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Abstract

Application-specific processor design is a promising approach for meeting the perfor-
mance and cost goals of a system. Application-specific processors are especially prom-
ising for embedded systems (e.g., digital cameras, cellular phones, etc.) where a small
increase in performance and decrease in cost can have a large impact on a product’s
viability. Sutherland, Sproull, and Molnar have proposed a new pipeline organization
called the Counterflow Pipeline (CFP). This paper evaluates CFP design alternatives
and shows that the CFP is an ideal architecture for fast, low-cost design of high-perfor-
mance processors customized for computation-intensive embedded applications. First,
we describe why CFP’s are particularly well-suited to realizing application-specific pro-
cessors. Second, we describe how a CFP tailored to an application can be constructed
automatically. Third, we present measurements that evaluate CFP design trade-offs and
show that CFP’s provide speculative and out-of-order execution, and register renaming
that is matched to an application.  Fourth, we show that asynchronous counterflow pipe-
lines achieve high-performance by reducing the average execution latency of instruc-
tions over synchronous implementations. Finally, we demonstrate that custom CFP’s
achieve cycles per instruction measurements that are competitive with 4-way supersca-
lar out-of-order processors at a potentially low design complexity.

1: Introduction

Application-specific processor design is a promising approach for improving the cost-perfor-
mance ratio of an application. Application-specific processors are especially useful for embed-
ded systems (e.g., automobile control systems, avionics, cellular phones, etc.) where a small
increase in performance and decrease in cost can have a large impact on a product’s viability. An
innovative computer organization called the Counterflow Pipeline (CFP), proposed by Sproull,
Sutherland, and Molnar [27], has several characteristics that make it an ideal target organization
for the synthesis of application-specific processors. The CFP has a simple and regular structure,
local control, high degree of modularity, asynchronous implementations, and inherent handling
of complex structures such as register renaming and speculative execution.

Modern instruction-level parallel (ILP) processors must be able to tolerate high-latency oper-
ations and the frequent presence of control transfer operations. As an example, the 4-way super-
scalar HP PA-8000 microprocessor [17] tolerates a cache miss penalty of 50 clock cycles, which
may cause the processor to stall for up to 200 instructions. To keep aggressive superscalar
designs busy requires large instruction windows and other structures (e.g., register rename buff-



ers, data prefetching support) to overcome high-latency operations and control dependences. In
the PA-8000, this is accomplished with a 56-entry instruction re-order buffer, data prefetch
instructions, and branch prediction and history tables.

The typical hardware structures for implementing out-of-order and speculative execution are
expensive; e.g., they consume a large portion of chip area and power budget, and most impor-
tantly for this study, they complicate microarchitecture design. In contrast, the counterflow pipe-
line simply and naturally implements out-of-order and speculative execution without requiring
hardware structures that require extensive study of design trade-offs. The combination of these
features allows the counterflow pipeline to achieve high performance at a potentially lower
design cost and quicker time to market than traditional processor organizations.

To get high performance, modern superscalar processors include multiple functional units for
exploiting instruction-level parallelism. The CFP has a simple and regular way to incorporate
multiple functional units into a design, which permits fast, low-cost customization of counter-
flow pipelines to an application’s resource and data flow requirements. Furthermore, the coun-
terflow pipeline may be implemented as an asychronous or a double-clocked (i.e., a synchronous
design where a pipeline stage takes multiple clock cycles to do an instruction sub-operation)
microarchitecture. In this paper, we show that this improves performance because average
instruction latency (due to finer operation granularity) is reduced versus synchronous CFP’s.

This paper is organized as follows. The first section has introductory material about our cus-
tom processor design strategy and the counterflow pipeline organization. The second section
describes several design advantages of CFP’s for automatic generation of application-specific
ILP-processors and the third section describes disadvantages of counterflow pipelines. The
fourth section contains an explanation of our pipeline customization technique and experimental
results that demonstrate the effectiveness of speculative and out-of-order execution and custom
asynchronous counterflow pipelines. The final section discusses related work and the fifth sec-
tion concludes the paper. 

1.1: Design strategy

Most high-performance embedded applications have two parts: a control and a computation-
intensive part. The computation part is typically a kernel loop that accounts for the majority of
execution time. Increasing the performance of the most frequently executed portion of an appli-
cation increases overall performance. Thus, synthesizing custom hardware for the computation-
intensive portion of an application may be an effective technique to increase performance. 

The type of applications we are considering need only a modest kernel speedup to effectively

1

1 .25

1 .5

1 .75

2

2 .25

2 .5

1 3 5 7 9 11 13 15

K e rn e l  sp e e d u p

O
ve

ra
ll 

sp
ee

du
p

Figure 1: Overall speed-up for JPEG



improve overall performance. For example, JPEG has a function j_rev_dct()  that accounts
for approximately 60% of total execution time. This function consists of applying a single loop
twice (to do the inverse discrete cosine transformation), so it is a good candidate for a custom
counterflow pipeline. Figure 1 shows a plot of Amdahl’s Law [14] for various speedup values of
j_rev_dct() . The figure shows that a small speedup of the kernel loop of 6 or 7 achieves most
of the overall speedup possible.

We use the data dependency graph of an application’s kernel to determine processor function-
ality and interconnection network. Processor functionality is determined from the type of opera-
tions in the graph and processor interconnection is determined by exploring the design space of
all possible interconnection networks.

There are two possible system architectures for a custom CFP. The first scheme has two pro-
cessors: one for executing the control portions of an application and the other, a counterflow
pipeline, for executing the kernel loop of an application. This scheme has the advantage that the
kernel processor can be highly optimized for executing the kernel loop to get optimal perfor-
mance. However, it has the disadvantage that support is needed to integrate the control and CFP
processors (e.g., interface logic, handling of live-in/out data, etc.) Such an architecture may also
have a high area cost. The second system architecture has a single CFP for executing both con-
trol and kernel code; this architecture has a potentially lower cost than a co-processor architec-
ture. However, care must be taken to avoid slowing down the control code when tailoring a CFP
to the kernel loop—the custom pipeline should have the functionality needed by both the kernel
and control code. Although we are currently evaluating both system architectures, we assume
the first scheme in this paper and generate a CFP optimized to an application’s kernel loop.

