Experimental Evaluation of a Concurrent
Checkpointing Algorithm

Sang H. Son and Shi-Chin Chiang

Computer Science Report No. TR-90-01
January 17, 1990

Experimental Evaluation of a Concurrent Checkpointing Algorithm

Sang H. Son
Shi-Chin Chiang

Department of Computer Science

University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

The goal of checkpointing in database management systems is to save database states on a separate
secure device so that the database can be recovered when errors and failures occur. Recently, non-
interfering checkpointing algorithms which allow user transactions to be processed concurrently with the
checkpointing process have been proposed [4, 7]. This property of non-interference is highly desirable to
real-time applications, where restricting transaction activity during the checkpointing operation is in
many cases not feasible. The performance of those zilgorithms, however, has not been studied exten-
sively. One of the reasons for the difficulty in evaluating new techniques for distributed database systems
is the compiexity involved due to a large number of system parameters that may change dynamically.
Prototyping methods can be applied effectively to the evaluation of database techniques. In this pe;per', a |
checkpointing algorithm to improve the availability of distributed database systems is evaluated experi-
mentally using a software prototyping environment for the development and evaluation of distributed

database systems.

Index Terms - database, consistency, checkpoint, transaction, non-interference, prototyping

This work was supported in part by the Office of Naval Research under contract number N0O0O14-88-K.-0245, by the Deparunemt of Energy
under contract number DEFGOS-88-ER25063, and by the Federal Systems Division of IBM Corporation under University Agreement WG-
249153,

I. Introduction

The need for a recovery mechanism in database systems is well understood. In spite of powerful
database integrity checking mechanisms which detect errors and undesirable data, it is possible that some
erroneous data may be included in the database. Furthermore, even with a perfect integrity Checking
mechanism, failures of hardware and/or software at the processing sites may destroy consistency of the
database. In order 10 cope with those errors and failures, distributed database Sysiems provide recovery

mechanisms, and checkpointing is a technique frequently used in recovery mechanisms,

The goal of checkpointing in database Systems is to read and save a consistent state of the database
On a separate secure device. In case of a failure, the stored data can be used 1o restore the database.
Checkpointing must be performed so as to minimize both the costs of performing checkpoints and the
costs of recovering the database. If the checkpoint intervals are very short, too much time and resources
are spent in checkpointing; if these intervals are long, too much time is spent in recovery. Since check-
pointing is an effective method for maintaining consistency of database systems, it has been widely used

and studied by many researchers(1, 4, 5, 7, 8, 10, 11, 13, 17, 18].

Since checkpointing is performed during normal operation of the system, the interference with tran-
saction processing must be kept to a minimum. It is highly desirable that users are allowed to submit tran-
sactions while checkpointing is in progress, and the transactions are executed in the system concurrenﬂy
with the checkpointing process. In distributed systems, this requirement of non-interference makes check-
pointing complicated because we need to consider coordination among autonomous sites of the system.
A quick recovery from failure is also desirable in many applications of distributed databases that require
high availability. For achieving quick recovery, each checkpoint needs to be globally consistent so that a
simple restoration of the latest checkpoint can bring the database to a consistent state. To make each
checkpoint globally consistent, updates of a transaction must be either included completely in one check.
pomt or not included at all. In distributed database systems these desirable properties of nen-interference

and global consistency increase the workload of the system. It Mmay tum out that the overhead of the

checkpointing mechanism is unacceptably high, in which case the mechanism shouid be abandoned in
spite of its desirable properties. The practicality of non-interfering checkpointing, therefore, depends par-
tially on the amount of extra workload incurred by the checkpointing mechanism. ‘_

One of the primary reasons for the difficuity in successfully developing and evaluating a distributed

database system is that it takes a long time to develop a system, and evaluation is complicated because it

involves a large number of system parameters that may change dynamically.

A prototyping technique can be applied effectively to the evaluation of control mechanisms for dis-
tributed database systems. A datwbase prototyping tool is a software package that supports the investiga-
tion of the properties of a database control techniques in an environment other than that of the target data-
base system. The advantages of an environment that provides prototyping tools are obvious. First, it is
cost effective. If experiments for a twenty-node distributed database system can be executed in a software
environment, it is not necessary to purchase a twenty-node distributed system, reducing the cost of
evaluating design altematives. Second, design alternatives can be evaluated in a uniform environment
with the same system parameters, making a fair comparison. Finally, as technology changes, the environ-

ment need only be updated to provide researchers with the ability 1o perform new experiments,

A prototyping environment can reduce the time of evaluating new technologies and design alterna-
tives. From our past experience, we assume that a relatively small portion of a typical database system's
code is affected by changes in specific control mechanisms, while the majority of code deals wit‘.‘h'inmn-
sic problems, such as file management. Thus, by properly isolating technology-dependent portions of a
database system using modular progrﬁmming techniques, we can implement and evaluate design alterna-
tives very rapidly. Although there exist tools for system development and analysis, few prototyping tools
exist for distributed database experimentation. Especially if the system designer must deal with message-
passing protocols and timing constraints, it is essential to have an appropriate prototyping environment

for success in the design and analysis tasks.

2.

This paper discusses checkpointing algorithms for distributed database systems, and presents a pro-
totyping software implemented for a series of experimentation to evaluate non-interfering checkpointing
algorithms. This paper is organized as follows. Section 2 introduces a model of computation used in this
paper. Section 3 discusses the design issues for checkpointing algorithms and reviews previous work
which has appeared in the literature. Section 4 describes the checkpointing algorithm. Section 5 intro-
duces the structure of the prototyping environment. Sections 6 presents the results of experiments con-

ducted for practicality analysis. Section 7 concludes the paper.

2. Model of Computation

A database consists of a set of data objects. Each data object has a value and represents the smallest
unit of the database accessible to the user. All user requests for access to the database are handled by the
database system. We consider a distributed database system implemented on a computing system where
several autonomous computers (called sites) are connected via a communication network. The set of data
objects in a distributed database system is partitioned among its sites. A database is said to be consistent
if the values of data objects satisfy a set of assertions. The assertions that characterize £ﬁé consistent states

of the database are called the consistency constraints [6].

