
Avian Migration: Condor-Style Job Submission on Standards-Compliant Grid
Systems

P. Steele∗, M. Saravo∗, R. McGrath∗, A. Grimshaw
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

Email: pvs5x@virginia.edu, mts5x@virginia.edu, rjm5s@virginia.edu, grimshaw@virginia.edu
∗University of Virginia undergraduate students.

Abstract—The Condor system is used worldwide for high-
throughput computing, especially scientific computing. Histor-
ically, its intuitive submit description language and powerful
high-throughput computing capabilities have made it popular.
However, with the emergence of synergistic grid standards
promising to make grid interoperability easier than ever
before, users are presented with a choice: stay with Condor
and keep its power but sacrifice interoperability with the
increasing number of standards-compliant grids, or switch to
the standards-compliant grids, gaining access to a wide array of
resources but possibly losing both the simple power of Condor
and valuable time and energy in learning how to use a new
grid system. This paper aims to present research into creating
a third option: enable Condor jobs to be submitted to and run
on standards-compliant grids with little to no effort on the part
of the user. This software is called Avian.

Keywords-Condor; JSDL; Genesis II; standards.

I. INTRODUCTION

A. Problem

Grid computing is a diverse field that encompasses many
different computing paradigms and applications. The specific
problem we will address is interoperability between grid
systems. Researchers are often presented with circumstances
in which it is more expedient for them to run their exper-
iments on different grid systems, but when they encounter
systems that are not interoperable, they waste time and effort
in attempts to convert from the semantics of one system to
another.

The problem is how to increase the utilization of comput-
ing resources for research by lowering the time and effort
required to run computing jobs on systems that do not share
the same job submission syntax and execution semantics.
One solution to this problem is for all nonstandard systems
to find a way to conform to open standards agreed upon by
the community. The motivation for a solution to this problem
is a specific need for interoperability between Condor, a
high-throughput computing (HTC) system developed at the
University of Wisconsin, and Genesis II, a standards-based
grid system developed at the University of Virginia (UVA)
[1].

B. Importance

The importance of open standards lies in their ability to
produce an environment that allows for increased develop-
ment and utilization of resources through connecting grids
which, prior to standards adoption, were not interoperable.
Interoperability of grids allows institutions to pool resources
without wasting time and energy accounting for differences
in proprietary protocols and communication media. The
pooling of these resources allows institutions to balance
load on their own resources by siphoning off load to other
compatible resources, and it enables them to collaborate on
even larger scales than previously possible[2, 3].

The value of open standards depends upon adoption by
grid computing systems and users migrating toward these
systems. With more systems adopting standards and user
migration toward these systems, the standards will become
firmly entrenched in the grid computing community, increas-
ing the interoperability between future grids as well.

C. Solution

Avian is a step towards standards adoption–it allows users
to submit to standards compliant grids using a familiar
submission format. Avian translates a job submission file
from Condor, a nonstandard but widely used job submis-
sion specification, to an open standard, Job Submission
Description Language, or JSDL. The reason Condor was
chosen was because it is already widely adopted, especially
throughout the scientific computing community, which uses
grids heavily for their computation needs. JSDL was targeted
because it is an open, XML-based, extensible standard being
developed by the Open Grid Forum (OGF)1[4]. Avian will
decrease the effort needed, referred to as the activation
energy, for the community to move toward standards-based
systems.

1The OGF is the community of users, developers, and vendors leading
global grid computing standardization efforts. The merger between the
Global Grid Forum (GGF) and the Enterprise Grid Alliance in 2006 resulted
in the OGF; JSDL was originally a GGF standard, as it was created in 2005.

Avian implements key features of Condor to ease the
transition; future work on Avian could include extending
functionality of standards, including JSDL, to implement
further Condor features.

II. BACKGROUND

A. High Throughput Computing

High throughput computing (HTC) is concerned with the
completion of computing tasks over large period of time.
HTC environments measure the ability to provide computing
over a period of weeks or months [5].

HTC commonly involves executing sequential programs
on a number of computing nodes. The environment may
consist of a grid of distributed computing resources where
computing jobs are matched to available resources. HTC
systems are often used by research scientists conducting
experiments or calculations that require large amounts of
time to finish. These experiments often consist of running
one program on several independent sets of data; the lack of
any coupling between jobs makes these kinds of experiments
ideal for execution in a HTC environment.

