some unspecified means (perhaps by hand).

(2) We do not model repair of the program. Instead we assume that, if the oracle correctly
rejects the output of the program on a particular case, the reliability assessment
procedure starts over from the beginning after the program is repaired. Because, in
general, fixing a fault can have an arbitrary effect on the functionality of a program,
restarting after repair is an essential part of the reliability estimation process. Thus this

assumption will be satisfied if reliability estimation is done properly.

The assessment procedure described above can be represented by the two-state Markov
model shown in figure 1. The states in the model represent the tester’s knowledge about the
existence of a fault in P. Life testing begins in the initial state, in which P contains no known
flaws. Recall that r, the hidden faﬁure probability, measures the conditional probability that the
pseudo-oracle fails, given that P has failed. Thus the conditional probability that a failure will be

reported, given that one has occurred, is 1-r, and the unconditional probability that a failure will

X £

(1-r)p

Fig. 1. Two State Markov Model For Reliability Assessment

be observed is (1-r)p. We move to the final state when a failure is observed; otherwise, with
probability 1-(1-r)p, we remain in the initial state. Entering the final state indicates that P
contains a known fault that must be repaired. Afier the repair, the reliability assessment process

begins anew in the initial state, with new values for both of the parameters p and r.

We begin our analysis by considering the effects of a faulty pseudo-oracle on the number of
tests that must be executed before the first failure is detected. We denote this number of tests by
the random variable T. Each test case is a Bemoulli trial, with probability of detected failure (i.e.
moving to the final state in figure 1) of (1-r)p. Examining the value of T in isolation does not
reveal the extent to which its distribution is influenced by imperfect error detection. As a basis
for comparison, therefore, we also analyze the behavior of an oracle. We adopt the convention of
marking measures on oracle-based testing with a tilde. Thus, for example, we define the random
variable T to denote the number of test cases that are executed before the first failure is detected
by an oracle. T’s distribution, like T7s, is geometric. The probability that an oracle will reveal a
failure on a single test case is just p, the probability that the failare occurs, so the parameter of

T’s distribution is D.

Now consider the goal of the reliability assessment process. We wish to bound the failure
probability of the program to a particular value with a given statistical level of confidence. For
example, we may wish to ensure that the failure probability is less than or equal to 107* with
confidence 0.99. The interpretation of this statement is that if a large number of programs are
assessed to have a failure probability of Iess than 107, then on average no more than 1% of them

will have failure probabilities that are greater than 1074,

For any specific assessment, both the bound for p and the confidence level C will usually be
set by external requirements, The key issue that remains is to determine the number of
successful tests required to show that the software system being assessed meets the prescribed
bound with the required confidence. In general, we need to execute some number of tests, U,

such that
prob(T<l) =C

Recall that the distribution of the random variable 7, the number of tests needed to reveal a
failure, is geometric with parameter (1-r)p, so the number of tests needed will depend upon both

pand r.

To find the value of U that gives us the desired confidence interval, we solve the above
equation using the desired bound on the failure probability as the parameter p in the probability
distribution for 7, and the desired confidence level as the value of C. The equation means that if
we execute U tests and the actual failure probability is p, we will observe a failure with
probability C. Thus, the execution of U tests without observing a failure gives us confidence C

that the actual failure probability is bounded by p.

Before we attempt to solve the above equation, we consider its counterpart for an oracle.
The distribution for T is geometric with parameter p, so the probability that T assumes any

specific value ¢ is given by:

prob(T=¢) = p(1-p) ! , t=1,2,...

Thus

PO U
prob(T<U) = ¥ p(1-p)'~!