The basic units of user activity in database systems are rransactions. Each transaction represents a
complete and correct computation, i.e., if a transaction is executed alone on an initially consistent data-
base, it would terminate in a finite time and produce correct results, leaving the database consistent. A
transaction is the unit of consistency and hence, it must be atomic. By atomic, we mean that intermediate
states of the database must not be visible outside the transaction, and all updates of a transaction must be
executed in an ail-or-nothing fashion. A transaction is said to be committed when it is executed 1o com-
pletion, and it is said to be aborted when it is not executed at all. When a transaction is committed, the

output values are finalized and made available to all subsequent transactions.

Each transaction has a timestamp associated with it [12]. A timestamp is a number that is assigned

to a transaction when initiated and is kept by the transaction. Two important properties of timestamps are

3.

(1) no two transactions have the sarﬁe timestamp, and (2) only a finite number of transactions can have a
timestamp less than that of a given transaction.

The transaction managers that have been involved in the execution of a transaction are called the
parncipants of the transaction. The coordinator is one of the participants which initiates and terminates
the transaction by controlling all other participants. In our transaction processing model, we assume that
the coordinator decides on the participants using suitable decision algorithms, based on the data objects in

the read set and write set of the transaction.
3. Related Work

3.1. Checkpointing

In order to achieve the goal of efficient database system recoverability, it iS necessary to consider

the following issues when a checkpointing mechanism is designed for a distributed database system.
(1) it should generate globally consistent checkpoints,

2 it should be non-interfering in that it does not affect the ongoing processing of transactions,
€)] the storage and the communication overhead should be small,

The need and the desirability of these properties is self evident. For example, even though an incon-
sistent checkpoint may be quick and inexpensive to obtain, it may require a lot of additional work to
recover a consistent state of the database. Some of the schemes appearing in the literature (e.g. {1, 3] do

not meet this criteria.

Checkpointing can be classified into three categories according to the coordination necessary among
the autonomous sites. These are (1) fully synchronized(10}, (2) loosely synchronized{17}, and (3) nonsyn-
chronized(5]. Fully synchronized checkpointing is done only when there is no active transaction in the
database system. In this scheme, before writing a local checkpoint, all sites must have reached a state of
inactivity. In a loosely synchronized system, each site is not compelled to write its local checkpoint in the

same global interval of time. Instead, each site can choose the point of time 1o stop processing and take

whn

the checkpoint. A distinguished site locally manages a checkpoint sequence number and broadcasts it for
the creation of a checkpoint. Each site takes local checkpoint as soon as it is possible, and then resumes
normal transaction processing. It is then the responsibility of the local transaction managers to guarantee
that all global transactions run in the local checkpoint intervals bounded by checkpoints with the same
sequence numbers. In nonsynchronized checkpointing, global coordination with respect to the recording
of checkpoints does not take place at all. Each site is independent from all others with respect to the fre-
quency of checkpointing and the time instants when local checkpoints are recorded. A logically consistent

database state is not constructed until a global reconstruction of the database is required.

One of the drawbacks common to the checkpointing schemes above is that the processing of tran-
sactions must be stopped for checkpointing. Maintaining transaction inactivity for the duration of the
checkpointing operation is undesirable, or even not feasible, depending on the availability constraints

imposed by the system.

In [13], checkpointing is always performed exclusively as part of the commitment of transactions.
This scheme has the advantage of not having a separate checkpointing mechanism, but may have prob-
lems if the number of transactions allowed is too many or if it is necessary to keep checkpoints for a long
time. A similar checkpointing mechanism is suggested in [11]. The synchronization of checkpointing in
[11] is achieved through the time-stamp ordering, making the global reconstruction easier than in the
scheme of [13]. The storage requirements of these transaction-based checkpointing mechanisms depend
upon the amount of information saved for each transaction, and are difficult to compare with the check-

pointing mechanisms which save only the values of data objects.

In {1], a backup database is created by pretending that the backup database is a new site being added
to the system. An initialization algorithm is executed to bring the new site up-io-date. One drawback of

this scheme is that the backup generation does interfere with update transactions.

In [7), a different approach based on a formal model of asynchronous parallel processes and an

abstract. distributed transaction system is proposed. It is called non-intrusive in the sense that no opera-

5.

tions of the underlying system need be halted while the global checkpoint is being executed. The non-
intrusive checkpointing approach as suggested in {7] describes the behavior of an abstract system and

does not provide a practical procedure for obtaining a checkpoint.

3.2. Consistency and Concurrency Control

To maintain the consistency of a distributed database system, atomicity and sertalizability of tran-
sactions must be assured by a correct commit algorithm (e.g., [19]) and concurrency control algorithms.
Concurrency control in distributed database systems is based on three basic methods: locking, timestamp
ordering, and validation{24]. These basic methods can be applied to either single-version or multiversion

database systems.

Since the checkpointing algorithm presented in this paper uses timestamps to select a database state,
it fits naturally with concurrency control algorithms based on timestamp ordering. Consider basic times-
tamp ordering algorithm (BTO) for example. In order to ensure transaction atomicity, BTO is integrated
with the two-phase commit procedure{25]. Instead of performing write operations, prewrite operations are
issued by transactions and they are not applied to the local database. Only when all prewme operations of
a transaction are accepted, the transaction is committed and proceeds to perform its write operations on
the database. When a checkpoint begins, performing write operations on the database depends on the
timestamp of the transactions. If imestamp(T;) < the timestamp of the current checkpoint, wn‘tc—; opera-

tions are performed not on the database, but on a separate file, called the committed temporary versions

(CTV) file.!

The checkpointing algorithm also works nicely with multiversion timestamp ordering methods{24].
Since each committed transaction creates new versions instead of overwriting old versions, CTV file
management would not be necessary. In this case, a checkpointing process can mark appropriate versions
for a consistent state of the database without actually storing them. If old versions are garbage collected,

however, this may not work, and the system should maintain the CTV file for checkpointing.

