FAST HEURISTIC ALGORITHMS FOR

RECTILINEAR STEINER TREES

Dana Richards

Computer Science Report No. TR-86-28
November 23, 1986

Fast Heuristic Algorithms for Rectilinear Steiner Trees

Dana Richards

Department of Computer Science
Thornton Hall
University of Virginia
Charlottesville, VA 22903

ABSTRACT

A fundamental problem in circuit design is how to connect n points in the plane,
to make them electrically common using the least amount of wire. The tree
formed, a Steiner tree, is usually constructed with respect to the rectilinear metric.
The problem is known to be NP-complete; an extensive review of proposed heuristics
is given. An early algorithm by Hanan is shown to have an O(n logn) time imple-
mentation using computational geometry techmiques. The algorithm can be modified
to do sequential searching in O(n?) total time. However it shown that the latter
approach runs in O(n??) expected time, for n points selected from an m Xm grid.
Empirical results are presented for problems up to 10000 points.

Keywords: Steiner trees, rectilinear metric, heuristic algorithms, computational
geometry, average case analysis, VLSI design

Fast Heuristic Algorithms for Rectilinear Steiner Trees

Dana Richards

Department of Computer Science
University of Virginia

1. Introduction

A fundamental problem in circuit design is how to connect n points in the
plane, to make them electrically common. The objective studied here is to use the
least amount of wire in forming the connection. For a variety of technological and
engineering reasons the segments of such a connection are typically horizontal and
vertical. The effect is that the distances are measured with respect to the rectilinear .
metric. In particular the distance between two points u# and v s
distance (u,v) = lx,~x, | + iy, —y, |. This paper reviews various approaches to
this problem and concentrates on the earliest known algorithm. An efficient imple-
mentation of that algorithm is presented and some results about the expected time
complexity are established.

The simplest solution to the problem is to find the rectinear minimum spanning
tree (RMST) of the n given points. If the problem is viewed as an instance of a
complete graph with rectilinear distance edge weights then any “classical” minimum
spanning tree (MST) algorithm can be used. For example, Prim’s algorithm can be
implemented in O(n?) time [TARI83] which is optimal for a complete graph. In an
RMST two points can be connected by an infinite number of shortest rectilinear
wires. Even if connecting wires are restricted to have at most one bend there can
still be two ways to place each wire. Pairs of wires can have segments overlap and
the up to 2°! possible placements of the n—1 wires may contain varying amounts
of overlap the circuit designer must remove.

Steiner trees provide a concepiually simpler starting point. A Steiner tree spans
the n points but may contain additional points in the plane as vertices to provide
additional internal branching. Steiner tree will refer to a tree of minimum total edge
length or, depending on the context, an approximation to such a minimal tree. In
particular this paper will discuss rectilinear Steiner trees (RST). For example an
embedding of a RMST with overlap removed effectively produces an (approximate)
RST, though not necessarily a minimal tree. There is no efficient procedure known
for computing a minimal RST. The n points will be called ferminals and the addi-
tional vertices are Steiner points.

The Steiner problem for the normal Euclidean metric (Lp) has a long history
[GiLB68] and many difficult results have been obtained. However these results have
not suggested many algorithmic techniques and few reasonable exponential time algo-
rithms even exist, e.g. [COCK86] and [Hwan86al. The results are tied closely to
the geometry and do not extend to the rectilinear metric. It is not surprising there-
fore that the RST problem is more closely linked to the Steiner problem on graphs,
defined in the next section, than to the Fuclidean case.

The principal result of this paper is to show that a clasgical RST heuristic can
be implemented efficiently. This is of some importance since the algorithm is used
in working systems [DUNL86]. A rather complete review of the literature is given
and improvements to other algorithms are suggested as well.

2. Previous Results

The first investigation of the RST problem was by Hanan [HANA66). He esta-
blished the following important “dimension reduction” result. Let S be the set of n
terminals in the plane. Extend horizontal and vertical lines through each of these
points. Define the graph Gg(V,E) by letting V' be the set of intersections of these
lines and there is an edge between two vertices if they are directly connected by a
line, horizontally or vertically. An example appears in Figure 1. Hanan showed
that a RST is contained in Gg, ie. the segments of the tree are composed of edges
of Gs.

The Steiner problem for graphs (GST) asks for the minimum weight subgraph
that spans S, where § €V for the graph G (V,E). (The edge weights are assumed
to be positive so the subgraph is a tree.) If S| =2 then this becomes a shortest-
path caleulation and if § =V then the answer is 2 minimum spanning tree. Due to
Hanan's theorem it follows that any algorithm for the GST problem can be used to
solve the RST problem. Note that IV =N is possibly n? so that the problem size
is larger, where iS1 =n as before. Let |EI =M.

The literature is reviewed below beginning with what is known about RSTs.
After that algorithms previously used for solving both the GST and the RST prob-
lem are presented. Many of these algorithms are based on two classical MST algo-
rithms [GRAHS5] which are mentioned for completeness. Prim’s algorithm builds the
MST one node at a time starting with an arbitrary node. At each stage the unused
vertex nearest to the current tree is appended to the tree. Kruskal's algorithm
starts with a forest of n singleton trees and at each step links the two nearest
trees.