=1
so the equation giving the number of tests U needed to give the desired confidence interval using

an oracle is

U
p—p)=c

t=1

We can solve this equation for U

1=(-p)7 | _
Pl a-py
1-p) =1-C
= In(1-C)

T In(1-p)

Thus, if an oracle is available, this last formula is immediately useful for assessing P. The
number of tests, ff, that must be executed without observing a failure to give any desired bound
on failure probability and confidence level can be computed by substituting the target values for

p and C in the formula.
3. ANALYSIS FOR KNOWN HIDDEN FAILURE PROBABILITY

The analysis of the previous section was undertaken to permit a comparison between

testing using pseudo-oracles, which are generally available, and using oracles, which are not

available, but are usually assumed to be in most analysis of life testing results. In this section we
begin our analysis of testing using a pseudo-oracle. Initially we assume that the hidden failure

probability, 7, is known. In the next section we relax this assumption.

Recall that we want to calculate U, the number of successful tests needed to obtain the
desired confidence interval. Also recall that 7, like 17“, has a geometric distribution, but that the
parameter of the distribution is (1-7)p rather than p. The derivation of U, then, parallels the
derivation of fI, with each occurrence of p in the analysis of the previous section replaced by

(1-r)p. The analysis yields the following expression for U:

= —In(-C)
T In(1—(1-r)p)

The above formula gives the number of tests that must be executed without an error report
from the pseudo-oracle. The effects on U of changing the bound for p or the confidence level C
are not immediately clear from this expression. These effects are very important in practice, not
only in performing life testing analysis but also in setting the parameters to be used. The
influence of the failure probability bound is illustrated by figure 2. Figure 2 shows U as a
function of r for three different values of the failure probability bound p, namely p = 1073, 1074,
and 107>, In this figure, the confidence level C is held constant at the value 0.99, and r is varied
from 0 to 1. The figure shows that for each factor that the bound for p is decreased, U is
increased by the same factor. For example, if achieving a bound of p requires U tests, then
achieving a bound of p/2 requires 2U tests. In addition, reducing the visibility of the failure
domain by a given factor has the effect of increasing the number of tests required by the same
factor to maintain the same bound on the probability of failure. Thus, if achieving a bound of p
a-n

2

for a given 1—r requires U tests, then achieving the same bound p for requires 2U tests.

102

3
10 | l] I

Fig. 2. Uvs.rforp =107, 1074, 107, € = 0.99

The effect of changing the confidence level is addressed in figure 3. Figure 3 again shows
U as a function of r, but this time for three different values of the confidence level C, namely
C =0.9, 0.99, and 0.999, In figure 3, the bound for p is held constant at the value 107 and again
ris varied from 0 to 1. The most striking observation from figure 3 is that a dramatic increase in
the confidence level, C, results in only a small increase in the number of tests required, U. For
example, increasing from C from 0.9 to 0.999 requires increasing the number of tests, U, by less

than one order of magnitude.

To isolate the effect of imperfect error detection on the necessary number of tests, consider

the ratio:

108

10° | l | |
0 02 04 0.6 0.8 1
¥
Fig.3. Uvs.rfor C =09, 099, 0999, p = 107
In(1-C)

In(i~p +rp) _ _ In(i-p)
In(1-C) In(1-p +rp)
In{1-p)

Y.
U

The values of p that we wish to obtain as a bound will be small. Below we find an

approximation for g— for typically small values of p. The approximation depends on the fact
U

that, for x close to one, In(x) = x-1. For small vatues of p, the quantities (1—p) and (1-p +rp) are

both very close 1o one, Thus:

U__In(-p) _ (=pp=1 _ 1
g InQ-p+rp) (A-p+rp)-1 I-r

<10 -

To a first approximation, then, *g** is independent of C and nearly independent of p. Thus the
U

factor by which the number of tests must be increased to compensate for the fallibility of the

error detector depends almost entirely on the hidden failure ratio r.

In figure 4 we show -[.,i, the factor by which the required number of tests increases, as a
U

function of r, the probability that a failure is hidden by the oracle.

Although the exact value of “g“ is a function of p, the approximation given above is excellent for
U

25 —

20 —

15 -
Ui
10—

0 01 02 03 04 05 06 07 08 09 1

Fig. 4. U/U vs, r for small p.

