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Abstract

Application-specific processor design is a promising approach for meeting the perfor-
mance and cost goals of a system. Application-specific processors are especially prom-
ising for embedded systems (e.g., digital cameras, cellular phones, etc.) where a small
increase in performance and decrease in cost can have a large impact on a product’s
viability. Sutherland, Sproull, and Molnar have proposed a new pipeline organization
called the Counterflow Pipeline (CFP). This paper evaluates CFP design alternatives
and shows that the CFP is an ideal architecture for fast, low-cost design of high-perfor-
mance processors customized for computation-intensive embedded applications. First,
we describe why CFP’sgparticularly well-suited to realizing application-specific pro-
cessors. Second, we describe how a CFP tailored to an application can be constructed
automatically. Third, we present measurements that evaluate CFP design trade-offs and
show that CFP’s provide speculative and out-of-order execution, and register renaming
that is matched to an application. Fourth, we show that asynchromaudesflow pipe-
lines achieve high-performance by reducing the average execution latency of instruc-
tions over synchronous implementations. Finally, we demonstrate that custom CFP’s
achieve cycles per instruction measurements that are competitive with 4-way supersca-
lar out-of-order processors at a potentially low design complexity.

1: Introduction

Application-specific processor design is a promising approach for improving thpertor-
mance ratio of an application. Application-specific processors are especially usefilbied-
ded systems (e.g., automobile control systems, avionics, cellular phones, etc.) whak a
increase in performance and decrease in cost can have a large impact onts piability. An
innovative computer organization called tGeunterflow PipelindCFP), proposed by Sproull,
Sutherland, and Molnar [27], has several characteristics that make it an ideal target organization
for the synthesis of application-specific processors. The CFP has a simple and reguilaestru
local control, high degree of modularity, asynchronous implementatodsinherent handling
of complex structures such as register renaming and speculativetiex.

Modern instruction-level parallel (ILP) processors must be able to tolerate high-latency oper-
ations and the frequent presence of control transfer operations. As an example, treugesray
scalar HP PA-8000 microprocessor [17] tolerates a cache miss penalty of 50 cleskwhich
may cause the processor to stall for up to 200 instructions. To keep aggressive superscalar
designs busy requires large instruction windows and other structures (e.g., regestes buff-



ers, data prefetching support) to overcome high-latency operations and cop&otieieces. In
the PA-8000, this is accomplished with a 56-entry instruction re-order buffer,posfetch
instructions, and branch prediction and histoblda.

The typical hardware structures for implementing outiofer and speculative execution are
expensive; e.g., they consume a large portion of chip area and power budget, and most impor-
tantly for this study, they complicate microarchitecture design. In contrast, uheedtow pipe-
line simply and naturally implements out-of-order and speculative execution widtnuting
hardware structures that require extensive study afjdesade-offs. The combination of these
features allows the counterflow pipeline to achieve high performance ateatiplyy lower
design cost and quicker time to market than traditional processor organizations.

To get high performance, modern superscalar processors include multiple functional units for
exploiting instruction-level parallelism. The CFP has a simple and regular wagdigpanate
multiple functional units into a design, which permits fast, low-cost customizatioouoter-
flow pipelines to an application’s resource and data flequirements. Furthermorthe coun-
terflow pipeline may be implemented as an asycbus or aouble-clockedi.e., a synchronous
design where a pipeline stage takes multiple clock cycles to do an instructiopesakion)
microarchitecture. In this paper, we show that this improves performance benarage
instruction latency (due to finer operation granularity) is reduced versus synchrori®ss CF

This paper is organized as follows. The first section has introductory material about our cus-
tom processor design strategy and the counterflow pipeline organization. Tdmel section
describes several design advantages of CFP’s for automatic generation of ap@madito-
ILP-processors and the third section describes disadvantages of counterflow pipelines. The
fourth section contains an explanation of our pipeline customization techniquepmnonental
results that demonstrate the effectiveness of speculative and out-of-ordeifoexaied custom
asynchronous counterflow pipelines. The final section discusses related work aifith thexf
tion concludes the paper.

1.1: Design strategy

Most high-performance embedded applications have two parts: a control and wdatmmp
intensive part. The computation part is typically a kernel loop that accourtke forajority of
execution time. Increasing the performance of the most frequently executied pban appli-
cation increases overall perfornten Thus, synthesizing custdmardware for the computation-
intensive portion of an application may be an effectaghhique to increase performance.
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Figure 1: Overall speed-up for JPEG
The type of applications we are considering need only a modest kernel speedup to effectively



improve overall performance. For example, JPEG has a furictien dct() that accounts

for approximately 60% of total execution time. This function consists o¥imgph single loop

twice (to do the inverse discrete cosine transformation), so it is a good candidate for a custom
counterflow pipeline. Figure 1 shows a plot of Amdahl’'s Law [14] for variousdigevalues of
j_rev_dct() . The figure shows that a small speedup of the kernel loop of 6 or ¥eshiwst

of the overall speedup Eible.

We use the data dependency graph of an application’s kernel to determine processor function-
ality and interconnection network. Processor functionality is determined frotypef opera-
tions in the gaph and processor interconnection is deteeoh byexploring the designpsce of
all possible iterconnection networks.

There are two possible system architectures for a custom CFP. The first schéwe gras
cessors: one for executing the control portions ofjaplication and the o#n, a counterflow
pipeline, for executing the kernel loop of an application. This scheme hadvhetage that the
kernel processor can be highly optimized for executing the kernel loop to get optimal perfor-
mance. However, it has the disadvantage that support is needed to integrate thamcd P
processors (e.g., interface logic, handling of live-in/out data, etc.) Such an architecture may also
have a high area cost. The second system architecture has a single CFP for executing both con-
trol and kernel code; this architecture has a potentially lower cost than a co-pr@rebgec-
ture. However, care must be taken to avoid slowing down the control code wbendgal CFP
to the kernel loop—the custom pipeline should have the functiomslégied byboththe kernel
and control code. Although we are currently evaluatioth lsystem architectures, we assume
the first scheme in this paper and generate a CFP optimized to an application’s kernel loop.