1.2: Counterflow pipelin

This section presents a brief overview of counterflow pipelines. Sproull, Sutherland, and Mol-
nar give a more detailed description of CFP’s [27]. The counterflow pipeline has two pipelines
flowing in opposite directions. One is the instruction pipeline. It carries instructions from an
instruction fetch stage to a register file stage. When an instruction issues, an instruction bundle is
formed that flows through the pipeline. The instruction bundle has space for the instruction
opcode, operand names, and operand values. The other pipeline is the results pipeline that con-
veys results from the register file to the instruction fetch stage. The instruction and results pipe-
lines interact: instructions copy values to and from the result pipe. When an instruction copies a
value from the results pipeline, it is called a garner operation, and when an instruction copies a
value to the results pipeline, it is called an update operation.

Pipelined functional units, called sidings, are connected to the pipeline through launch and
return stages. Launch stages issue instructions into functional units and return stages extract
results from functional units. Instructions may execute in either pipeline stages or functional
units. 

A memory unit connected to a CFP pipeline is shown in Figure 2. For example, load instruc-
tions are fetched and issued into the pipeline at the instr_fetch  stage. This stage decodes
instructions and determines which pipeline stage executes an instruction. A bundle is created
that holds the load’s memory address and destination register operands. The bundle flows
towards the mem_launch  stage where it is issued into the memory subsystem. 

When the memory unit reads a value, it inserts the value into the result pipeline at the
mem_return  stage. In the load example, when the load reaches the mem_return  stage, it
extracts its destination operand value from the memory unit. This value is copied to the destina-
tion register value in the load’s instruction bundle and inserted into the result pipe. A result bun-
dle is created whenever a value is inserted into the result pipeline. A result bundle has space for



the result’s name (i.e., register name) and value. Results from sidings or other pipeline devices
flow down the result pipe to the instr_fetch  stage. Whenever an instruction and a result bun-
dle meet in the pipeline, a comparison is done between the instruction operand names and the
result name. If a result name matches an operand name, its value is copied to the corresponding
operand value in the instruction bundle. That is, the instruction garners its source operands.
When instructions reach the reg_file  stage, their destination values are written back to the
register file and when results reach the instr_fetch  stage, they are discarded. In effect, the
register file stores results that have exited the pipe.

The interaction between instruction and result bundles are governed by rules that ensure
sequential execution semantics. There are four rules that control instructions: 1) instructions
must stay in sequential order; 2) an instruction must acquire its source operands prior to execut-
ing (called garnering); 3) an instruction inserts a copy of its destination register in the result
pipeline when it finishes executing (called updating); and 4) an unexecuted instruction may not
move past the last stage capable of executing it.

There are three other rules that ensure result values are current for their position in the pipe-
line and not values from previous operations with the same name. The rules are: 1) an instruction
copies a result’s value if a result register name matches one of its source operands; 2) a result
register matching an unexecuted instruction’s destination register is invalidated; and 3) a result
register matching an executed instruction’s destination is updated with the destination’s value.

Arbitration is required between stages so that instruction and result bundles do not pass each
other without a comparison made on their operand names. In Figure 2, the blocks between stages
depict arbitration logic. A final mechanism controls purging the pipeline on an exception. A poi-
son pill is inserted in the result pipeline whenever a fault is detected. The poison pill purges both
pipelines of all instruction and result bundles. This purge mechanism can also be used for specu-
lative execution when a branch target is mispredicted. 

As Figure 2 shows, stages and functional units are connected in a very simple and regular
way. The connections correspond to bundled interfaces of micropipelines. The behavior of a
stage is dependent only on the adjacent stage in the pipeline, which permits local control of
stages and avoids the complexity of conventional pipeline synchronization.

Figure 2: An example counterflow pi peline
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2: CFP design advantages

Counterflow pipelines have several characteristics that make them suitable for custom ILP-
processors: a simple and regular structure, local control, modularity, and asynchronous imple-
mentations. These characteristics can be used to achieve higher performance with custom
designs than with general-purpose ones.

2.1: Speculative execution

Traditional dynamically scheduled ILP microarchitectures use branch prediction and specula-
tive execution to keep execution pipelines full [18, 26]. This reduces the impact of control
dependences and exposes more instruction-level parallelism to the hardware. 

The CFP handles speculative execution in an elegant and simple way. The outcome of
branches is predicted at the beginning of the pipeline during the insertion of new instruction bun-
dles. Instructions following a branch are speculatively fetched and inserted into the pipeline.
Branch predictions are resolved by a branch resolution stage in the pipeline. When the branch
resolution stage detects a misprediction, it inserts a poison pill into the results pipeline. The poi-
son pill kills all instructions it meets while flowing down the result pipeline, and when it reaches
the instruction fetch stage, the program counter is changed to the correct branch address carried
by the poison pill. The degree of speculative execution is determined by the distance between
the branch resolution stage and instruction fetch stage.

2.2: Out-of-order execution

An important issue for instruction-level parallel micro-architectures is how to tolerate high-
latency operations; especially, memory accesses. Keeping an aggressive ILP-processor busy
during memory accesses is becoming difficult as processor widths and memory latencies (rela-
tive to processor speed) increase. Indeed, some current superscalar processors have data cache
miss penalties of up to 50 clock cycles, and future implementations are likely to see penalties in
excess of 100 cycles [18, 26].

Superscalar processors use out-of-order execution to keep functional units busy during high-
latency operations. To achieve high performance with out-of-order execution requires reserva-
tion stations and re-order buffers with register renaming [14, 20]. In a conventional microarchi-
tecture, these structures introduce much complexity; however, the CFP inherently handles
speculative execution and register renaming in a very simple way. 