-11 -

the small values of p typically used in life testing. For example, the graph of % withp = 107 is

indistinguishable from that of the approximation (ﬁ) at the resohution provided in figure 4.

Figure 4 reveals that the pseudo-oracle performs nearly as well as an oracle for even
moderate values of r, However, as r approaches 1, the relative performance of the pseudo-oracle

deteriorates rapidly.
4. ANALYSIS FOR UNKNOWN HIDDEN FAILURE PROBABILITY

If the specific value of the hidden failure probability were known for a given pseudo-oracle
and program combination, it would be a simple matter to consult figure 4 to determine how many
more tests to run to compensate for the imperfection of the pseudo-oracle. For example, if it
were known that r = 0.8, then reliability evalvation with this pseudo-oracle would require about
five times as many tests as with an oracle to achieve the same bound for the failure probability p
with the same confidence C. If r were known to be 1, it would of course be impossible to obtain

any reliability bound.

Unfortunately, the value of the parameter r is never available in practice, and we do not
learn more about as testing proceeds. The variability of » is likely to be large. It is reasonable
to expect that many systems have values of r that are very low, and perhaps zero. However,
other systems will have quite large r values, and there is no way to recognize these systems
during testing. Because the value of r is vnknown, any estimate or bound computed using life

testing results and based on U could be arbitrarily inaccurate.

We can regard a particular program and pseudo-oracle combination as having been drawn

from a population of systems having a particular distribution of r values, Below we present an

.12

analysis that incorporates information about the distribution for into the life testing analysis.

The probability that U tests will reveal a failure of a program having failure probability p,

given that the hidden failure probability is r is

u
prob(r< ry =¥, (1=r)p (1-(1-r)py~*

t=1

In other words, this quantity represents the conditional probability that U tests reveal a failure,
given a particular value for ». What we want is the unconditional probability that U tests reveal a
failure, given by:

12
prob(T<V) = 3 f; ¥, (1-r)p (1=(1-r;)p)" !

i i=1

where f; denotes the probability that r takes on the value r;, i.e. fis the probability distribution
function (or the discrete approximation of the density function) for r. This probability
distribution function can be used to derive a one-sided confidence interval for T. In other words,
fcan be used to derive the number of tests, U/, required to bound the probability of failure by p
with a given confidence C. The confidence interval is defined by:

prob(T<U) = C
which yields, after some manipulation:

X (=(=rp)’ = 1-C

This formula is not as convenient to use as those derived earlier. In particular, it is not possible

to solve for U directly, although U can be found with a variety of standard numerical methods.

-13-

The value of U in any particular set of circumstances is the guantity of interest. Many
elements of the equation are unknown, and insight into the meaningful values of U can best be
obtained by sensitivity analysis. The effects on U of changing the bound for p or the confidence
level ¢ are not immediately obvious. Similarly, the sensitivity of the analysis o changes in
various characteristics of the » distribution is difficult to determine. In order to address such
questions, we consider some possible distributions for r. In figure 5 we give two hypothetical

distributions for r that are based on the following criteria:

(1) The limited empirical and anecdotal data indicate that the distribution for hidden failure
probability has a “‘bathtub’’ shape in which most of the probability mass is near the value

r = 0 and a small portion of the probability mass is near r = 1.

(2) Figure 4 indicates that it makes a substantial difference whether r is just near 1 or is

exactly equal to 1. However, for low to moderate values of r the curve for “(:]“ is neatly
U

flat, so these parts of the r distribution are not likely to have much effect on life testing

reliability analysis. Thus the only difference between the hypothetical distributions is

prob (r=0) = 0.99 prob (r=0) = 0.99
prob (r=0.99) =0 prob (r=0.99) = 0.01
prob (r=1) = 6.01 prob (r=1)=0

a) r Digtribution 1 b) r Distribution 2

Fig. 5. Hypothetical Distributions For r.