1.2: Counterflow pipelin

This section presents a brief overview of counterflow pipelines. Sproull, Sartdednd Mol-
nar give a more detailed descigpot of CFP’s [27]. The cauerflow pipeline has twoipelines
flowing in opposite directions. One is the instruction pipeline. It carrigsuittions from an
instruction fetch stage to a register file stage. When an instruction issunss;uantion bundlds
formed that flows through the pipeline. The instruction bundle has space fansthection
opcode, operand names, and operand values. The othengijsethe results pipeline thedn-
veys results from the register file to the instruction fetch stage. The instruction andpiggults
lines interact: instructions copy values to drain theresult pipe. When an instrugh copies a
value from the results pipeline, it is kel agarner opeation, and when an ingiction copies a
value to the results pipeline, it is k&l anupdate operation

Pipelined functional units;alled sidings are conneted to the pipelinghroughlaunch and
return stages. Launch stages issue instructions into functional units and return estages
results from functional units. Instructions may execute in either pipeline stagesctiofal
units.

A memory unit connected to a CFP pipeline is shown in Figure 2. For examplens$baat-i
tions are féched and issuethto the pipeline at thastr_fetch stage. Thisstage decodes
instructions and determines which pipeline stage executes an instruction. A buneéddad
that holds the load’'s memory address and destination register operands. nthe flmws
towards thenem_launch stage where it is issued into the memory sstesy.

When the memory unit reads a value, it inserts the value into the resuin@ipiethe
mem_return stage. In the load example, when the load reachemdhereturn stage, it
extracts its destination operand value from the memory unit. This value is copliedd®stina-
tion register value in the load’s instruction bundle and inserted into the pgsuliA resultbun-
dle is created whenever a value is inserted into the result pipeline. A result bundladefosp



the result’'s name (i.e., register name) and value. Results from sidings or other pipeides d
flow down the result pipe to tivestr_fetch stage. Whenever an instruction and a result bun-
dle meet in the pipeline, a comparison is done between the instructimndp@mesand the
result name. If a resuttame matches an operand name, its value is copied to tesmmrding
operand value in the instruction bundle. That is, tigriuctiongarnersits source operands.
When instructions reacthe reg_file stage, their destination values are written back to the
register file and when results reattte instr_fetch stage, they are discarded. In effect, the
register file stores results that have exiteddipe.
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Figure 2: An example counterflow pi  peline

The interaction between instruction and result bundkesgoverned by rulethat ensure
sequential execution semanticdiefe are four rules thaontrol instructions: 1) structions
must stay in sequential order; 2) an instruction must acquire its source operandsexeaute
ing (calledgarnering); 3) an instruction inserts a copy of its destination registéhenresult
pipeline when it finishes executing (calleddating; and 4) an unexecuted instruction may not
move past the last stage capable of etieguit.

There are three other rules that ensure result values are current for their positiopipe-the
line and not values from previous operations with the same name. The rules aresiuatidn
copies a result's value if &sult register name matches one of its source operandsg)la
register matching an unexecuted instruction’s destination register is invalidated; aedd) a
register matching an executed instruction’s destination is updated with the destnatiue.

Arbitration is required between stages so that instruction and result bundlespisneach
other without a comparison made on their operand names. In Figheel#locks betweenages
depict arbitration logic. A final mechanism controls purging the pipeline om@epgon. Apoi-
son pillis inserted in the result pipeline whenever a fault is detected. The poisourgdkgboth
pipelines of all instruction and result bundles. This purge mechanism can alseddfer specu-
lative execution when a branch target is misptedi.

As Figure 2 shows, stages and functional units are connected in aimpig and regular
way. The connections correspond to bundled interfaces of micro@pelihe behavior of a
stage is dependent only on the adjacent stage in the pipeline, which permitsoldcal of
stages and avoids the complexity of conventional pipeline synightm.



2. CFP design advantages

Counterflow pipelines have several characteristics that make them suitabletéon tuB-
processors: a simple and regular structure, local control, modularity, and asynchronous imple-
mentations. These characteristics can be used to achieve higher perfomithnmestom
designs than with geeral-purpose ones.

2.1: Speculative execution

Traditional dynamically scheduled ILP microarchitectures use branch prediction and specula-
tive execution to keep execution pipelines full [18, 26]. This reduces the impechtobl
dependences and exposes more instruction-level parallelism tortiveaha

The CFP handles speculative execution in an elegant and simple way. Thmeofc
branches is predicted at the beginning of the pipeline during the insertion of newtiostbun-
dles. Instructions following a branch are speculatively fetched and inserted into the pipeline.
Branch predictions are resolved by a branch resolution stage in the pipeline. When the branch
resolution stage detects a misprediction, it inserts a poison pill into the results pipelipei-The
son pill kills all instructions it meets while flamg down the resultipeline, andwvhen it reaches
the instruction fetch stage, the program counter @&1ghd to the correct branch address carried
by the poison pill. The degree of speculative execution is determined by the distameenbe
the branch resolution stage and instiarcfetch stage.

2.2: Out-of-order execution

An important issue for instruction-level parallel micro-architees is how to tolerateigh-
latency operations; especially, memory accesses. Keeping an aggressive ILP-prlogggsor
during memory accesses is becoming difficult as processor widths and memory |dteteies
tive to processor speed) increase. Indeed, some current superscalar process@a ltacbal
miss penalties of up to 50 clock cycles, and future implementations are likely tonsdieepen
excess of 100 cycles [18, 26].

Superscalar processors use out-of-order execution to keep functional unittukingyhigh-
latency operations. To achieve high performance with out-of-order execution requires reserva-
tion stations and re-ordéuffers with register renaming [14, 20]. In a conventional microarchi-
tecture, these structures introduce much complexity; however, the CFP inherently handles
speculative execution and regisreraming in a very simplsay.