Hwang [HwWAN76] showed for any set S that

RMST(S) 3

RSTEY %
where RMST(S) and RST(S) are defined to be the length of the corresponding
optimal trees. Let RMST(n) be the random variable for the length of the RMST
for n points drawn uniformly from the unit square. Gilbert [GILB65] established
that E[RMST(n)] = O(vn), from which a similar bound follows for RST’s. Chung
and Graham [CHUN81] give a sharper result;

@

!
o

Figure 1

Vo +0(1) SLST() € Vn + 1 +0(1)

where LST(n) is the length of the longest RST on any n points drawn from the
unit square. Komlos and Shing [KomL23] showed that
RST(n) 2> m‘g—rfw

with probability 1—o0(1) as n increases, where RST(n) is the random variable for
the length of the RST for n points drawn uniformly from the unit square. While
a RMST can serve as a good approximation to the RST, Chung and Hwang [CrUNT9]
showed that the semiperimeter of the least bounding rectangle, an often-used approx-
imation, can be worse by a factor about %Vn. (Such an approximation is optimal
if n =3 [HANA66].)

The complexity of nearly every Steiner problem is the same; they are all NP-
hard (see [GARE79]). Karp showed the GST problem was bard and it remains so
even if all edges have unit weight or the graph is planar (as ours is). Both the
Euclidean and the rectilinear Steiner tree problems are bard, as well as the discre-
tized (rounding up) Euclidean version. All but the Euclidean problem are known to
be in NP. Clearly the bulk of applied research will be on heuristics.

Several exact, and exponential time, algorithms have been proposed for the GST
problem, These can be divided into two types. The first type uses mathematical
programming techniques, such as Lagrangian relaxation. Beasley [BEAS84] has demon-
strated good performance and presents a good survey discussion. The second type
uses combinatorial techniques such as dynamic programming. Wken n is small rela-
tive to N, as in this paper. the best algorithm is in an overlooked paper by Levin
fLEvi7il. Xt runs in O(3*N +2°N? time but can be improved to
O(3*N + 2" (N logN + M)) time.

Approximation algorithms for the GST problem are based on Prim’s or
Kruskal’s approaches. Takahashi and Matsuyama [TAKAB0] use a Prim-based algo-
rithm that connects nearest unused point from S to the current tree; the connection
is a path when a direct connection does not exist. Jt runs in O(n N?) time. It can
be revised [RAYWS6] to include a postprocessing step to find a MST of the chosen
subgraph and then prune away any useless vertices. Kou, Markowsky, and Berman
[Kou81] use an unspecified MST subroutine. If their algorithm uses Prim’s routine
it behaves like a restricted version of the above revised algorithm. If it uses
Kruskal's algorithm Wu, Widmayer, and Wong [WU86] show that it has an efficient
O(M logN) implementation. All these algorithms produce solutions that are within
2(1 —1/n) of optimal. A more complex Kruskal-based scheme is given by
Rayward-Smith [RAYWS3].

For the RST problem itself only one exact algorithm has been proposed
[YANGT2a). It is a branch-and-bound algorithm and appears to be applicable only
for n < 10. However they also proposed a suboptimal branch-and-bound algorithm
which, while still exponential time, appears to be applicable for n < 30. When
compared with known exact results the answers were remarkably close to optimal
[YANG72b]. It simply uses Prim’s algorithm but instead of choosing one of the two
possible one-bend orientations of the new wire it explores both.

The earliest polynomial time approximation algorithm is due to Hanan and is
discussed at length in the next section. Fu [FU67] gave an unanalyzed manual tech-
nique to iteratively improve a spanning tree by creating and breaking cycles. Hanan
[HANAT2] disproves Fu's claim of optimality. An O(n*) time solution that uses
several ad hoc stages was proposed [SMiT79]. It began by selecting a linear-sized
subset of the n? vertices of Gy as candidates for Steiner points.

Several heuristics begin with a RMST. Since the underlying complete graph has
Q(n?) edges to improve on the O(n®) time bound requires preprocessing to reduce

the size of the underlying graph. The rectilinear Voronoi diagram (defined analo-
gously to the Euclidean case) has a Delauney triangulation which contains enough
edges to find the RMST. Since the triangulation corresponds to a planar graph the
RMST can be found in O(n) additional time [TArI83]. Hwang [HwaN79a] shows,
with standard divide-and-conquer techniques, how to find the Delauney triangulation
in O(n logn) time . It should be noted that the details for the rectilinear Voronoi
diagram are more complicated than for the Euclidean case and the overall scheme
may daunt the typical staff of a circuit designer.