B. Condor

Condor is an open-source software framework for HTC
developed by the University of Wisconsin [6]. It is used
widely in academia, in industry, and by the Open Science
Grid (OSG)2, and is included in the Fedora Linux distribu-
tion. One of Condor’s strengths is its ability to scavenge
cycles, i.e. farming out work to connected idle desktop
computers; Condor can also integrate these non-dedicated
desktop computers seamlessly with dedicated resources. It
also has several different paradigms for running jobs, called
universes3. Each universe is designed to satisfy a set of needs
for a job environment.

Arguably its biggest strength, however, is how Condor
jobs are described, which is referred to in Condor as the
submit description language. The submit description lan-
guage includes multiple submission from one file, workflow
management through its Directed Acyclic Graph Manager
(DAGMan), resource-based matchmaking, and other ad-
vanced features targeted to HTC.

1) DAGMan: DAGMan is Condor’s workflow manage-
ment system [6]. It represents dependencies between jobs
as a directed acyclic graph; individual nodes represent
DAGMan jobs, and edges between nodes represent depen-
dencies. It is important to note that one DAGMan job is
not limited to one instance of a program submitted to run
under Condor; a Condor submit description file allows for

2The Open Science Grid is a worldwide grid, which is used by scientists
and researchers for problems which are too computationally-intensive for
any one supercomputer or data center. It is administered by the Open
Science Grid Consortium.

3More information about Condor universes can
be found in the most recent manual [6], or at
http://www.cs.wisc.edu/condor/manual/v6.4/2 4Road map Running.html

multiple submissions from the same file, and each DAGMan
job in the DAG input file (the input file used by DAGMan)
is associated with one Condor submit description file.

DAGMan is a key feature that provides even more flexi-
bility to Condor. Besides being an intuitive way to describe
job dependencies, it allows for the same Condor submit
description file to be used for multiple different DAGMan
jobs through the use of macros. Macros are defined in a DAG
input file for each job defined in that file; each macro has
a name and value, and whenever the name of the macro is
seen in the corresponding DAGMan job’s submit description
file, it is replaced with the macro’s value.

C. JSDL

JSDL is an open XML standard from the OGF [4].
In the context of grid computing, it allows specifically
for describing jobs: job name, job description, resource
requirements (e.g. total RAM available, CPU clock speed),
execution limits (e.g. maximum wallclock time, maximum
memory to be consumed), file staging, and the command
to execute (including any arguments, environment variables,
input/output redirection, etc.).

In addition to the explicitly defined abilities of JSDL,
the fact that JSDL is XML makes it extensible. An exam-
ple of this extensibility is the Parameter Sweep extension,
which allows for definition of multiple jobs in one JSDL
file, as long as the value of one or more job parameters
changes in some preordained fashion from one job to the
next [7]. This extension was specified in May 2009, four
years after the original JSDL 1.0 specification; it is slowly
being implemented in standards-compliant grid systems.
The extensibility of JSDL is mitigated somewhat by the
resistance of the user community to change, as evidenced by
the Parameter Sweep extension only recently being adopted
and worked into standards-based grids.

While one of JSDL’s strengths is its extensibility, one of
its major weaknesses is its lack of a schedule description
language. As opposed to how DAGMan handles Condor
jobs, dependencies between JSDL jobs must be managed by
users. There are also other differences between JSDL and the
Condor submit description language. JSDL, being a standard
born out of a standards organization, was subject to much
discussion about what would go into the specification, and as
such is the minimum agreed-upon standard. Condor, on the
other hand, is a focused but nonstandard effort of describing
jobs; the only entity vetting new Condor functionality is the
Condor team itself, which makes it easier to agree on new
functionality.

D. BES

A Basic Execution Service is a service that accepts
requests from clients to initiate, monitor, and manage
computation [8]. In order to run on a BES, JSDL jobs
must match their requirements to the BES’s BES-Factory

Attributes4. The BES-Factory port-type provides a Web-
Service-accessible characterization of the resources the BES
makes available to activities.