‘Comimitted temporary versions are created by commitiad transactions whose updates must not be included in the current checkpoint.

Although the checkpointing atgorithm does not fit very naturally with locking-based concurrency
controi algorithms, it is still possible to integrate locking with the checkpointing algorithm. It is the order-
ing of transaction execution that is required o generate a consistent database state. In timestamp-based
concurrency control, such ordering information can be inferred to by umestamps. If we can use similar
information when determining transactions whose updates must be included in the current checkpoint,?
our checkpointing algorithm can return a consistent state of the database. However, there would be more
overhead involved in doing this than using timestamps, because precedency relationship among transac-

tions must be maintained at each data object for checkpointing.
4. An Algorithm for Non-Interfering Checkpoints

4.1. Motivation of Non-interference

The motivation of having a checkpointing scheme which does not interfere with transaction pro-
cessing is well explained in [4] i)y using the analogy of migratng birds and a group of photographers.
Suppose a group of photographers observe a sky filled with migrating birds. Because th‘e scene is so vast
that it cannot be captured by a single'photograph, the photographers must take several snapshots and
piece the snapshots together to form a picture of the overall scene. Furthermore, it is desirable that the
photographers do not disturb the process that is being photégraphed. The snapshots cannot all be taken at
precisely the same instance because of synchronization problems, and yet they shouid generate a “‘mean-
ingful’’ composite picture.

In a distributed database system, each site saves the state of the data objects stored at it to generate a
local checkpoint. We cannot ensure that the local checkpoints are saved at the same instance, unless a
global clock can be accessed by all the checkpointing processes. Moreover, we cannot guarantee that the
global checkpoint, consisting of local checkpoints saved, is consistent. Non-interfering checkpointing

algorithms are very useful for the situations in which a quick recovery as well as no blocking of transac-

*Such transactions are called before-checkpoint-transactions (BCPT). The meaning of those terms will be explained in the next sectior,

-7-

tions is desirable. Instead of waiting for a consistent state to occur, the non-interfering checkpointing
approach constructs a state that would result by completing the transactions that are in progress when the
global checkpoint begins.

In order to make each checkpoint globally consistent, updates of a transaction must be either
included in the checkpoint completely or not at all. To achieve this, transactions are divided inio two
groups according to their relations to the current checkpoint: after-checkpoint-transactions (ACPT) and
before-checkpoint-transactions (BCPT). Updates belonging to BCPT are included in the current check-
point while those belonging to ACPT are not included. In a centralized database system, it is an easy task
to separate transactions for this purpose. However, it is not easy in a distributed environment. For the
separation of transactions in a distributed environment, a special time-stamp which is globally agreed
upon by the participating sites is used. This special time-stamp is called the Global Checkpoint Number
(GCPN), and it is determined as the maximum of the Local Checkpoint Numbers (LCPN) through the

coordination of all the participating sites.

An ACPT can be reclassified as a BCPT if it tums out that the transaction must be executed before
the current checkpoint. This is called the conversion of transactions. The updates of a converted transac-

tion are included in the current checkpoint,

4.2. The Algorithm

There are two types of processes involved in the execution of the algorithm: checkpoint coordinator
(CC) and checkpoint subordinate (CS). The checkpoint coordinator starts and terminates the global
checkpointing process. Once a checkpoint has started, the coordinator does not issue the next checkpoint

request until the first one has terminated.
The variables used in the algorithm are as follows:

¢)) Local Clock (LC): a clock maintained at each site which is manipulated by the clock rules of

Lamport[12].

2)
3

4)

(D

@

€)

Local Checkpoint Number (LCPN): a number determined locally for the current checkpoint.

Global Checkpoint Number (GCPN): a globally unique number for the current checkpoint.

CONVERT: a Boolean variable showing the completion of the conversion of all the eligible iran-

sactions at the site.
Our checkpointing algorithm works as follows:

The checkpoint coordinator broadeasts a Checkpoint Request Message with a time-stamp LCcc.
The local checkpoint number of the coordinator is set to LCqc. The coordinator sets the Boolean

variable CONVERT to false:
CONVERT ¢ := false

and marks all the tranpsactions at the coordinator site with the time-stamps not greater than

LCPNCC as BCPT.

On receiving a Checkpoint Request Message, the local clock of site m is updated and LCPN,, is

determined by the checkpoint subordinate as follows:

LCh == max(LCqc + 1, LCy)

LCPN,, =LC,,

The checkpoint subordinate of site m replies to the coordinator with ILCPN,,, and sets the Boolean

variable CONVERT to false:
CONVERT,, = FALSE

and marks all the transactions at the site m with the time-stamps not greater than LCPN,, as

BCPT.

The coordinator broadcasts the GCPN which is decided by:

9.

(4)

6

(6)

GCPN = max(IL.CPN,) n=1,.,N
For all sites, after LCPN is fixed, all the transactions with the time-stamps greater than LCPN are
marked as temporary ACPT. If a temporary ACPT wants to update any data objects, those data
objects are copied from the database to the buffer space of the transaction. When a temporary
ACPT commits, updated data objects are not stored in the database as usual, but are maintained as
committed temporary versions (CTV) of data objects. The data manager of each site maintains the
permanent and temporary versions of data objects. When a read request is made for a data object
which has committed temporary versions, the value of the latest committed iemporaty version is
retumed. When a write request is made for a data object which has committed temporary versions,
another committed temporary version is created for it rather than overwriting the previous com-

mitted temporary version.

When the GCPN is known, each checkpointing process compares the time-stamps of the tem-
porary ACPT with the GCPN. Transactions that satisfy the following condition become BCPT:

their updates are reflected into the database, and are included in the current checkpoint.
L.CPN < time-stamp(T) € GCPN

The remaining temporary ACPT are treated as actual ACPT; their updates are not included in the -
current checkpoint. These updates are included in the database after the current checkpoinﬁhg has
been completed. After the conversion of all the eligible BCPT, the checkpointing process sets the

Boolean variable CONVERT to true:

CONVERT := true

Local checkpointing is executed by saving the state of data objects when there is no active BCPT

and the variable CONVERT is true.