In the CFP, instructions are kept in order of issue, but they may execute odefTevo
instructions can be executing in different stages of the pipeline at the same lomg as there
is no dependency between them. There is no order imposed on which instructioesffins.
Sequential execution semantics are preserved by writindtselsack to the regier file in
instruction issue order (and by register renaming in the result pipeline.) To entblecoder
execution, the results pipeline of the CFP implements a type of registeringndimere can be
multiple values with theame register name infferent places of theesult pipeline athe same
time. This has the same effect as registermamg: instructions with anti- and quit dependen-
cies may execute concurrently with their dependent instructions. This type of aulcofege-
cution and register raming is an effective way to hide memory actasncy.

2.3: Asynchronous custom pipelines

Local control and the simple and regular structures of counterflow pipetiakss the orga-



nization very modular. This means that CFP designs can be easily modified for ddfgykcd-
tion requirements and design goals. For example, modules that have been optiffereutiyi
(e.g., for speed, area, or power) may be interchanged as long as they maintain tensame
nication interface.

Asynchronous CFP’s have the advantage that computation proceeds at average-case speed
instead of worst-case speed in synchronous designs [12]. The combination ebldoal, the
absence of global signals, and asynchronous implementations leads to short aatiomudis-
tances between functional devices in CFP’s. This suggests that counterflowgsipetiy have
very high performance, especially when tailored to an application’s resourcdataéiow
requirements. Although counterflow pipelines mayalp@ropriate for general-purpogeces-
sors [19, 22, 27], our research focuses on how to construct custom ILP-processors for embedded
systems.

3: CFP design disadvantages

To understand the trade-offs associated with counterflow pipelines, it is usekdniine
some of the disadvantages of these structures. The first disadvantage is that tiegu@ER r
arbitration between adjacent pipeline stages. Because the arbiter controls themdwnhiod
results and instructions in the pipeline, it should be made as fast as possibletite,ptdas
proven difficult to build fast (and correct) CFP arbiters amotrol circuits because of racen-
ditions, circuit hazards, and handshaking, although some designs hayedysesed [21].

A second disadvantage is that enforcing the pipeline matching rules may be wexpénsi
matching rules require examining an instruction’s local state (e.g., whether it hakilkn
launched, executed, etc.) and comparing an instruction’s operands to a resul{(thenattéon
associated with the comparison outcome also must be done.) Enforcing the matldsmogn
become a performance bottleneck because it affects the speed at which results athesent to
consumer instructions. However, careful instruction scheduling by a compilerrangeament
of pipeline stages can reduce the performance impact of the matching rules.

A final disadvantage is that CFP’s may use more chip area than traditional architectures. This
is especially true for asynchronous designs because control signals are needed to synchronize
computational elements (i.e., request and acknowledge signals) andogiirés reeded to
ensure glitch-free circuits [5]. Also contributing to CFP chip area is the width dir@pegis-
ters. These registers are very wide since they hold instadtinstruction andesult bundles in
each pipeline stage. An approximation for the width of an instruction bundle register is:

(Nsres * Ndestd X (Wreg + Wspec™ Wiflags) + Wop + Weiags
whereng, . is the number of source operands (e.gnddstsiS the number of destination oper-
ands (e.g., Lweg is the width of a register value (e.82), Wspecis the width of a register name
(e.9., 5) Wyfiags is the width of result flags (e.g., 2 for valid and garndies) wy, is the width of
a decoded opcode (e.g., approximately 10 for a 12 stage pipelinayygpds the width of sta-
tus flags (e.g., 2 for instruction killed and executed bits.) As an example, a 32-bititriudic-
tion requires a bundle dih of:

(Nsrcst Ndestd X (Wreg t Wsped = 3% (32 + 5) = 111 bits

for just its source and destination operands. An approximation for the width of resi#reig:
Nresult X (Wreg * Wspec ™ Wiflags)

wherenqg it is the number of individual results in a result bundle. The minimum Y@ogg,:

IS Ngests@Nda reasonable value 1%, Which allows a single result bundle to carry all the
sources necessary for an instruction.



High-performance CFP’s need two instruction and result registers per pipeline stagart
maximum throughput [27], doubling the cost of pipeline registers. The popt# connec-
tions between pipelindages are alsoevy wide since they transmit instantiated insticsi and
results between pipeline registers. Finally, multiple comparators are needed inipsicte p
stage to enforce the matching rules. Although each of thespacators is small ifeir size is
Wsped, @ CFP design can have:

(Nsres * Ndestd * Mresult
comparators per stage. For triadic instruction sets wdfa.= 5 andnyes = 2, this is approxi-
mately equivalent to one 32-bit comparator per stage2(8 5 = 30 bits.) Although the areast
of CFP’s is high, this concern is becoming less important with the advent of 100+ tn@hen
sistor chips. Indeed, time to market is the most important issue in today’s embedtdssy
Thus, an architecture (such as the CFP) that is well suited for quick turn-aresigd id very
attractive despite a potentially high aoeest.

4: Experimental result

In this section we show how to construct counterflow pipelines automatically usaupgpkn
cation’'s data dependency graph. We also demonstrate that the counterflow pipé&iges
mechanisms for speculative and out-of-order execution are effective, and that asynchronous cus-
tom CFP organizations can significantly improve an application’s pedice.

4.1: Methodology

The goal of our present work is to see how faratenerflow pipeline in its originalorm
can be pushed to get good performance in an application-specific settithgit €ad, the exper-
iments in this paper use CFP’s customized to the resource and data flow requirementhof b
mark applications. The customization process operates at the architkstekran pre-designed
functional devices such as pipeline stages, register files, and fuacidings.
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Figure 3: The workflow of the customization process. The k ernel loop is

optimized by vpo to serve as a specification for a custom counterflow

pipeline determined by cfpsyn . The custom CFP is simulated and analyzed

by cfpsim .

The design space of counterflow pipelines is defined by processor functiamaitgpology.
Processor functionality is the type and number of computational elementpifrelme and
topology is the interconnection of those elements. In our work, processor functionetidyas-




terized by an usesupplied database of computational elements that indicates dgwcésiding
or stage) and semantics (as instructionogies) for each databasergn

CFP topology is determined by the order of pipeline stages because CFP fumiaiices
areinterconnected via stages. Thus, given what functional devices a CFP containsolibgyto
space is all combinations of pipeline stages, excluding some combinations tittnaake
sense (e.g., placing a siding’s return stage beforautsch stage.)

