The Automated Partitioning of
Simulations for Parallel Execution

David M. Nicol, Paul F. Reynolds, Jr.

Computer Science Report No. TR-85-15
August 1985

This research was supported by grants from the IBM Corporation, and Virginia’s
Center for Innovative Technology.

Abstract

| One of the most active areas in computer science research today is the study of
parallel computation. A critical problem in this field is that of partitioning: the decompo-
sition of a problem, program, or algorithm into pieces suitable for parallel execution. We
consider the problem of partitioning simulations automatically for parallel execution.
Eefore we can study the partitioning of simulations, we must be able to analyze simula—
tions. Towards this end, we construct a formal model of simulations, study a simulation’s
run—time behavior, and explore the effect of synchronization on run—time performance.
We develop static and statistical methodslof analyzing a distributed simulation’s perfor—
mance. We then propose a simulation partitioning algorithm and examine the perfor-
mance of partitions it clreates. Finally, we develop an optimal dynamic repartitioning

decision process.

TABLE OF CONTENTS

Chapter ' page
1 Introduction ‘ 1
1.1 Partitioning Simulations 1
1.2 Context for Simulation Partitioning
1.3 Outline of Thesis 3
2 A Simulation Model 6
2.1 Chapter Overview 6
2.2 Specifying a Simulation 6
2.3 Simulation Event Scheduling 8
2.4 Simulation Execution Correctness 13
2.5 Chapter Summary 18
3 Run-Time Behavior 19
© 3.1 Chapter Overview 19
32 A Simpler Model 19
3.2.1 Deterministic Delays 19
3.2.2 Non-Interference 20
3.2.3 Cyclic Behavior 20
3.2.4 Stochastic Assumptions 22
3.3 General Cycle Behavior 24
3.31 Variant Cycle Behavior 24
3.3.2 The Execution Graph Revisited 26
3.3.3 Cycle Execution Time Estimation 26
3.4 Chapter Summary 29
4 Synchronization and Cycle Execution Time . 30
41 Chapter Overview 30
4.2 The Work Graph : 30
4.3 The Work Assignment Graph 32
4.4 Synchronization and Cycle Execution Time . 36
4.4.1 Hyper—Message Synchronization- o 36
4.4.2 Synchronization Requirements ; 41

4.4.3 Hyper-Execution Graph 43

4.5 Chapter Summary

5 Probabilistic Analysis

5.1 Chapter Overview

5.2 Equilibrium Probability of Evaluation

5.2.1 System Restrictions

5.2.2 Exact Evaluation Probabilities

5.3 Lower Bounds on Cycle Time Moments

5£.3.1 Derivation of Lower Bounds

5.4 Generality of Assumptions

5.5 Chapter Summary

6 Statistical Analysis

6.1 Chapter Overview
6.2 Statistical Moment Estimation

6.3 Bayesian Parameter Estimation

6.3.1 Distributional Assumptions

© 6.3.2 Prior Distributions

6.3.3 Section Summary

6.4 Bayesian Partition Decision

6.5 Chapter Summary

7 Qualitative Analysis

7.1 Chapter Overview

7.2 Motivation for Qualitative Comparison ..

7.3 Three Stochastic Relations

7.4 Sequential Assignment

7.5 General Comparison

7.5.1 The Border Vector
7.5.2 The Hyper—Border Graph

7.5.3 Another Look at Z 4
7.5.4 A Numerical Example

7.5.5 Use of General Qualitative Comparison

7.6 Chapter Summary

47

48

48
48

49
53

54

55

62
64

65

65
65
67

67
67
69

70
71

73

73
73
74
78
81

82
87
9
93
95

96

8 A Partitioning Heuristic

8.1 Chapter Overview

8.2 Problem Overview

8.3 A Partitioning Algorithm

8.4 An Empirical Study

8.4.1 Study Parameters

8.4.2 Study Tools

8.4.3 Performance Analysis

8.4.4 Study Results

8.4.5 Analysis of Results

8.4.6 Caveats

8.5 Chapter Summary

9 Dynamic Partitioning Decisions

9.1 Chapter Overview

9.2 Problem Statement

9.3 Problem Formulation

9.3.1 Statistical Issues in Detecting Change

9.3.1.1 Measurement Transformation
9.3.1.2 A Clustering Decision Procedure

9,32 The Decision Process Model

9.3.2.1 Markov Decision Models

9.3.2.2 Model Formulation

9.3.2.2.1 Time Steps and Process States
9.3.2.2.2 Maintaining the Probability of Change
9.3.2.2.3 Decision Actions and Costs '

.....

9.3.2.2.4 State Transition Probabilities

9.3.2.2.5 Process Optimal Cost Function

9.4 Optimal Decision Policy

ooooo

9.4.1 Properties of V{(<p,n>)

.....

9.4.2 Optimal Policy Structure

9.5 Waiting for Change

9.6 Model Parameters Reconsidered

9,7 Chapter Summary

98
104

104
105
105
105
107
108

108

110

110
110
i

112

112
112

113

113
114

114
114
114
115
116

116

117
123
123
127
127

10 Conclusions

10.1 Summary of Results

10.2 Strengths and Weaknesses

10.3 Future Research

10.4 Conclusions

Appendix A Numerical Solution Techniques
Appendix B Sensitivity to G

129

129
130
131
132

134
148

LIST OF DEFINITIONS

Definition , page
2-1 Generator Event Functional 7
2—2 Normal Event Functional : 7
2-3 Simulation System 8
2-4 State Value at Electronic Time 9
2-5 State Value at Logical Time 10
2-6 Proper Generator Functional Evaluation 1
2~7 Proper Normal Functional Evaluation 1
2-8 Significant Evaluation 12
2-9 Proper Sequencing Rules 13
210 Simulation Correctness 14
2-11 Execution Graph 15
4~1 Partition ‘ 35
4-2 Non-Predictive Synchronization Protocol 38
5-1 Path Independence .. 50
7~1 Stochastically More Variable ... 74
7-2 Stochastically Larger 75
7-2 Jointly Larger 75
74 Fixed, Stable Work Nodes 82
7-5 Border Vector i ‘ 82
7-6 Border Graph ‘ 84
7-~7 Timing Vector : 90
9-1 Next Step Minimized Cost Function 116
9-2 Probability of No Change by Time n . 124
9-3 Contraction Mapping ' 124
A~1 Domain Transition Point : 134
A-2 Interior Approximation 138
A~3 Interior of Functional Graph 138

A—-4 Minimal Segments in Interior Approximation 143

LIST OF LEMMAS

page

Lemma
2~1

17
28

3-1

32
36
46
46
50
51

4-1

4-2
4-3
4-4
5-1

5-2
5-3
71

b

74
74
75
76
80

7-2
7-3

-4

7-5
7-6
7%

83
84
84

7-8 .
7-9

88

88

7-10

89
%0

7-11 ..
7-12
7-13
7-14
9-1

9n
92

17

17

9-2
9-3

117

118
119
120

9-4
9-5
9-6

122

9-1
9-8

125

126

9-9

135
135

A1
A-2

138
140

A-3

A—4

140

A-S

141
144

A-6

A-T7

145

A-8

149

B-1

150

B-2

153

B-3 ..

160

LIST OF THEOREMS

Theorem page
21 17
4-1 : 39
42 47
71 ' 86
9-1 ' 113
9-2 123
9-3 124
9-4 .. 127
A-1 136
A-2 141
A-3 143

B-1 160

LIST OF COROLLARIES

Corollary page
5-1 ' 51
5-2 ' 52
7-1 ' 89
A-1 . 137
A-2 141
B-1 149
B-2 150

LIST OF FIGURES

Figure
2~1 Execution Graph

3-1 CPU Clocks Cycle .
3-2 Non~Ergodic Markov Chain

3-3 Apparently Ergodic Markov Chain ...
3—4 Cycle Execution Graph

4-1 System Graph, Generators Cycle, and Work Graph

4~2 Work Assignment Graph

4-3 Comparison of Hyper-Message and Oracle Synchronization
4-4 Hyper~-Execution Graph .

5-1 Work Assignment Graph Preserving 1 ndependence

7-1 Border Graph
7-2 Example Data

8~1 Partitions of a Task System
8-2 Earliest and Latest Starting Times

8-3 An Overlap/Delay Graph

A-1 Non—Concave Approximation

A-2 Lemma A-3 e

A-3 Error in Approximating 7,

page
16
21
23
24
27
33
37
42
45
63
85
94
99
102
102 -
139
139
147

Chapter 1

Introduction

One of the most active areas in computer science research today is the study of
parallel computation. A critical problem in this field is that of partitioning: how should
we decompose a problem, program, or algorithm into pieces suitable for parallel execu—
tion? Our research is motivated by the observation that simulations form an interesting
and important class of computer programs which might be amenable to paraliel computa—
tion; many systems that we simulate have inherently concurrent activity which might be
simulated in parallel. In this dissertation we develop an apalytic framework supporting
the study of simulation partitioning. As simulation partitioning raises issues not con—
sidered before in a partitioning context, this research is prerequisite for a study of simula-
tion partitioning algorithms. We then use this framework to develop a static simulation
partitioning algorithm, and an optimal dynamic repartitioning decision algorithm. '

In this chapter we define the fundamental problems in partitioning a simulation; we
outline the existing related research, illustrating the context in which our research should
be taken. Finally, we present a detailed overview of this thesis.

1.1, Partitioning Simulations

We can view a simulation program as a collection of software modules. Each
software module is responsible for some control function, or for emulating the behavior
of some physical process. A partition of a simulation is an assignment of each software
module to some processor in a multi-processor (we presume a multiple instruction muiti~
ple data, or MIMD, computer system). Every execution of a software module is per—.
formed in its assigned processor. The objective of a simulation partitioning algorithm is
to find an assignment of modules such that the overall execution time is significantly
reduced.

Partitioning simulations is substantially different from other partitioning problems
considered in the literature. Problems inciude (i) the computational requirements of a
simulation are not static; (i) a simulation cannot be treated as a fixed task structure under
some precedence relation; (iii) before we can treat partitioning, we have to understand the
relationship between synchronization and the simulation execution time; {iv) if the
simulation's execution requirements are known, we have to be able to calculate the
simulation’s execution time; (v) if the simuiation's execution requirements are not known,
we have to be able to estimate the simulation’s average execution time; (vi) we have to be
able to compare two partitions of the same system, and determine which partition is more
effective. ,

Much of this thesis is devoted to the treatment of these problems. Our solutions
develop an analytic framework supporting a study of partitioning. Our development
highlights issues intrimsic to simulations and their distribution for parallel execution.
Within this framework, we also propose a partitioning algorithm, and consider the issue
of dynamically repartitioning a running simulation.

1.2. Context for Simulation Partitioning

There are four categories of research related to the our research. The first of these ig
the study of partitioning task structures for parallel execution. The vast bulk of the
research in this area assumes that a number of independent communicating tasks are to be
assigned to a multi-processor system. The inter—task communication traffic is known; a
communication between two tasks suffers delay only if the communicating tasks are
assigned to different processors. The computer system is assumed to be composed of a
number of heterogeneous processors. The assignment (partition) sought minimizes the
amount of communication between processors plus the sum of the execution costs, subject
to memory constraints in the Processors. [Bok81, DK W82, E1-
78,GaT84, 1081, L.o84, Pri79, PrK84, §to77] are examples of proposed solutions. These solu-—
tions are related to those searching for an optimal K -partition of a graph; examples of
this work include [FiM82,Kel70,Kri84]. This formulation of the partitioning problem is
inappropriate for simulations primarily because it ignores precedence relations which may
exist between tasks. We will see that simulations define precedence relations which
govern the execution order of tasks. The approach described in [ChA82] allows only a
constrained form of precedence. This approach appears to be most appropriate for small
systems with little concurrency. The approach in [Hol82] assumes a static collection of
tasks under some precedence relation. The execution delay of each task is known, and the
volume of communication between two tasks is known. A communication between two
processors suffers a communication delay. The partition yielding minimal task system
execution is sought. The algorithm given in [Hol82] is no more than the exhaustive
enumeration of all possibilities. In [Sal83,Sip84) we find heuristics for determining a good
partition for this same problem. However, the problem formulation in {Hol82,52183, Sip84]
is not appropriate to partitioning a simulation. We will see that a simulation’s task struc—
ture is dynamic, and its execution requirements are dynamic. Thus a simulation’s partition
should be chosen so that it is effective on all possible task structures, not just some fixed
task structure. Another area related to partitioning is deterministic and probabilistic task
scheduling [Cof76}. Scheduling models differ from our own in their assumption of a cen—
tral scheduler and static task system structure.

A second area of research related to the partitioning of simulations is the general
field of distributed simulation. The initial work in distributed simulation focused on syn—
chronization protocols which guarantee freedom from deadlock in the running simulation
[ChM79,JeS82, NiR84, PMWS80,Rey82] . Recently researchers are considering how a
simulation’s different control and statistics gathering functions might be placed on
different processors [Com82, WyS84]. The latter approaches still require that the heart of
the simulation, its emulation routines, be on one processor. A hierarchical approach to
defining a simulation model has been proposed by [Zei84]. This approach serves as a base
for a methodology for performing distributed simulation as described in [Con85] While
this is a comprehensive treatment covering model, synchronization, and architecture, the
approach in {Con85] is notably weak in its treatment of partitioning. This approach pro—
poses that every simulation entity or software emulation module be given its own proces—
sor. Our research is based on quite a different assumption: that hardware resources are
limited, and must be intelligently shared. Even if a processor were available for every
simulation eéntity, it is arguable that the communication channels would create
bottlenecks and unnecessary delays in the control of the simulation,

A third related area is that of modeling system p-rformance: we will have to assess
the performance of a distributed simulatic:. PERT network analysis
[Elmé67, HaW66, Mar65,RoT77] is not applicable as it assumes static task structures and
independent activity times. A multitude of computer system models exist, for example
{DuB82,RaHS80,SmL82, TCB78, YYS81]. We've found no treatment which adequately
describes a runming simulation. Similarly, queueing network models [Kle76] are

inappropriate,

Our final technical chapter examines dynamic partitioning. Dynamic load balancing
is currently receiving much attention [ChK79,ELZ, Ni81, RaS84, StaB4b, Sta8S, TaT85); but
again the requirements of a simulation model are not met by these models. These models
primarily treat queueing networks with independent tasks.