E. RNS

The Resource Namespace Service (RNS) is a standard,
proposed for the first time in 2006, that describes a simple
way of mapping names to endpoints within a grid [9].
Conceptually, it supports a three-tiered naming architecture
of human interface names, logical references, and endpoint
references, which enables the construction of a global,
uniform, hierarchical namespace. This namespace is useful
because it provides a familiar way to access the rapidly-
growing number of service resources (e.g. Web services and
their corresponding applications) that are capable of being
referenced in a grid environment.

F. Genesis II

Genesis II is a an open source grid system based on
JSDL, BES, RNS, and other standards; it is the first such
standards-based grid [1]. Its purpose is twofold: it provides
a production-caliber grid environment for scientific research
at the University of Virginia, and it serves as a test bed
for grid research. Its flexibility and availability make it
ideal to develop and evaluate new grid technologies and
models. As part of this second purpose, it serves as a testing
area to validate the standards proposed by the OGF and
others working toward interoperability through community
standards.

III. SOLUTION

A. Conceptual Solution

At an abstract level, Avian acts as a user agent by accept-
ing the user’s Condor file and then working with the grid
to execute the job as specified. The intended user scenario
is for users to open Avian on their personal computer and
have all of their submission files and input data located
there. Users craft the necessary submit description and DAG
input files and then run a compatibility checker to see
if unsupported commands are used. They specify certain
preferences concerning the location of their home directory
and the path to the grid shell utility. Users will then direct
Avian to execute the job. Avian informs users of the status
of the job and stages their data to and from the grid as
appropriate. Once the job is complete, users exit the program
and can inspect the output of their job.

Within Avian, once users submit the job, the transforma-
tion engine transforms Condor submit description files to
JSDL files. The necessary data is then staged out to users’
home directories on the grid. Avian submits the JSDL files
and determines their status by periodic polling. If a DAG
input file is submitted, Avian will launch new jobs as the

4The BES-Factory Web-Service port-type allows clients to create, mon-
itor, and control sets of activities, and monitor BES attributes.

Figure 1. An example Condor file demonstrating some advanced
features of Condor (adapted from Example 6 and Example 7 on
http://www.cs.wisc.edu/condor/quick-start.html.).

dependencies in the DAG are fulfilled. Once all jobs are
complete, Avian stages out the resulting data from the users’
home directories on the grid to their local computers.

B. Applied Solution

Since Avian supports a subset of the available Condor
and DAGMan tags, a compatibility checker was created.
This checker warns users about possible inconsistencies
between what submit description files demand and what
Avian supports. Tags that are flagged may be ignored, or
cause the program to act in an unexpected manner.

In order to run jobs on Genesis II, they must be described
in JSDL. Avian includes a transformation engine, created to
convert Condor submission files into proper JSDL files. This
involves parsing the Condor directives and determining the
relevant commands that can be translated into a JSDL equiv-
alent. Avian processes relevant commands into attributes of
an object that represents a JSDL job, and writes the JSDL
job to an XML file which conforms to the JSDL standard.

The parser within the transformation engine implements
advanced features of Condor. An example Condor file with
several of these advanced features is shown in Figure 1.

The queue command directs the system to run the job the
specified number of times. Avian creates separate JSDL jobs
for the specified number of queue commands. Differentiating
between jobs and their related files is made easy by Con-
dor’s process macro substitution, which Avian duplicates.
Wherever Condor encounters “$(process)”, it substitutes the
Condor process ID, which is an integer that starts at 0
and is incremented by 1 for every subsequent job that
Condor launches from the same submit description file [6].
Avian keeps track of Condor process ID’s on the client side
program in order to create JSDL files for each job it needs
to launch.

For the job in Figure 1, this would translate to ten jobs
being launched, each with their staging data in different
directories. The resulting jobs would expect in.0, in.1, in.2,
etc., up to in.9, to be located in dir 0, dir 1, dir 2, etc., up

to dir 9, respectively. When the jobs finish, out.0 and err.0
would be located in dir 0, out.1 and err.1 in dir 1, etc.