Figure 3 is a diagram of the customization process. The customization system akeepts a
nel loop (in C) as an input to the codepiave vpo[1], which transforms the loop using classic
optimizations such as strength reduction, induction variable eliminatiomalgegister alloca-
tion, loop invariant code motion, etc. The optimized instructions are the input sgnimesis
phasecfpsyn which selects and instantiates computational devices from the detgpasiafor
each kernel loop operation. It also determines the processor interconmettionk. The syn-
thesis step emits a description of the custom pipeline that is used by the ¢towrgr¢line
simulator,cfpsim,to collect performance statistics and a program execution trace.

Customization technique:Although we have studied search-based pipeline customizatibn
niques [3], we use an approach in this paper that does not rely on searching a desiginispace.
approach uses a benchmark’s instruction dependency graph to determine pfoneseaoality

and interconnection network. The customization processitasteps:

1. Allocate: Every low latency operation in the instruction dependency grasisigned an
unique pipeline stage and every high latency operation is assignedssityshared)
functional siding.

2. Arrange: The instruction dependency graph is scheduled using priority-hstseched-
uling [20] and the pipeline stages determined by step 1 are arranged in rerdeseof
the instruction schedule.

Step 1 assigns high latency operations to functional sidings to move their computidodn
the main pipeline. This avoids stalling subsequent instructions that may otherwiseesithvthe
pipeline and execute. Low latency operations are assigned unique pipeline stagethey
may possibly execute independently of omether (assuming no dependences between two
instructions.) Although we do not currently cast multiple low latency operatitiosa single
stage (e.g., a chain of two additions could use the same stage), we intend to address cost reduc-
tion in the future. In step 2, pipeline stages are placed in the reverse order of théianstruc
schedule to ensure that successive loop iteratiwmslap in the pipeline. Arrangirgjages in
reverse order lets the pipeline speculatively issue one loop iteration while another isginish

reg_file

@ — | mul_return

add2

@ @ add1 || mul_launch

mull add1
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mul2 fetch

(a) dependency graph  (b) instruction schedule  (c) custom pipeline

multiplier

Figure 4: An example of pipeline customizing.

An example of the customization process is shown in Figure 4. The depegdapicyn (a)
has two addition antlvo multiplication instructions. The first customization step generated two
addition stages and one multiplicatiodisg.

The second customization step arranges pipeline stages. Using path latehegdabrgrpri-



ority, local instruction scheduling produces the instruction sequence in (b) forgbedéacy

graph. The pipeline stage order is derived from the reverse order of the schedule, as shown in
(c). Thus, the first stage after instruction fetcaddl followed bymul_launch andadd2. The

second multiplication instruction is skipped since it shares a siding with the firgblioation.

A final issue is where to return multiplication results into the main pipeline. We ukeuhe
ristic that the number of stages inclusively between launch and return equals the pigeg’s
line depth. This ensures that the siding can be fully utilized. In this example, if thplivatitn
siding has a depth of 3, theml_return is placed two stagestafmul_launch

The technique described above uses the instruction schedule generated bypiler asra
specification for a counterflow pipeline organization. The compiler uses localdtistrgched-
uling to separate the definition and use of register values based on the latédmeyefining
operation. In effect, this keeps producer and consumer instructions relatiesl/t@lone
another, while allowing independent instructions to be scheduled in the delssehdtve pro-
ducer and consumer

This closely matches what happens in a counterflow pipeline during progemtien. An
execution tace can behbught of as avery long counterflow pipeline—instruicins march
through time producing values that are consumed by following instructioassely the same
behavior exhibited by the counterflow pipeline. This suggests that arranging pstages in
the order of the instruction schedule (which reduces the impact of operation latdhgige
good performance. Using small dependence graphs, we have found that this technique generates
pipelines that are within 7-19% of the optimal pipeline arrangement. Wiheisdove tech-
nique because it is able to quickly and easily generate pipeline organizatiorsgonably
complex benchmarks. More details about the interaction of counterflow pig&dige arrange-
ment and instruction scheduling can barfd in [3].

Pipeline simulation: We have built a behavioral microarchitecture simulator for asynchronous
counterflow pipelines. The simulator is highly reconfigurable to permit microaralvieeekper-
imentation, and it generates a detailed program execution trace that isquestspd by a sepa-
rate analysis tool to collect performanceistass.

To model asynchronous counterflow pipelines our simulator varies computdéteraies.
Table 1 shows the latencies we use in our simulation models. The latencies in the table are
expressed relative to how long it takes an instruction or result to move betdiaeant pipeline
stages. These latencies were originally supplied by Sienob{/stems based on th&FP work
[28]. Using the base values from Table 1, we derive other pipeline latencies. For example, a sim-
ple instruction operation such as addition takes 5 time units. High latenatiopsare scaled
relative to low latency ones, so an opmmatsuch as multiplication—assuming itf@ir times
slower than addition—takes 20 time units.

Operation Latency
Stage copy 1 time unit
Garner, kill, update 3 time units
Return, launch 3 time unitg
Instruction operation 5 time units

Table 1: Computational latencies

Our timing assumptions do not account for overhead due to asynchyrotecsol signalling
(i.e., two-phase vs. four-phase signalling.) Such low-level implementation detaild siot
affect the architectural design conclusions we draw in this paper. Furthermore, eve lig8
difficult to make timing evaluations about protocol signalling without a low-levelementa-



tion. Under our simulation assunmus, our asynchronous counterflow pipelinesexjaivalent

to double-clockedsynchronous CFP implementations [27], where a device takeplawtdck

cycles to do a single pipeline operation (e.g., garner or Kill.) Indeed, this makes our work also
applicable to synchronous CFP implementations. In the future, we will invedtogatevel
implementation trade-offs and their impact on architectusgde

Evaluation: The performance statistics in this paper were collected using sewsmalon
benchmarks. The benchmarks have three Livermore Id@peel 1, kernel 5 andkernel 12,
vector dot productdptprod, the finite impulse response filtefi), memory copy hemcpy,
and matrix multiplicationrhatmul). Some of our benchmark kernelere extracted from large
applications. These loops include the 2-D discrete cosine transformddipruéed in image
compression and an implementation of the Floyd-Steinberg image dithering algatithen)(
We also extracted the vector computatior B mod dfrom RSA encryptionfiodexp. The
benchmarks were compiled using the optimizing C denppcc-vpo[1] for the SPARC archi-
tecture.