This review of the literature highlights the fact that the development of techniques

- to study simulation run-time behavior, and the development of static and dynamic simu-

lation partitioning algorithms, are timely research problems. They represent the next

logical research step in the field of distributed simulation, and serve as an extension to
existing work in the field of partitioning and modeling.

1.3. Outline of Thesis

This thesis examines problems that must be solved before we can attempt to intelli-
gently partition a simulation. It proposes a partitioning algorithm, and studies the prob—
lem of dynamically partitioning a simulation. We outline our treatment of these prob—
lems on a chapter by chapter basis.

Chapter 2: A Simulation Model

In Chapter 2 we lay the base for our analysis by describing a model of simulations.
This mode} is independent of a simulation’s implementation. The major result of Chapter
2 is the identification of proper sequencing rules which must be followed to obtain correct
simulation results. Proper sequencing rules are the basis for modeling a distributed
simulation’s synchronization requirements.

Chapter 3: Run-Time Behavior

In Chapter 3 we look at the run-time behavior of a simulation. We propose simpli-
fying assumptions under which the problem of finding a good partition for a simulation
reduces to finding & good partition for a cycle of the simulation. We then show that the
amount of simulation work required in one cycle of the simulation is a random variable;
thus the execution time of a cycle is also a random variable which depends on the chosen
partition.

Chapter 3's main contribution is to give conditions under whick we can confine our
analysis to cycles of the simulation It then shows that these cycles behave randomly.
Thus, to evaluate a partition, we must evaluate its average performance over all possible
cycles. These observations are important steps in defining the problems a partitioning
algorithm will have to consider.

Chapter 4: Synchronization and Cycle Execution Time

Chapter 4 explores the relationship of synchronization to the cycle execution time. It
defines the construction of graphs which describe a simulation’s synchronization require—
ments. It defines a synchronization protocol related to these graphs, and shows that the
performance of a simulation using this protocol is optimal over the class of "non-
predictive" synchronization protocols. We then describe an efficient means of calculating
the execution time of a given cycle running under this optimal protocol.

Chapter 4's significance lies in its development of modeling tools. It gives us graphi-
cal means of describing all simulation work that might be required during a cycle. These
graphs form the underlying basis for much of our later analysis. Chapter 4 gives us a

'means of modeling synchronization behavior, and it gives us a means of calculating a
given cycle’s execution time. These are clearly problems that must be addressed if we are
to numerically evaluate how well a partition reduces the simulation execution time over

a sequential simulation.

Chapter 5: Probabilistic Analysis

With the recognition that a partition’s performance must be evaluated probabilisti—
cally, Chapter 5 develops an exact probabilistic analysis of a simulation’s behavior. This
development identifies assumptions that must be made to support a tractable analysis. In
doing so, we discover that general simulations are too complicated to allow an exact ana-
lytic analysis. The methods we develop in Chapter 5 can be used to approximate a
simulation’s behavior. These approximations can be useful to a partitioning algorithm, as
well as the statistical analysis discussed in Chapter 6.

The major contribution of Chapter § is to illustrate that most simulations are not
amenable to an exact, static {pre-run—time) analysis. In the general case, the analysis
methods given are useful for first order approximations of the simulation’s behavior, but
cannot be relied on for quantitative accuracy. :

Chapter 6: Statistical Analysis

' Given that we must evaluate a partition probabilistically, and given that most sys—
tems of interest cannot be analyzed with confidence using static probabilistic analysis, we
consider the statistical analysis of a running simulation’s behavior. Chapter 6 resolves
certain statistical issues that must be addressed if we are to substantiate a statistical
approach. It proposes a Bayesian estimation of the simulation’s cycle execution time mean
and standard deviation. It shows how a Bayesian framework can be employed to choose
the "better” of two partitions of the same system.

The most important contribution of Chapter 6 is to show that a statistical approach
to estimating a partition’s performance can be justified. The underlying probabilistic basis
for a statistical analysis is shown 1o exist; and appropriate statistical tools are identified.

Chapter 7: Qualitative Analysis

‘ One method of comparing the performance of two partitions is to use the statistical

techniques of Chapter 6 to estimate their respective cycle execution time moments. Such
a comparison is by nature quantitative. Chapter 7 argues ti:t certain computational
savings might be realized by comparing two partitions qualitatively. It demonstrates
conditions under which we can establish that one partition is superior to another without
ever calculating their respective cycle execution time moments. It also identifies an
important application for qualitative analysis. We employ time complexity arguments to
show that the use of Chapter 7’s results can significantly reduce the computational com—
plexity of comparing two very similar partitions. e

Chapter 8: A Partitioning Heuristic

Chapter 8 proposes a partitioning algorithm for simulations. This algorithm’s deci—
sions are based on a collection of observed simulation cycles; as such it is a statistical par—
titioning algorithm. We study the performance of the partitions produced by this algo-
rithm on certain logic network simulations, and we argue that the partitions produced are
effective. '

The importance of Chapter § is self—evident: the development of partitioning algo-
rithms for simulations is an important problem. While our development and testing of
this algorithm is by no means complete, it is an important first step in the study of simu-
lation partitioning algorithms.

Chapter 9: Dynamic Partitioning Decisions

This thesis proposes a statistical approach to partitioning a simulation, and to
analyzing that partition’s performance. Any partition which is based on statistical obser—
vations is vulnerable to a radical shift in the dynamics of the running simulation. To
counter this problem, Chapter 9 develops a decision process which monitors the behavior
of the running simulation. This decision process detects change in the dynamics of the
run—time behavior, and decides whether a new partition is warranted. This decision pro—
cess is shown to optimally balance the expected costs of repartitioning with the expected
benefits from repartitioning.

Chapter 9's importance lies in its completion of the statistical approach to parti-
tioning proposed by this thesis. A radical change in a simulation’s behavior is the
anathema of a statistically based partition, and this chapter has shown how to detect and
optimally react to such a change.

Chapter 10: Conclusions
~ Chapter 10 presents our conclusions, and ideas for future research.

Chapter 2

A Simulation Model

2.1. Chapter Overview

This chapter models a class of simulations. Such a treatment is prerequisite for
issues such as or~ mal partitioning of a simulation system and the performance analysis of
a partitioned s: iation. The model we develop usefully describes how simulation enti~
ties interact wii. zach other at run-time. This description leads us to & natural definition
of simulation correctness, and the identification of rules which ensure correctness.

Other authors have proposed models of simulations. [Sch83] proposes a graphical
representation of simulations. This model allows simulation entities to affect each other in
extremely general ways. This generality makes tractable analysis very difficult. Nor does
this model explicitly include any information about the simulation’s execution reguire—
ments. [ChM79] describes a model of distributed simulation. This model focuses on the
synchronization behavior of the distributed processes. While this model is not suited for
the type of analysis prerequisite to partitioning a simulation, our conception of sirmulation
correctness is largely drawn from this presentation. An entirely general hierarchical
mode! of simulations has been proposed in [Zei84]. While very powerful, we find again
that the generality of the model excludes much of the quantitative analysis a partitioning
algoritk - must perform. Nor does this model explicitly identify the simulation’s com~
ponent: sxecution regquirements.

T..- model proposed in this chapter is important principally in that it identifies cer—
tain rev:victions which allow a tractable quantitative analysis not possible with the gen—
eral modsls. Our model also clearly exposes how simulation entities affect each other; this
exposure leads us to an understanding of simulation correctness and synchronization
requirements.

The first subsection of this chapter formally specifies a simulation system. We discuss
event scheduling in section 2.3. Section 2.4 examines simulation execution correctness, and
proves that if proper sequencing rules are enforced within a simulation, then that
simulation’s execution will be correct. We discuss the implication of this result with
regard to synchronization in distributed simulations.

2.2. Specifying a Simuiation

Often simulation model designers think of simulations as systems of interrelated
functions, e.g., a boolean logic network. Each function is given a logical delay distribu~
tion describing the input response time of the physical process modeled by the function.
The specifications of the functions, their inter—dependencies, and their associated delay
distributions are sufficient information for the simulation of the system. We now formal—
ize this intuitive description of a simulation.

Simulation models are concerned with modeling physical processes by software rou—
tines or logical processes. A logical process is formally defined to be a function. We simu-
late a physical process’ response to some input by evaluating its representative logical pro—
cess function. This physical process’ response can affect other physical processes. To sup~
port the formal definition of a simulation model, we first state the definition of a

6

stochastic process given in [Ros83]. A stochastic process X = { X(s), s € 5 } is a collection
of random variables. For each s € § in the index set S, X{s) is a random variable; X (s) is
called the state of X at time s. We define a simulation's input generators to be stochastic
processes.

Definition 2-1t Generator Event Functional

Let Y be a set of states. A generator event functional T; is a stochastic process
whose random variables take states from Y. T;’s index set is the set of non—
negative real numbers. '

o

The collection of all generator events in a simulation serve as the simulation system’s -
input. The simulation's response to its input is modeled with normal event Sunctionals.

Definition 2-2: Normal Event Functional

Let Y be a set of states, and let n; > O be an integer. A normal event functional
T; is a function '

T::YIXY = Y.

The state of T; is described by a stochastic process T;; T;’s index set is the set of
non-negative real numbers.

O

We interpret Y as a set of event functional states, and the vector Y™ as a vector of m
inputs; the other component of 7;’s domain includes T';’s own state value at some epoch.
We will describe rules that govern when and how an event functional’s state changes. For
the present, it is sufficient to know that T';’s state and inputs are elements of Y, and that
T,’s state will be described as a stochastic process.

Our model associates a logical delay probability distribution function with each
event functional. This delay represents the real-time duration of the physical process
modeled by the event functional. We assume that every such delay is strictly bounded
from below by some constant positive number €3. Each event functional also has an exe—
cution delay random variable describing its evaluation’s execution requirements.

We can now formally define a simulation system in terms of its event functionals,
inter—functional relationships, and delay random variables.

Definition 2-3: Simulation System
A sinudation system is a tuple <Y,T",[s,R,L x>
. Y is a set of states;

. T is a set of event functionals T = {T,, --- ,T,.}; each normal event
functional’s domain is a subset of Y"*!, and its range is the set Y;

] Is is an n—vector describing the n initial states of the event functionals,
so [z Y™y
. R is a relation R € I'XT, R defines the event functionals’ inter—

relationships; if <7;,7,> € R we say that T; is a successor of T;, and
that T; is a predecessor of T';;

° L, the logical delay function, maps 7 into the set of all positive random
variables bounded from below by ez > 0

) X, the execution delay function, maps 7 into the set of all positive ran—
dom variables.

o

Some components of a simulation system need further explanation. If <7;,T;> € R, T;’s
state acts as an input to I ;; we temporarily defer specif ying the exact mechanics of how
and when 7’s state affects T';'s. The random variable L(T,) is the logical delay associated
with normal functional T;; for a generator functional T,, L(T,) is the random delay
between T','s state transitions. Likewise, X(7";) is the execution delay random variable
associated with functional 7;.

The simuliation system description gives rise to a naturally defined graph, the system
graph. The nodes of the system graph are simply the event functionals 7;. A directed
edge exists from node 7; to 7; if and only if T'; is a successor of 7;. Having defined the
components of a simulation, we¢ now treat the execution of a simulation.

2.3. Simulation Event Scheduling

The proper execution of a simulation program requires a careful scheduling of event
functional evaluations. In this section we define an intuitive sense of correctness, and
specif y scheduling rules that ensure this correciness.

The following discussion uses three different time lines. The physical time line

refers to time in the physical process ~z modeled; the logical time line is the
simulation’s model of actual time. The ele c time line is the time line of the com-—
puter running the simulation. We suppo: .at the simulation program treats each
functional’s state as a variable. Then the e. :ion of a simulation program transforms

event functionals' states at different points in . 2ctronic time; a functional’s state can thus
be described as a stochastic process in electronic time. We presume that a functional’s
evaluation is performed by an associated module of software called a logical process;

execution of a logical process begins by accepting input values for the functional evalua—
tion, it then evaluates the functional according to its mathematical definition, assigns the
result of this evaluation to the functional’s state variable, and terminates. The execution
of this logical process is called an evaluation of the functional; it is also called an execution
of the functional. The execution starting epoch is called the electronic starting time; the
‘execution termination epoch is called the electronic completion time. We note that the
difference between an evaluation’s electronic starting and its electronic completion time is
a random variable. We assume that a functional’s state can be modified only by an
evaluation of the functional; the execution completion times are thus the state transfor—
mation epochs of the functional’s state stochastic process in electronic time. There are also
logical times associated with a functional’s evaluation. A logical initiation time is associated
with the presentation of inputs to the functional’s software process. This time models the
physical time at which the physical process modeled by the functional is stimulated by
some input. A random logical delay is associated with the action of evaluating the func-
tional; the logical delay models the response delay of the modeled physical process. The
logical completion time is equal to the sum of the logical initiation time and the logical
delay. The logical completion time models the time at which the modeled physical pro—
cess’ state is transformed in response to input.

An event is the evaluation of a functional. We describe an event generated by func-
tional T; by a vector <7T; vt + d,,u, >; T; is the evaluated functional, v is the result
of the functional evaluation, ¢ is the logical initiation time, is the logical delay, i, is
the execution starting time, and u, is the execution completion time. An execution of a
simulation program during electronic interval f0, Z] is a set of events whose electronic
starting times are less than Z, and the scheduling activity which causes these events to
ocour. We will also call this set the execution's event set. For convenience, we also assume
that every event in the event set has an electronic completion time less than or equal to
Z.

While we have noted that a functional state representation within a running simu-
lation program is a stochastic process in electronic time, we have not precisely defined the
stochastic behavior of a functional’s state in logical time. We will define this latter sto—
chastic process in terms of the electronic time stochastic process. We note that the elec—
tronic time stochastic process is governed in part by the rules constraining when (in logi~
cal and electronic time) and if a functional is evaluated. We have not yet specified these
sequencing rules; we will develop a set of such rules, but note here that sequencing rules
Jess intuitive than our own have been proposed [Je$S82]. We let I denote an arbitrary set
of sequencing rules.

The execution of a simulation program under sequencing rules I' during the eiec—
tronic interval [0, Z] consists of an event set, presumed finite. We define a functional
state’s stochastic process in logical time in terms of its stochastic process in electronic time,
and the event set,

Definition 2-4: State Value at Electronic Time

Let T; be an event functional, I' be a set of sequencing rules, [0, Z] be an interval
of electronic time, and T be the T, state stochastic process in electronic time. The
state of T, at electronic time t is the state of the stochastic process 7f at £, and
is denoted by ES(T;,t).