In the CFP, instructions are kept in order of issue, but they may execute out of order. Two
instructions can be executing in different stages of the pipeline at the same time as long as there
is no dependency between them. There is no order imposed on which instruction finishes first.
Sequential execution semantics are preserved by writing results back to the register file in
instruction issue order (and by register renaming in the result pipeline.) To enable out-of-order
execution, the results pipeline of the CFP implements a type of register renaming. There can be
multiple values with the same register name in different places of the result pipeline at the same
time. This has the same effect as register renaming: instructions with anti- and output dependen-
cies may execute concurrently with their dependent instructions. This type of out-of-order exe-
cution and register renaming is an effective way to hide memory access latency.

2.3: Asynchronous custom pipelines

Local control and the simple and regular structures of counterflow pipelines makes the orga-



nization very modular. This means that CFP designs can be easily modified for different applica-
tion requirements and design goals. For example, modules that have been optimized differently
(e.g., for speed, area, or power) may be interchanged as long as they maintain the same commu-
nication interface.

Asynchronous CFP’s have the advantage that computation proceeds at average-case speed
instead of worst-case speed in synchronous designs [12]. The combination of local control, the
absence of global signals, and asynchronous implementations leads to short communication dis-
tances between functional devices in CFP’s. This suggests that counterflow pipelines may have
very high performance, especially when tailored to an application’s resource and data flow
requirements. Although counterflow pipelines may be appropriate for general-purpose proces-
sors [19, 22, 27], our research focuses on how to construct custom ILP-processors for embedded
systems. 

3: CFP design disadvantages

To understand the trade-offs associated with counterflow pipelines, it is useful to examine
some of the disadvantages of these structures. The first disadvantage is that the CFP requires
arbitration between adjacent pipeline stages. Because the arbiter controls the advancement of
results and instructions in the pipeline, it should be made as fast as possible. In practice, it has
proven difficult to build fast (and correct) CFP arbiters and control circuits because of race con-
ditions, circuit hazards, and handshaking, although some designs have been proposed [21].

A second disadvantage is that enforcing the pipeline matching rules may be expensive. The
matching rules require examining an instruction’s local state (e.g., whether it has been killed,
launched, executed, etc.) and comparing an instruction’s operands to a result bundle (the action
associated with the comparison outcome also must be done.) Enforcing the matching rules can
become a performance bottleneck because it affects the speed at which results are sent to their
consumer instructions. However, careful instruction scheduling by a compiler and arrangement
of pipeline stages can reduce the performance impact of the matching rules.

A final disadvantage is that CFP’s may use more chip area than traditional architectures. This
is especially true for asynchronous designs because control signals are needed to synchronize
computational elements (i.e., request and acknowledge signals) and extra logic is needed to
ensure glitch-free circuits [5]. Also contributing to CFP chip area is the width of pipeline regis-
ters. These registers are very wide since they hold instantiated instruction and result bundles in
each pipeline stage. An approximation for the width of an instruction bundle register is:

(nsrcs + ndests) × (wreg + wspec + wrflags) + wop + wflags

where nsrcs is the number of source operands (e.g. 2), ndests is the number of destination oper-
ands (e.g., 1), wreg is the width of a register value (e.g., 32), wspec is the width of a register name
(e.g., 5), wrflags is the width of result flags (e.g., 2 for valid and garnered bits), wop is the width of
a decoded opcode (e.g., approximately 10 for a 12 stage pipeline), and wflags is the width of sta-
tus flags (e.g., 2 for instruction killed and executed bits.) As an example, a 32-bit triadic instruc-
tion requires a bundle width of: 

(nsrcs + ndests) × (wreg + wspec) = 3 × (32 + 5) = 111 bits

for just its source and destination operands. An approximation for the width of result registers is:

nresult × (wreg + wspec + wrflags)

where nresult is the number of individual results in a result bundle. The minimum value for nresult
is ndests and a reasonable value is nsrcs, which allows a single result bundle to carry all the
sources necessary for an instruction.



High-performance CFP’s need two instruction and result registers per pipeline stage to ensure
maximum throughput [27], doubling the cost of pipeline registers. The point-to-point connec-
tions between pipeline stages are also very wide since they transmit instantiated instructions and
results between pipeline registers. Finally, multiple comparators are needed in each pipeline
stage to enforce the matching rules. Although each of these comparators is small (their size is
wspec), a CFP design can have:

(nsrcs + ndests) × nresult 

comparators per stage. For triadic instruction sets with wspec = 5 and nresult = 2, this is approxi-
mately equivalent to one 32-bit comparator per stage (3 × 2 × 5 = 30 bits.) Although the area cost
of CFP’s is high, this concern is becoming less important with the advent of 100+ million tran-
sistor chips. Indeed, time to market is the most important issue in today’s embedded systems.
Thus, an architecture (such as the CFP) that is well suited for quick turn-around design is very
attractive despite a potentially high area cost.

4: Experimental result

In this section we show how to construct counterflow pipelines automatically using an appli-
cation’s data dependency graph. We also demonstrate that the counterflow pipeline’s elegant
mechanisms for speculative and out-of-order execution are effective, and that asynchronous cus-
tom CFP organizations can significantly improve an application’s performance.

4.1: Methodology

The goal of our present work is to see how far the counterflow pipeline in its original form
can be pushed to get good performance in an application-specific setting. To that end, the exper-
iments in this paper use CFP’s customized to the resource and data flow requirements of bench-
mark applications. The customization process operates at the architectural-level on pre-designed
functional devices such as pipeline stages, register files, and functional sidings.

The design space of counterflow pipelines is defined by processor functionality and topology.
Processor functionality is the type and number of computational elements in a pipeline and
topology is the interconnection of those elements. In our work, processor functionality is charac-
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Figure 3: The workflow of the customization process. The k ernel loop is
optimized by vpo  to serve as a specification for a custom counterflow
pipeline determined by cfpsyn . The custom CFP is simulated and analyzed
by cfpsim .



terized by an user-supplied database of computational elements that indicates device type (siding
or stage) and semantics (as instruction opcodes) for each database entry.