4.2: Speculative execution

The location of branch resolution in a counterflow pipeline determines the amajpecoia-
tive execution. If branches are resolved early in the pipeline, then very little specedattve
tion is possible and if branches are resolved late in the pipeline, then much specxéaiiNiere
is possible. However, late branch resolution impacts the misprediction penalty,mdydbad
to overspeculation and an adverse effect on performance.

Deep counterflow pipelines require accurate branch prediction. Our CRrfdslesie dynamic
branch prediction to predict branches as they are issued into the pipeline. The pragrEmiso
maintained in the instruction fetch stage and updated to the appropriate laaysttaddress
whenever a branch is predicted.

The CFP designs we use tag control transfer instruction bundlegh&ithakenand not-
takentarget addresses. For most branch instructions, the taken address is encoded directly in the
instruction (i.e., the taken target address is PC-relative or absolute.) The not-taken address is the
address of the instruction following the branch. Both target addresses are neéuzdrapch
resolution stage sthat it is dle to transmit the correct targaddress on a branch misgiction
to the instruction fetch stage. When the branch stage detects a mispredicted branch, it inserts a
poison pill into the results pipeline that contains the address of the correct branchddrget.a
The poison pill flows to the instruction fetch stage carrying the correct targetsagddnd when
it reaches instruction fetch, the program counter is updated with thedddyess.

Figure 5 shows the effect of branch prediction accuracy on performance for a esgtem
chronous CFP fodotprod The graph plots performance using several branch piedictes
and branch resolution stage placements. The prediction rates were varied froaccboaty
(i.e., 50 of 100 branches were predicted correctly) to 99% accuracy and thenpafdiranch
resolution was varied from the first pipeline stage to the last pipeline stage. We usstieastat
method to evaluate branch prediction because we are interested in determimmgptiteof dif-
ferent prediction rates on therangement of pipeline stages. From statistical expetsnerm
can identify the needed prediction accuracy and select a branch prediction scheme that achieves
that accuracy. The data in Figure 5 was collected using a custom counterfldiwwepape
instruction schedule falotproddetermined by our design methodology. The instructaied-
ule was not changed based on the position of branch resolution.

The figure verifies the intuitive notion that prediction accuracy museas® as pipeline
length increases to attain good performance. The figure also shows that perfdevelsasff at



branch position 5. This is the point at which overspeculating instructions begmpatct per-
formance. It is also the position that places the branch resolution stage adjacestdgédltbat
determines the loop exit condition (i.e., a comparison stage.) This is typically thmobiisin

for branch resolution sincéndre is no need to speculatively execute utsions bepnd the

point at which branch outcomes become known.

—0—99

—m—95
90

85
——75
—e—50

12 3 45 6 7 8 9 10 Prediction
rate
Distance of branch from

instruction fetch

Figure 5: Speedup for dotprod using different branch stage posi tions and
prediction rates.

The graph in Figure 6 shows the average branch misprediction penabydied For coun-
terflow pipelines, the misprediction penalty is the time from when a mispredicaadhois
resolved until the instruction fetch stage begins fetching from the correct lieageh

As expected, the graph shows that the misprediction penalty increases as the loktveewe
instruction fetch and branch resolution increases. However, the branch predicttiy giéiers
at several branch positions depending on prediction accuracy (e.g., posttiwosdgh 10.) For
example, when branch predictions agsolved at position 8, the mispredictiomply varies
according to prediction rate. In a traditional microprocessor organization, $peegiiction pen-
alty is static and would be the same regardless of prediction accuracy (e.g., the chestefaf
position 8 would have the same vedu)
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Figure 6: Branch misprediction penalty dot-product  with different branch

resolution stage posit ions.

The misprediction penalty varies dynamically in a CFP according tdighia accuracy
because the pelty is sensitive to activity in the pipeline. The reason for the mispredipen-
alty variance is that a branch’s target instruction blocks have different instructidob,afflect
the pipeline differently. For example, suppose one branch target has an instruction that stalls in



the pipeline during a garner operation. This blocks results, including paitgrirpm flowing
through the stalled pipeline stage until the garner operation completes. étpthevopposite
branch target may not have this behavior. In this case, results would flow direotightihe
pipeline.

Although the pipeline fodotprodis long (12 stages), the misprediction penalties in Figure 6
are small enough that speculative exem is effective. This has also proven trge other
benchmarks. For exampleatmulthas 26 stages and the branch misprediction penalty does not
impact performance so significantly that the position of branch resolution is tugmigrained
(i.e, it does not have to be placed near instruction fetch to achieve reasonable atispreein-
alties.) Indeed, likelotprod the best position for branch resolutiormatmultis near compari-
son operations.