O

10

A functional transforms its state whenever it is evaluated; a logical completion time is
associated with the completion of each functional evaluation. A functional’s state
remains constant in any period of electronic time during which the functional is not
evaluated. We can then meaningfully define the state of a functional at logical time ¢:

Definition 2-5; State Value at Logical Time

Let T; be an event functional, I" be a set of sequencing rules, [0, Z] be an interval
of electronic time, and () be the event set of an execution of the simulation pro—
gram using I' during [0, Z] Let uy, - ,u; denote the monotonically increasing
sequence of electronic completion times of 7; evaluations in Q; let v,,---,v;
denote the corresponding sequence of those events’ logical completion times. The
state of T, at logical time t is given by

LS, t) = ES(T; ug)

where G is the greatest integer such that v; is less than or equal to ¢. We define
the last state of T, before t as

LST ™) = ES(T, ’uG"')

where G~ is defined as G with strict inequality.

a

The definitions above aliow an arbitrary set of sequencing rules I'. We next develop
a particular set of sequencing rules called proper sequencing rules. One aspect of these
rules governs the scheduling of a functional’s evaluation. To say that one evaluation ini—
tiates another at logical time ¢ is to say that it schedules another evaluation to eventually
occur, and that the inputs to the scheduled evaluation are event functional states at logi~
cal time t. We assume that at electronic time 0, every generator functionals’ first evalua—
tion is scheduled to occur. Thereafter, functional! evaluations initiate other functional
evaluations in accordance with the sequencing rules. Our development of sequencing rules
depends on the concept of a proper functional evaluation.

Definition 2-6: Proper Generator Functional Evaluation

Let T, be a generator event functional. A proper evaluation of T, at logical time
r started at electronic time {, consists of the following actions:

a

A state v is randomly chosen;

A logical delay to the next transition, d, is randomly chosen in accor—
dance with the distribution of the random variable L(T);

An execution delay e is chosen; e is randomly distributed in accordance
with the distribution of X(T)

At electronic time I, + e, T,’s state variable in the simulation program is
assigned the state v.

Definition 2-7: Proper Normal Functional Evaluation

Let T; be a normal event functional. A proper evaluation of T; initiated at logical
time ¢ and started at electronic time [, consists of the following actions:

O

The value v = T;(P;(¢), LS(T;, t) is calculated, where P;(¢) is a (n; com~—
ponent)} vector of T;'s predecessors’ states at logical time £;

A random logical delay d is chosen in accordance with the distribution of
L(T;);

A random execution delay e is chosen; ¢ is distributed in accordance with
the distribution of X7)%

At electronic time [, + e, T;'s state variable in the simulation program is
assigned the value w.

n

We note that a proper normal functional evaluation as defined above is an event
<T5,'U.t,t + d,le,le +e>,

The definition of a proper normal functional evaluation of T; initiated at logical

time ¢ specifies that the state values used as input for T;’s evaluation are the state values

of T;’s predecessors at logical time £. Our intuition suggests that such an evaluation must
be initiated at logical time ¢ if and only if one of T,'s predecessors completes an evalua-
tion at logical time ¢ which changes that predecessor’s state. We define evaluations which

change their functionals’ states to be significant evaluations.

L ition 2-8: Significar: . valuation

Let 7, be a generator event functional. An evaluation of 7; at logical time ¢, is
said to be significant if LS(T;t) # LS(T;,¢t7). If T; is a normal event function—
al, an evaluation of 7, initiated at logical time ¢ is said to be significant if
LS(T;,t +d) # LS(T;, ¢t + d)), d being the selected logical delay.

!

The definition of a proper normal functional evaluation exposes a particular assump~
tion used by our model: if an evaluation of T’ is initiated at logical time ¢, the result of
that evaluation is a function only of states at logical time ¢. Any functional evaluation
{T;’s or otherwise) completed later in logical time cannot affect 7;"s ultimate evaluation
resuit. We could generalize our approach by defining a functional’s state history to be a
function of itself and its input history; Zeiglers [Zei84] DEVS formalism uses such an
approach. Such a definition is not analytically tractable. Qur constrained assumption was
chosen to support the analysis of this simulation model.

Our definition of proper sequencing rules follows from the definitions of proper
functional evaluations. There are two aspects to these rules. First, the rules specify con-
ditions which cause a functional evaluation to occur. The proper evaluation of a generator
functional selects a logical delay until the next evaluation of that functional. We say
then that the evaluation of a generator functional initiates the next evaluation of that
functional. It is also intuitively clear that the completion of a significant evaluation of
functional T; at logical time ¢ should initiate evaluations of all of T';’s successors at logi—
cal time f. A second aspect of proper sequencing rules specifies precedence in electronic
time among evaluations. The proper evaluation of normal functional 7; initiated at logi-
cal time ¢t requires 7,;’s own state value at logical time ¢, and the state values of T;'s
predecessors at logical time £. We must therefore constrain the proper evaluation of T;
from occurring in electronic time before the electronic completion times of evaluations
producing the inputs used in this evaluation of 7. These observations lead us to define
proper sequencing rules.

13

Definition 2-9: Proper Sequencing Rules

Let <Y,T,ls,M.R,L x> be asimulation system, suppose the simulation program
is executed on some computer system during an electronic time interval [0,Z], and
let O be the event set of this execution. The execution is said to have followed
proper sequencing rules if and only if '

() A significant evaluation of T; completing at logical time ¢ initiates proper
evaluations of all successors of 7; at logical time ¢;

(1) If T, is a generator event functional, a proper evaluation of T, at logical
' time ¢ initiates a proper evaluation of 7, at logical time ¢ + d, where d
is the logical delay selected by the former proper evaluation of Tg;

(i) I <Th,wt,¢ +d,Lu>and <Ti v, b, & +dpy b, u > are events in 0
generated by a normal functional T; and ¢ + 4 is the largest logical com~
pletion time of an event in { generated by T such that ¢ +d < ¢, then

<L
U = lr,

Giv) If T; is a predecessor of 7';, and if <T;,vt,¢t+d,l,u> and
<T v, ty, b + 4, L, > are events in) where t + d is the largest
logical completion time of an event in () generated by 7; such that
t +d €¢,thenu €1,.

O

The first proper sequencing rule states that a change in one functional’s state requires the
re-~evaluation of its successors’ states. The second rule states that the evaluation of a gen—
erator functional initiates another evaluation of the functional later in logical time. The
third rule ensures that if a functional is evaluated (at least) twice, then the (later) func—
tional evaluation can use the proper previous state of the functional. The final proper
sequencing rule ensures that the proper state of 7; can be used in an evaluation of T;.
Next we show that these rules are sufficient for the correct execution of the simulation.

2.4. Simulation Execution Correctness

This section considers the correctness of a simulation and proves that adherence to
proper sequencing rules ensures simulation correctness.

To say that a simulation model is correct is to say that it correctly captures the
behavior of its modeled object. Establishing the correctness of a simulation model is a
difficult problem which is often ignored [HoP84] . We will always assume that the event
functionals correctly capture the behavior of their modeled objects. Now suppose we
could execute the simulation program on an "ideal” (probably multi-processor) computer
system where there is no distinction between electronic and logical time; we eéxpect the
ideal computer system to present the "correct” inputs to each event functional, and so
arrive at the "correct” result. We then define the correctness of an arbitrary simulation
execution (of a correct model) to be the equivalence between its functionals’ state values

14

in logical time with the ideal system’s functionals’ state values in electronic time.

Definition 2-10: Simulation Correctness

Let <Y.,T",.I¢,M,R,L x> be a simulation system, suppose the simulation program
is executed on some computer system during an electronic time interval [0,Z], and
let O be the event set of this execution. Let B denote the largest logical comple~
tion time of any event in Q, and consider the execution of the same simulation
program on an ideal system during the electronic interval {0,B]. Let T, represent
the ideal system’s version of event functional T;. We say that T;’s state is correct
at logical time ¢ if

LS, t) = E5(T,, ¢).

We say that a simulation is correct ir =z state of every event functional is
correct at every logical time ¢ € [0, B].

0

We will show that enforcement of proper sequencing rules ensures correctness in the
sense of definition 2-10. Our correctness proof uses a graph describing the simulation’s
behavior during an electronic interval. Suppose a simulation system is executed on some
computer (possibly multi~processor) system during the electronic time interval [0,Z], and
we suppose that this simulation execution enforces proper sequencing rules. £ is the event
set of this execution; thus the events in {) satisfy the restrictions defined by the proper
sequencing rules. We create a graph from the events in to illustrate the simulation exe—
cution and the precedence imposed by proper sequencing rules.

15
Definition 2-11: Execution Graph

Let <Y, 1", Is,.M R L x> be a simulation system, suppose the simulation program
is executed on some computer system during an electronic time interval [0,2], and
let Q be the event set of this execution. We define an execution graph for this
execution as follows.

. Every event in {2 is a node in the execution graph;

. Let E be an event generated by a normal functional T; with logical ini—
tiation time s, and let Ty, -+, denote T;’s predecessors. For every
1 € j €k, let E; denote the event (if it exists) in {} generated by T,
with the largest logical completion time less than or equal to 5. We define
an arc from each E; to E.

[Let F be an event generated by a normal functional T, and let E, be the
gvent generated by 7; with the greatest logical completion time less than
E’s logical initiation time. If E, exists, then an arc is drawn from E p tO
E.

3

The construction of an execution graph is intimately related to proper sequencing rules.
The events which appear in { occur as a result of the event initiation aspect of the
proper sequencing rules: the execution graph’s nodes are events in Q. Each arc in the exe—
cution graph expresses a precedence required by the proper sequencing rules; there is a
one—to—one correspondence between an execution graph arc and a proper sequencing rule
constraining the execution starting time of the event receiving the arc. Given an event set
Q of a simulation execution which used proper sequencing rules, we can express the pre—
cedence among completed evaluations imposed by proper sequencing rules by an execution
graph.

Figure 2-1 illustrates a simple system graph suggestive of a logic network, and a
possible execution graph. The electronic interval described by this graph is {0,28]. Recall
that the formal definition of an event (as represented in this execution graph) is a vector
whose first component identifies the functional, the second component is the state result-
ing from the evaluation, the next two components identify the logical imitiation and
completion times, the last two components identify the electronic starting and completion
times.

In figure 2~1, functionals 7', and T, are generators creating binary values; 73 and T4
are binary functionals. 7'; performs the logical and function, and the value of T, is 1 if
and only if its inputs are identical. The initial states of T, and T, are O, causing T 3’s ini~
tial state to be 0, and T ,'s initial state to be 1. Figure 21 illustrates significant ¢valuations
of Tyand T, at logical time 0, so that evaluations of both 73 and T, are initiated at logi-
cal time 0. We presume that 7'; takes a logical delay of 2 units, and T, takes a logical
delay of 1 unit. At logical time 1, T'4’s state then changes to 0, since the state of T'; at logi~
cal time O is O while the state of 7', at Jogical time O is 1. T 3’s state changes to a 1 at logi~
cal time 2, initiating another evaluation of T, at logical time 2. This last evaluation of T4

16

System Graph

<7,1,0,0,0,10> . <T;1,0,0,10,15>

<731,0,2,15,22> <T40,0,1,22,258>

T 4,1,2,3,25,28>

Execution Graph

Figure 2-1

17

changes its state back to 1. The execution starting and completion time numbers shown in
figure 2—1 reflect a sequential simulation of this system, where 7", is first evaluated, then
T ,, T 3, the first evaluation of T4 and then the second evaluation of T4

Theorem 2-1 below inducts on a topological sorting of the execution graph’s nodes.
To prove the existence of such a sorting, we demonstrate that an execution graph is acy-
clic.

Lemma 2-1: An execution graph is acyclic,

Proof: If E; and E; are events such that E; sends an arc to E;, then E;’s logical
completion time must be less than or equal to F,'s logical initiation time. Since
logical delays are strictly bounded from below by €5, any arc out of E; must be
directed to an event whose logical initiation time is strictly greater than E;’s log—
ical completion time. Hence no cycles can exist.

[

We have finally developed the terminology to demonstrate the sufficiency of the
proper sequencing rules for producing correct results.
Theorem 2-1: Let <Y.,T.I,M,R,Lx> be a simulation system, suppose the
simulation program is executed in the physical interval {0, Z), and let Q be the
event set of the execution. If the simulation execution follows proper sequencing
rules, then the simulation is correct.

Proof: We have argued that any execution of a simulation using proper sequenc—
ing rules can be expressed as an execution graph. We prove the theorem by in—
ducting on a topological sorting of the execution graph’s nodes to show that for
every event in () generated by T;, LS(T;t) = ES(T; t) (definition 2-10) where ¢
is the event's logical completion time. The induction base is easily satisfied, as any
event without predecessors in the execution graph is generated by a generator
event functional whose state stochastically behaves in the desired fashion by as—
sumption.

Let E be an event generated by event functional Tz, suppose that E’s logical in—
itiation time is s, and its logical completion time is ¢. Let E,,--- ,E; be E’s
predecessors in the execution graph, let f,, -+ t; be their respective logical com-
pletion times, and let 7'y, - T, be their respective associated event functionals.
For the induction hypothesis, suppose that LS(T; t;) = ES (Fi) fori =1, k.
We must show that LS(T;) = ES(Tg,t). That is, we inductively show that
functionals’ states are correct at their evaluations’ logical completion times.
Again, if E is generated by a generator functional, the conclusion is trivially
satisfied. If E is generated by a normal event functional then (by definition of
the execution graph arcs) for each i, t; is the largest logical completion time less
than or equal to 5 of an event in) generated by T;. The induction hypothesis
assumes that each T’s logical state is correct at E;’s logical completion time. Since
T,’s state can change only at logical completion times, then T;'s state does not

18

change in the logical time interval [¢;, s] so that LS(T,,s) = ES(T;,s) for each
1 € i €k. The inputs presented to the functional generating F at logical time s
are consequently the same values presented to the ideal system’s version of the
functional at electronic time s. The conclusion follows immediately, as we as—
sume that the two functionals produce the same result given the same input. This
completes the induction. ' ‘

Having established that the states of functionals are correct at their logical times

of transition, it follows immediately from definition 2—10 that states of func—

tionals are correct for all logical ¢ € [0,B]

m|

Theorem -1 tells us that the enforcement of proper sequencing rules leads to correct

simulation resuits. This theorem applies to all simulations (modeled as proposed), not just
sequential simulations or just distributed simulations. Recalling the motivation for
proper sequencing rules, we could argue that their enforcement is necessary for correct
simulation; to prove this rigorously we would have to explicitly assume that a
functional’s evaluation cannot anticipate its input values before they are computed. This
is a reasonable assumption; we see then that correct simulation results depend centrally on
the enforcement of proper sequencing rules. This recognition leads us to an understanding
of synchronization requirements in a distributed simulation. Enforcing proper sequencing
rules during the execution of a sequential simulation is simply a matter of making sure
the evaluations are sequentially ordered properly; enforcing proper sequencing rules dur—

ing the execution of a distributed simulation may require a processor to refrain from
execution and wait for the completion of evaluations elsewhere.