CFP topology is determined by the order of pipeline stages because CFP functional devices
are interconnected via stages. Thus, given what functional devices a CFP contains, the topology
space is all combinations of pipeline stages, excluding some combinations that do not make
sense (e.g., placing a siding’s return stage before its launch stage.)

Figure 3 is a diagram of the customization process. The customization system accepts a ker-
nel loop (in C) as an input to the code improve vpo [1], which transforms the loop using classic
optimizations such as strength reduction, induction variable elimination, global register alloca-
tion, loop invariant code motion, etc. The optimized instructions are the input to the synthesis
phasecfpsyn, which selects and instantiates computational devices from the design database for
each kernel loop operation. It also determines the processor interconnection network. The syn-
thesis step emits a description of the custom pipeline that is used by the counterflow pipeline
simulator, cfpsim, to collect performance statistics and a program execution trace.

Customization technique: Although we have studied search-based pipeline customization tech-
niques [3], we use an approach in this paper that does not rely on searching a design space. This
approach uses a benchmark’s instruction dependency graph to determine processor functionality
and interconnection network. The customization process has two steps:

1. Allocate: Every low latency operation in the instruction dependency graph is assigned an
unique pipeline stage and every high latency operation is assigned a (possibly shared)
functional siding.

2. Arrange: The instruction dependency graph is scheduled using priority-based list sched-
uling [20] and the pipeline stages determined by step 1 are arranged in reverse order of
the instruction schedule.

Step 1 assigns high latency operations to functional sidings to move their computation out of
the main pipeline. This avoids stalling subsequent instructions that may otherwise advance in the
pipeline and execute. Low latency operations are assigned unique pipeline stages so that they
may possibly execute independently of one another (assuming no dependences between two
instructions.) Although we do not currently cast multiple low latency operations onto a single
stage (e.g., a chain of two additions could use the same stage), we intend to address cost reduc-
tion in the future. In step 2, pipeline stages are placed in the reverse order of the instruction
schedule to ensure that successive loop iterations overlap in the pipeline. Arranging stages in
reverse order lets the pipeline speculatively issue one loop iteration while another is finishing.

An example of the customization process is shown in Figure 4. The dependency graph in (a)
has two addition and two multiplication instructions. The first customization step generated two
addition stages and one multiplication siding.

The second customization step arranges pipeline stages. Using path latency as scheduling pri-

Figure 4: An example of pipeline customizing.
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ority, local instruction scheduling produces the instruction sequence in (b) for the dependency
graph. The pipeline stage order is derived from the reverse order of the schedule, as shown in
(c). Thus, the first stage after instruction fetch is add1  followed by mul_launch  and add2 . The
second multiplication instruction is skipped since it shares a siding with the first multiplication. 

A final issue is where to return multiplication results into the main pipeline. We use the heu-
ristic that the number of stages inclusively between launch and return equals the siding’s pipe-
line depth. This ensures that the siding can be fully utilized. In this example, if the multiplication
siding has a depth of 3, then mul_return  is placed two stages after mul_launch .

The technique described above uses the instruction schedule generated by the compiler as a
specification for a counterflow pipeline organization. The compiler uses local instruction sched-
uling to separate the definition and use of register values based on the latency of the defining
operation. In effect, this keeps producer and consumer instructions relatively close to one
another, while allowing independent instructions to be scheduled in the delay between the pro-
ducer and consumer

This closely matches what happens in a counterflow pipeline during program execution. An
execution trace can be thought of as a very long counterflow pipeline—instructions march
through time producing values that are consumed by following instructions; precisely the same
behavior exhibited by the counterflow pipeline. This suggests that arranging pipeline stages in
the order of the instruction schedule (which reduces the impact of operation latency) will give
good performance. Using small dependence graphs, we have found that this technique generates
pipelines that are within 7–19% of the optimal pipeline arrangement. We use the above tech-
nique because it is able to quickly and easily generate pipeline organizations for reasonably
complex benchmarks. More details about the interaction of counterflow pipeline stage arrange-
ment and instruction scheduling can be found in [3].

Pipeline simulation: We have built a behavioral microarchitecture simulator for asynchronous
counterflow pipelines. The simulator is highly reconfigurable to permit microarchitecture exper-
imentation, and it generates a detailed program execution trace that is post-processed by a sepa-
rate analysis tool to collect performance statistics.

To model asynchronous counterflow pipelines our simulator varies computational latencies.
Table 1 shows the latencies we use in our simulation models. The latencies in the table are
expressed relative to how long it takes an instruction or result to move between adjacent pipeline
stages. These latencies were originally supplied by Sun Microsystems based on their CFP work
[28]. Using the base values from Table 1, we derive other pipeline latencies. For example, a sim-
ple instruction operation such as addition takes 5 time units. High latency operations are scaled
relative to low latency ones, so an operation such as multiplication—assuming it is four times
slower than addition—takes 20 time units.

Our timing assumptions do not account for overhead due to asynchronous protocol signalling
(i.e., two-phase vs. four-phase signalling.) Such low-level implementation detail should not
affect the architectural design conclusions we draw in this paper. Furthermore, we believe it is
difficult to make timing evaluations about protocol signalling without a low-level implementa-

Operation Latency
Stage copy 1 time unit

Garner, kill, update 3 time units
Return, launch 3 time units

Instruction operation 5 time units

Table 1: Computational latencies



tion. Under our simulation assumptions, our asynchronous counterflow pipelines are equivalent
to double-clocked synchronous CFP implementations [27], where a device takes multiple clock
cycles to do a single pipeline operation (e.g., garner or kill.) Indeed, this makes our work also
applicable to synchronous CFP implementations. In the future, we will investigate low-level
implementation trade-offs and their impact on architecture design.