Once Avian creates the appropriate submission files, it
interacts with the target grid, Genesis II. Genesis II provides
a command line utility with a set of tools that mimic standard
UNIX tools, such as cat or cp. The utility also enables access
to grid specific tools, such as qsub, which submits a job to
a queue, or qstat, which returns the status of a job. Avian
accesses these tools by spawning a Windows command line
process in the background which runs the grid utility. The
utility and Avian interact via input and output streams. These
allow Avian to write commands and read their output. When
Avian submits a job, the grid utility is passed a string that
contains the command, the queue to submit to, and path to
the file on the local computer.

In addition to submitting jobs, Avian frequently needs
to check the status of a job. In this circumstance, Avian
passes the appropriate grid command to the utility and parses
the output from the buffered reader. This approach allows
development with the grid to proceed at a high level and does
not re-develop pre-existing functionality. Another advantage
is that Avian, being loosely coupled with the grid by design,
was able to weather a recent revision of Genesis II with only
minor difficulties.

C. DAGMan Emulation

Avian emulates DAGMan functionality by enforcing the
dependencies of the submitted jobs locally and submitting
new jobs only when dependent jobs have completed. The
first step is to parse the DAG input file which describes the
DAGman graph using the syntax “PARENT [job] CHILD
[child]”. From these dependencies a node object is created
within Avian consisting of the converted JSDL job and its
children.

If the Condor submission file specifies multiple queue
commands, the resulting JSDL files are associated with the
node which subject these jobs to the dependencies from the
DAGMan graph. Avian then determines which nodes are
not children of any other node; these nodes are able to run
initially. When these jobs complete, Avian then returns a
list of jobs that are able to run. The workflow dependencies
of the DAGMan function are implemented using a local
application and JSDL submission files.

Avian handles data staging by copying data to the grid
and informing the BES container where to access the data
on the grid. These files are located in the user’s computer’s
local directory with the Condor submit file or a in a relative
subdirectory specified by the “initialdir” command.

When Avian stages data in, a temporary directory is
created within the user’s home directory on the grid. The
data is copied to this location using the grid command line
tool “cp”. Once the data is on the grid, the JSDL DataStaging
tag is created to reflect its location. A RNS path to the data is
inserted into the Source tag within the DataStaging element.

Once the job completes, the grid reads the RNS path in the
Target tag and writes the output files to the specified location
under the user’s grid home directory. The data is then copied
back to the user’s computer.

Since Avian must be running to determine when jobs
finish and when to start new jobs, jobs that run for an
extended period of time could behave unexpectedly if the
user terminates Avian. To remedy this situation, Avian saves
its state so that the current set of jobs can be resumed later.
Avian’s state is stored in a serializable object that is written
to disk. When the user loads the saved execution run, Avian
knows which jobs were submitted, which jobs still need to
run, and what data needs to be staged out. The user also
has the option of aborting the run entirely without saving
state. When all jobs complete, or the run is aborted, Avian
can clean up data left on the grid and terminate jobs in the
queue.

IV. RESULTS

Avian was able to complete a number example jobs pro-
vided by the Condor project website. This included simple
Condor submit files (a modified one is shown in Figure 2),
Condor submit files with basic macros, and Condor submit
files scheduled through a DAGMan file.

As shown in Figure 2, Avian can translate basic Condor
commands, including specifying an executable, arguments
to that executable, and environment variables to transfer
to the grid environment. Important to note is that in the
Condor submit description file (the top part of Figure 2),
the arguments and environment variables are specified in
the new syntax, but Avian also accepts the old syntax for
specifying arguments and environment variables. However,
due to ambiguity in the old syntax, the Condor team suggests
using the new syntax [6], as does the Avian team.

Also shown in Figure 2’s translation is Avian’s ability to
parse, to an extent, Requirements ClassAds5. The Condor
file specifies that the job requires an Intel x86 64-bit pro-
cessor architecture, and this is reflected in the JSDL beneath
it. Of course, no real “Hello World” application would need
to be run on a 64-bit processor; this line was simply put into
the submit description file to demonstrate Avian’s capability
to recognize Condor’s processor architecture specifications
and supply the correct JSDL enumeration value to the JSDL
file. Avian can also do this for Condor’s operating system
specifications.