Figure 7 shows an alternative CFP branch architecture that reduces the misprpdiaion
for pipelines with late branch resolution. This architecture uses a bypass network to fusivard
son pills to stagethat are before the branch. Thguie shows two paths that areded to the
basic counterflow pipeline. The “kill wire” ginals Kkill eventto a stage, indicating a branch
misprediction. When a stage receives a kill event, it marks the instruction in th&ikbtaig@
stage that does not have an instruction ignores the event) in a way similar d@mrtierd
scheme. The second path in the figure sends the correct target address to the instruction fetch
stage on a branch misprediction. The instruction fetch stage updates the prograen and

begins fetching from the new taty

kil signal

:: / PC bypass
[ ]

instr_fetch

Figure 7: A CFP branch architecture with bypass paths for forwarding poi son pill s
to reduce the branch misprediction penalty.
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This alternative dteme has the potential to reduce the branch penalty drallyabiar the
original approach because it “instantly sitgiaa misprediction (igndng circuit debys.) The
original scheme progmtes anisprediction signal over time through the use of a pgisibn

Figure 8 illustrates the effect of forwarding poison pills. The figure stspwsdup for a for-
warding scheme over aastdard ounterflow pipeline for th&ernellbenchmark. The figure
indicates that for a high misprediction rate and late branch resolution, forwardihgvesa sig-
nificant impact on performance. For a misprediction rate of 50% and a branch position of 11,
performance is improved by 17% over a standard CFP. However, at low misprediesyira
forwarding scheme does not significantly improve performance. For a predictaracy of
99%, the performance improvement is essentially non-existent, except for a branch position of
11. In this case, the improvement is less than 1%. The overall improvement, havepesrls



on branch frequency. The other benchmarks show trendsusiokernellwith an average max-
imum speedup of 1.19 for a 50% misprediction accuracy and late branch resolution.

Despite the performance potential of forwarding poison pills, we believestichta scheme
is unnecessary for counterflow pipelines. Instead, it is better to implement a dgghhate
branch prediction schemeich as correlating prediction, which acles very highaccuracies
(especially on loops.) Furthermore, the introduction of global signals for fdirvgapoison pills
makes processor design significantly more complex—the very problem we are trying to avoid.
This may prove especially difficult for asynchronous implementations and limitiebign
advantages of device regularity and simplicity.
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Figure 8: The speedup of poison pill forwarding versus the original CFP branch

misprediction purge scheme.

Figures 5 and 6 demonstrate that speculative execution in counterflow pipelinegffeone
tive way of achieving high performance in an application without additimaralware such as
history buffers and complex control meaisans.

4.3: Out-of-order execution

The counterflow pipeline uses out-of-order execution to tolerate high-lateecgtioms, and
as an example of this, we cdtesr memory accees in this section. In our custddfPs, mem-
ory accesses are launchearlg in the pipeline into an attached memory sidilfibis moves
memory accesses out of the main pipeline so that subsequent instructionstocaredo flow
through the pipeline to a stage where they may execute. This serves the same purpose as an
instruction re-order buffer, allowing independent instructions to begin execwfogeta mem-
ory access completes.

Figure 9 demonstrates how the coufibsv pipeline tolerates increasing memory fatg for
five benchmarks. In this experiment, a custom pipeline was generated for each bensmgark
our customization methodology. The initial pipeline for each benchmark has-pipetined
memory siding and a latency of5. We assume that the memory siding has no dafaecaate
memory accesses cause a cache miss.) In this experiment, we pipeline the sidimgpnd
vary the pipeline depth from 2 to 10 stages. Thus, memory access latency varies from 10 to 50
time units. The instruction schedule and main pipeline configuration are not chatigied in
experiment; only the memory siding pipeline depth isged.

The graph in Figure 9 shows the percentage of memory latency tolerated by thegipstom
lines for the five benchmarks and nine different memory siding pipeline depths (the columns in
the figure are arranged left to right with a depth of 2 to 10 for each benchmark.) taetage
of latency tolerated is the amount of total memory latency that is hidden by theatippliThe



percentage is calculated using the equation:

1 depthx latency accesses
observed- baseline

The termdepthis the length of the memory pipelineisigl, latencyis the stage latency of a
memory pipeline stage, aladcessess the total number of dynamic memory accesses. The term
observeds the execution latency for a particular benchmark runbaselineis the execution
latency for each benchmark’s initial pipeline configuration. The equation cdsuteemory
latency tolerance by a particular pipeline widepthis varied.

Figure 9 shows that a large portion of memory latencylerdted for the benchmarks. The
high tolerance is due to the memory siding moving memory accesses out of the rakie pip
This allows subsquent instrutions to be inserted into the pipeline and begin etxa@cuThe
memory latency is also partly hidden by the increase in the number of memory atitassais
be “in-flight” in the memory siding. As siding pipeline depth is increased, a sidingocam-
modate more accesses, which reduces resource contentiondalinige
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Figure 9: Percentage of memory latency tolerated when increasing memory
pipeline siding depth. For each benchmark, the columns vary left to right from a
siding depth of 2 to a depth of 10.

The percentage of latency toleration in Figure 9 decreases as memory lateeageascr
because there is not enough instiarc paralelism in the loops to cover the changéaitency. To
increase instruction-level parallelism, program transformations such as softwareimipdlin
conversion, etc. [23] could be applied and the resulting instruction dependaptycguld be
used as the basis for pipeline customization.

The experiment in Figure 9 changes only memory latency by increasing the suifiagjise
depth. We do not re-schedule or re-customize a benchmark’s instruction elepegoaph or
pipeline. Although this is not important for these benchmarks because they are snaglibé
profitable to change the instruction schedule and pipeline configuration for larger benchmarks
that have many memory accesses per iteration.

The pipeline configurations used in Figure 9 have separate stages for inlbatirend store
instructions: one stadeandles éads andanother handlesates. This permits customizing pipe-
line stage order to the relative position of loads and stores in the instruction dependency graph.
In most graphs, load operations occur early in the graph and store operatiornatecaod are
typically dependent on significant computation. By separating memory operatiordisitiot
stages, loads can be launchedyeim the pipeline and stores can be launched late aftehney



garnered their source operands. In a pipeline configuration that combines Iagdraridunch
stages into a single stage, stores may stall waiting for their source operands early irlitiee pipe
This can degrade performance because instructions following the store can not egamteth
cution stage.

Figure 10 shows the speedup obtained from separate load and store launch stagemover a
bined load and store launch stadetprodis not shown because it does not have a sthsiteuic-
tion in its loop.) Th kernel 1, kernel 5 dither, andmemcpybenchmarks show a significant
improvement in performancé&or fir, matmult, kernel 12, modexpnddct, it appears that the
store instruction in the combinedage arrangement acquires its source operarabait the
same point as it does in the separate load and store stage arrangement. This mealtitl¢here is
advantage to having a separate stage for a store.
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Figure 10: Benchmark speedup for separate load and store stages versus a
combined memory launch stage.