Evaluation:  The performance statistics in this paper were collected using several common
benchmarks. The benchmarks have three Livermore loops kernel 1, kernel 5, and kernel 12),
vector dot product (dotprod), the finite impulse response filter (fir ), memory copy (memcpy),
and matrix multiplication (matmult). Some of our benchmark kernels were extracted from large
applications. These loops include the 2-D discrete cosine transformation (dct) used in image
compression and an implementation of the Floyd-Steinberg image dithering algorithm (dither).
We also extracted the vector computation a = bc mod d from RSA encryption (modexp). The
benchmarks were compiled using the optimizing C compiler vpcc-vpo [1] for the SPARC archi-
tecture. 

4.2: Speculative execution

The location of branch resolution in a counterflow pipeline determines the amount of specula-
tive execution. If branches are resolved early in the pipeline, then very little speculative execu-
tion is possible and if branches are resolved late in the pipeline, then much speculative execution
is possible. However, late branch resolution impacts the misprediction penalty, which may lead
to overspeculation and an adverse effect on performance. 

Deep counterflow pipelines require accurate branch prediction. Our CFP designs use dynamic
branch prediction to predict branches as they are issued into the pipeline. The program counter is
maintained in the instruction fetch stage and updated to the appropriate branch target address
whenever a branch is predicted.

The CFP designs we use tag control transfer instruction bundles with their taken and not-
taken target addresses. For most branch instructions, the taken address is encoded directly in the
instruction (i.e., the taken target address is PC-relative or absolute.) The not-taken address is the
address of the instruction following the branch. Both target addresses are needed by the branch
resolution stage so that it is able to transmit the correct target address on a branch misprediction
to the instruction fetch stage. When the branch stage detects a mispredicted branch, it inserts a
poison pill into the results pipeline that contains the address of the correct branch target address.
The poison pill flows to the instruction fetch stage carrying the correct target address, and when
it reaches instruction fetch, the program counter is updated with the target address.

Figure 5 shows the effect of branch prediction accuracy on performance for a custom asyn-
chronous CFP for dotprod. The graph plots performance using several branch prediction rates
and branch resolution stage placements. The prediction rates were varied from 50% accuracy
(i.e., 50 of 100 branches were predicted correctly) to 99% accuracy and the position of branch
resolution was varied from the first pipeline stage to the last pipeline stage. We use a statistical
method to evaluate branch prediction because we are interested in determining the impact of dif-
ferent prediction rates on the arrangement of pipeline stages. From statistical experiments, we
can identify the needed prediction accuracy and select a branch prediction scheme that achieves
that accuracy. The data in Figure 5 was collected using a custom counterflow pipeline and
instruction schedule for dotprod determined by our design methodology. The instruction sched-
ule was not changed based on the position of branch resolution.

The figure verifies the intuitive notion that prediction accuracy must increase as pipeline
length increases to attain good performance. The figure also shows that performance levels off at



branch position 5. This is the point at which overspeculating instructions begins to impact per-
formance. It is also the position that places the branch resolution stage adjacent to the stage that
determines the loop exit condition (i.e., a comparison stage.) This is typically the best position
for branch resolution since there is no need to speculatively execute instructions beyond the
point at which branch outcomes become known.

The graph in Figure 6 shows the average branch misprediction penalty fodotprod. For coun-
terflow pipelines, the misprediction penalty is the time from when a mispredicted branch is
resolved until the instruction fetch stage begins fetching from the correct branch target. 

As expected, the graph shows that the misprediction penalty increases as the distance between
instruction fetch and branch resolution increases. However, the branch prediction penalty differs
at several branch positions depending on prediction accuracy (e.g., positions 5 through 10.) For
example, when branch predictions are resolved at position 8, the misprediction penalty varies
according to prediction rate. In a traditional microprocessor organization, the misprediction pen-
alty is static and would be the same regardless of prediction accuracy (e.g., the cluster of bars for
position 8 would have the same values.)

The misprediction penalty varies dynamically in a CFP according to prediction accuracy
because the penalty is sensitive to activity in the pipeline. The reason for the misprediction pen-
alty variance is that a branch’s target instruction blocks have different instructions, which affect
the pipeline differently. For example, suppose one branch target has an instruction that stalls in
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the pipeline during a garner operation. This blocks results, including poison pills, from flowing
through the stalled pipeline stage until the garner operation completes. However, the opposite
branch target may not have this behavior. In this case, results would flow directly through the
pipeline.

Although the pipeline fodotprod is long (12 stages), the misprediction penalties in Figure 6
are small enough that speculative execution is effective. This has also proven true for other
benchmarks. For example, matmult has 26 stages and the branch misprediction penalty does not
impact performance so significantly that the position of branch resolution is tightly constrained
(i.e, it does not have to be placed near instruction fetch to achieve reasonable misprediction pen-
alties.) Indeed, like dotprod, the best position for branch resolution in matmult is near compari-
son operations.

Figure 7 shows an alternative CFP branch architecture that reduces the misprediction penalty
for pipelines with late branch resolution. This architecture uses a bypass network to forward poi-
son pills to stages that are before the branch. The figure shows two paths that are added to the
basic counterflow pipeline. The ‘‘kill wire’’ signals kill event to a stage, indicating a branch
misprediction. When a stage receives a kill event, it marks the instruction in the stage killed (a
stage that does not have an instruction ignores the event) in a way similar to the standard
scheme. The second path in the figure sends the correct target address to the instruction fetch
stage on a branch misprediction. The instruction fetch stage updates the program counter and
begins fetching from the new target. 

This alternative scheme has the potential to reduce the branch penalty dramatically over the
original approach because it ‘‘instantly signals’’ a misprediction (ignoring circuit delays.) The
original scheme propagates a misprediction signal over time through the use of a poison pill.