-10-

(D After the execution of local checkpointing, the values of the latest committed temporary versions
are used (o replace the values of data objects in the actual database. Then, all committed tem-
porary versions are deleted.

The above checkpointing algorithm essentially consists of two phases. The function of the first
phase (steps 1 through 3) is the assignment of GCPN that is determined from the local clocks of the Sys-
tem. The second phase begins by fixing the LCPN at each site. This is necessary because each LCPN sent
to the checkpoint coordinator is a candidate of the GCPN of the current checkpoint, and the committed
temporary versions must be created for the data objects updated by ACPT. The notions of commiited
temporary versions and conversion from ACPT o BCPT are introduced to assure that each checkpoint

contains all the updates made by transactions with earlier time-stamps than the GCPN of the checkpoint,

When a site receives a Transaction Initiation Message, the transaction manager checks whether or
not the transaction can be executed at this time. If the checkpointing process has already executed step §
and time-stamp(T) £ GCPN, then a TIM-NACK message is returned. Therefore in order to execute step 6,
each checkpointing process only needs to check active BCPT at its own site, and yet thq consistency of

the checkpoint can be achieved.

4.3. Termination of the Algorithm

The algorithm described so far has no restriction on the method of arranging the execution order of
‘transactions. With no restriction, however, it is possible that the algorithm may never terminate. In order
to ensure that the algorithm terminates in a finite time, we must ensure that all BCPT terminate in a finite

time, because local checkpointing in step 6 can occur only when there is no active BCPT at the site.

Termination of transactions in a finite time is ensured if the concurrency control mechanism gives
priority to older transactions over younger transactions. With such a time-based priority, it is guaranteed
that once a transaction T; is initiated by sending Start Transaction Messages, then T, is never blocked by
subsequent transactions that are younger than T;. The number of transactions that may block the execu-

tion of T, is finite because only a finite number of transactions can be older than T,. Among older

1.

transactions which may block T;, there must be the oldest transaction which will terminate in a finite
time, since no other transaction can block it. When it terminates, the second oldest transaction can be exe-
cuted, and then the third, and so on. Therefore, T; will be executed in a finite time. Since we have a finite
number of BCPT when the checkpointing is initiated, all of them will terminate in a finite time, and
hence the checkpointing itself will terminate in a finite time. Concurrency control mechanisms based on

time-stamp ordering as in [2, 20] can ensure the temmination of transactions in a finite time.,

5. Structure of the Prototyping Environment

For a prototyping tool for distributed database systems to be effective, appropriate operating system
support is mandatory. Database control mechanisms need to be integrated with the operating system,
because the correct functioning of control algorithms depends on the services of the underlying operating
system; therefore, an integrated design reduces the significant overhead of a layered approach during exe-

cution.

Although an integrated approach is desirable, the system needs to support flexibility which may not
be possible in an integrated approach. In this regard, the concept of developing a library of modules with
different performance and reliability characteristics for an operating system as well as database control
functions seems promising. Our prototyping environment follows this approach [21, 23]. It is designed
as a modular, message-passing system (o support easy extensions and modifications. Server processes can
be created, relocated, and new implementations of server processes can be dynamically substituted. It
efficiently supports a spectrum of distributed database functions at the operating system level, and facili-
tates the construction of multiple "views" with different characteristics. For experimentation, system
functionality can be adjusted according to application—dependem- requirements without much overhead for

new system seup.

The prototyping environment provides support for transaction processing, including transparency 1o
concurrent access, data distribution, and atomicity. An instance of the prototyping environment can

manage any number of virtual sites specified by the user. Modules that implement transaction processing

.12.

are decomposed into several server processes, and they communicate among themselves through ports.
The clean interface between server processes simplifies incorporating new al_gorithms and facilities into
the prototyping environmeﬁt, or testing alternate implementations of algorithms. To permit concurrent
transactions on a single site, there is a separate process for each transaction that coordinates with other

SCIVer Processes,

Figure 1 illustrates the structure of the prototyping environment. The prototyping environment is
based on a concurrent programming kermel, called the StarLite kernel, written in Modula-2. The StarLite
kernel supports process control to create, ready, block, and terminate processes. Scheduler in the kemel

maintains the simulation clock and provides the hold primitive to simulate the passage of time.

User Interface

Configuration Manager Performance Monitor

Transaction Generator

Servers Transaction Manager

Resource Manager DB

Message Server

StarLite Kernel

Fig. 1. Structure of the prototyping environment

13-

User Interface (UI) is a front-end invoked when the prototyping environment begins. Ul is meny-
driven, and designed to be flexible in allowing users to experiment various configurations with different

system parameters. A user can specify the following:

¢ system configuration: number of sites and the number of server processes at each site.

¢ database configuration: database at each site with user defined structure, size, granularity, and levels of

replication.

¢ load characteristics: number of transactions to be executed, size of their read-sets and write-sets, tran-

saction types (read-only or update) and their priorities, and the mean interarrival time of transactions.
e concurrency control: locking, timestamp ordering, and priority-based.

Ul initiates the Configuration Manager (CM) which initializes necessary data structures for transac-
tion processing based on user specification. CM invokes the Transaction Generator at an appropriate time
interval to generate the next transaction to form a Poisson process of transaction arrival. When a transac-

tion is generated, it is assigned an identifier that is unique among all transactions in the system.