Separate load and store launch stages creates a problem for memory addresses that alias the
same location. The hardware must ensure that a load aliasing a memory address written to by a
store does not launch before the store completes. In our current system, if we ttlanttigre
are no memory &ses betwen loads and stores in a kernel loop, we use separataridatore
stages. When we can not determine that there are no memory aliases, we use a single stage to
launch loads and stores.

In a single processor scheme (such as that outlined in Section 1.1), it is likely that the control
code has memory aliases, which requires a unified load/store scheme. However, in a system
architecture that uses a CFP as a kernel co-processor (i.e., a co-processor for ekeding
nel loop), it will be easier to separate loads and stores into individual stages byrinargtoe
kernel loop to eliminate alses.

A final issue with a split load/store scheme is how to avoid updating memory (i.estdrgy
until branch prediction outcomes are known. Theretwaoestraightforward approaches $olv-
ing this problem. The first is the simplest: it constrains the position of the store stageito
after the branch. This ensures that the store will be killed before committing itsatleatiralue
to memory on a branch misprediction. The second scheme has eostoné staget the end of
the pipeline [27]. In the absence of memory aliases (i.e., having separate load atalistdre
stages), this is equivalent to the first approach. However, when memory aliasesaregnes
single store/load launch stage is included in the pipeline, a commit stage is neau#date i



when memory can be updated. A store queue is also needed in the memonclheikttor
aliases and to buffer in-flight stores until they are safe to commit (which also allows speculative
loads of uncommitted addresses.) In such an approach, whenever a store pasghdshid
commit stage, a signal is sent to the store queue to write the last queue element to memory. In the
experiments presented in Figure 10, we use the first approach and constrain theostre to
after the branch stage (it is placed immediately after branch reso)uti
Based on the experiments in this section, we conclude that functiomgissate an effective
means for overlapping the execution of high latency operations with othersgiog in the
pipeline. Indeed, this type of out-of-order execution is especially attractoaideit does not
require hardware structures such as instruction re-order buffers and register rdni@sne ta

4.4: Asynchronous custom pipelines

Counterflow pipelines can be implemented as synchronous and asynchronamsschitac-
tures. An asynchronous implementation has the advantage that micro-opecatidressepa-
rated into several lightweight functions. For example, a synchronous CFP must begaifesto
source operands and execute an instruction in a single cycle. This has the disadkanhtage t
instruction will see the worst case cycle time regardless of whether an instructioraom@ysg
source operand. In an asynchronous implementation (or a double-clocked intptemgn
micro-operations can leeparated into distinct phases and an instruction can be advarnadd
a pipeline stage as soon as possible. For example, if an instruction only npasss ttrough a
pipeline stage, it can proceed directly through the stage very quickly. In a syouhd®sign, it
would take a full cycle for the instruction to move through thgest
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Figure 11: Speedup of custom asynchronous CFPs over a gen eral-purpose
synchronous CFP.

Figure 11 shows the speedup of custom asynchronous CFP’s over a general-purpwse sync
nous CFP. The general-purpose pipeline has functsidalgs for integepperations, memory
operations, and multiplication. The custom pipelines are tailored to the data depegrdphcy
using our customizatiorethnique.

The figure indicates that asynchronous custom pipelines achieve a speedup of dyt® nea
times over a synchronous general-purpose pipeline with the average being &gdeddhap can
be attributed to three reasons. First, the custom pipelines are tailored to the resmuiree r
ments of the graphs, which elingtes resource contention. 8ed, the custom palines have



their stages arranged to minimize the latency of conveying source operands. Finabynthe
chronous pipelines achieve average case execution time. That is, the asynchielmes fiet-
ter overlap pipeline operations because they have a small operation granulatiégcfdsed
below.) We do not currently use any techniques to shorten the agt@itionlatency of an
operation (e.g., short-circuiting carry propogation in an asynchronous-dppy adder.)

The difference in performance between the asyn@dusicustom pipelines and thgnshro-
nous general-purposepaline comes partly from the difference in the way they handiipg
operations. The synchronous pipeline takes a full cycle to complete altiopsmeeeded by an
instruction in a pipeline stage regardless of Wwhetn instruction only needs part of a cycle. For
example in a synchronous CFP implementation, if an instruotibngarners a source operand
in a pipeline gge, it is held in the stage for the full cycle. In an akyonous gieline, the
instruction would be allowed to proceed as soon as the garner operatipleias.

For our simulations, garnering a source operand takes 3 time units andrexanuhstruc-
tion takes 5 time units. This implies that the clock cycle length in the synchrpipelise is 8
time units. Thus, a garner operation in the asynchronous pipeline takes 3/8 of the tinsgrthat a
chronous CFP takes. Asynchronous custom pipelines take advantage of micrmioparal-
lelism to improve performance.

Asynchronous CFP implementations are able to exploit riperation parallelism because
they have a smaller operation granularity than synchronous pipelines. The coungéline
has four types of micro-operationsompar, launch, return, andexecut. The compareopera-
tion corresponds to garnering source operands, updating or killing destiregfisters, and han-
dling poison pills.The launch andreturn operations correspond to initiating a pipe siding
operation and returning a result from a sidifge executeoperation corresponds to executing
an instruction (whether in a siding or in a pipeline stage.) For example, an instrheti@xe-
cutes in a pipeline siding does all four mi@perations. It first garners its source opeisiand
then launches, executes, and returns a result

The results in Figure 11 show that custom asynchronous counterflow pipelines achieve higher
performance than synchronous pipelines. This performance improvement is ivgpcessid-
ering how easily and quickly counterflow pipelines can be oniged to the resource and data
flow requirements of a kerneddp.