2.5. Chapter Summary

We have developed a model of simulations. This model provides a base for further
analysis of partitioning. Using our model, we showed that enforcement of proper
sequencing rules is sufficient to ensure the correctness of the the simulation. These rules
also lead us to an understanding of a distributed simulation’s synchronization require—
ments.

Chapter 3

Run-Time Behavior

3.1. Chapter Overview

Before we can attempt to partition a simulation we need to understand its run—time
behavior, Any model of a simulation’s behavior must somehow capture the effect of syn—
chronization, and must deal with the dypamic variation in the simulation workload.

This chapter examines a simulation’s run—time behavior. Our treatment begins with
a description of some simplifying assumptions. These assumptions allow us to restrict our
attention to a single "cycle” of the simulation, and to model the running simulation with
a Markov chain. We then illustrate how the run—time behavior may vary from cycle to
cycle. These observations place a system’s performance analysis in a probabilistic context:
the analysis is centered on the probability distribution of a single cycle’s execution delay.
We describe means of estimating the cycle execution time under any partition, given that
the cycle behavior is completely known, '

The analysis presented in this chapter is quite important to our understanding of the
partitioning problem. It also lays the foundation for the statistical analysis described in
Chapter 6. It shows conclusively that partitioning a simulation is quite a different prob—
lem than partitioning statically defined task structures. We deal with this added com~
plexity by modeling the running simulation as a Markov chain. The modeling of systems
with Markov chains is standard practice; however, our presentation is different in its
focus. Markov (or semi—Markov) chain models of systems define their transitions at times
when a component changes state {IgS83] , e.g., when a significant evaluation occurs. OQur
Markov chain embeds many such changes in its state, focusing instead on times at which
the system "starts over'. This difference is critical to our analysis of a simulation’s run~
time behavior.

3.2. A Simpler Model

In Chapter 2 we presented a general model of simulations, and showed that the
enforcement of proper sequencing rules leads to a correct simulation execution. However,
the generality of this model excludes any further quantitative analysis. We thus make
some simplifying assumptions which restrict our attention to somewhat less general
simulations. We first describe assumptions removing some non—detéerminism from
definition 2-3. We next assume non-—interference properties, and then examine assump-—
tions causing the simulation to behave cyclically. Finally, we present assumptions giving
a simulation system nice stochastic properties. ‘

3.2.1. Deterministic Delays

Consider a normal event functional evaluation initiated at logical time s, and com-—
pleted at logical time £. Definition 2-3 allows the logical delay ¢ — s to be a random
variable, We suppose instead that every evaluation of an normal event functional T,
introduces a constant logical delay, L{(T;). This assumption is critical to the development
in Chapter 4, and is satisfied by many systems we might simulate.

19

20

Definition 2-3 also allows a general execution delay for every event. We suppose
that every evaluation of 7'; requires a fixed execution delay X (7). The removal of varia-
tion in the delays allows us to concentrate instead on the variation due to the rules ini~
tiating functional evaluation.

3.2.2. Non-Interference

If T; is initiated at logical times 5, and 5, where 5, < 5, < 5, + L(T;), we assume
that the two different initiations do not interfere with each other: the evaluation result at
s; + L(T;) depends solely on state values at time 5,, j = 1,2, This assumption assures us
that the functional’s post—initiation behavior is quite predictable: it waits for all its
inputs to become available, and then re—evaluates its state. We do not see how to relax
this assumption and still do any sort of static analysis of the simulation.

3.2.3. Cyclic Behavior

We are interested in simulation systems where the logical times between generator
functional evaluations follow a repeating pattern. Such systems may exhibit cyclic
behavior, allowing us to focus our analysis on the behavior of the simulation during a
single, representative cycle.

A cyclic simulation is illustrated by the example of a CPU circuit with one major
and several minor clocks. Figure 3~1 depicts the time pattern created by the rising edges
of these clocks. Some instruction is presented to the CPU circuit every major clock cycle;
the minor clock pulses control the instruction’s interpretation. The simulation activity
required depends on the state of the circuit before a major clock, and the instruction
presented for interpretation.

The repeating nature of generator functional evaluations is captured in the genera—
tors’ logical inter—evaluation times. We let ¢, denote the first logical time at which any
generator is evaluated; we identify the index of that generator by i,. The second logical
time {possibly equal to the first) at which any generator is evaluated is denoted ¢,, and
that generator’s index is identified as i,. This denotation leads to a sequence of pairs

O RERNCHE P NP

If two or more generator functionals are evaluated at the same time, we assume that they
are ordered in this sequence by their indices. A given generator functional may appear in
this sequence any number of times. From this sequence we construct another, which
identifies the system—wide generator inter-evaluation times. Let A, =t;,, — ¢;; we con~
struct the sequence :

(Al,il),' * ,(Jﬁj, i_,), e
We assume that that this latter sequence is cyclic: there exists a finite (minimal) integer ¥
*such that every Y elements the sequence repeats itself. We let ¥; denote the sequence’s ith
repetition’s logical completion time. Clearly, '

Y,‘ﬁi' A

;e
1

T

We define one cycle of the simulation to be all of the simulation activity generated
as a consequence of generator evaluations at logical times ¢, ¥; €t < Y,.,. We assume
that each normal event functional is evaluated a bounded number of times during a cycle,
and that all of the simulation work belonging to one cycle must be completed before the
next cycle is begun.

21

M: Major Clock m;: Minor Clock

CPU Clocks Cycles

Figure 3-1

22

3.2.4. Stochastic Assumptions

A cyclic simulation’s nature is not enough to ensure the sufficiency of a single cycie
analysis. We must also consider restrictions on the behavior of the generators’ state transi-
tions. We will demonstrate that if the generator transitions can be described as a Markov
chain, then the simulation system as a whole will be a Markov chain. We then observe
that the system chain is eventually ergodic: the cycles of an ergodic system chain in
equilibrium are probabilistically identical. .

Every cycle, exactly ¥ generator evaluations occur. Whenever a generator is
evaluated, a new (possibly the same) state is chosen for the generator. Let OF denote the
vector (vf,u}, - ,uf) where state v¥ is the state assumed by generator T;, at time

tix-py+; during the kth cycle. OF is a random vector, as the states v% are chosen ran—
domly. Following standard nomenclature, we denote this stochastic process by {O”}. We
assume that the set Y of symbols is finite; 0% is thus drawn from a finite set of vectors.
We also assume that the sequence O',0% - is an ergodic discrete time Markov chain
[Ros83], so that every state Of is eventually visited again. This assumption is much
weaker than the assumption of independence among generator state transitions. Within a
cycle, dependencies may exist between the random variables describing the generator state
transitions; these random variables may also depend on the values assumed in the previous
cycle. The Markov chain assumption is strong enough though to yield some desirable
characteristics.

The Markovian nature of the inputs is preserved by the normal event functionals.
Let N* be the vector defined by the collection of normal functional state values at the
beginning of the kth cycle. We define the system cycle process {67} whose state space is
the cross product of all possible vectors N* with all possible vectors O%. A change in a
normal functional’s state is completely determined by its current state and the states of
its predecessors. Consequently for a given N*, N**! is completely determined by the
vector O observed during the kth cycle. Now consider any possible state vector N* 0%
for the process {©7]. The transition probabilities associated with such a vector are pre—
cisely the transition probabilities associated with its input subvector O%: the N**! portion
of N¥*10f*! is determined by N* and O%, while O *! may vary according to the struc—
ture of {O”}. Since the process {0"} is a Markov chain, it follows immediately that the
process {@"} is a Markov chain. This is extremely useful, since a vector ¢ = N*¥O% com~
pletely encodes the behavior of the simulation system during the kth cycle.

An ergodic Markov chain in equilibrium has the attractive property that the chain’s
state probability distribution does not change from time step to time step. This property
is quite important to some of our later analysis. If we can show that {©"} is ergodic, then
we know that in equilibrium every cycle is probabilistically identical to another. How=
ever, while {©7} inherits the Markovian nature of {O™} it need not inherit the ergodicity.
This is easily shown by example. Figure 3-2 illustrates a Markov transition diagram for
a single functional system with one binary input. The functional’s state is either a or b,
the input is either O or 1. Letting p;; be the probability that the input chain passes from
state { to j, we have poy=.3, por=.7, p1o= .6, p;;= .4. The system’s transitions are
represented by arcs weighted by their transition probabilities. This example shows that
the functional with an initial value of a will never again achieve the value a; the process
{©"} is not ergodic.

The example above might suggest that ergodicity could be preserved if {®” }’s transi~
tion diagram always provides a path between any two states. Figure 3—3 contradicts this
hypothesis, depicting the transition diagram for another single functional process, with
two binary inputs. Again the functional’s state is either a or b, and each input is either 1
or 0. A cycle consists of a transition by each input, and we suppose that the pattern of
input values is fixed, alternating between (1,0) and (0,1). The functional’s state transition

23

Non Ergodic Markov Chain

Figure 3-2

24

Qo=
ol

Apparently Ergodic Transition Diagram

Figure 3-3

25

diagram allows for the input vector (1,13, which we have excluded from the input process.
This diagram apparently describes an ergodic Markov chain, since a path exists between
any two nodes. However, the functional with an initial value of e Wwill never again
attain the value of @ as the first input vector causes a transition to state b. The only way
for the functional to reattain state a is for the input system to present two successive (1,1
input vectors, which is impossible. Even though the functional’s state transition diagram
appears ergodic, the overall system is not ergodic.

This last example shows that a demonstration of ergodicity must consider the joint
behavior of the system’s inputs. This sort of calculation is theoretically possible, but com-
putationally intractable. In the general case we have to consider each of 1Y1¥ input vec—
tors. We cannot generally expect to be able to prove {8} is ergodic.

Even if {®”) is not an ergodic chain, it will exhibit ergodic tendencies in finite time.
Every state in a finite Markov chain is either "transient” or "recurrent”. Transient states
are visited a finite number of times with probability 1. The set of recurrent states can be
partitioned into a number of classes, or subchains. A chain whose state is in a recurrent
class will never leave that class. Thus, in finite time, {8" } will enter an ergodic subchain,
and for all practical purposes be ergodic.

It is convenient for us to assume that the Markov chain is fundamentally ergodic.
The examples illustrating the difficulties in proving ergodicity are somewhat contrived.
They depend on a bad choice of an initial state which can never again be achieved. The
type of simulation motivating our research is the class of functional logic network simu~
lations, These networks consist largely of "memoryless” gates whose states are entirely
determined by their inputs. A simulation whose normal event functional transition
functions F; do not depend on the functionals past state will be ergodic if the process
{0} is ergodic. Consider any one of {@"}'s achievable states NO, and let Oy be an input
vector such that application of Oy places process {N"} in state N, and {O"}’s transition
probability p, from Oy to O is non—zero (the existence of Oy is guareenteed by the fact
that NO is an achievable state of process {€"}, and the memoryliess nature of the normal
event functionals). Since {O" } is ergodic, the mean number of steps between visits to state
Oy is finite, say p. Every time {O"} returns to Oy, it passes next to state O with proba—
bility p,, p. # 0. The number of times it returns to Oy before next passing to O is a

geometric random variable with mean ;}-— It follows directly that the mean number of
T

steps between visits to state NO in process {©7} is no greater than 4. which is finite.

t
This is equivalent to saying that {@"} is ergodic. We will assume then that in general
{@"} is an ergodic Markov chain, in equilibrium.

3.3. General Cycle Behavior

This section considers a simulation cycle’s run-~time behavior. We first observe that
one cycle’s simulation work may differ from another cycle’s simulation work. We show
how to augment the execution graph from Chapter 2 in order to calculate a jower bound
on the cycle execution time; we also sketch a method for deriving better cycle execution
time approximations. Finally, we argue that any performance analysis of a distributed
simulation must treat that performance in a probabilistic framework.

3.3.1. Variant Cycle Behavior

The proper sequencing rules described in Chapter 2 specify that a normal event
functional evaluation must be initiated at logical time ¢ if any one of its predecessors
changes state at logical time ¢. Adherence to these rules causes the amount of simulation
work performed in a cycle to vary from cycle to cycle. As a simple example, consider the

26

stmulatizs . single logic gate. If either of its inputs changes from one cycle to another,
the gate’s so ~ state must be evaluated, Identical inputs may be presented during two suc-
cessive cycles; the gate is not simulated during the second cycle. Even in the simplest of
simulations, the simulation workload can vary from cycle to cycle.

3.3.2. The Execution Graph Revisited

The execution graph's topology is defined without explicit reference to the
simulation’s implementation. The arc definitions reflect precedence relations necessary for
correct simulation; these arcs are defined independently of a simulation’s partitioning for
parallel execution. We can modify the execution graph to reflect the assignment of the
evaluated functionals to a distributed system. If node 7 in the execution graph has prede—
cessors Py, - .P., each P; evaluation must be completed before T is simulated. The
assignment of events to processors leads to further precedence; within a processor, func—
tional evaluations are customarily ordered in their logical completion times. We further
suppose that co-resident events with identical logical completion times are ordered in
some fixed way. Within each processor we can impose a total precedence ordering on the
event evaluations. To reflect the assignment of events to processors, we augment the exe—
cution graph with these additional execution precedence arcs. We refer to the resulting
graph as the cycle execution graph.

Figure 3-4 gives an example of a cycle execution graph. This graph is derived from
the execution graph of figure 2-1. Figure 3—4 assumes that functionals 7', and T'j are
assigned to the same processor, and that functionals T, and T4 are assigned to a second
processor. The physical initiation and completion times have been omitted from figure
3-4's event representations.