Hwang gave a heuristic for the RST problem, using the above RMST solution,
that was based on earlier work by Lee, Bose, and Hwang [LEE76]. That work built
a RST in Prim fashion. It used a “3-point connection scheme™ instead of simply
connecting the nearest unused vertex. This involved a constant time search around
the intended 2-point connection for three points which could be connected in a
Steiner fashion, perhaps introducing a new Steiner point. It ran in 0(n?) time with
most of the time spent on deciding which point to connect next. Hwang [HwANT79b]
proposed an O(n logn) implementation that began with a RMST and from that
inferred an ordering of the vertices which the above algorithm could use to decide
which node to connect next and where to try to connect it.

Smith, Lee, and Liebman [SMIT80] proposed an O(n logn) time approach based
on iteratively improving the RMST found over the Delauney triangulation. The
technique is complex and ad hoc.

Bern and de Carvalho [BERN85] investigated Kruskal-based approaches attributed
to Thompson. Variations attributed to Ng and the themselves were proposed that
were supposed to be faster than, but usuvally inferior to, the original. Thompson
began with n singleton trees and at each stage a new wire connects two trees and
the shortest such wire is chosen. This wire may not necessarily connect terminals
but it can be “slid” so that it at least has one endpoint at a terminal, Steiner point,
or corner of a previous wire. There are only O(n) such positions. They assume
the points are grid points of an m X m grid. They give an unusual analysis; even
though m is theoretically unrelated to n (except m = Van) they assume a data
structure with O(m?) is permisssable. Thompson’s algoritbm is implemented in
O(mn?logn) time and their variation takes O(m n?) time.

Thompson's algorithm can, by a small alteration, be made to run in O(n%logn)
time. (The alteration requires that after each new wire is placed each of the O(n)
relevant points needs to add at most one entry to the priority queue and that entry
can be determined in constant time.) Since the same alteration applied to their varia-
tion also yields the same time bounds there is no reason to prefer the variation.
However the variant algorithm has proven amenable to analysis. Bern [BERN86bL] has
shown that the expected improvement of the approximate RST relative to the
optimal RMST is bounded away from O in the limit. The proven bound, 0.00098,
is much less than empirical studies indicate it should be. It is also shown that a
linear number of Steiner points are expected. The results are for a points drawn at
random from the unit square distributed according to a Poisson process with inten-
sity n: a uniform distribution remains to be analyzed.

Two basic paradigms in Computational Geometry are divide-and-conquer and
and the line-sweep. Xomlos and Shing [KomiL23] proposed a divide-and-conquer algo-
rithm based on two-dimensional partitioning. They start with n points, assumed to
be uniformly distributed in the unit square, and a parameter ¢. Next iteratively
partition, using medians, the square into small rectangles until each rectangle contains
approximately ¢ points. Find the optimal RST for each rectangle and combine these
trees to give the final tree, after some clean-up steps. If each optimal subproblem is
solved in f(¢) steps then the algorithm runs in O(f{(¢)n + nlogn) time, which is
O{(nlogn) for ¢ = O(loglogn) if Levins algorithm is used. They show that their

approximation is within a factor of 1 +0(1/VE) of optimal, with probability
1 —0(1) as n increases. Another slightly faster algorithm was presented that
depends heavily on the unifomity of the point distribution. Hence, even though the
same probabilistic bound above holds, this algorithm bas a worst-case performance
that is at least a Factor of ¢ of optimal. No implementation was attempted.

Hanan, in unpublished work [HANA65). suggested an algorithm that today
would be called a line-sweep algorithm. It is essentially Prim-based. The rest of
this paper discusses improvements to that algorithm. Servit [SERvV81] failed to see
an efficient implementation of Hanan's algorithm and proposed a crude approximation
to it which runs in O(n logn) time. Our implementation of Hanan's algorithm runs
in O(n logn) time, removing the need for an alternative.

There are some instances of the RST for which there are polynomial time algo-
rithms. If the terminals lie on the boundary of a p X g grid, corresponding to Gy,
then an O(p%g + ¢%p) time dynamic programming algorithm exists [AHO77], which
has recently been improved to O(p +g¢) time [AGAR86]. Bern [BERN86a] has gen-
eralized this by considering the GST problem on a planar graph with all the points
on f faces of an embedding. He gives an O(N¥*2) time algorithm which yields an
0(n®) time algorithm for the RST problem where each terminal is maximal, ie.
each has at least one empty open quadrant. Wald and Colburn [WALD82] give a
linear time algorithm when the graph is outerplanar.

3. An Implementation of Hanan’s Algorithm

Hanan’s algorithm begins by sorting the n points in ascending order of the y-
coordinates. By processing the points in this order it simulates the effect of sweep-
ing a horizontal bar over the plane, bottom to top, and processing each point as it is
covered by the bar. While it is not important for correctness, if points with equal
y-coordinates were sorted by their x-coordinate it would improve the -efficiency
somewhat.

The algorithm begins with the singleton iree composed of a point with least y-
coordinate. As each new point is processed it is connected to the current tree by
the wire of shortest length. To remove bias due to the bottom-to-top directedness,
the point arrangement is rotated 90° three times, and each time a new appoximate
RST iz constructed. The best of the four trees is chosen.