P -

that distribution 1 has 1% of its mass at » = 1 and distribution 2 has 1% of iis mass at

r =0.99,

Figure 6 shows how I/ and U vary for a range of values of the bound for p. Both
hypothetical distributions for p are shown and both parts of the figure were computed with a
confidence level (C) of 0.989. Notice that U and U vary uniformly with the bound for p. Recall
that the hypothetical distributions for r differ from r=0 over only 1% of the r values.
Nonetheless U and U are quite distinct; there is a noticeable increase in the number of tests

required to achieve a particular value of the bound for p.

The most striking aspect of figure 6 is that the graphs for the two hypothetical distributions

are nearly identical. For the confidence level shown and for smaller confidence levels, the

107 - 107 —
10°
uu u,U

10°

104 e 1 104 . |

1073 1074 1078 1073 107 1073
r p
a) r Distribution 1 b) r Distribution 2

Fig. 6. U (solid), U (dotted) vs. p For Two r Distributions (C=0.989).

-15-

number of tests needed to achieve a given bound on p is not seriously affected by whether the
worst pseudo-oracles have r values near 1 or exactly equal to 1. However, the confidence level
used for figure 6 was deliberately chosen to be less than 0.99, for reasons that are explained

bhelow.

The impact of altering the confidence level C, by comtrast, is dramatically different for the
two hypothetical distributions. Figure 7 compares the relationship between U and C with that
between U/ and C. The comparison is done for each of the hypothetical r distributions and with
the bound p = 107%. Figure 7a shows U,U vs. C for r distribution 1, in which the probability that

r =1 is nonzero,

107 107 —
10° - 108
U, U,U

105’—-/ 105_

10% — 10%
|] a | | |

=100 1-102 1-10% 1-10* 1-10"° 1-10t 1~102 1-107° 1-10* 1-107
C c

a) r Distribution 1 by r Distribution 2

Fig. 7. U (solid), U (dotted) vs. C For Two r Distributions (p=10"%),

.16 -

An important result of this analysis is that certain confidence intervals are unobtainable.
For example, notice that it is not possible to achieve a confidence level above C'=0.99 for the r
distribution shown used in figure 7a.. The limit arises because, 1% of the time, r=1, so the
failure domain of the program is completely obscured. For these 1% of possible systems, testing
is useless and establishes no bound on the probability of failure. Thus no bound can be

established with more than 99% confidence.

Figure 7b shows U, ,U vs. C for r distribution 2, in which the probability that # =1 is zero. In
this case, any desired confidence level is achievable. As the figure shows, however, two orders
of magnitude more tests might be required o establish the bound with a specific confidence level

using a pseudo-oracle.
The analysis of the two hypothetical distributions reveals that:

(1> The number of test cases needed to achieve a given bound on the probability of failure is
affected by the probability of a large value of ». However, whether the valoe of r is equal

to or just near 1 for this part of the r distribution is immaterial.

(2y The confidence level achievable for a particular » distribution is absolutely limited by
1 —prob(r =1). The distribution of r values near 1 dramatically affects the number of test
cases needed to achieve confidence levels near (1 — prob(r=1)) but any confidence level

can be achieved if a sufficient number of tests are performed.

(3) The part of the r distribution for which r=1 has a substantial effect on life testing

reliability analysis.

-17 -

5. CONCLUSION

We maintain that error detection must always be viewed as potentially imperfect. When
life testing is performed to estimate the reliability of a software system, the effect of imperfect
error detection is to make the number of observed failures (which would usually be zero) an
inaccurate measure. Failures might have occurred that went unnoticed. Such undetected failures
mean that bounds on reliability computed wsing the traditional life testing analysis can be

incorrect to an arbitrarily large degree.