The proof of a lemma in the next subsection assumes a topological sorting of the
cycle execution graph’s nodes. To support the validity of this assumption, we remark that
the cycle execution graph is acyclic. A formal proof of this is postponed unti] Chapter 4,
where we show that a larger graph is acyclic; the cycle execution graph is a subgraph of
this larger graph, and so is itself acyclic.

3.3.3. Cycle Execution Time Estimation

We would like to determine a cycle’s execution time from its cycle execution graph.
In this section we show how a lower bound on the execution time can be inferred from
this graph.

Chapter 2 demonstrates that proper sequencing rules create precedence relations
between functional evaluations; we will call these logical dependencies. The execution
graph illustrates logical dependencies between evaluations with arcs; a cycle execution
graph illustrates these same dependencies, as well as execution dependencies created by
partitioning. Distributed simulations enforce these precedence relations with synchroni-
zation protocols. Most of these protocols’ run—time behavior is quite complex, and cannot
be conveniently modeled. Recognizing that the precedence arcs in a cycle execution graph
expose the essential synchronization requirements, we will model synchronization in a
distributed simulation with a protocol inspired by the cycle execution graph, oracle syn—
chronization.

Under oracle synchronization, a functional completing an evaluation reports its new
state to each of its successors. This message inciudes a bit saying whether the evaluation
was significant {meaning it changed the functional’s state, definition 2-8). The completed
evaluation also sends a message to its execution successor, releasing the processor. A func-
tional receiving notice of a significant evaluation must be evaluated, but must wait until
its other logical predecessors have achieved the correct states. It must furthermore wait
for its execution predecessor to release the processor. The functional retains a history of

27

<7 ,10,0,—~—> <T 2,1,0,0."’"‘,""“' >
: ;
' t
' '
| 1
! i
vy
<T 3’1:0v2v—:— > <T 4,0,0,1
I
]
|
t
precedence ’
- -
arc <T 491»2133“;_ >
execution
-
arc

Cycle Execution Graph

Figure 3—4

28

messages sent to it by each predecessor. We assume that an oracle exists which discerns for
an initiated functional whether each message required for the evaluation has been
received. The functional’s evaluation will not occur until all appropriate predecessor mes—
sages have arrived. We assume that the oracle introduces no further execution delay.

The oracle synchronization protocol’s activity during a given cycle is directly related
to that cycle’s execution graph. For every node the oracle discerns when the precedence
relations described by the graph have been satisfied. It is possible then to analyze the
cycle execution graph to determine the cycle execution time under the oracle synchroni-
zation method. We augment the graph with weights on the nodes and weights on the
arcs. Every node is weighted with its execution delay; the initiation node is given a delay
of zero. Every execution arc is given a weight of zero, and the arcs out of the initiation
node are weighted by zero. Every other arc is given a weight of C, the communication
delay. The length of a path through this augmented graph is the sum of node and arc
weights on the path. Then

Lemma 3-1: Let ¢ be a cycle, and let WCG be the weighted cycle execution
graph for ¢, as defined above. Then the longest path through WCG is equal to the

cycle execution time under oracle synchronization, and is a lower bound on the
true cycle execution time.

Proof: Let W be a WCG graph node. We could induct on a topological sorting of
WCG nodes to show that the length of the longest path to W defines W's com~
pletion time under the oracle synchronization, and is a lower bound on W's true
execution completion time. This induction argument follows easily from the ob-
servations that the cycle execution graph’s arcs define precedence relations. The
claim that the length of the longest path to W defines W’s completion time is es—
tablished since W does not execute until each predecessor has completed and the
graph’s weights are conveniently defined. The claim that this completion is a
lower bound follows from the reasonable assumption that it is not possible to ‘
know a priori the result of a predecessor’s functional evaluation.

O

The cycle execution graph is useful for roughly estimating the cycie execution time,
but we may desire better accuracy. We show in Chapter 4 that the oracle synchroniza—
tion protocol ignores some additional synchronization needs. Furthermore, the cycle exe~
cution graph ignores some potentially important details. For example, a real synchroniza—
tion protocol requires additional messages and may introduce additional computational
delay; nor is event list processing overhead considered in the execution graph. It would be
computationally convenient if we could further augment the cycle execution graph to
reflect this overhead, but such an approach does not seem feasible. A processor’s events list
processing overhead can depend on gueue size, and is thus time dependent. This sort of
load dependent delay is not convenisntly expressed as a weight on a graph arc. The most
direct and accurate way of calcula the cycle’s execution delay is to simulate the exe—
cution of that cycle. The synchroniz2iion and events list overhead can then be introduced
as required. Given the full knowledge of the cycle’s behavior, the simulation contains no
random variation, and will thus give a determinate answer.

29

3.4, Chapter Summary

This chapter identifies simplif ying assumptions under which the running behavior.
of a simulation can be described as a sequence of cycles whose behavior is Markovian.
This allows us to restrict our analysis of the system to a single, representative cycle. We
show that even in the simplest of systems, a simulation’s computational workload can
vary from cycle to cycle. A cycle’s execution time is thus a random variable; furthermore,
this random variable is a function of our choice of partition. A natural way to judge a
partition is to calculate or estimate its corresponding mean cycle execution time. Towards
this end, we have also shown how, given a description of a particular cycle’s behavior, we
can bound from below the cycle execution time in a distributed system.

Chapter 4

Synchronization and Cycle Execution Time

4.1. Chapter Overview

In Chapter 3 we examined the run—time behavior of a simulation, identifying
important "cycles” whose behavior is randomly distributed. These cycles are intrinsic to
the simulation structure, and are independent of the way the simulation is executed. In
this chapter we address a problem motivated by a physically distributed simulation: how
can we quantitatively model the distributed simulation’s run—time behavior? We need a
model to evaluate the effectiveness of a partition. The Markov chain model is too large to
numerically analyze, and it does not explicitly consider synchronization. Furthermore,
except for [Nic84], no one has proposed a distributed simulation run~time model; the
model in [Nic84] is not suited for detailed quantitative analysis. This chapter shows how
synchronization requirements can be graphically represented, and how the cycle execution
time can be derived from the graph. Section 4.2 develops the work graph, which describes
all possible simulation work during a cycle. Section 4.3 defines a partition of the work
graph; it also shows how the work graph is transformed as a function of a partition into a
work assignment graph which expresses necessary precedence on functional evaluations.
The work assignment graph leads us to model synchronization with an ideal synchroniza—
tion protocol, the hyper—message synchronization protocol. Section 4.4 shows that a
cycle’s execution time under hyper—message synchronization is optimal over the class of
non—predictive synchronization protocols. Section 4.4 aiso shows that hyper—message
synchronization is a better synchronization model than oracle synchronization {(Chapter
3), and shows how to efficiently calculate an observed cycle’s execution time under
hyper—message synchronization.

4.2. The Work Graph

The Markov chain model of a simulation is useful in demonstrating that simulation
cycles are probabilistically identical. The state space of this model while finite, is enor—
mous, and not amenable to numerical treatment. This section shows how to represent the
simulation by a substantially smaller structure, the work graph. Unlike the Markov
chain model, the work graph focuses on the logical times at which simulation work might
accur during a cycle, and does not explicitly consider the functionals’ state vajues. The
exclusion of state information significantly reduces the size of the representing structure,

The work graph expresses all of the work that might occur during a cycle. Its nodes
are pairs: a logical time, and an event functional. The pair (¢, T,) is 2 work node if it is
possible that T; can have an evaluation initiated exactly t logical time units after the
beginning of a cycle. We refer to 7',’s state symbol at logical time ¢ + L(T;) as (¢, T,)s
evaluation result. We note that the evaluation result is defined even if 7 is not initiated
for evaluation ¢ time units into the cycle. We will often refer to the evaluation or execu—
tion of a work node W = (¢, T;). This is intuitively understood as an actual evaluation of
the functional 7;, initiated at logical time ¢. ‘

A directed edge is defined from (s,T;) to (¢,7,) if 7, is a successor of 77,
t =5+ L(T;), and T,;#7T;. The base node of the edge thus identifies a potential

30

31

evaluation of T; which (by changing T;'s state) can cause an evaluation of 7',. (s, T}) is |
said to be an initiation predecessor of (¢, T ;) and (¢, T';) is said to be a inifiation successor
of (s f T,').

A work graph is constructed from the system graph and a specification of the cycle’s
generator transition times. We show that every system graph path from a generator to 7'
defines a potential evaluation of T',. Suppose a generator functional is evaluated at logical
time s, and changes state. We may suppose that normal functional T, is a successor of the
generator, and so potentially changes its own state. This in turn may cause another func—
tional T, to be evaluated, and so on. In general, if 73,75, "+, T;.; is a sequence of nor~
mal functionals such that 7', is a generator’s successor, 7; is a successor of T;_; for
i=2,+,j, and the generator cg%nges state at logical time s (into the cycle), then T,

J
might be evaluated exactly s + 3} L(T;) logical time units into the cycle. Furthermore,

. i=]
T; can be evaluated only if there is such a path through the system graph. Creating the
work graph is equivalent to finding all paths to each functional in the system graph.

We must take additional care with cyclic system graphs. We assume that for every
functional T';, the user supplies an upper bound B(T j) on T',’s evaluation initiation times.
If the system graph is acyclic, we do not require these bounds, and so define B(T;) = oo
for each T';.

Our work graph creation algorithm considers the cascading effect of a single genera~
tor transition. This procedure is then applied to each generator in turn. The effect of a
generators’ transition on normal event functiopals can be directly found using a
breadth—first traversal of the system graph [SaH76] . This traversal uses a list of pairs
(¢, T;) called the search list; initially the search list contains only (0, 7',) where T, is a
generator. As the algorithm iterates, it removes the top search list node (f‘, T;) and inserts
the time ¢ into a sorted list of T;'s potential initiation times. If t already appears in the
{ist, it is not reentered and no further processing of (t,T;) is performed. If T ;7 is a succes—
sor of T; and if t + L(T;) < B(T), then the entry (¢ +L(T;), T,) is placed at the end of
the search list. This refiects that T;’s potential state change at time ¢ + L(T;) can initiate
an evaluation of 7;. The search list will be empty once all potential evaluations caused
(transitively) by T';’s transition have been generated. This termination is assured since the
algorithm essentially finds all paths to each 7; with length less than B(T;). Then each
functionals’ list of offsets is expanded. We suppose that generator 7'y, makes state transi-
tions at logical times 54,* * , 5. Each functional T;’s list of offsets is expanded k ~fold by
adding each s; to each offset to reflect the effect of 7;’s transition at 5;. We may discard
duplicate entries and any entries exceeding the bound B(T;). The resulting list is again
sorted, stored, and emptied. When this task is completed for each functional, the T,
graph traversal pass of the algorithm is considered terminated, and another generator’s
effect on the system is calculated. The graph traversal phase of the algorithm terminates
upon the completion of the graph traversal pass for every generator T,.

When the graph traversal phase terminates, each normal functional has sorted lists
of potential evaluation times, one list for each generator functional. Each functional’s lists
are then merged, discarding duplicate entries. The merged list holds all of the functional’s
potential evaluation initiation times, in sorted order. The pairing of these times with the
functional produces all of the functional’s work nodes.

The work graph arcs are directly defined. If (¢,7;) is a work node, we need to find
all work nodes sending arcs into (¢,T). (s,7;) sends an arc to (¢,T,) if T; is a predecessor
of T;and if t =5 + L(T;). For each predecessor T; of T';, this s is easily found if it
exists, as T;'s list of potential initiation times is sorted.

A work graph represents all evaluations which might happen during a cycle. Our
algorithm employs a breadth first search through the system graph initiated at a generator

32

functional. This search will thus follow all paths from the generator to a functional 7,
so all of 7’s potential evaluations are discovered.

Figure 4~1 illustrates a simple simulation system and its corresponding work graph.
T, and T, are generator event functionals for this system; I'3 and T4 are normal event
functionals. Both 7' and T4 are assumed to have a logical delay of 1. A cycle in this sys—
tem consists of the simulation work which occurs as a result of three generator transi-
tions: both T'; and T, are evaluated at time 0, only T, is evaluated at time 2. Figure 4-1
illustrates that a work graph might not be connected.

Later analysis relies on the fact that the work graph is acyclic. We demonstrate that
this assumption is correct.

Lemma 4-1: A work graph is acyclic.

Proof: Suppose not. Let (s,,Ty), -+, (5,T%), (s,,T,) be a cycle in a work graph.
By construction, if an arc exists from (s;,7;) to (s;,,,Tis,), then s; = 841 — L(T;).
We have assumed (in Chapter 3) that for every T;, L(T,) is some positive con~
stant. Thus, for every i, s; < s5;,,. This implies that 5; < 5, < *++ < § < 5,
an impossibility. Therefore no cycle exists in a work graph.

0

Finding-all work nodes is equivalent to finding all paths through a directed graph. A
simple example shows that the number of unique paths through a graph may explode
combinatorially with the number of graph nodes. The complete directed graph is a graph
with an arc from every node to every other node; if there are n nodes, there are nl unique
paths touching every node exactly once. We can define a system graph which is essen—
tially a complete graph. We take a complete graph, add a source (generator) node, and
define an edge from the source to every node in the complete graph. Likewise, we define a
sink node, and an arc from every node in the complete graph to the sink node. We suppose
that node j in this graph has a logical delay of 2/, Tt is easy to see that thers are an
intractably large number of work nodes associated with this graph: every unique path to
a node has a unique length.

The example above shows that work graph analysis must be restricted to simulation
systems that are in a certain sense well-behaved. In well-behaved simulation systems it
should not be possible for a huge amount of activity to be generated by a single input.
For example, we have been abie to use work graphs derived from logic network simula—
tions. We conjecture that work graphs will be tractable for the simulation of many phy-
sical systems. '

4.3. The Work Assignment Graph

The work graph defines an arc from (s,T;) to (¢,7,) if an evaluation of 7, initiated
at logical time s can initiate an evaluation of 7 ; &t logical time t. Clearly the evaluation
of (s,T;) must be completed before the evaluation of {(¢ T ;) can begin. We must also con—
sider other precedence concerns. These concerns are captured by the work assignment
graph.