An implementation was not suggested by Hanan. The chief difficulty lies in
the fact a new wire may connect 1o the middle of a previous wire. However there
are only O(n) wires and the shortest connection a given wire can be computed in
constant time. So each new point can inspect the set if O(n) terminals, Steiner
points, corners, and wires of the current tree and determine the shortest wire in
linear time. This leads to an O{n?) time implementation; a fact that was observed
before without explanation [HWAN78, HWANT79b, SERVE1].

The key observation in the implementation is that lower parts of the tree
become effectively hidden and can be forgotten. A point a is said to cover point &
if & is in the 90° cone below «. Formally, a covers b if y, <y,
X, +y, 2 xp oty and x, ~ ¥ K xp — Vs
Lemma 1: Let ¢ and & be two points anywhere in the current tree when ¢ is pro-
cessed. H a covers b then distance {c.a) € distance (c.b).

Proof: A simple proof can be constructed by case analysis. For exzample, if
x, S x S x, then distance (¢,a) = x, — x, + Yo = Va and
distance (¢,b) = x5 ~ x, + y. —y, and the relation holds. A geometric proof of the
result could be given. The observation needed is that the “circle” of radius
distance (c,a) about ¢ (drawn as a diamond in the plane) does not properly contain
any points of the cone below a. [

Lemma 2: Let @, &, and ¢ be as in Lemma 1 such that & does not cover a. If
X, 2 X, & Xy OT Xy & X, 2 X, then distance (c,a) < distance (¢.b).

Proof: Straightforward algebra suffices. I
Lemmas 1 and 2 are illustrated in Figures 2(a) and 2(b) respectively. The
implication of Lemma 1 is that each horizontal segment and the tip of each

uncovered vertical segment generates a cone and the relevent portion of the tree is
the set of points not covered by other peoints. This is shown in Figure 3.

When the covered portion of the tree is removed what remains is a set of hor-
izontal segments and single points: these single points will be regarded as degenerate

> o - o
'.- -’-
< R C
.. o VRN
,/ a N e a ~
s N S , ~
.. Ve N ’ .
- - ~ b s N
- g N ’ N
. ’
e O ~ - ~
» S - At
s’ 7’
7 b N 7
’
(a)
(b)
Figure 2
PR\
’ ~
’ -
’ LS
/, N
@ = ¢ .
7 ~
7’ N .
7 ~
’ s N h
’ ‘ ~ b
P ’ . -~ AEN
s’ 4 \ LY 7 LY
, ‘ < ~ ’ N
P ’I N ~ v L
. ”, N ~ ’ g .
e yl J A \\ # * N
s ’ ’ A ~ L7 7 ~
y 7 LS Y + Fl N
s 7 AT > ’
’ ’ NN P -
’ e 5 N Z .
’ Fd » \\ /, A Y
~ ’
’ P NN ’ V2 TN
’ N ’ s’ W N
’ NN s ’ RN
’ N y ’ RN
’ SEAN
N
~

Figure 3

horizontal segments in the sequel. In Figure 4 this is shown with wvertical lines
through some endpoints to illustrate how the set of left endpoints partitions the set
of x-coordinates.

Qur algorithm is shown in Figure 5, for one of the four identical passes. The
imporiant data structure, SEGMENTS, is manipulated by the routines pred_suce and
addsegment. It maintains for the current tree the set of horizontal segments that
are not covered and the segments are ordered by their left endpoints. When a new
point p is processed pred_succ(p) returns the two segments, @ and b, adjacent in the
order such that p is to the right of the left endpoint of & (or above &) and p is
to the left of the left endpoint of a. Lemma 2 implies the only points that are
candidates for being the nearest point to p are the points of ¢ or the left endpoint
of b.

While p is regarded as a point initially, in the loop it is thought of as a
degenerate horizontal segment. The statement “extend p to the left end of a” then
makes sense; see Figure 6. The actual code contains additional tests to ignore O
length connections. Clearly, at the end of the loop. p should now be added to SEG-
MENTS since it is an uncovered segment of the new tree. However p may cover
all or portions of other segments still in SEGMENTS. The routine addsegment(p) is
responsible for the update. It is convenient to note that all the removed segments
form a contiguous block in the order and at most two segments are shortened, one
at either end of that block. This is illustrated in Figure 7. Using the assumption
that all points have integer coordinates then what are open endpoints in SEGMENTS,
such as the right endpoint of ¢ in Figure 7, can be pruned back to the next grid
point. This removes several equality tests and simplifies the code.

When implementated in the C language the program involves half a page of
code plus the code for initialize, pred_succ, and addsegment. Initialize sorts the data
and processes the first point. SEGMENTS is created with this point and two addi-
tional points at =~co and oco; this ensures that pred_succ is well-defined. SEGMENTS
can be implemented in two obvious ways. The first is to use a linear linked list
with the elements maintained in order. It makes sense to use a “roving” bidirec-
tional pointer rather than beginning at the head of the list each time. This is
because addsegment operates in the game vicinity thatl pred_succ left off.