Although the results in Figure 11 demonstrate that custom asynchronousrttowpipe-
lines have good performance, it is important to compare our results ventmmal processor
organizations. Figure 12 shows a comparison of custom asynchronous CtiPé® tivaditional
architectures, including a single-issue in-ordescpsso cony), a 2-way superscalar out-of-
order processor2way), and a 4-way superscalar procesgewg@y). The 2-way processor has 2
integer ALU’s, 1 branch unit that uses 2-bit branch prediction and a table 29d&fand 1
memory unit. The 4-way processor is similar to the 2-way processor, except itimizget
ALU’s and correspondingly larger issue and retirement bandwidth. The conventiohié&
tures are based on the SimpleScalar processor from the University of Wid@bnsin

Figure 12 plots clocks per instruction (CPI) for each benchmark. The measurements for the
conventional architectures were collected using the SimpleScalar toolkit. For the counterflow
pipelines, we calculategiffective CP{ECPI) using our tools. The formula for ECPI is:

ECPI = (latency/ECC)/instructionaunt

This formula nomalizes execution time by the effective clagicle ECC) length. We use an
ECC length of 8 as previously diszed.

Figure 12 gives insight into the performance of counterflow pipelines relativedermcom-
puter architectures. The figure shows that custom asynchronous counterfldinepipave
CPI's on par with modern 4-way superscalar processors. It is also our belief thkt €iRP
structures will lead to very fast effective clock cycle speeds, possibly fastetraditional



architectures (despite potential ECC penalties due to asynchronous implemerithgaifjer-

ences in CPI may be partly influenced by the use of a different instruction set auchitew
compiler for the conventional processors than what was used for the countediwepiwWe

did not have access to a simulator to collect CPI numbers for conventional architectures based
on the SPARC ISA. Although the instruction sets are different, the performance toeial rabt

be significantly infuenced byhis difference (we eamined the code generated baith the con-
ventional and CFP processors to ensure there minimal differences.)
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Figure 12: A comparison of the performance of conventional process orsto

counterflow pipelines. Conv is a single issue and in-order process or, 2-way is a
2-way superscalar processor, 4-way is a 4-way superscalar processor, and CFP
is a custom asynchronous CFP. The fi gure indicates that the effective CPI of an
asynchronous custom CFP is competitive with 4-way superscalar processors.

The CFP organizations in Figure 12 were derived using a simple customizatiespttuat
did not require evaluating complex design trade-offs, such as simultaneoudimstiecoding,
issue rules, instruction re-order buffer sizes, reservation table sizes, bus networkestetctu
All of these issues introduce significant complexity to the design of modern supersceds- pro
sors. Our work demonstrates that simple application-specific counterflow pipelintists are
able to achieve equivalent performance through the use of composable high-levabtiomel
elements. Furthermore, the advantages of asynchronous processors, suclpa@geloson-
sumption and design composability, make custom CFP’s attractive for embedeassys

5: Related work

In the last ten years, asynchronous microprocessors have gained much attention because of
their promise for design ease, high performance, and low cost. There have been several asyn-
chronous microprocessor proposals, including a design from the California Instititehoiol-
ogy [29], a decoupled access-execute microarchitecture from the University of Utah [25], and a
low-power implementation of the ARM architecture from Manchester University [9, 10].

Although the countdlow pipeline was proposed as an asynchronous orgamiezfor gen-
eral-purpose mioprocessors [27], there has also been a propossyf@ehronous vaion [22].
However, this work adds significant hardware structures to the original designgooggper-
formance on a wide variety of applications. In our work, we customize CFP’s to a single applica-
tion to get high performance without introducing new microarchiteeninancements.

There has also been much interest in automated design of application-specifatedtego-



cessors (ASIPs) because of the increasing importance of high-performangeickndrn-
around in the embedded systems market. ASIP techniques typically addressadprioblems:
instruction set and mioarchitecture synthesis. Instruction set synthesis attemplisctover
micro-operations in a program (or set of programs) that can be combineshteirtstructions
[15, 16]. The synthesized instruction set is optimized to meet design goals suchnasnmmd-
gram size and execution latency. Microarchitecture synthesis derives a micropracggsor
mentation from an application (or set of applications.) Many microarchitesyurthesis
systems use a co-processor strategy to synthesize custom logic for a portion oficatiappl
and to integrate the custom hardware with an embedded processor core [6, 13, 24]. Another
microarchitecture synthesis approach tailors a single processor to the resouresnestgsiof
the target application [4, 8]. Although instruction set and microarchitecjumesis can be
treated independently, many co-design systems unify themingla ramework [11].

Our current research focus is microarchitecture synthesis. We do not presently synthesize an
instruction set for an embedded application. Instead, wgtomize a counterflow pipeline
microarchitecture to an application using a standard RISC instruction set amdaitidor about
the data flow of the target application. Our roiarchitecture synthesis technique has the advan-
tage that the design space is well defined (although potentially very large), madasigitto
derive custom pipeline configurations that meeigitegoals.

6: Summary

The experimental results presented in this paper demonstrate that counterflomepipsdi
well-suited for automatic design of application-specific processors. The paper describes why
CFP’s are an ideal architecture for custom processors, and we present an effectivepénd
approach for customizing counterflow pipelines to an application. We alsotehbeounter-
flow pipelines handle speculative and out-of-order aen in a low-cost and elegant wtat
allows custom CFP’s to tefate control dependences and high-latency operations such as mem-
ory accesses. This work further demonstrates how asynchronous counfagidine imple-
mentations can lead to high performance. Finally, we show that custom CFP’s agliegeer
instruction measurements that are competitive with modern 4-way superscaéssprs.

This paper explores the potential of counterflow pipelines for application-specifjcated
processors. However, there are many unanswered questions about cugt@naiFwe are
continuing to study these structures. Our work is proceeding in severalafisacti

» Extending the original counterflow pipeline to handle more instruction levellgéam,
including a new microarchitecture proposal called “wide counterflow pipelinekj¢tw
are based oWLIW techniques;

» Reducing the hardware cost of custom pipelines by assigning multiple dependence graph
nodes to a single functional device;

» Applying aggressive ILP compiler optimizations such as software pipelining-and-i
version to statically expose more parallelism to thetsgsissystem.
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