Figure 8 illustrates the effect of forwarding poison pills. The figure shows speedup for a for-
warding scheme over a standard counterflow pipeline for the kernel1 benchmark. The figure
indicates that for a high misprediction rate and late branch resolution, forwarding can have a sig-
nificant impact on performance. For a misprediction rate of 50% and a branch position of 11,
performance is improved by 17% over a standard CFP. However, at low misprediction rates, the
forwarding scheme does not significantly improve performance. For a prediction accuracy of
99%, the performance improvement is essentially non-existent, except for a branch position of
11. In this case, the improvement is less than 1%. The overall improvement, however, depends
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Figure 7: A CFP branch architecture with bypass paths for forwarding poi son pill s
to reduce the branch misprediction penalty. 



on branch frequency. The other benchmarks show trends similar to kernel1 with an average max-
imum speedup of 1.19 for a 50% misprediction accuracy and late branch resolution.

Despite the performance potential of forwarding poison pills, we believe that such a scheme
is unnecessary for counterflow pipelines. Instead, it is better to implement a highly accurate
branch prediction scheme such as correlating prediction, which achieves very high accuracies
(especially on loops.) Furthermore, the introduction of global signals for forwarding poison pills
makes processor design significantly more complex—the very problem we are trying to avoid.
This may prove especially difficult for asynchronous implementations and limit the design
advantages of device regularity and simplicity.

Figures 5 and 6 demonstrate that speculative execution in counterflow pipelines is one effec-
tive way of achieving high performance in an application without additional hardware such as
history buffers and complex control mechanisms.

4.3: Out-of-order execution

The counterflow pipeline uses out-of-order execution to tolerate high-latency operations, and
as an example of this, we consider memory accesses in this section. In our custom CFPs, mem-
ory accesses are launched early in the pipeline into an attached memory siding. This moves
memory accesses out of the main pipeline so that subsequent instructions can continue to flow
through the pipeline to a stage where they may execute. This serves the same purpose as an
instruction re-order buffer, allowing independent instructions to begin executing before a mem-
ory access completes.

Figure 9 demonstrates how the counterflow pipeline tolerates increasing memory latency for
five benchmarks. In this experiment, a custom pipeline was generated for each benchmark using
our customization methodology. The initial pipeline for each benchmark has a non-pipelined
memory siding and a latency of 5. We assume that the memory siding has no data cache (i.e., all
memory accesses cause a cache miss.) In this experiment, we pipeline the memory siding and
vary the pipeline depth from 2 to 10 stages. Thus, memory access latency varies from 10 to 50
time units. The instruction schedule and main pipeline configuration are not changed in this
experiment; only the memory siding pipeline depth is changed.

The graph in Figure 9 shows the percentage of memory latency tolerated by the custom pipe-
lines for the five benchmarks and nine different memory siding pipeline depths (the columns in
the figure are arranged left to right with a depth of 2 to 10 for each benchmark.) The percentage
of latency tolerated is the amount of total memory latency that is hidden by the application. The

Figure 8: The speedup of poison pill forwarding versus the original CFP branch
misprediction purge scheme. 
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percentage is calculated using the equation:

The term depth is the length of the memory pipeline siding, latency is the stage latency of a
memory pipeline stage, and accesses is the total number of dynamic memory accesses. The term
observed is the execution latency for a particular benchmark run and baseline is the execution
latency for each benchmark’s initial pipeline configuration. The equation calculates memory
latency tolerance by a particular pipeline when depth is varied.

Figure 9 shows that a large portion of memory latency is tolerated for the benchmarks. The
high tolerance is due to the memory siding moving memory accesses out of the main pipeline.
This allows subsequent instructions to be inserted into the pipeline and begin execution. The
memory latency is also partly hidden by the increase in the number of memory accesses that can
be “in-flight” in the memory siding. As siding pipeline depth is increased, a siding can accom-
modate more accesses, which reduces resource contention for the siding.

The percentage of latency toleration in Figure 9 decreases as memory latency increases
because there is not enough instruction parallelism in the loops to cover the change in latency. To
increase instruction-level parallelism, program transformations such as software pipelining, if-
conversion, etc. [23] could be applied and the resulting instruction dependency graph could be
used as the basis for pipeline customization.

The experiment in Figure 9 changes only memory latency by increasing the siding’s pipeline
depth. We do not re-schedule or re-customize a benchmark’s instruction dependency graph or
pipeline. Although this is not important for these benchmarks because they are small, it may be
profitable to change the instruction schedule and pipeline configuration for larger benchmarks
that have many memory accesses per iteration. 

The pipeline configurations used in Figure 9 have separate stages for initiating load and store
instructions: one stage handles loads and another handles stores. This permits customizing pipe-
line stage order to the relative position of loads and stores in the instruction dependency graph.
In most graphs, load operations occur early in the graph and store operations occur late and are
typically dependent on significant computation. By separating memory operations into distinct
stages, loads can be launched early in the pipeline and stores can be launched late after they have

1 depth latency× accesses×
observed baseline–

-------------------------------------------------------------------------------------–

Figure 9: Percentage of memory latency tolerated when increasing memory
pipeline siding depth. For each benchmark, the columns vary left to right from a
siding depth of 2 to a depth of 10.
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garnered their source operands. In a pipeline configuration that combines load and store launch
stages into a single stage, stores may stall waiting for their source operands early in the pipeline.
This can degrade performance because instructions following the store can not reach their exe-
cution stage.

Figure 10 shows the speedup obtained from separate load and store launch stages over a com-
bined load and store launch stage (dotprod is not shown because it does not have a store instruc-
tion in its loop.) Th kernel 1, kernel 5, dither, and memcpy benchmarks show a significant
improvement in performance. For fir, matmult, kernel 12, modexp, and dct, it appears that the
store instruction in the combined stage arrangement acquires its source operand at about the
same point as it does in the separate load and store stage arrangement. This means there is little
advantage to having a separate stage for a store. 