Figure 4

intialize;
while more points do
P + gef_next_point
(a.b) « pred_succ (p)
if p closer to segment « then
if p is to the right of a then
extend p to the left end of a;
connect 10 a
else
connect straight down to a
endif
else
extend p to the right end of b;
connect to &
endif
addsegment (p)
endwhile

Figure §

Figure 6

’ .
s ~
Vs ~
Vs ~
/, ~
/ S
’
’ a AN
, e N
s ’ ~ N
’ ~ ~
L G, . ~
s 0 ~ b .
R AN .
L 7’ ~ 7’ A .,
4 N 7’ ~ <
PR N / . ~
AP S . ~
M‘m Fs 1¥4 N LS
7 s 7 N .
V4 ’ ~ .
4 by
.
.
Figure 7

The second alternative for SEGMENIS is some balanced binary search tree.
Splay trees [TARI83] were selecied since they have, in an amortized analysis, excel-
lent performance and allow the simple implementations descrived below. In a splay
tree it is a basic operation, a “splay”, to split the keys into two sets separated by a
value so that the first set is the left subtree of the root and the second set is the
right subtree. This gives a natural one splay approach for pred_succ. By a slight
modification it can split with respect to the left or the right edge of the cone below
p. Hence using two such splays gives a simple implementation of addsegment.

4. Analysis of the Algorithm

It is clear that the initialization requires O(n logn) time for the sorting step.
If each new point can be processed in O{logn) then the entire algorithm runs in
O(nlogn) time. Using splay trees each splay is done in O(logn) amortized time,
hence both pred_succe and addsegment have the same bound. Since there is only con-
stant additional work for each new point the overall bound follows.

If instead the linear list version is used then there can be O(n) worst-case
time per point leading to 0O(n?) overall performance. There are inputs which
achieve these bounds. However in practice the number of elements in SEGMENTS
after processing ¢ points, V,, would not be as large n.

To investigate N, it is assumed that the n points are chosen at random from
the vertices of an m X m grid. Consider S; the set of the ¢ lowest points. Let D,
be the number of points in S; that are not covered by other points in §;. Clearly
N, € D, since the algorithm will “extend” some points, potentially covering even
more points.

Let D,(n,m) = E[D,] where the expectation assumes all selections of n points
are equally likely. To see that D,(n.m) < D,y,(n.m) note that the ¢ highest
points could have been selected instead, and as a new lower point is added it can
only add to D,. Hence for upper bounds only D(n.,m)=D,(n.m) needs to be
considered. Let the rows of the grid be numbered 1,2, ' - from the top down.
Let p; be the probability that grid point (i,j) is chosen and is not covered by a
chosen grid point. Let p =n/m? be the probability a grid point is chosen and
g =1-p. Let A;; be the set of grid points that could cover (i.7) and a; is the
number of points in A;. It follows that

Py =pgy.

Note ay; =0 and a; 2 i%/2 for i > 1.
Theorem: D(n,m) € B(n,m) where

B(n,m)= %(1 + '\/Tg-(—ln(l - ;}%))“—%)

Proof:
m m
D(n.m)= Y Y p;
fm1 =1
Smp+ 3 ¥ pgt™
i=2 j=1

Smp +mp2qi2’2

i=1

Smp(1+ [¢"Pai)

mmp(l-i-j; eIne 247)

1+1/..,,,..££m

=mp —2ing

where the last step uses the identity ([PUrRDSS], p. 97)

R S N
j;e t dt—r(-f)—\/;r_

and the substitution ¢ = ~i®%lng /2 (dt = ~Ingidi). O
Corollary: D(n.m) = 0(Vn).

Proof. The stronger result that 0.88Vrn < B(n.m) € 226Vn, for m 2 Vn is esta-
blished. The first term of B(n,m). ie. n/m, decreases, as m increases, from vn to
0. The second term increages from O to vwn/2. To see this notice the second term
is

w2 n

\ / —In(1— ;z’%)mz

and as m increases (1 — n /m2ym? goes to e™. To get the upper bound just add the
coefficients. (It is conjectured this coefficient could be lowered to 1.80.)

To get the lower bound note that the two terms cross when m = Vn/c where
¢ =1—e ™2 This gives a lower bound coeflicient of 1/Ve <088, A careful
analysis can raise this coefficient to 1. [

The corollary does not necessarily represent a tight bound, though it is conjec-
‘tured that D(n.m) = Q(vVn), but it does confirm a hypothesis that was formed
after empirical testing. In Table 1 the observed values of N, (averaged over 5
runs) is compared with the theoretical upper bound B(n.,m). (The final column of
the table is discussed later.) Note that for fixed n, as m increases B(n,m) becomes
a better bound for the size of the data structure SEGMENTS.