Transaction execution consists of read and write operations. Each read or write operation is pre-
ceded by an access request sent to the Resource Manager, which maintains the local database at each site.
Each transaction is assigned to the Transaction Manager (TM). TM issues service requests on behalf of
the transaction and reacts appropriately to the request replies. For instance, if a transaction fequests
access to a file and that file is locked, TM executes either blocking operation to wait until the data object
can be accessed, or aborting procedure, depending on the situation. If granting access 10 a resource will
produce deadlock, TM receives an abort response and aborts the transaction. Transactions commit in two
phases. The first commit phase consists of at least one round of messages to determine if the transaction
can be globally committed. Additional rounds may be used to handle potential failures. The second com-
mit phase causes the data objects to be written to the database for successful transactions. TM exceutes

the two commit phases to ensure that a transaction commits or aborts globally.

14~

The Message Server (MS) is a process listening on a well-known port for messages from remote
sites. When a message is sent to a remote site, it is placed on the message queue of the destination site
and the sender blocks itself on a private semaphore until the message is retrieved by MS. If the receiving
site is not operational, a time-out'mechanism will unblock the sender process. When MS retrieves a mes-
sage, it wakes the sender process and forwards the message to the proper servers or TM. The prototyping
environment implements Ada-style rendezvous (synchronous) as well as asynchronous message passing.
Inter-process communication within a site does not go through the Message Server; processes send and

receive messages directly through their associated ports.

The Performance Monitor interacts with the transaction managers 10 record, priority/timestamp and
read/write data set for each transaction, time when each event occurred, statistics for each transaction and
cpu hold interval in each node. The statistics for a transaction includes arrival time, start time, total pro-

cessing time, blocked interval, whether deadline was missed or not, and number of aborts.

Since each TM is a separate process, each has its own data area in which 1o keep track of the time
when a service request is sent out and the time the response arrives, as well as the time when 2 transaction
begins blocking, waiting for a resource, and the time the resource is granted. When a transaction com-
mits, it calls a procedure that records the above measures; when the sirulation clock has expired, these

measures dre printed out for all transactions,

6. Implementation and Experiments

The proposed non-interfering checkpointing algorithm improves the system availability, but also
introduces overhead to the system. Using the prototyping environment, we have implemented the check-
pointing algorithm and conducted a series of experiments to in-vestigate its practicality and limitations. In
this section we first désc;ribc the implementation of the checkpointing aigorithm briefly, and then present

the results of the experiments performed to evaluate the overhead of the algorithm.

-15-

6.1. Implementation of The Algorithm
Two types of processes are impiemented for the execution of the algorithm: checkpeint coordinator
(CC) and checkpoint subordinate (CS). The checkpoint coordinator starts and terminates the global

checkpointing process. Each checkpointing process participates in the actions of
¢ deciding the global checkpoint number (GCPN),
e keeping tracks of ACPTs and BCPTs,

e waiting until BCPTSs are finished,

performing a local checkpoint, i.e. saving the local database to a safe storage,

reflecting updates of ACPT back to the database.

In the rest of the paper, we use CP period or CP frame for referring to the entire checkpointing procedure,

while local CP refers to the action of séving the local database to a safe storage.

In implementing the checkpointing algorithm presented in Section 4, we have fixed the coordinator
site for simplicity. The checkpoint process at the coordinator site initiates the checkpointing by broad-
casting a "CP request” message. User transactions are generated and executed while the checkpointing is
in progress.

For a single-site database system, the time to start local CP is obvious; local CP is initiated when
there is no active BCPT, i.e, when all BCPTs are either committed or aborted. However, there caﬁ be two
timing choices for distributed database systems to start local checkpointing. One approach is "WaitAll"
and the other is "NoWait". The WaitAll approach synchronizes local checkpoints among all the partici-
pating sites. In this approach, the coordinator will wait until all of its participants have no active BCPTs,
The coordinator then issues "perform local checkpoint” message to all participants. Each checkpointing

process performs local checkpointing only after receiving this message.

The WaitAll choice follows the spirit of non-interference. In a distributed environment, it is pOssi-

ble that an update request of a transaction from a remote site arrives after the site starts local CP. If the

-16-

remote transaction is BCPT, it must be rejected because its update cannot be included consistently in the
current checkpoint. In the WaitAll approach, no BCPT will be rejected since each site waits until the last
BCPT in the system to terminate before starting its local CP. However, if there exist long-lived BCPTs in
the system during a checkpoint period, the waiting time for the completion of all BCPTs can be very

long.

The NoWait approach allows asynchronous local checkpointing in the system. In this approach,
each site starts local checkpointing after BCPTs of its own site have been finished, without waiting for
the "perform local checkpoint" message from the coordinator. Once a site has started local checkpointing,
it will reject any update requests from BCPTs of other sites to maintain the consistency of the current
checkpoint. The merit of following the NoWait approach is avoiding potentially long waiting time for

those long-lived BCPTs.

The local checkpointing at each site is implemented as the following:

PROCEDURE DoLocalCheckpoint
BEGIN

save local database into a separate storage device,

reflect data objects updated by committed ACPTs into the database.
END.

Local checkpoint refers to the action of saving the local database. Reflecting ACPT updates is done
after local CP. During the reflecting period, transactions can not access database to avoid aécéssing
inconsistent data object. The database system will return to normal (i.e., non-CP) mode after the reflect
operation is completed. Transactions will then resume nomal execution. Due o this reason, we have
implemented the reflect operation in the DoLocaiCheckpoiqt procedure instead of separating two opera-

tions.

6.2. System Model and Preformance Measures

There aré two performance measures that can be used in discussing the practicality of non-

interfering checkpointing: extra storage and extra workload. We conduct experiments only to measure

-17-

extra workload, since extra storage required to maintain CTV is not much and critical in most realistic
systems {22]. The extra workload imposed by the algorithm mainly consists of the workload for (1)
determining the GCPN, (2) committing ACPT,(3) reflecting the committed temporary versions from the
CTYV file to the database, and (4) making the CTV file clear when the reflect operation is finished. Among
these, worklead for (2) a;nd (3) dominates others. They are determined by the number of ACPTs and the

number of updates.