In addition to the above example, the translation engine
was able to handle a more complicated research job from
UVA’s biomedical engineering department. This job, shown
in Figure 3, is launched by a DAG input file which iterates
across the values of macros i and j from 1 to 14 and 1 to
1000, respectively, launching one job for each (i, j) pair.

5ClassAds are a mechanism that Condor uses to perform matchmaking.
For more information, consult the most recent Condor manual [6], or
http://www.cs.wisc.edu/condor/manual/v6.4/4 1Condor s ClassAd.html.

Figure 2. A simple Condor job, demonstrating a few simple direct translations from Condor to JSDL. The “initialdir” and “queue” commands are not
fully translated because they are handled programmatically in Avian.

Figure 3. A more complicated Condor job, which is used by the UVA biomedical engineering department.

When Avian parses the DAG input file, it creates a new
JSDL file for each one of these jobs with the correct
macro substitutions. One feature of this Condor submit
description file that was not implemented was the Rank
feature. Rank allows Condor users to specify a preference
ranking for resources in terms of a mathematical formula,
the elements of which are attributes of the resource. Ranking
resources for preference is not supported in JSDL at this
point; it is possible that in the future, Avian can emulate
this functionality with a client side application accessing
BES container attributes. However, for the job to run, Rank
implementation is not necessary; the job simply needs to
find a resource or set of resouces, not the most optimal one.

A. Limitations

1) Scope of Condor Support: One limiting factor of
Avian is the scope of support for Condor commands and
functionality. The initial motivation for Avian was to be
a proof of concept; the amount of supported commands
reflects this motivation. There were two types of limitations
that determined which functionality made it into this itera-
tion of Avian: fundamental and implementation. Fundamen-
tal limitations were ones for which there was a semantic
gap between Condor and JSDL that could not be bridged.
Implementation limitations were caused by lower priority
functionality not being a part of Avian’s proof-of-concept
plan. Decisions on priority of different functionality were
made by examining example files on the Condor webpage,
tutorials, HTC bootcamp materials, and examples from re-
searchers who use Condor. Additionally, Condor commands
were only supported if there was a matching JSDL tag.
Tables 1, 2, and 3 summarize Avian’s current coverage
of Condor submit description language, including why we
chose to leave certain commands out of the proof-of-concept
plan and the fundamental limitations we encountered.

In general, Avian follows the Condor grid universe se-
mantics [6] as closely as possible, as it is intended for use
in a grid environment.

Condor includes a large array of commands omitted from
Tables 1, 2, or 3. Some of these are advanced commands
that are not a one-to-one mapping, and would have required
emulation programs to be implemented. The rest of the
commands were specific to other Condor universes; the
intended scope of Avian is currently just the vanilla universe
commands. The vanilla universe is the subset of all the other
universes’ commands and, as such, was a logical scope for
Avian as a proof of concept.

2) Scope of DAGMan Support: The extent of Avian’s
support for DAGMan is described in Table 4.

We do not support the DATA command because it spec-
ifies a job to be managed by the Stork data placement

server6. DIR is an option for JOB which specifies a working
directory for the DAG node; as the DAG node is emulated
to run on the client side and submit Condor jobs from
within it to Genesis II, DIR is not necessary for proper
function. SCRIPT specifies pre- or post-processing scripts,
which are run before or after the specified job executes,
respectively. Scripts are optional for each job, and in all the
real DAG input files we worked with, there were no SCRIPT
keywords. Additionally, pre- and post-processing scripts can
be run by the user individually before and after their jobs
have finished. Therefore, Avian does not support SCRIPT
functionality as of this iteration.

This scope of coverage appears sparse at first glance.
However, the supported commands are the ones used in the
majority of circumstances we were able to examine, while
unsupported commands in some cases represent esoteric
features seemingly used only by a minority of users. The
present limitations of the JSDL standard preclude many
commands that allow the user to modify certain other
options. While the current functionality of Condor allows
greater options and modifications than JSDL, working within
the JSDL standard shows that Avian covers a useable set of
commands for HTC.