It follows that when using the simple list version algorithm should run_in
0(n372) expected time, since each subroutine call should execute in expected O(vn)
Y P

{n,m) B(nym) | N, observed | % improvement
100,40 14.83 125 4.02
100,100 13.50 8.05 4.99
100,500 12.73 8.37 5.93
10000,400 148.33 70.89 3.99
10000,10000 | 126.32 84.67 3.95
Table 1

time. Even though careful attention was paid to the splay tree code it is still the
case that for moderate values of n the linear list version actually runs faster than
the splay tree version. For example, for n = 10000 the list version takes 56.7
seconds and the tree version takes 59.0 seconds.

5. Empirical Comparisons

The time necessary to solve problems with n < 100 was less than a second and
even for n = 10000 less than a minute was required (for both versions). These
times are somewhat better than the times reported for other O(n logn) algorithms.
No data is even available on test cases in the literature for n > 400. (For com-
parison, the O{(n?) time RMST algorithm that was used took 5220 seconds for
n = 10000.) However, as explained below, Hanan's algorithm does not produce supe-
rior trees.

Our experiments were only done on random data: n points selected from an
mXm grid. These kinds of experiments, with larger and larger n, tend to overlook
the fact that in practice n is small. For example Hu and Shing [HU85] state “in
circuit routing, the average number of pins is between 2.5 and 3.5.” Hanan's algo-
rithm is known to produce good results for small n, eg. it generates an opiimal
tree for n < 4 [HANA66]. It can be argued that for small n the overhead of con-
structing a Voronoi diagram is excessive.

Servit [SERVS1] tested Hanan's algorithm on two printed circuit board problems.
His “typical digital” board had 109 two-point nets, 55 three-point nets, and 40
larger nets. The average number of terminals per net was 3.94 and the maximum
was 112, For all but the six largest nets the optimal RST's were determined. The
average relative error, i.e. (APPROX - OPTIMAL) / OPTIMAL, for the entire board
was 0.05%. This excellent result is due to the large number of smaller nets.

However efficient algorithms are needed for many problems, such as the layout
of the power lines, ground lines, and various buses. These often are the critical
cases. It should also be remarked that some decisions in the design process are
made depending on the length of the tree alone. The tree itself is not needed,
instead a good estimate of its length is sufficient.

Many runs were made with random data. Since for large n it is intractable to
get the optimal result the standard convention of computing the relative improve-
ment of the obtained approximate sclution to the RMST was used, ie. informally
(RMST - APPROX) / RMST. Some of the results appear in the final column of
Table 1. The improvement was between 3% and 7% in nearly all cases with an
overall average improvement of around 4%. The improvement tends io increase for
smaller n. In Table 2 the results are compared with those performances found in
the literature. The largest reported problem successfully attempied in each case is
given with the corresponding running time reported (admittedly on different compui-
ers). Bern [BERN86bL] guessed that, while the best improvement is 33%, the average

is about 12%.

To understand why Hanan's algorithm performs as it does one needs only to
look at the tree it produces, e.g. Figure 8.

horizontal “ground” from which disjoint subtrees grow up.

The initial stages tend to establish a

If these subtrees grow

Investigators Problem Size | Time (secs} | % Improvement
Yang & Wing 35 185 11
Smith & Liebman 40 34 7
Smith, Lee & Liebman 40 1 8
Lee, Bose & Hwang 35 5 9
Hwang - - 9
Bern & de Carvalho 40 1 9
Hanan (new) 10000 56 4

Table 2
-8 ®
T
®
[]
C..............
e
m—‘_‘l—“—j
o9
[-
® ——
L
—®
L]
| .

Figure 8

near to each other but are far apart at their roots the potential savings of a later
connection will be overlooked. Unlike algorithms that start with a RMST, Hanan's
algorithm can produce a tree worse than the RMST. In fact examples can be con-
structed (e.g. with the points in a large “X” formation) where the ratio of the
length of the approximation to the length of the RMST approaches 3/2. Occasion-
ally a tree that was marginally longer than the RMST was produced during the
experiments. However in no case was the best of trees inferior to the RMST.

A postprocessing step could trace adjacent contours of two of the subtrees
growing up from the ground. These tracings could find shorter connections that are
overlooked by the basic algorithm. A search of all adjacent contours should be pos-
sible in O(n) time, given the tree. However the details of this have not been
investigated; several approaches seem worth trying.

6. Conclusions

An efficient new implementation of an old heuristic for the RST problem has
been presented. While its O(n logn) time complexity has been equalled before, it is
conceptually simpler and therefore easier to maintain. An even simpler 0(n%?)
expected time version is actually faster on moderately large problems.

There are several open problems. There is no good theorem for the expected
length of a RST relative to the RMST. For Hanan's algorithm there iz no known
tight upper bound on its worst-case performance relative to the RMST. The post-
processing step, mentioned in the previous section, needs to be explored.