ACPTs are transactions submitted to the system after giobal checkpoint number has been decided
and before local CP is finished. Therefore, the number of ACPTs in one CP frame will be affected by (1)
the length of one CP frame which is determined dynamically by the speed of the CP process, and (2) the
number of transactions submitted to the system during that period. Parameters that affect the first factor
include transaction types, degree of distribution, CP timing choice, and frequency and delay for disk [/O.
Parameters that affect the second factor is the mean interarrival time of transac;ions. We have examined

the impacts of those parameters through our experiments.

The experiments are conducted based on the following system model and implementation on the

prototyping envirorument:

e We use strict timestamp ordering as the underlying concurrency control mechanism. Since the check-
pointing algorithm uses timestamp to determine the class of transactions, this is a natural choice for

system implementation.

e The workload imposed by executing local CP and reflecting updates of ACPTs from CTV file is meas-
ured by first taking the CPU time to process the request, followed by taking the I/O time to transfer

data.

¢ We increase the system workload by increasing the number of transactions submitted to the system.
Since we wanted to investigate the practicality of the proposed checkpointing algorithm, experiments
were conducted using a set of parameters which can represent stable states of a distributed database

system without checkpointing (a non-CP system).

-18-

¢ Fach experiment concentrates on one major parameter. Average response time of transactions for a
non-CP system is compared with that of the CP system. Extra workload or overhead is evaluated as the
increase in average response time, and is computed by subtracting the average response time of the

non-CP system from that of the CP system.
6.3. Experimental Resuits

6.3.1. Transaction Type

Extra workload in the CP system is mainly introduced by processing ACPTs and maintaining
updates. Therefore, we can expect that the workload consisting mostly of read-only transactions will
cause little overhead, whereas the workload consisting mostly of update transactions will cause much
higher overhead. To emphasize the difference, we conducted experiments on two extreme cases: work-
load with reéd—only transactions only and one with update transactions only. Each transaction requires
five data objects for read or write access. The results confirm our prediction as shown in Fig. 1. Read-
only transactions causé negligible overhead regardless of the workload presented in the system. The over-
head is only from administration of CP process. Update transactions cause ﬁ.nearly incre;lsing overhead as
the number of transactions increases. Obviously, it is due to'increased data contention and increased
number of ACPTs and their updates. In order to evaluate the maximum impact of the proposed CP algo-

rithm, we conducted the rest of the experiments for the workload consisting of update transactions only.

6.3.2. Effects of Data Distribution

The purpose of this experiment is to examine the overhead of the checkpointing algorithm in distri-
buted environments. In a distributed database system, each site is equipped with its own processor. In
addition, each site has its own stable storage which contains a portion of the database. Data objects are
not replicated; each data object is stored at only one site. Transactions make data access requests that are
either local or remote. Local access requests are processed by accessing data objects stored at the site.

Remote requests are handled by sending a request message to the data manager of the site that stores the

-19.

1000 - write-only site=1

Extra
Workload 500 —

0 20 40 60 80
Number of Transactions

Fig. 1. Overhead of update transactions.

data object.

In a distributed environment, one of the key factors that affects performance is the communication
delay. This delay reflects the cost in terms of response time for the communication that must take place
between two sites. In our model the system is fully connected and the inter-site communication delay is 5

times longer than the delay involved in inter-process communication within the same site.

The experiments investigate the overhead of the CP algorithm in distributed environments with 2
and 3 sites. In each case transactions access 5 data objects. The transaction mix consists of 100% update
transactions. Figure 2 shows the extra workload of the system in a distributed environments with 1, 2 and

3 sites respectively.

Our first observation is that the extra workload in distributed database systems is generally much
. lower than that in the centra}ized_ case. This is due to the fact that in distributed systems we increase the
computational power bjr providing additional processors. The communication delay introduced as a
result of distributing data objects across the network is offset by the increased computational power. With
only one site, as shown in the slope of the curve, there is a direct relationship between the number of tran-

sactions and the extra workload. The slope for two sites is not as sharp, indicating that the effect of

20.

1000 - meee- site=1 i
........ site=2 R ’
site=3 L g
EXU‘& R -~
Workload 300 - LT e
- / ’ ’
r / - ’
-0 T Lol

i i i 1 I

-0 20 40 _ 60 30
Number of Transactions

Fig. 2. Overhead in distributed environments.

increasing the number of transactions on the extra workload is more subtie. This is more clear for the

system of three sites in which the number of transactions does not seem to affect the extra workload.

In our experiments data objects accessed by transactions are uniformly distributed across the entire
database. This strategy causes the workload to be divided and shared equally by processors at different
sites. Therefore, a significant increase in the workload was not experienced by each processor as we
increased the number of transactions. If, however, the access pattern is biased toward a certain subset of
the database, increasing the number of transactions does not uniformly increase the workload of all pro-
cessors. In such cases, a small number of processors which are located at the sites where the "hot" éréas of
the database reside perform the majority of the work. Therefore, a large subset of the processors wait
idlely, while a selected few process the remote requests of idle transactions. Consequently, increasing the
number of transactions would increase the workload of only a small set of the processors, and therefore
we can expect to see a more direct relationship between the number of transactions and the average

response time.

«21-

6.3.3. CP Timing Choice

The choice of the time to perform local checkpointing is another factor that affects the extra work-
load of the checkpointing algorithm. A single-site database system does not need CP timing choice; it
needs to be considered only in distributed environments. We conducted ex;ﬁeriments for two different CP
timing choices on the system consisting of two sites and that of three sites. The resﬁlts are shown in Fig-

ures 3 and 4.

Qur first observation is that the NoWait choice requires less extra workload than the WaitAll choice
in the two-site system. As the number of sites increases, WaitAll choice has very similar performance as

the NoWait choice. This result can be explained by the nature of these two choices.