We create a work assignment graph by adding arcs to the work graph. Suppose the
work graph defines an arc from (s, 7;) to {¢t, T',). The evaluation of 7 ; initiated by T;
reads the states of all of T';’s predecessors at logical time ¢ as input. 7, can be a predeces—
sor of 7'; and not be able to change its state at logical time ¢. The work graph will not
then define an arc from a 7, work node into (¢, T ;> The work assignment graph differs

33

T] Tl
| il
I | |

T

T, T, 2

0 2 4
Om® S

_ Generator Functionals Transition Cycle
System Graph
0,7, ©, 75 2, Ty
0,73 0,74 (2,T3) 2, Ty
(1,73 (3,T3)
Work Graph

System Graph, Generators Cycle, and Work Graph

Figure 4-1

34

from the work graph in that it will express (¢, T,)s dependence on 7. For every work
node (t, T';) and functional T, let ¢, [(¢, T';)] be the largest T, work node time such that
t 2 Y {e, T+ L(T,). Then (l(t, T)L T,) is the T, work node with maximal time
whose resulting state can affect the evaluation of (¢, T;). An evaluation of T initiated at
logical time 4 [(z, 7)), must be completed before (¢, T,) can be evaiuated. We thus define
a logical precedence arc from (. [(t, T)}, T) to (¢, T). Every initiation arc is also con—
sidered to be a logical precedence arc.

The work graph creation algorithm produces a sorted list of potential evaluation
initiation times for each event functional. These lists are used to eficiently define a work
assignment graph’s logical precedence arcs. We find all logical precedence arcs into each of
T;’s work nodes as follows. We first identify all of T ;'s predecessors T'¢, - - - ,T'f. For
every work node (¢, T;) and every predecessor T, we define a logical precedence arc from
work node (;((¢, 7';)}, T;) to (¢, T,). The base node of this arc is efficiently found as T;’s
work nodes are sorted in their initiation times. (;[(¢, 7";)), 7;) is said to be a logi
predecessor of (¢t,T;), and (¢, T;) is said to be a logical successor of (;[{¢, T;)], T;). Logi~
cal precedence arcs are also defined among a functional’'s own work nodes. The state
transformation represented by (¢, T';) depends on the state of T, at logical time £, The
state of T'; at logical time ¢ depends on the result of the potential transformation of T';
initiated at time ,;[(z,7,)] We therefore define a logical precedence arc from
(\bj{(t, Tj)], TJ) to (t, Tj).

The work assignment graph inherits the work graph’s initiation arcs and addition—
ally defines other logical precedence arcs. The precedence described by these arcs is
independent of the simulation’s partitioning. Additional precedence is induced by the
assignment of work nodes to processors; analysis of a distributed simulation’s run—time
behavior requires consideration of the partition’s effect on performance. We now formally
define a partition to be a function mapping a work node W onto a pair (Py, kw). Py
identifies another work node whose execution will always immediately precede W's; ky
identifies the processor W is executed on. This defintion encapsulates both the assignment
of work nodes to processors and the execution order of co—assigned work nodes. Definition
4-1 symbolically states five conditions on the partition function; we then explain each
condition.

35

Definition 4-1: Partition

Let WG be a work graph, and let N(WG) be its node set. Let K = {12, ,m} be
a set of processors. A partition of WG is a function
WN(WG)—~ N(WG)IU{0} x K such that

@ ¥ ¥W) = (P\V ,k\,v) and ¥(V) = (W,kv), then ky = kw;

(i) For every W € N(WG), there exists at most one V € N(WG) and at most
one k € K such that ¥(V) = (W k)

(jii) For every k € K, there exists exactly one W, ¢ N(WG) such that
W(Wk) = (O,k);

Giv) W =(s5,T;)and V ={¢,T;) are work nodes generated by the same func—
tional 7;, then for some Py, Sy € N(WG)U{0} and some processor k € K,
\I’(W) = (Pw.k) and ‘F(V} = (Sv,k);

W ¥ W=(T), Py=0T), ad UW)=(Pyk), then
s + L(T,) <t + L(TJ).

O

A partition function maps a work node W into a pair (Py k). k identifies W’s processor ,
and Py identifies 2 work node whose evaluation always immediately precedes W's own;
we call Py W's execution predecessor, and we call W Py ’s execution successor. Condition
(i) simply says that if W is V’s execution predecessor, then ¥ maps W and V onto the
same processor. Condition {(ii) ensures that no other work node will identify W as its
execution predecessor; condition (iii) ensures that within a processor, exactly one work
node will not have an execution predecessor, Work nodes are ordered linearly by ¥
within a processor: exactly one node has no predecessor, every node’s successor is unique.
Condition {iv) says that all of a functional’s work nodes must be assigned to the same
processor. Finally, condition (v) says that a processor’s linear ordering of work nodes is
ordered in the work nodes logical completion times, We see that a partition ¥ both assigns
event functionals to processors, and determines a static execution order for co-resident
functionals. This static ordering ensures that functional evaluations are ordered in the
evaluations’ logical completion times. A static execution ordering is a useful modeling
assumption, and closely resembles the technique used by most sequential simulations to
order event evaluations in their logical completion times.

A processor’s linear ordering of work nodes induces precedence among those nodes.
Whenever node W is the execution predecessor of node V', we define an execution pre-
cedence arc from W to V in the work assignment graph.

We've shown how to create-the work-assignment graph WAG(j) from work graph
WG and partition ¥; by augmenting WG with additional logical and execution pre-
cedence arcs. Finally, we add a system sink node P; which detects the cycle’s termination.
We can identify the work assignment nodes (s,,81), - * (s, ,S;) having no logical or execu~
tion successors. We direct a termination arc from each (s;,8;) to Pg to reflect that the
cycle is not-terminated at least until all simulation activity ceases.

,ure 4-2 illustrates a work assignment graph for the work graph shown in Figure
4-1. Initiation arcs are labeled with an i Table 4-~1 gives the partition function ¥
defining the work assignment graph of figure 4-2.

Later analysis inducts on a topological sorting of the work assignment graph’s nodes.
The validity of this induction requires the work assignment graph to be acyclic.

Lemma 4-2: Let WAG(j) be a work assignment graph for work graph WG and
partition ¥ ;. Then WAG(j) is acyclic.

Proof: Suppose not. Let (s;,7), "« - (5¢,T%),(s,,Ty) be a cycle of work assignment
nodes in WAG(j). We can easily adapt the argument given in the proof of lem—
24 4~1 to show that if the arc from P; to Py, is a logical precedence arc, then
w2 must infer that 5y < s, an impossibility. Theref~-e, every arc in this cycle is
an execution precedence arc. But this is a contradictic~, the execution arcs within
a processor impose a strictly linear (ie., non—cyclic) ordering on the nodes within
the processor. Thus WAG () is acyclic.

o

4.4. Synchronization and Cycle Execution Time

In this section we show how the work assignment graph naturally defines an ideal
synchronization protocol, hyper—message synchronization. We show that a distributed
simulation’s performance under this protocol is optimal over the class of non-predictive
synchronization protocols, We then show that hyper—message synchronization identifies
synchronization requirements missed by the oracle synchronization scheme of Chapter 3.
Finally, we show how to modify the work assignment graph with information from an
observed cycle to create a directed acyclic graph whose longest path has length equal to
the cycle execution time of that cycle under hyper—message synchronization.

4.4.1. Hyper—-Message Synchronization

Chapter 3 describes a synchronization scheme related to the cycle execution graph.
A cycle'’s execution time under this scheme was shown to be a lower bound on an achiev—
able cycle execution time. We now define a synchronization scheme based on the work
assignment graph. This scheme too is shown to bound any real synchronization method’s
cycle execution time from below. Qur proposed synchronization scheme requires every
work assignment node to be executed and to send messages 1o its successors. Non—zero
queueing, execution and communication delays are suffered only by evaluated work
assignment nodes. Non~evaluated work assignment nodes perform their execution and
communication on a so~called "hyper" system where the "hyper—executions” and "hyper—
messages” suffer no delay. We call this scheme hyper~message synchronization.

Under hyper—message synchronization, every work assignment node receives mes—
sages from its work assignment predecessors. A completion message from a logical prede-
cessor reports e result of the predecessor’s evaluation or hyper—execution; a release mes—
sage from an execution predecessor releases the processor for use. Work assignment node
W is evaluated if and only if W receives at least one completion message indicating a
state change from an initiation predecessor. W'’s evaluation is initiated after W
receives a message from each of its predecessors (logical and execution). This evaluation
suffers a computational delay, and initiates the dispatch of completion messages to W's
logical successors. A completion message suffers a communication delay of C when sent to

a7

Processor 1

-
—
—

St &

o~
-

hi
o

S’

[-
-
-p

~
-

hi
L

St

—
-

Fan]
W ommm D) e
iﬂ
W
P

Processor 2

o~
e

}ﬂ
L]

‘Oﬂ-_____-
~

'S

o —

e ~~
E\)q-...,..-»m- ‘E\.)q._-_-..
~ ~3
B b
—

<" logical

B s
] precedence
(3, T3)
........ execution
------- -
......... precedence
o
Ps termination
........ o
Work Assignment Graph
Figure 4-2
Partition W
WGnode W | PSI(W) | WGnode W | PSI(W)
0,T,) (S) 0,7, (0,2)
0, T3 (o, v 0, T4 (0, T,),2)
(1,T3) (0, T3 1 (2,7, {(0,7T,),2)
(2,T3) QT30 2, Ty @, T2
3.7 Qa1

Table 4-1

38

a different processor. If W's initiation predecessors send only "no state change” messages,
W hyper—executes instantaneously with the arrival of the last no—change message. W
simultaneously sends a "hyper" no—change message to each of its logical successors. A
hyper-message’s transition does not suffer deiay.

Special rules apply to the system sink node predecessors. Every node S; directing a
termination arc to Py sends a hyper "termination’ message to Py (Ps is not assigned to
any processor) at the time S; would issue a release message. The cycle terminates when
Py has a termination message from each of its predecessors.

When W hyper—executes, its hyper—execution initiation time does not depend on
messages from non—initiation logical predecessors, nor the release message from its execu—
tion predecessor. This rule is designed so that the knowledge of W's non—evaluation {and
non-change of state) is distributed as quickly as possible. W's hyper—execution might
occur while W'’s processor is busy executing some other work assignment node. We need to
take additional care to ensure the proper handling of evaluated nodes’ access to the CPU.
When W yper—executes, it dispatchs a release message to its execution successor S,, pro—
vided t : W has received the release message from its own execution predecessor P,.
Otherw:se, W sends the release message to S, instantaneously with the arrival of the
release message from P,. A release message suffers no delay.

A cycle’s execution time under hyper—message synchronization is a lower bound on
any non-predictive synchronization protocol’s cycle execution time. Before establishing
this result, we define the concept of a non—predictive synchronization protocol.

Definition 4-2: Non—Predictive Synchronization Protocol

Let WAG(j) be a work assignment graph for some simulation system under par—
tition ¥ ;. A synchronization protocol is a decision policy which governs when a
work assignment node to be evaluated is executed by its processor. A protocol is
said to be non—predictive if for every work assignment graph node W with ini-
tiation predecessor: “..--- P

i) The protocc. 1ot anticipate that W is not evaluated before it deter—
mines that eacs _aitiation predecessor P; does not change state;

(ii) If W is evaluated with an electronic completion time of t, the result of
that evaluation is not known in W's processor before time ¢, and is not
known in any other processor until time ¢ + C, C being the communica—
tion delay;

(iii) The protocol enforces the static sequencing of evaluations defined by ¥ ;
within a processor.

g

less formally, a non—predictive protocol can ensure the simulation’s correctness {see
Chapter 2) only if it bases its scheduling decisions on the resuits of completed functional
evaluations. It cannot anticipate a potential evaluation’s occurrence nor its result; it can-
not learn of an evaluation's result faster than the limits imposed by the system. It is
easily seen that hyper—message synchronization is a non-predictive protocol. Furthermore,

39

we expect implemented realizable protocols to be non—predictive.

We can show that hyper—message synchronization is optimal over the class of non-
predictive synchronization protocols. This demonstration is aided by some definitions. Let
¢ be some cycle. For every work node W we define XJ7(W) to be W's electronic (see
Chapter 2) execution starting time under hyper-message synchronization. If V is a work
assignment graph predecessor of W, we define A(V, W) to be the electronic arrival time
of V's message to W under hyper—message synchronization. xmin(W) is defined to be W’s
minimal possible electronic execution starting time under a non-—predictive protocol;
- gmin(W) is defined to be the minimal possible electronic time at which, under a non-
predictive protocol, W is granted the processor. If W ={¢, T,), and P; = (s, T;) is a logical
predecessor of W, we define kmin(W, P;) to be the minimal possible electronic time at
which, under a non-predictive protocol, W receives the state of functional T; at logical
time ¢. If W is not evaluated, kmin(W) denotes the minimal electronic time at which,
under any non—predictive protocol, W has all of its initiation predecessors’ state values at
logical time ¢. All of the values defined above depend on the particular cycle ¢. Our use
of these definitions lets the dependence on the cycle be understood. Then we have

Theorem 4-1: Let WAG(j) be a work assignment graph for work graph WG and
partition ¥;. Then for every cycle of the simulation, the cycle completion time
of a simulation using hyper—message synchronization is less than or equal to the
cycle completion time of the simulation under any non—predictive synchroniza—

tion protocol.

Proof: We denote the subgraph of WAG(j)} which excludes Ps and its incoming
arcs by WAG(j)—~{Ps}. We induct on a topological sorting of the
WAG(j) — {Pg} nodes to show

® If W is hyper—executed then X7 (W) € kmin{W).

(i) If W is to be evaluated then A(P,, W) € gmin(W) where P, is W’s exe—
cution predecessor.

(iii) If W is to be evaluated then XI (W) < xmin{W),

To -establish the induction base, let W be any node without predecessors in
WAG(j). Conditions (i) and (ii) are vacuously satisfied; condition (iii) is trivially
satisfied as W begins its execution at time 0. The induction base is thus esta—
blished.

As the induction hypothesis, we suppose that all nodes which topologically pre~
cede a node W satisfy the induction statement. Let Py, ,P; be W's initiation
predecessors in WAG(j), let Pryy..Ppy be W's logical non—initiation predeces-
sors, and let P, be W's execution predecessor. We first establish condition (i) of
the induction statement. Suppose that W hyper—executes. If predecessor F;

40

hyper—executes then
AP, W) = XI(P;) € kmin(P;) = kmin(W, P;)
by the induction hypothesis. Now suppose P; is evaluated. Then
AP, W) =XI(P,) + X(P,) + D(P;,, W)

€ xmin(P;) + X(P;} + D(P,, W) by the induction hypothesis

= kmin(W, P,)

where X (P;) is P,’s execution delay and D(P;, W) is the communication delay
between P,’s processor and W's processor (D{(P;, W) # 0 only if these processors
are distinct). Thus for eve:s P; we have A(P;, W) € kmin(W, P;). W is hyper—
executed so that

XI(W)= mg}s{A(P,-, W)
< mg;;{krmﬁn(W. P

& kmin(W)

completing the induction on condition (i).