Separate load and store launch stages creates a problem for memory addresses that alias the
same location. The hardware must ensure that a load aliasing a memory address written to by a
store does not launch before the store completes. In our current system, if we identify that there
are no memory aliases between loads and stores in a kernel loop, we use separate load and store
stages. When we can not determine that there are no memory aliases, we use a single stage to
launch loads and stores. 

In a single processor scheme (such as that outlined in Section 1.1), it is likely that the control
code has memory aliases, which requires a unified load/store scheme. However, in a system
architecture that uses a CFP as a kernel co-processor (i.e., a co-processor for executing the ker-
nel loop), it will be easier to separate loads and stores into individual stages by transforming the
kernel loop to eliminate aliases.

A final issue with a split load/store scheme is how to avoid updating memory (i.e., by a store)
until branch prediction outcomes are known. There are two straightforward approaches to solv-
ing this problem. The first is the simplest: it constrains the position of the store stage to occur
after the branch. This ensures that the store will be killed before committing its destination value
to memory on a branch misprediction. The second scheme has a store commit stage at the end of
the pipeline [27]. In the absence of memory aliases (i.e., having separate load and store launch
stages), this is equivalent to the first approach. However, when memory aliases are present and a
single store/load launch stage is included in the pipeline, a commit stage is needed to indicate

Figure 10: Benchmark speedup for separate load and store stages versus a
combined memory launch stage.
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when memory can be updated. A store queue is also needed in the memory unit to check for
aliases and to buffer in-flight stores until they are safe to commit (which also allows speculative
loads of uncommitted addresses.) In such an approach, whenever a store passes through the
commit stage, a signal is sent to the store queue to write the last queue element to memory. In the
experiments presented in Figure 10, we use the first approach and constrain the store to occur
after the branch stage (it is placed immediately after branch resolution.)

Based on the experiments in this section, we conclude that functional sidings are an effective
means for overlapping the execution of high latency operations with other processing in the
pipeline. Indeed, this type of out-of-order execution is especially attractive because it does not
require hardware structures such as instruction re-order buffers and register rename tables.

4.4: Asynchronous custom pipelines

Counterflow pipelines can be implemented as synchronous and asynchronous microarchitec-
tures. An asynchronous implementation has the advantage that micro-operations can be sepa-
rated into several lightweight functions. For example, a synchronous CFP must be able to garner
source operands and execute an instruction in a single cycle. This has the disadvantage that an
instruction will see the worst case cycle time regardless of whether an instruction only garners a
source operand. In an asynchronous implementation (or a double-clocked implementation),
micro-operations can be separated into distinct phases and an instruction can be advanced out of
a pipeline stage as soon as possible. For example, if an instruction only needs to pass through a
pipeline stage, it can proceed directly through the stage very quickly. In a synchronous design, it
would take a full cycle for the instruction to move through the stage.

Figure 11 shows the speedup of custom asynchronous CFP’s over a general-purpose synchro-
nous CFP. The general-purpose pipeline has functional sidings for integer operations, memory
operations, and multiplication. The custom pipelines are tailored to the data dependency graph
using our customization technique. 

The figure indicates that asynchronous custom pipelines achieve a speedup of 4 to nearly 8
times over a synchronous general-purpose pipeline with the average being 4.4. The speedup can
be attributed to three reasons. First, the custom pipelines are tailored to the resource require-
ments of the graphs, which eliminates resource contention. Second, the custom pipelines have

Figure 11: Speedup of custom asynchronous CFPs over a gen eral-purpose
synchronous CFP.
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their stages arranged to minimize the latency of conveying source operands. Finally, the asyn-
chronous pipelines achieve average case execution time. That is, the asynchronous pipelines bet-
ter overlap pipeline operations because they have a small operation granularity (as described
below.) We do not currently use any techniques to shorten the actual execution latency of an
operation (e.g., short-circuiting carry propogation in an asynchronous ripple-carry adder.)

The difference in performance between the asynchronous custom pipelines and the synchro-
nous general-purpose pipeline comes partly from the difference in the way they handle pipeline
operations. The synchronous pipeline takes a full cycle to complete all operations needed by an
instruction in a pipeline stage regardless of whether an instruction only needs part of a cycle. For
example in a synchronous CFP implementation, if an instruction only garners a source operand
in a pipeline stage, it is held in the stage for the full cycle. In an asynchronous pipeline, the
instruction would be allowed to proceed as soon as the garner operation completes.

For our simulations, garnering a source operand takes 3 time units and executing an instruc-
tion takes 5 time units. This implies that the clock cycle length in the synchronous pipeline is 8
time units. Thus, a garner operation in the asynchronous pipeline takes 3/8 of the time that a syn-
chronous CFP takes. Asynchronous custom pipelines take advantage of micro-operation paral-
lelism to improve performance.

Asynchronous CFP implementations are able to exploit micro-operation parallelism because
they have a smaller operation granularity than synchronous pipelines. The counterflow pipeline
has four types of micro-operations: compar , launch, return, and execut. The compare opera-
tion corresponds to garnering source operands, updating or killing destination registers, and han-
dling poison pills. The launch and return operations correspond to initiating a pipeline siding
operation and returning a result from a siding. The execute operation corresponds to executing
an instruction (whether in a siding or in a pipeline stage.) For example, an instruction that exe-
cutes in a pipeline siding does all four micro-operations. It first garners its source operands and
then launches, executes, and returns a result

The results in Figure 11 show that custom asynchronous counterflow pipelines achieve higher
performance than synchronous pipelines. This performance improvement is impressive consid-
ering how easily and quickly counterflow pipelines can be customized to the resource and data
flow requirements of a kernel loop. 