It has been observed empirically [BERNSS5] that if a RMST is embedded., by
choosing one of the two possible one-corner wires for non-trivial edges, and then the
resuitant “doubling” of edges is subtracted out, we get a 5% improvement over the
original RMST. This suggests the following heuristic which is simpler than the simi-
lar approach of Smith, Lee, and Liecbman [SMIT80]. Begin with a RMST and
represent each (unembedded) edge by straight lines in the plane. This straight line
MST is planar. For each pair of cyclically adjacent edges around a node compute
the maximum overlap, ie. doubling, which an embedding of these two edges could
have. Enter these O(n) quantities into a priority gqueue. Remove the maximum
overlapping pair of edges from the queue and introduce a Steiner point as shown in
Figure 9. The four or fewer entries in the queue using the edge (a,b) are updated
using (a.d) or (b,d); (b.c) is similarly updated. Iterate until no overlap exists.

Figure 9

This can easily be achieved in O(nlogn) time given a RMST. Unfortunately an
overall O(n logn) bound is achievd only by using the Delauney triangulation.

A Steiner problem closely related to the rectilinear case involves terminals
which are identified with equal length strings. The distance between two terminals
is the number of corresponding characters that differ in their strings. The least
spanning tree is called the Steiner tree in phylogeny since these can be regarded as
gene sequences. [FOUL83,SHOR82]. The Steiner points introduced could be regarded
as “missing links”. This is known to be NP-complete [FOUL82] even for binary
strings. It is an open question which, if any, of the heuristics discussed here are
effective for this problem.

Circuit designers have considered other metrics that generalize the rectlinear
geometry with its two orthogonal axes. For example four azes separated by 45°
have been used, e.g. [WHIT86]. The hexagonal sysptem, with three equally spaced
axes, has been proposed; recent work by Hwang and Weng [HWAN86bL] suggests new
approaches for this case. How to solve the Steiner tree problem for these metrics
remains an open problem.

7. References

[AcAr86] P. K. Agarwal and M. T. Shing, Algorithms for the Special Cases of
Rectilinear Steiner Trees: I. Points on the Boundary of a Rectilinear
Rectangle, Tech. Report TRCS86-17, Univ. of California at Santa Barbara,
1986.

[AH077] A. V. Aho, M. R. Garey and F. K. Hwang, Rectilinear Steiner Trees:
Efficient Special-Case Algorithms, Networks, 7, 1977, pp. 37-58.

[BEAs84] 1. E. Beasley, An Algorithm for the Steiner Problem in Graphs, Networks,
14, 1984, pp. 147-159.

[BERN85] M. W. Bern and M. de Carvalho, A Greedy Heuristic for the Rectilinear
Steiner Tree Problem, Tech. Report, Computer Science Division, Univ. of
California at Berkeley, 1985.

[BErn86a] M. W. Bern, A More General Special Case of the Steiner Tree Problem,
Tech. Report, Computer Science Division, Univ. of California at Berkeley,
1986.

[BErN86b] M. W. Bern, Two Probabilistic Results on Rectilinear Steiner Trees, Proc.
18th Annuwal ACM Symp on Theory of Computing, 1986, pp. 433-441.
[Corrected version available.].

[CHUN79] F. R. K. Chung and F. K. Hwang, The Largest Minimal Rectilinear
Steiner Trees for a Set of n Points Enclosed in a Rectangle with Given
Perimeter, Networks, 9, 1979, pp. 19-36.

[CHUn81] F. R. K. Chung and R. L. Graham, On Steiner Trees for Bounded Point
Sets, Geometriae Dedicata, 11, 1981, pp. 353-361.

{Cock86] E. J. Cockayne and E. E. Hewgill, Exact Computation on Steiner Minimal
Trees in the Plane, Information Processing Letters, 22, 1986, pp. 151-156.

[DunL86] A. E. Dunlop, personal communication., 1986.

[FouL82] L. R. Foulds and R. L. Graham, The Steiner Problem in Phylogeny is
NP-Complete, Advances in Applied Math., 3, 1982, pp. 43-49.

[FouL83] L. R. Foulds and V. J. Rayward-Smith, Steiner Problems in Graphs:
Algorithms and Applications, Engineering Optimization, 7, 1983, pp. 7-16.

[Fu67] Y. Fu, Application of Linear Graph Theory to Printed Circuits, Proc.
Asilomar Conf. Systems and Circuits, 1967, pp. 721-728.

[GareT79]
[GiLB65]

[GI1LB68]

[GraHSS]
[HANA65]
[HANAG6]
[Hana72]

[HU85]

[HwaNT76]
[Hwan78]
[HWAN79a]

[HWANT9b]

[HwWANS86a]
[HwaN86b]
[Komr23]
[Kousi]

[LEET76]

[LEVI71]
[PUrDSS]
[RAYwWS83]
[Raywsel]

[SERVSE1]

M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman,
1979. '

E. N. Gilbert, Random Minimal Trees, Journal SIAM, 13, 1965, pp. 376-
387.

E. N. Gilbert and H. O. Pollack, Steiner Minimal Trees, STAM Journal
Applied Math., 16, 1968, pp. 1-29.

R. L. Grabam and P. Hell, On the History of the Minimum Spanning
Tree Problem, Annals of the History of Computing, 7, 1985, pp. 43-57.