3) Other Limitations: We do not support the full set of
Condor tags; rather, we support the ones we believe will
provide the most coverage for the most users. To simplify
this end, we borrow the semantics from the grid universe,
but cover mostly the basic, i.e. vanilla universe, commands.
Data staging is done with the Condor directives, trans-
fer input files and transfer output files, which is not always
the case in real Condor files; if Condor files are not specified
to run in the grid universe and transfer output files is not
specified (a common occurrence), Condor will automatically
back all files in the job’s temporary working directory which
have been modified or created by the job [6].

V. CONCLUSION

A. Remarks

This paper presents a valid proof of concept to address
the issue of providing a solution to support running Condor
jobs in a standards-based environment. Avian represents
the core functionality of an application that would allow
a Condor user to work in a standards-based environment.
However, there are still limitations with Avian, specifically
the extent of its support for Condor functionality and the
current supported capabilities of the related standards.

Avian achieved a number of the original design goals of
the project. It effectively parses a usable subset of Condor
commands to JSDL while implementing features that aid in
submitting HTC. It integrates with the Genesis II Grid to

6Stork is a batch scheduler which specializes in data placement and
movement; more information can be found at the Stork project home page,
http://www.cct.lsu.edu/ kosar/stork/index.php.

Table I
CONDOR BASIC AND MISCELLANEOUS COMMAND COVERAGE.

Command Implemented? Notes
arguments = <argument list> Yes -
environment = <parameter list> Yes -
error = <pathname> Yes -
executable = <pathname> Yes -
getenv = <True | False> Yes -
input = <pathname> Yes -
log = <pathname> Yes -
log xml = <True | False> No If True, the log is written in ClassAd XML; this option was not found in any of the example

Condor files we examined, nor is it necessary for the proper function of any application.
notification = <Always | Complete |
Error | Never>

No The only time we saw this was specifying Never.

notify user = <email-address> No Also not absolutely necessary for jobs to run in the grid.
output = <pathname> Yes -
priority = <integer> No JSDL does not provide a way to enforce priority across jobs. However, Genesis II does;

this functionality could be implemented in a future version of Avian.
queue [number-of-procs] Yes -
universe = <vanilla | standard | sched-
uler | local | grid | mpi | java | vm>

Not complete The scope of Avian was intended to be the vanilla universe commands; the commands in
the vanilla universe are the subset of all other universe’s commands and are usable in the
other universes.

coresize = <size> Yes Specifies the maximum size, in bytes, of the core file, if one is produced. Core files larger
than this amount will not be retained.

Table II
CONDOR MATCHMAKING COMMANDS COVERAGE.

Command Implemented? Notes
rank = <ClassAd Float Expression> No JSDL does not support ranking eligible resources for a job to run on based on preference.

This is a fundamental limitation.
requirements = <ClassAd Boolean
Expression>

Not Complete More complicated Boolean expression parsing was not implemented; OR is not supported
in JSDL. This is a fundamental limitation.

Table III
CONDOR FILE TRANSFER COMMAND COVERAGE.

Command Implemented? Notes
should transfer files = <YES | NO |
IF NEEDED >

No We will transfer all files regardless of whether this is specified, to make sure the user does
not miss files that they need.

transfer executable = <True | False> No See above.
stream error = <True | False> No There is no analog in JSDL for redirecting standard streams back to the host in real time.

This is a fundamental limitation.
stream input = <True | False> No See above.
stream output = <True | False> No See above.
transfer input files =
<file1,file2,file...>

Yes -

transfer output files =
<file1,file2,file...>

Yes JSDL requires that the user specify which files are staged out.

transfer output remaps = < “ name =
newname ; name2 = newname2 ... ”>

No This command specifies the name (and optionally path) to use when receiving staged out
files from the completed job. Not supported in JSDL. This is a fundamental limitation.

when to transfer output =
<ON EXIT|ON EXIT OR EVICT>

No There is no analog in JSDL for this command. This is a fundamental limitation.

stage data, submit jobs, and kill jobs and check job status.
Avian allows for dependency based scheduling and shows
the feasibility of constructing such a feature based on top of
JSDL.

These achievements show that creating a standards based
system can deliver functionality that users expect from HTC
systems. With effort, systems that build on agreed-upon

standards can be as useful as those that do not and provide
the advantages of open standards.