We establish condition (ii). We assume that W is to be evaluated and has an ex—
ecution predecessor, otherwise condition (ii) is vacuously satisfied. Let P,y, - Py
be the sequence of nodes discovered by following execution arcs backwards from
W (poting that P,;= P,) and let P,; denots the first node in this sequence
whose outgoing release message dispatch time is strictly greater than the arrival
time of its incoming release message. It follows that

APy 41 Poid = APy, Po—1)) = AP, W)

for i =2, -, f—L If P, is evaluated then xmiﬁ(Pef)+ X(Pys) & gmin{W).
The induction hypothesis states that XI{(P,;) § xmin(P,;) so that

MNP, W)= XI(Py) + X(P,y) € gmin(W).

Sui)pose now that P.; is hyper—executed. P, was chosen so that
xmin(P,;) € gmin(W). By the induction hypothesis, XI (P,) € kmin(P,;), so
that XI(P,;) € gmin(W). But

A(.Pel,W) = A(P-r\' W) = XI{Pef) "-<-. gmin(W).
W therefore satisfies condition (..

We now establish condition (iii). The proof of condition (i) showed that
AP, W) £ kmin(W, P,) for i < I. The same arguments apply to logical prede—

41

CessirIs

Prii,-* Pny. We proved condition (i), showing that A(P,, W) < gmin(W).
W ’s execution initiation time is given by
XI(W) = max{A(P;, W)}

iSm

< max|maxtkmin (W , P}, gmin(W)

< xmin(W)

since the evaluation cannot begin until each predecessors state is known, and the
processor is available. The induction on condition (iii) is thus established.

We assume that the sink node P; has predecessors Sy, ,5,. Each predecessor
treats Pg as its execution successor. We adapt our notation slightly to define
gmin(Py, §;) = gmin(Pg) with the understanding that Py is §;’s execution succes—
sor. The cycle execution time is bounded by applying condition (i1):

i &m

max{A(S;, Ps)} < max{gmin(Ps, 5:))

Clearly the cycle execution time must be greater than or equal to gmin(Ps, S;)
for each S;. It follows that the right hand side of the relation above is a lower
bound on the cycle execution time under a non—predictive synchronization pro—
tocol, completing the theorem’s proof.

0

4,4.2. Synchronization Requirements

The syhchronization reguirements imposed by hyper—message synchronization are
more stringent than the requirements imposed by the oracle synchronization described in
Chapter 3. This is directly shown by example. Figure 4-3 illustrates part of a work
assignment graph. Again, initiation arcs are identified by an i. Arcs representing comple-
tion messages are labeled by A if a change is reported, they are otherwise labeled by A.
Some arcs which would appear in the full work assignment graph are not relevant to our
discussion, and have been omitted from figure 4-3. For example, the initiation arcs into
(t,,7;), (5, T,), and (¢4, T,) are not shown; it is understood that these nodes have their
evaluations initiated. Nor do we illustrate other logical arcs which might be rooted in the
shown nodes. Consider some cycle where all nodes in figure 4-3 except (¢3,7;) are
evaluated; (¢5,7;) and its associated incoming and outgoing arcs are not represented in the
cycle execution graph, while all other nodes and arcs in figure 4-3 are. Under oracle syn—
chronization an evaluation of (¢, T,) cannot begin until the completion of every func—
tional evaluation whose result is an input to (t,7;)s evaluation. In figure 4-3, the

42

€ T0) (62T

\ | Y

(tq,Tj) -t (t3,T,-)

il

Comparison of Hyper—Message and Oracle Synchronization
Figure 4-3

43

evaluation of (¢4, T;) must wait for (¢, 7;)’s evaluation completion. Assuing no other
precedence (save its inijtiation predecessor), the oracle synchronization protocol allows
{t4, T;) to be evaluated as soon as (¢1,7;)’s evaluation has completed. We now demon-
strate that the hyper—message protocol imposes additional constraints on T j)’s evalua-
tion. -

An initiation arc is directed from (z,, T}) to (¢4, T;). Furthermore, the work assign-
ment graph places a logical (non—initiation) arc from {(t3,T;) to (¢4, T;). Under hyper-
message synchronization, {t4, T,)'s evaluation cannot begin before it receives a completion
message from (¢3,7;). (£3,7;) cannot dispatch that completion message before it receives
the no—change message from (t;, 7). This is reasonable; if the state of 7 had been
changed by (¢,, 7 Vs evaluation, then (¢3, ;) would be evaluated, and could change T’
state. (¢4, T ,’s correct evaluation would depend on the result of (¢3, T;)'s evaluation, not
the result of (¢,,7T;)s evaluation.

We may assume (t,,7%)’s evaluation completes at physical time t. We may also
assume that (¢4, T';) receives a completion message from its initiation predecessor before
physical time ¢. Under oracle synchronization, (ts T f Vs evaluation may begin execution
at time ¢ (assuming that T; is assigned to the same processor as 7';). We may also assume
that (t,, T)'s evaluation is not completed by physical time ¢. Under hyper—message syn—
chronization, (¢4, T ,-)’s evaluation cannot begin at or before physical time ¢. This
discrepancy arises from the oracle’s ability to discern when (¢,,7;)s evaluation is com-
pleted that (¢4, 7 ;)'s evaluation can begin without regard to the potential evaluation
represented by (¢3, T;). The oracle then has the power to predict that (¢, T; Vs evaluation
will not result in a change of state, a somewhat unrealistic assumption. We see that the
oracle synchronization method is not non—predictive in the sense of definition 4-2, and
that hyper—message synchronization better models the synchronization that a distributed
simulation must contend with.

4.4.3, Hyper—Execution Graph

An observed cycle’s execution time under oracle synchronization was shown to be
equal to the length of the longest path through the cycle execution graph. We can simi~
larly modify and weight a partition’s work assignment graph as a function of an observed
cycle so that the cycle execution time under hyper—-message synchronization is equal to
the length of the longest path through this graph. The modified graph is called a hyper—
execution graph. We next describe the construction of a hyper—execution graph and show
that it defines the cycle execution time,

A cycle execution node represents an evaluated event; the length of the longest path
through the node is equal to the node’s execution completion time. The “action’
represented by the node, namely execution, is initiated once the node has messages from
each predecessor. A hyper—executed work assignment node may send its release message at
a different time than it sends its completion messages. Such a node performs two actions:
hyper—execution (and the issuance of subsequent completion messages), and the issuance of
a release message. We are thus led to modify the work assignment graph by splitting each
hyper—executed node W into two nodes JP(W) and EP(W). IP(W) is W’s initiation pre-
cedence node, and represents W's hyper—execution responsibilities. The arcs from W's
initiation predecessors are directed to JP(W); the arcs to W's logical successors are rooted
in IP(W). IP(W) performs its action, hyper—execution, once every initiation predecessor
has reported completion. The node EP(W) is W's execution precedence node, and
represents W’s release message responsibilities. The arc from W's execution predecessor is
directed to EP(W), the arc to W'’s execution successor is rooted in EP(W). An arc is
directed to EP(W) from IP(W) to reflect the precedence on the release message’s issuance.
1f W is evaluated during the cycle, it is represented by a single node R(W) which is
understood to be both an execution and logical precédence node for W. A single node

44

R{Ps) represents WAG(j)’s system sink node Ps.

This intuitive description of a hyper—execution graph leads us to a more formal
definition. Let WG be a work graph, ¥; some partition of that graph, and ¢ an observed
cycle of the simulation. Let WAG(j) be WG's work assignment graph for ¥;. Let
D(W, V) be the communication delay between work node W's and work node V'’s pro~
cessors. The hyper—execution graph HEG(WG,j) is defined as follows:

® i W is evaluated during c, there is 2 node R(W) in HEG(WG,j.c)
R(W) is weighted by W'’s execution delay. If W is not evaluated in c,
there are nodes JP(W) and EP(W) in HEG(WG,j,c); both nodes are
weighted by zero.

(i) If W is a logical non—initiation predecessor of V and V is evaluated,
there is an arc in HEG(WG,j.c) from W's initiation precedence node to
R(V). ¥ W is evaluated in cycle c, this arc is weighted by D(W, V); the
arc is otherwise weighted by zero.

(iii) If W is an initiation predecessor of V there is an arc in HEG(WG,j.c)
from W'’s initiation precedence node to V'’s initiation precedence node. If
W is evaluated in cycle ¢, this arc is weighted by D{(W,V); the arc is
otherwise weighted by zero.

(iv) If W is an execution predecessor of V in WAG(j), there is an arc from
W’s execution precedence node to V’s execution precedence node in
HEG(WG,jc). This arc is weighted by zero.

(v If W is a termination predecessor of Pg in WAG{j) there is an arc from
W’s execution precedence node to to R(Pg). This arc is weighted by zero.

(vi) If W is not evaluated in cycle ¢, there is an arc from IP(W) to EP(W)
in HEG{WG, j,c). This arc is weighted by zero.

Figure 4-4 shows how the work assignment graph of Figure 4-2 is transformed into
a hyper—execution graph after the observed cycle given by table 4-2. This table states
whether each work node was evaluated and whether it changed its state. Figure 4-4 does
not explicitly identify the hyper—execution graph’s node weights; however, each arc is
weighted. The non—zero arc weights are seen to represent the delays suffered by real
(non—-hyper) messages. If W is not evaluated, we omit arcs describing completion messages
from W'’s logical, but non—initiation predeczssors; these messages are irrelevant to W's
behavior. For example, there is a logical arc from (0, 7 ;) to (1, T'y) in the work assignment
graph (figure 4-2), but no arc from R(0, T ;) w0 IP(1, T 3) in the hyper—execution graph.

45

Processor 1

l

”

0!

R(OT)

R(O T3)

P(l T3) 2 IP(,T,) R(2 Tz)
sz Ty / R(Z T4)

¥

R(3, T;,) /o

G // precedence
\ y

Processor 2

R(0, Tz)

/ °‘
0

1P(0, T4) — EP(O T,

+
#

/' 0

0

C
execution

-

logical
precedence R(Pg) termination
arc
Hyper—Execution Graph
Figure 4-4
L Observed Cycle :
Node Evaluated? Change State?
(0, T }) yes yes
(0, T, yes no
(0, T 3) yes ves
(0: T 4) no . -
(1, T3 no -
(2,75, yes yes
(2, T3 yes yes
Q, Ty yes yes
(3, T3) yes . yes

Table 4-2

46

We will show that the length of the longest path through a hyper—execution graph
is equal to the observed cycle’s execution time under the assumed partition and hyper—
message synchronization. As this argument inducts on a topological sorting of the
hyper—execution graph’s nodes, we must first prove that a hyper—execution graph is acy~
clic.

Lemma 4-3: Let HEG(WG,jc) be a hyper—execution graph. Then
HEG(WG,jc)is acyclic.

Proof: For the sake of contradiction, we suppose that a cycle P,-- P, P, of
hyper—execution graph nodes exists in HEG(WG,j,c). The same reasoning given
in the proof of lemma 4-2 shows that no arc in this cycle can be a precedence arc
from some R(W) or IP(W) to some R(V) or IP(V); every arc in this cycle must
either be an execution precedence arc, or an arc from some IP(W) to EP(W).
However, the only arcs directed to nodes of the form IP(W) are logical pre—
cedence arcs, so all arcs in the cycle are execution precedence arcs. This is a con~
tradiction, as all nodes in a processor are ordered linearly (and noan-cyclically).
Thus HEG(WG,j,c) is acyclic.

0

We now demonstrate that the length of the longest path through HEG(WG,jc) is
equal to the execution time of cycle ¢ under partition ¥, assuming hyper—message syn-
chronization.

Lemma 4-4: Let HEG(WG,j,c) be a hyper-execution graph, let W be a node in
the work graph WG, and suppose that hyper-message synchronization is used.
Then,

(i) If W is evaluated in cycle ¢, the length of the longest path through
R(W) is equal to W’s execution completion time. '

(i) If W is hyper—executed in cycle ¢, the length of the longest path through
IP(W) is equal to W’s hyper—execution time.

(iii) If W is hyper-executed in cycle ¢, the length of the longest path through
EP(W) is equal to the time at which W sends a release (or termination)
message.

Proof: All of the assertions above follow fairly directly from an induction on a
topological sorting of HEG{WG,j,c)'s nodes. The salient observations supporting
this proof are that the edge and node weights correctly model the behavior of
communication and execution delays, and that the arcs correctly model pre—
cedence.

O

47

The central result follows directly from this last lemma.

Theorem 4-2: Let HEG(WG,j,c) be a hyper—execution graph, and let Py be the
sink node for WAG(j). Then the length of the longest path to R(Pg) is equal to
the cycle execution time under hyper—message synchronization.

Proof: Let §|,"-+.,5; be Ps’s predecessors in WAG(j). By conditions (i) and (iii)
of lemma 4-4, the length of the longest path through the execution precedence
node of §; in HEG(WG,j,c) is §;'s termination message dispatch time. The cycle
is terminated when Pg receives the last message; it follows that the length of
longest path to R{Pg) in HEG(WG,j.c) is the cycle execution time.