Although the results in Figure 11 demonstrate that custom asynchronous counterflow pipe-
lines have good performance, it is important to compare our results to conventional processor
organizations. Figure 12 shows a comparison of custom asynchronous CFP’s to three traditional
architectures, including a single-issue in-order processo conv), a 2-way superscalar out-of-
order processor (2-way), and a 4-way superscalar processor (4-way). The 2-way processor has 2
integer ALU’s, 1 branch unit that uses 2-bit branch prediction and a table size of 2048, and 1
memory unit. The 4-way processor is similar to the 2-way processor, except it has 4 integer
ALU’s and correspondingly larger issue and retirement bandwidth. The conventional architec-
tures are based on the SimpleScalar processor from the University of Wisconsin [2].

Figure 12 plots clocks per instruction (CPI) for each benchmark. The measurements for the
conventional architectures were collected using the SimpleScalar toolkit. For the counterflow
pipelines, we calculated effective CPI (ECPI) using our tools. The formula for ECPI is: 

ECPI = (latency/ECC)/instruction count.

This formula normalizes execution time by the effective clock cycle (ECC) length. We use an
ECC length of 8 as previously discussed.

Figure 12 gives insight into the performance of counterflow pipelines relative to modern com-
puter architectures. The figure shows that custom asynchronous counterflow pipelines have
CPI’s on par with modern 4-way superscalar processors. It is also our belief that simple CFP
structures will lead to very fast effective clock cycle speeds, possibly faster than traditional



architectures (despite potential ECC penalties due to asynchronous implementation.) The differ-
ences in CPI may be partly influenced by the use of a different instruction set architecture and
compiler for the conventional processors than what was used for the counterflow pipeline. We
did not have access to a simulator to collect CPI numbers for conventional architectures based
on the SPARC ISA. Although the instruction sets are different, the performance trend should not
be significantly influenced by this difference (we examined the code generated for both the con-
ventional and CFP processors to ensure there were minimal differences.)

The CFP organizations in Figure 12 were derived using a simple customization process that
did not require evaluating complex design trade-offs, such as simultaneous instruction decoding,
issue rules, instruction re-order buffer sizes, reservation table sizes, bus network structure, etc.
All of these issues introduce significant complexity to the design of modern superscalar proces-
sors. Our work demonstrates that simple application-specific counterflow pipeline structures are
able to achieve equivalent performance through the use of composable high-level computational
elements. Furthermore, the advantages of asynchronous processors, such as low power con-
sumption and design composability, make custom CFP’s attractive for embedded systems.

5: Related work

In the last ten years, asynchronous microprocessors have gained much attention because of
their promise for design ease, high performance, and low cost. There have been several asyn-
chronous microprocessor proposals, including a design from the California Institute of Technol-
ogy [29], a decoupled access-execute microarchitecture from the University of Utah [25], and a
low-power implementation of the ARM architecture from Manchester University [9, 10]. 

Although the counterflow pipeline was proposed as an asynchronous organization for gen-
eral-purpose microprocessors [27], there has also been a proposal for synchronous version [22].
However, this work adds significant hardware structures to the original design to get good per-
formance on a wide variety of applications. In our work, we customize CFP’s to a single applica-
tion to get high performance without introducing new microarchitecture enhancements.

There has also been much interest in automated design of application-specific integrated pro-

Figure 12: A comparison of the performance of conventional process ors to
counterflow pipelines. Conv  is a single issue and in-order process or, 2-way  is a
2-way superscalar processor, 4-way is a 4-way superscalar processor, and CFP
is a custom asynchronous CFP. The fi gure indicates that the effective CPI of an
asynchronous custom CFP is competitive with 4-way superscalar processors.
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cessors (ASIPs) because of the increasing importance of high-performance and quick turn-
around in the embedded systems market. ASIP techniques typically address two broad problems:
instruction set and microarchitecture synthesis. Instruction set synthesis attempts to discover
micro-operations in a program (or set of programs) that can be combined to create instructions
[15, 16]. The synthesized instruction set is optimized to meet design goals such as minimum pro-
gram size and execution latency. Microarchitecture synthesis derives a microprocessor imple-
mentation from an application (or set of applications.) Many microarchitecture synthesis
systems use a co-processor strategy to synthesize custom logic for a portion of an application
and to integrate the custom hardware with an embedded processor core [6, 13, 24]. Another
microarchitecture synthesis approach tailors a single processor to the resource requirements of
the target application [4, 8]. Although instruction set and microarchitecture synthesis can be
treated independently, many co-design systems unify them in a single framework [11].

Our current research focus is microarchitecture synthesis. We do not presently synthesize an
instruction set for an embedded application. Instead, we customize a counterflow pipeline
microarchitecture to an application using a standard RISC instruction set and information about
the data flow of the target application. Our micro-architecture synthesis technique has the advan-
tage that the design space is well defined (although potentially very large), making it easier to
derive custom pipeline configurations that meet design goals.

6: Summary

The experimental results presented in this paper demonstrate that counterflow pipelines are
well-suited for automatic design of application-specific processors. The paper describes why
CFP’s are an ideal architecture for custom processors, and we present an effective and simple
approach for customizing counterflow pipelines to an application. We also show that counter-
flow pipelines handle speculative and out-of-order execution in a low-cost and elegant way that
allows custom CFP’s to tolerate control dependences and high-latency operations such as mem-
ory accesses. This work further demonstrates how asynchronous counterflow pipeline imple-
mentations can lead to high performance. Finally, we show that custom CFP’s achieve cycles per
instruction measurements that are competitive with modern 4-way superscalar processors.

This paper explores the potential of counterflow pipelines for application-specific integrated
processors. However, there are many unanswered questions about custom CFP’s, and we are
continuing to study these structures. Our work is proceeding in several directions:

• Extending the original counterflow pipeline to handle more instruction level parallelism,
including a new microarchitecture proposal called ‘‘wide counterflow pipelines,’’ which
are based on VLIW techniques;

• Reducing the hardware cost of custom pipelines by assigning multiple dependence graph
nodes to a single functional device;

• Applying aggressive ILP compiler optimizations such as software pipelining and if-con-
version to statically expose more parallelism to the synthesis system.
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