In this paper we have shown how to incorporate information about the guality of a pseudo-
oracle into life testing analysis. The parameter that measures the fallibility of a pseudo-oracle is
the hidden failure probability . The analysis incorporating a specific value of r into the life
testing modei is illuminating theoretically, but not of immediate practical interest because the

actual value of r for a given system is generally unknown.

Although the value of r for a particular program and pseudo-oracle is not available during
testing, we think that it is reasonable for software developers to gather empirical data about r
values using failure data for operational software systems. Our analysis shows that it is not
necessary to know all the details of the distribution because life testing reliability estimation is
sensitive only to the portion of the distribution at or near 1. Certainly a software reliability
estimate based on an empirically estimated r distribution will be more realistic than one based on
the assumption that r is always 0, as is implicit in traditional life testing analysis. At the very
least, anyone who presents evidence supporting a particular reliability confidence interval should
reveal and defend the assumed r distribution. The analysis presented in this paper can be used to
make quantitative adjustments to reliability estimates if characteristics of the r distribution are

broadly known.

- 18 -

The effect of incorporating uncertainty about the pseudo-oracle into the software
agsessment process is, of course, to increase the number of tests necessary to establish a given
confidence interval. Somewhat surprisingly, our analysis shows that the number of tests
necessary to support a given failure probability bound increases linearly as the desired bound
increases, and that any bound can be established given a sufficient number of tests. However, our
results show much stronger limits with respect to the confidence level that can be placed in the
bound on failure probability. The portion of the r distribution near 1 may cause a dramatic
increase in the number of tests necessary fo achieve a given confidence bound. Finally, the
achievable confidence level is absolutely limited by the portion of the distribution that is exactly
equal to 1. Thus for perfectly reasonable r distributions, the confidence levels needed for critical

software may be extremely difficult or impossible to achieve.

REFERENCES

[11 S.S. Brilliant, “*Testing Software Using Multiple Versions’’, PhD Dissertation, University of
Virginia, January, 1988,

(2] R.W. Butler, G.B. Finelli, “*The Infeasibility of the Experimental Quantification of Life-
Critical Software Reliability’’, Proceedings ACM SIGSOFT ’91: Saoftware For Critical
Systemns, 1991,

[3] Federal Aviation Administration, ‘‘System Design Analysis’, Advisory Circular AC-
25.1309-1, U.S. Department of Transportation, September 7, 1982,

(4] N.G.Leveson, P.R. Harvey, “*Analyzing Software Safety’’, IEEE Transactions On Software
Engineering, Vol SE-9, No. 5, September, 1983,

[5] R.J. Lipton, ‘‘New Directions in Testing”’, Interface ‘90, East Lansing, M1, May, 1990.

[6] D.R. Miller, ““The Role of Statistical Modeling and Inference in Software Quality
Assurance’’, CSR Workshop on Software Certification, Gatwick, England, September, 1988.

[71 D.R. Miller, “*Making Statistical Inferences about Software Reliability’’, NASA CR 4197
December, 1988.

.19 .

(8] K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Nicol, B.W. Murrill, J.M Voas,
‘“Estimating the Probability of Failure When Testing Reveals No Failures’, IEEE
Transactions On Software Engineering, Vol 18, No. 1, January, 1992.

(9] JD. Musa, A. lannino, K. Okumoto, Software Reliability: Measurement, Prediction,
Application, New York: McGraw Hill, 1987.

[10] D.L. Parnas, J. van Schouwen, and S.P. Kwan, ‘‘Evaluation of Safety Critical Software’,
Communications of the ACM, Vol. 33, No. 6, lune, 1990.

[11] D.P. Siewiorek, R.S. Swarz, The Theory and Practice of Reliable System Design, Bedford,
MA:; Digital Press, 1982.

[12] T.A. Thayer, M. Lipow, E.C. Nelson, Software Reliability, North Holland, 1978.

[13] E.J. Weyuker, ‘‘On Testing Non-testable Programs’’, The Computer Journal, Vol. 25, No. 4,
November, 1982,

20 .