B. Future Work

There are notable limitations with the current state of
Avian that could be addressed in future efforts. This proof of
concept would benefit from increased support for a number

Table IV
DAGMAN COMMAND COVERAGE.

Command Implemented?
PARENT/CHILD Yes

JOB Yes
VARS Yes
DATA No
DIR No

SCRIPT No

Condor commands that have a clear JSDL counterpart.
Advanced Condor features, such as support for including
a graph within another graph, or generating a new graph of
jobs to complete based on a partial failure, could be emulated
and supported on standards-based systems. Additional fea-
tures could be added to Avian if it is modified to interface
with different grid management systems; to ease develop-
ment of these modifications, the targeted grid management
systems would ideally have an interactive, command-line-
based method of interaction. Avian would also benefit from
being able to run on multiple client operating systems.
Currently, Avian only runs on Windows.

Resource matchmaking is minimally supported in JSDL;
the extent to which Avian supports Condor resource match-
making roughly matches that of its support in JSDL. Rank-
ing resources is not supported in JSDL, but could possibly
be implemented in another way in the future. Also, while
the vanilla universe is very useful in and of itself, the other
Condor universes also have value. Future research could also
explore how best to emulate these universes using Avian.

Present capabilities of Avian to handle jobs that are based
on the same submit description file, but have a different
set of parameters for each, could be more efficiently imple-
mented using JSDL’s ParameterSweep extension. Function-
ality for this extension has recently been added to Genesis II;
future research could explore the benefits and drawbacks (if
any) of using ParameterSweep instead of creating individual
JSDL files.

Lastly, future work could enhance the capabilities of
DAGMan, including supporting more of the functionality
detailed in Table 4, supporting DAG input files as nodes
inside other DAG input files, and implementing recovery
for failed DAG nodes.

One continued question throughout the development of
Avian would be its value in a real-world environment.
A continuation of this work could involve a trial with a
substantial number of experienced Condor users using this
application to work on a standards based system. This would
show the practicability of this approach for migrating users
toward standards based systems.

REFERENCES

[1] M. Morgan and A. Grimshaw. “Genesis II-standards based
grid computing,” in Seventh IEEE International Symposium on

Cluster Computing and the Grid, 2007, p. 611

[2] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell, and J. Von Reich.
“The Open Grid Services Architecture, Version 1.0,”
Open Grid Forum, January 2005. [Online]. Available:
http://www.gridforum.org/documents/GFD.30.pdf.

[3] H. Kishimoto, J. Treadwell. “Defining the Grid: A
Roadmap for OGSA Standards Version 1.0,” Open
Grid Forum, September 2005. [Online]. Available:
http://www.ggf.org/documents/GFD.53.pdf

[4] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A.
Ly, S. McGough, D. Pulsipher, and A. Savva, “Job Sub-
mission Description Language (JSDL) Specification V1.0,”
Open Grid Forum, November 2005. [Online]. Available:
www.gridforum.org/documents/GFD.56.pdf.

[5] M. Livny, J. Basney, R. Raman, and T. Tannenbaum, “Mech-
anisms for high throughput computing,” SPEEDUP, vol. 11,
1997.

[6] M. Livny, M. Solomon, B. Burnett, D. Bradley, T.
Cartwright, P. Couvares, et al. “Condor Version 7.4.1
Manual,” Condor Manuals, April 2010. [Online]. Available:
http://www.cs.wisc.edu/condor/manual/v7.4/condor-V7 4 2-
Manual.pdf [Accessed: April 29, 2010]

[7] M. Drescher, A. Anjomshoaa, G. Williams, D.
Meredith. “JSDL Parameter Sweep Job Extension,”
Open Grid Forum, May 2009. [Online]. Available:
www.gridforum.org/documents/GFD.149.pdf.

[8] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan,
S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, M.
Theimer. “OGSA Basic Execution Service Version 1.0,”
Open Grid Forum, November 2008. [Online]. Available:
http://www.ogf.org/documents/GFD.108.pdf.

[9] M. Pereira, O. Tatebe, L. Luan, T. Anderson.
“Resource Namespace Service Specification,” Open
Grid Forum, May 2006. [Online]. Available:
http://www.ggf.org/GGF17/materials/272/
Resource Namespace Service Refactored.pdf.