The NoWait choice is that local CP is performed asynchronously: after completion of its BCPTs,
each site can initiate its local CP without waiting for others. Write requests of BCPTs from other sites
will be rejected to maintain database consistency. That leads to the abort of remote BCPTs. The NoWait
choice prevents one site from waiting indefinitely for other sites if there are tong-lived BCPTs at other
sites. This choice, however, may lead to increased cost for transaction processing singe half-way done

BCPTs at other sites may be forced to abort. Such an action wastes resources and work already done and

600 : CP, WaitAll site=2
------ : CP, NoWait
400
Extra
Workload
200 - X
-0 -

20 40 60 80
Number of Transactions

Fig. 3. Overhead with different timing choice: two site case.

-22.

600

: CP, WaitAll

~~~~~~ : CP, NoWait
400

Extra
Workload
200 —
0 /’1— T I E
20 40 80 80
Number of Transactions

Fig. 4. Overhead with different timing choice: three site case.

results in an increased response time due to abort.

On the other hand, since the WaitAll choice performs local CP synchronously, each site will wait
for active BCPTs in the system until they are either committed or aborted. Because none of the sites will
start local CP until there is no active BCPT, there cannot be a situation where BCPT is.forced to abort
due to a write request to a site which is already in its local CP mode as in the NoWait choice. This saves
the work performed for the BCPT and reduces the probability of abort. The trade-off here is the risk of
long wait before a local CP can be started. Transactions that are submitted during this waiting period will
be ACPTs and consequently will increase average response time. Therefore the WaitAll choice ;vouid

work better than NoWait if the BCPTs of each site would finish approximately at the same time.

There are two types of long-lived transactions. The first type is a transaction that updates much
more data objects than others, and hence takes a long time to complete. The second type is a forced long-
lived transaction due to high workload in the system and consequently increased resource competition
and data object conflicts. In our experiment, transaction size is set to five, so there are no natural long-

lived BCPTs, only forced long-lived ones.

.23-



A two-site system provides less processing power and /O capability than a three-site system. There-
fore, when workload gets high in a two-site system, BCPTs take long time to complete. Such BCPTs can
be considered as forced long-lived BCPTs. Since the NoWait choice allows long-lived BCPTs to be
aborted easily, the benefit of avoiding long wait surpasses the overhead of aborts. On the_:_ other hand,
WaitAll choice may cause serious long-wait situations. With a two-site system, the NoWait choice per-
forms better than its WaitAll choice counterpart. With three sites, the system can provide adequate pro-
cessing power and hence, the probability of producing forced long-lived BCPTs are smaller. Without
long-lived BCPTs in the system, NoWait and WaitAll choices perform similarly with WaitAll choice
slightly better. This is because WaitAll choice does not suffer the cost for BCPT aborts; whereas NoWait

choice may have the overhead for BCPT aborts if each site does not complete its BCPTs at the same time.

6.3.4. Disk I/O

The cost of 1/O operation is a dominating factor in the extra workload of the checkpointing algo-
rithm. Both local checkpointing and reflecting updates take [/O time, and hence, I/O speed is critical for
system performance. In this experiment, we investigated the sensitivity of extra workload on different /O
speed. Extra workload with two different I/O time (10 msec and 35 msec) has been measured. I/Q time of
10 msec was the default value that has been used in all other experiments. The results of the experiment

are shown in Fig. 5.

As shown in the graph, the system with I/O time of 35 msec results in higher extra workload as the
number of transactions increases. The reason for this higher extra workload is basically due to longer CP
period. Although the system provides the same amount of processing power to both cases, the longer disk
I/O time implies the longer CP period which will include more ACPTs and block more transactions when
ACPT updates are t0 be reflected. The effects of such delays are accumulated, and as a result, average

transaction response time as well as extra workload will increase.

.24



..... . CP, [0=10 site=1
___CP,10=35
3000
Extra 2000 4
Workload
1000 —~
-
; ] f
20 40 60
Number of Transaction

Fig. 5. Overhead sensitivity for I/O time.

6.4. Analysis of Results

Throughout our experiments, we focused on the impact of execution of a single checkpoint. The
results of the experiments indicate that extra workload introduced by executing the checkpointing algo-
rithm is proportional to the workload of the system. As the workload of the system increases, extra work-
load also increases due to the increased resource competition and data object conflicts, and increased
number of transaction aborts. In general, any factor which increases system workload will also increase
extra. workload. Factors in our experiments such as workload of only update transactions, increased
number of transactions submitted to the system, and slow disk I/O, increase the workload and hence
increase the extra workload. On the other hand, factors which may increase processing power of the sys-
tem result in reduced extra work load. Degree of distribution is one such factor. We also observed that
NoWait choice for starting local checkpoint works better for heavily loaded systems, whereas WaitAll

choice works better for lightly loaded systems.

An important observation is that although extra workload increases as the system workload
increases, it increases linearly, instead of exponentially, even with the worst situation in our experiments.

This observation implies that the proposed checkpointing algorithm is very practical under the parameter

-25.



setting of our experiments. Note that we have conducted the checkpointing experiments on the environ-
ment when average response time of its non-CP counterpart does not go unacceptably high, i.e. when the
non-CP system operates in its practical working situation. We believe that this is a reasonable limitation,
because we are looking for a practical limit for a distributed database system with the proposed check-

pointing algorithm,

7. Concluding Remarks

The goal of checkpointing in database management systems is to save database states on a separate
secure device so that the database can be recovered when errors and failures occur. Since checkpointing is