M. Hanan, Net Wiring for Large Scale Integrated Circuits, RC 1375, IBM
Research Report, 1965.

M. Hanan, On Steiner’s Problem with Rectilinear Distance, Jowrnal SIAM
Applied Math., 14, 1966, pp. 255-265.

M. Hanan, A Counterexample 10 a Theorem of Fu on Steiner’s Problem,
IEEE Trans. on Circuit Theory, CT-19, 1972, pp. 74.

T. C. Hu and M. T. Shing, A Decomposition Algorithm for Circuit
Routing, in VLSI Circuit Layout: Theory and Design,
T. C. Hu and E. S. Kuh (ed.), IEEE Press, 1985, 144-152.

F. K. Hwang, On Steiner Minimal Trees with Rectilinear Distance, SIAM
Journal Applied Math., 30, 1976, pp. 104-114,

F. K. Hwang, The Rectilinear Steiner Problem, Design Awtomation & Fault
Tolerant Computing, 3, 1978, pp. 303-310.

F. K. Hwang, An O(n log n) Algorithm for Rectilinear Minimal Spanning
Trees, Journal ACM, 26, 1979, pp. 177-182.

F. K. Hwang, An O(n log n) Algorithm for Suboptimal Rectilinear
Steiner Trees, IEEE Trans. on Circuits and Systems, CAS-26, 1979, pp. 75-
71.

F. K. Hwang, A Linear Time Algorithm for Full Steiner Trees, Operations
Research Letters, 4, 1986, pp. 235-237.

F. K. Hwang and J. F. Weng, Hexagonal Coordinate Systems and Steiner
Minimal Trees, Discrete Math., 62, 1986, pp. 49-57.

J. Komlos and M. T. Shing, Probabilistic Partitioning Algorithms for the
Rectilinear Steiner Problem, Networks, 15, 1985, pp. 413-423.

L. Kou, G. Markowsky and L. Berman, A Fast Algorithm for Steiner
Trees, Acta Informatica, 15, 1981, pp. 141-145,

J. H. Lee, N. K. Bose and F. K. Hwang, Use of Steiner's Problem in
Supoptimal Routing in Rectilinear Metric, JEEE Trans. on Circuits and
Systems, CAS-23, 1976, pp. 470-476.

A. J. Levin, Algorithm for the Shortest Connection of a Group of Graph
Vertices, Soviet Math. Doklady, 12, 1971, pp. 1477-1481.

P. W. Purdom and C. A. Brown, The Analysis of Algorithms, Holt,
Rinehart and Winston, 1985.

V. J. Rayward-Smith, The Computation of Nearly Minimal Steiner Trees
in Graphs, Intl. Journal Math. Educ. Sci. Technol., 14, 1983, pp. 15-23.

V. J. Rayward-Smith and A. Clare, On Finding Steiner Vertices,
Networks, 16, 1986, pp. 283-294,

M. Servit, Heuristic Algorithms for Rectilinear Steiner Trees, Digital
Processes, 7, 1981, pp. 21-32.

[SrorS82]

[SmiT79]

[SmiT80]

[TAxA80]

[TaRIB3]
[WALDS2]

[Wrir86]

[Wuss]

[Yang72al

[YanoT72b]

M. L. Shore, L. R. Foulds and P. B. Gibbons, An Algorithm for the
Steiner Problem in Graphs, Networks, 12, 1982, pp. 323-333.

J. M. Smith and J. S. Liebman, Steiner Trees, Steiner Circuits and the
Interference Problem in Building Design, Engineering Optimization, 4, 1979,
pp. 15-36.

J. M. Smith, D. T. Lee and J. S. Liebman, An O(N log N) Heuristic
Algorithm for the Rectilinear Steiner Minimal Tree Problem, Engineering
Optimization, 4, 1980, pp. 179-192,

H. Takahashi and A. Matsuyama, An Approximate Solution for the
Steiner Problem in Graphs, Math. Japonica, 24, 1980, pp. 573-577.

R. E. Tarjan, Data Structures and Network Algorithms, SIAM, 1983.

J. A, Wald and C. J. Colbourn, Steiner Trees in Outerplanar Graphs,
Froc. I3th S.E. Conf. on Combinatorics, Graph Theory, and Computing, 1982,
Pp. 15-22.

T. Whitney and C. Mead, An Integer Based Hierarchical Representation
for VLSIL, in Advanced Research in VLSI, C. E. Leiserson (ed.), MIT Press,
1986, 241-257.

Y. F. Wu, 6. Widmayer and C. K. Wong. A Faster Approximation
Algorithm for the Steiner Problem in Graphs, Acta Informatica, 23, 1986,
p. 223-229.

Y. Y. Yang and O. Wing, Optimal and Suboptimal Solution Algorithms
for the Wiring Problem, Proc. IEEE Intl. Symp. Circuit Theory, 1972, pp.
154-158.

Y. Y. Yang and O. Wing, Supoptimal Algorithm for a Wire Routing
Problem, IEEE T'rans. on Circuit Theory, CT-19, 1972, pp. 508-510.