performed during normal operation of the system, it is highly desirable that user transactions can be exe-
cuted in the system concurrently with the checkpointing process. The property of non-interference is even
more desirable in distributed environments. However, if the overhead of a checkpointing algorithm is
unacceptably high, the algorithm should be abandoned in spite of its desirable properties. The practicality
of non-interfering checkpointing, therefore, depends partially on the amount of extra workload incurred

by the checkpointing algorithm.

In this paper, we have presented a checkpointing algorithm which is non-interfering and which effi-
ciently generates globally consistent checkpoints. We have also presented results of a series of experi-
ments conducted using the database prototyping environment to study the practicality of our algorithm.
As shown in the results of the experiments, the proposed checkpointing algorithm is practical in E:aliétic
distributed environments. Even though extra workload increases as workload of the system increases, its
increasing rate is not exponential, when its undemneath non-CP counterpart is within its boundary for rea-
sonable operation. In our experiments, we concentrated on the maximum impact of a single checkpoint,
and increased workload by increasing the number of transactions submitted to the system. This method is
sufficient for the goal of examining whether the checkpointing algorithm is practical under a reasonable

operational environment.

26



There are other performance issues associated with non-interfering checkpointing algorithm imple-
mentation. For example, the analytic study of non-interfering checkpointing algorithms provides an
interesting observation that the use of a non-interfering checkpointing algorithm could reduce the average
response time of transactions over intrusive checkpointing algorithms [22]. The extra workload of a non-
interfering checkpointing algorithm incurs mainly due to the processing of ACPTs and maintaining their
updates. However, the number of ACPTs may also be used as the metrics for the improved performance
comparing with other intrusive checkpointing algorithms. Since intrusive checkpointing algorithms will
block all the ACPTs to wait for BCPTs to complete for achieving a transaction-consistent state, the aver-
age response time for those blocked ACPTs should be high. This will result in the increased average
response time of the system. Since the number of ACPTs running in a non-interfering checkpointing sys-
tem indicates the number of ACPTs blocked in an intrusive checkpointing system, that number may be
proportional to the improved performaﬁce over intrusive intrusive checkpointing algorithms. Is it neces-

sarily true? We are investigating this and other related issues using the prototyping environment.

REFERENCES

[1]  Awuar, R, Bemstein, P. A, and Goodman, N., Site Initialization, Recovery, and Backup in a Distri-
buted Database System, IEEE Trans. on Software Engineering, November 1984, pp 645-650.

[2] Bemstein, P., Goodman N., Concurrency Control in Distributed Database Systems, ACM Comput-
ing Surveys, June 1981, pp 185-222,

[3] Bemstein, P., Goodman, N., An Algorithm for Concurrency Control and Recovery in Replicated
Distributed Databases, ACM Trans. on Database Systems, Dec. 1984, pp 596-615.

[4] Chandy, K. M., Lampont, L., Distributed Snapshots: Determining Global States of Distributed Sys-
tems, ACM Trans. on Computer Systems, February 1985, pp 63-75.

[5] Dadam, P. and Schiageter, G., Recovery in Distributed Databases Based on Non-synchronized
' Local Checkpoints, Information Processing 80, North-Holland Publishing Company, Amsterdam,
1980, pp 457-462.

(6] Eswaran, K. P. et al, The Notion of Consistency and Predicate Locks in a Database System, Com-
mun. of ACM, Nov. 1976, pp 624-633,

{71  Fischer, M. J., Griffeth, N. D. and Lynch, N. A., Global States of a Distributed System, IEEE
Trans. on Software Engineering, May 1982, pp 198-202.

{81 Gelenbe, E., On the Optimum Checkpoint Interval, JACM, April 1979, pp 259-270.

27.



[13]

{16]

Hammer, M. and Shipman, D., Reliability Mechanisms for SDD-1: A System for Distributed Data-
bases, ACM Trans. on Database Systems, December 1980, pp 431-466.

Jouve, M., Reliability Aspects in a Distributed Database Management System, Proc. of AICA,
1977, pp 199-209,

Kuss, H., On Totally Ordering Checkpoints in Distributed Databases, Proc. ACM SIGMOD, 1982,
pp 253-302.

Lamport, L., Time, Clocks and Ordering of Events in Distributed Systems, Commun, ACM, July
1978, pp 558-565.

McDermid, J., Checkpointing and Error Recovery in Distributed Systems, Proc. 2nd Intemnational
Conference on Distributed Computing Systems, April 1981, pp 271-282.

Mohan, C., Strong, R., and Finkelstein, S., Method for Distributed Transaction Commit and
Recovery Using Byzantine Agreement Within Clusters of Processors, Proc. 2nd ACM
SIGACT/SIGOPS Symposium on Principles of Distributed Computing, August 1983.

Ricart, G. and Agrawala, A. K., An Optimal Algorithm for Mutual Exclusion in Computer Net-
works, Commun. of ACM, Jan. 1981, pp 9-17.

Ries, D., The Effect of Concurrency Control on The Performance of A Distributed Data Manage-
ment System, 4th Berkeley Conference on Distributed Data Management and Computer Networks,
Aug. 1979, pp 221-234.

Schiageter, G. and Dadam, P., Reconstruction of Consistent Global States in Distributed Databases,
International Symposium on Distributed Databases, North-Holland Publishing Company, INRIA,
1980, pp 191-200. _

Shin, K. G., Lin, T.-H., Lee, Y.-H., Optimal Checkpointing of Real-Time Tasks, 5th Symposium
on Reliability in Distributed Software and Database Systems, January 1986, pp 151-158.

Skeen, D., Nonblocking Commit Protocols, Proc. ACM SIGMOD Intemnational Conference on
Management of Data, 1981, pp 133-142, ‘

Son, S. H., A Resilient Replication Method in Distributed Database Systems, /EEE INFOCOM ' 89,
Ouawa, Canada, April 1989, pp 363-372.

Son, S. H. and Y. Kim, A Software Prototyping Environment and Its Use in Developing a Multiver-
sion Distributed Database System, /8th International Conference on Parallel Processing, St.
Charles, Ilinois, August 1989, Vol. 2. pp 81-88.

Son, 8. H., An Algorithm for Non-Interfering Checkpoints and its Practicality in Distributed Data-
base Systems, Information Systems, Vol. 14, No. 4, December 1989. ’

Son, S. H., A Message-Based Approach to Distributed Database Prototyping, Fifth I[EEE Workshop
on Real-Time Software and Operating Systems, Washington, DC, May 1988, pp 71-74.

Cellary, W., E. Gelenbe, and T. Morzy, Concurrency Control in Distributed database Systems,
North-Holland, 1983.

Ceri, 8. and G. Pellagatti, Distributed Databases: Principles and Systems, McGraw-Hill, 1984,

28