]

4.5. Chapter Summary

The results developed in this chapter are fundamental to most of the remainder of
this dissertation; we highlight these results again. Before we can reasonably partition a
simulation, we have to understand how different partitions affect the distributed
simulation's performance. The synchronization protocol critically affects performance.
To model the effect of a partition on performance we must first model synchronization.
To model synchronization, we must first identify the simulation's synchronization needs;
these needs are expressed by the work graph and the work assignment graph. Using the
work assignment graph as a base, we describe the hyper—message synchronization protocol.
This protocol is useful in two major ways. First, we prove that a distributed simulation’s
performance (assuming our simulation and partition model) under hyper—message syn-—
chronization is optimal over the class of non-predictive protocols. Secondly, we can cal—
culate any given cycle’s execution time under a particular partition assuming hyper—
message synchronization. Our development of hyper—message synchronization is thus an
important modeling result; we can model the performance of a distributed simulation by
assuming that the simulation uses hyper—message synchronization. If we can model the
distributed simulation, then we can bepin to address the problem of choosing a partitic:
of the simulation. :

Chapter 5

Probabilistic Analysis

£... Chapter Overview

In Chapter 3 we showed that a simulation cycle’s run—time behavior varies ran—
domly. A natural way of analyzing the effectiveness of a chosen partition is to consider
the mean and standard deviation of the cycle execution time distribution. In this chapter
we consider the problem of estimating these guantities statically, given a description of
the simulation and its input behavior, In section 5.2 we show how to determine each
work node’s probability of evaluation during a ¢ycle. We find that this computation is
feasible only if we restrict the topology of the simulation’s system graph to be an in—tree,
However, the methodology used to calculate these probabilities can be used in the general
case to estimate the probabilities of evaluation. In section 5.3 we use the probabilities of
section 5.2 and the hyper—message synchronization protocol of Chapter 4 to develop an
algorithm for calculating lower bounds on a partition’s cycle execution time mean and
second moment. The derivation of these bounds assumes that a work node's incoming
message arrival times under hyper—message synchronization are probabilistically indepen—
dent. This assumption will not always be valid; but again, the same calculations can be
made in the general case by simply assuming this independence, to yield estimated lower
bounds.

The analysis developed in this chapter is straightforward, using standard probabilis~
tic techniques and inequalities. Yet, nothing of its kind exists in the simulation literature.
Researchers have not considered modeling a distributed simulation’ run-—time perfor-
mance. The work most closely resembling our own studies the estimation of PERT net—
work finishing time moments [Elm67, HaWé6, Mar65,RoT77]. This work is not directly
applicable to our problem, as a PERT network’s topology is static, and its activity times
are assumed to be independently distributed. Other work on modeling system run—time
performance include [DuB82, K1e76, RaHS0, Sm1L82, TCB78, YY581}; these various models all
use assumptions which vary significantly from our own,

The results of this chapter are useful in three major ways. A partitioning algorithm
needs to consider both the frequency and execution delay of a work node’s evaluation.
Our technique for calculating probabilities of evaluation is thus useful to a partitioning
aigorithm. Secondly, in Chapter 6 we will show that a partition’s cycle execution time
moments can be estimated using Bayesian statistics. A Bayesian estimation uses prior
knowledge of the cycle mean and standard deviation; our bounds estimation technique can
be used to provide that knowledge. Finally, it is important to appreciate the magnitude of
the restrictions supporting our analysis. Most simulations will not satisfy these restric—
tions; while we can approximate the system’s behavior with our analysis, we have no
assurance that these approximations are accurate. This realization suggests that a static
probabilistic analysis should not be the pillar of our approach to partitioning.

5.2. Equilibrium Probability of Evaluation

A cycle’s execution time is largely determined by the amount of simulation work
performed during that cycle, which varies randomly. A study of the system’s average

48

49

behavior must then be probabilistic. One measure of a cycle’s simulation activity is
obtained by calculating each work graph node’s probability of evaluation. These proba-
bilities in no way depend on the distributed simulation’s synchronization protocol or par—
tition; they depend only on the structure of the work graph and the probabilistic nature
of the inputs presented to the simulation. Clearly, knowledge of each work node’s evalua—
tion probability is potentially useful information for a partitioning algorithm. In this
section we identify conditions allowing the calculation of these probabilities, and specify
the necessary computations.

5.2.1. System Restrictions

We encounter some difficuities when we attempt to calculate a work node’s exact
probability of evaluation, and are so led to restrictions which may allow this calculation.

The work graph WG identifies a work node’s initiation predecessors; a work assign—
ment graph WAG(j) additionally identifies its execution and logical predecessors. let
W € WAG(j); W's logical predecessors in WAG{j) identify the evaluation resuits used as
input to W's evaluation (recall that a node V'’s evaluation result is defined even if the
potential evaluation represented by V does not oceur). Unless W's execution predecessor is
also a logical predecessor, its behavior is not directly considered in the evaluation of W.
We therefore transform the work assignment graph WAG(j) into the work precedence
graph WPG by simply removing all execution arcs from WAG(j). A work node (s, T;)s
evaluation resuit is then completely determined by the functional specification of T}, and
the evaluation results of (s, T;)’s predecessors in WPG. The behavior of (s, T;)s initia—
tion predecessors in WPG (inherited from WG by way of WAG(j)) determines whether
(s, T;) is actually evaluated.

Work node W's probability of evaluation during a cycle depends on the probabilities
that W's initiation predecessors P,,---,P; change state during that cycle. Virtually the
only way to calculate these predecessors’ joint probabilities of change is to find cir-
cumstances where the initiation predecessors’ behavior are conditionally independent of
each other. This amounts to finding a set U of work nodes such that no path from u e U
to W’s initiation predecessor P; can contain a node (other than u) which lies on a path
another initiation predecessor P;. The analysis proceeds by conditioning on the joint
behavior of U’s nodes; given that the nodes in U behave a particular way during a cycle,
the predecessors’ behavior are independent of each other, making it easy to calculate the
probability that at least one of them changes state (causing W to be evaluated), To find
the unconditional probability that W is evaluated, it is necessary to consider every possi—
ble joint behavior of the nodes in U. This computation is exponentially complex in the
size of the set U. U can consist of all work nodes topologically preceding (in WG) W’s
initiation predecessors, so that this sort of analysis can be intractable. However, if W's
initiation predecessors are known to behave funconditionally) independently of each
other, then W'’s evaluation probability is directly found. We must restrict the system
graph’s topology to achieve independence among initiation predecessors.

A directed in—tree is a connected, directed acyclic graph such that every node has at
most one successor. By assuming that the system graph is an in—tree, each functional has
path independent predecessors.

50

Definition 5-1: Path Independence

lLet P, and P J be nodes in a directed acyclic graph. P; and P, are said to be path
independent if no path exists between them, and if P; and P; have no common
ancestors.

O

It is easily seen that all of a functional’s predecessors in an in—tree system graph are path
independent. Furthermore, if Ty is an in-tre¢ node with predecessors T, and T ,, any
ancestor of T and any ancestor of 7', are path independent.

We can show that if a system graph is an in—tree, then the work precedence graph
acquires useful independence properties.
Lemma 5-1t Let SG be a system graph with an in—tree topoiogy, and let WPG be
its work precedence graph with respect to some input cycle vector. Let T;and T,
be path independent functionals in §G, and let (s,,T ;)and (s,, T',) be work nodes
in WPG. Then (s,,T'))and (s, T ;) are path independent in WPG.

Proof: For the sake of contradiction we suppose that (s;,7",) and (s, T ,) are not
path independent in WPG. Then there exists a work node (s., T,) in WPG with
a path to both (54,7 ,)and (5,, 7'5). Now consider any two work nodes (s, ;) and
(¢, T;) which share an arc in WPG; by definition, one work node must be a logi-
cal predecessor of the other. It follows that either I'; = I';, or T; and T'; share an
arc in the system graph. By repeating this argument to the nodes on the paths
from (5., T.) to (5,7 ;) and (5, T ,), we see that either 7, = T, or there is a path
through the system graph from 7T, to T'y. Likewise, either T, = T, or there is a
path through the system graph from 7, to T, We suppose first that 7. =T,
Since T and T, are distinct, T, # T, so there is a path from 7, to T, in the
system graph. T, =T ,,so that there is 2 path from 7', to T, in the system graph.
However, T and T, are path independent, a contradiction. Clearly, the same sort
of contradiction is found by assuming that T, = T, If T, is distinct from both
T and 7', then there is a path through the system graph from 7. to T; and a
path from 7, to T',. This again is a contradiction, as T ; and T, are path indepen~
dent in the system graph.

We have explored the logical consequences of assuming that (5,7 ;) and (55,7 5)
are not path independent, and have found a contradiction in every case. We con~
clude then that (s,,7",)and (s, T ,) are path independent.

0

A useful, and immediate consequence of lemma 5-1 is stated as a coroliary.

51

Corollary 5-1: Let SG be a system graph with an in—tree topology, and let WPG
be its work precedence graph with respect to some input cycle vector. Let W be a
work node with initiation predecessors Py,--,P; in WPG. Then for every
i # j, P; and P, are path independent in WPG.

d

- Corollary 5-1 states that a work node W's initiation predecessors are path indepen—
dent in WPG. We would like these predecessors to behave independently. However,
correlation in a functional's initiation predecessors’ behavior may be introduced through
correlations in different generators’ transformations. We will therefore assume that every
generator’s behavior during a cycle is independent of any other generator’s behavior. If
T, is a generator, we let HF be the vector of transition values taken by 7', at its specified
times during the kth cycle. We assume that the process {H;} is an ergodic Markov chain,
independent of any other process { 7}, and independent of all other functionals’ states. A
system with such generators is said to have independent inputs. _

Even if a system’s graph is an in—tree and the system has independent inputs, it is
still possible for a work node's initiation predecessors to inherit correlation from the ini-
tial state assignments. We will thus assume that each functional’s initial state is assigned
(probabilistically) independently of any other functional’s initial state. A deterministic
assignment of initial states satisfies this assumption, albeit in a degenerate way. A system
whose functionals’ initial states are assigned independently of each other and indepen—
dently of the system's input processes is said to have an independent initialization.

One further bit of notation aids our analysis, If W is a work node in WPG, we let

W (n) denote W's evaluation result during the nth cycle of the simulation. Now we can
show that during the nth cycle, W's initiation predecessors behave independently of each
other.

Lemma 5-2: Let SG be an in—tree system with independent inputs and indepen—

dent initialization, Let WPG be its work graph with respect to some input cycle

vector. Let 7', and T, be path independent functionals in the system graph SG,

and let P, = (s;,T)and P, = (55, T ;) be work nodes in WPG. Then for every n,

P (n) and P {(n) are are probabilistically independent.

Proof: We induct on the cycle, n. For the base case, we consider n =1 Let
A(P,) denote the set of all P;’s ancestors in WPG, i = 1,2. Since (by lemma 5-1)
P, and P, are path independent, it foliows that A(P;) N A{P,)=@. Fori = 12,
P;’s evaluation result P;(1) is entirely determined by

® The initial states of functionals with work nodes in A(P;); and

(i) The transitions chosen by generator work nodes (s,,7,) € A(P;) during
the first cycle.

P,(1)and P A1) are thus seen to be random variables, as they are functions of oth~
er random variables. However, the random variables from which P,(1)is deter-
mined are independent of the random variables from which P,(1) is determined.
It follows immediately that P;(1}and P (1) are independent.

52

For the induction hypothésis, we suppose that whenever 7'y and T ; are path in—
dependent functionals in the work graph with work nodes P;= {5,,T;) and
P,= (s, T,)in WPG, then P,(n—1) is independent of P (n—~1). Consider cycle n

. and let Ty and T, be any two path independent functionals in the system graph.
Suppose P, = (s5;,T,) and P, = (5,,T,) are work nodes in WPG. Fori =12, P;’s
evaluation result P;(n) is entirely determined by

) The states of functionals with work nodes in A(P;) at the beginning of
cycle n;and

(i1) The transitions chosen by generator work nodes (s,,7,) € A(P;) during
the nth cycle.

Suppose now that functional T has a2 work node in A(P,), and that functional
T > has a work node in A(P,). It follows from the definition of WPG that T, is
an ancestor of 7'y and T , is an ancestor of T, in the system graph. Since the sys—
tem graph is an in—tree, T, and T, are path independent in the system graph.
Let 5, be the latest time associated with 7%, in a work node; likewise define s, ,.
Then the state of 7%, at the beginning of cycle n is equal to the evaluation result
(s 1,711 Xn—1). Likewise, the state of T, at the beginning of cycle n is equal to
the evaluation result {s;5,7;,Xn—1), By the induction hypothesis then, the states
of Tyy and T, at the beginning of cycle n are independent. Furthermore, we
have assumed that the generator functionals’ transitions are independent of each
other and the state of the simulation system. Thus P (n) is a function of random
variables which are independent of the random variables determining P,{n); it
follows that P,(n) and P (n) are independent, completing the induction argu-
ment.

a

Corollary 5-2: Let SG be a system graph with an in—tree topology, and let WPG
be its work precedence graph with respect to some input cycle vector. Let W be a
work node with initiation predecessors P,,---,P; in WPG. Then for every i,],
i # j, the limiting (as n-—oco) probability that P; changes its functional's state
during a cycle is independent of the limiting probability that P; changes its
functional’s state during a cycle.

O

The probabilistic independence of path independent functionals in an in—tree system
graph is our key to an exact probabilistic treatment of evaluation probabilities.

53

5.2.2. Exact Evaluation Probabilities

The last subsection constrained our attention to in—tree systems with independent
inputs, and independent initialization. It may then be computationally possible to caicu—
late a work node’s exact equilibrium evaluation probability. In this section we show how
to compute that probability, and discover that the computation is still exponentially
complex in the product of the number of initiation predecessors, the number of possible
functiona) states, and the number of a functiopal’s work nodes. However, for systems
where this product is small, we can use this method to learn a good deal about how the
system will behave.

The solution approach uses a Markov chain model of the system, very much like
Chapter 3's. However, Chapter 3's general treatment uses a chain whosé state vector
encompasses the entire simulation system. If a system has an in-tree topology, indepen—
dent inputs, and independent initialization, we can drastically reduce the size of the
chains we have to deal with. Instead of treating the whole system collectively, we are
able to restrict our attention to a functional’s local environment. The state vectors of the
chains we create encode a functional’s transition behavior, and its (system graph) prede—
cessors’ input behavior.

We assume that the system graph has been topologically sorted, and will process the
functionals with respect to this order. It is necessary to jointly treat all of a functional’s
different possible evaluations, since each evaluation affects the same system variable. We
encapsulate all possible evaluations with a cycle history vector. The mth component of
T's cycle history vector records the evaluation result of 7;’s mth possible evaluation dur—
ing a cycle. Hf denotes T}’ cycle history vector for the kth cycle. H F describes what
happened to T’s state during the kth cycle; the last component of H} gives T;’s state at
the beginning of the k+1st cycle. As a result of 7,’s state dependency on its previous state
and the states of its (system graph) predecessors, Hf*! is completely determined by the
last component of HY, the cycle history vectors of T,’s (system graph) predecessors during
the k+1st cycle, and T;'s functional definition. T;’s cycle history vector defines a state in
a stochastic process {H}.

We suppose that 7; has k system graph predecessors and denote the jth predecessor’s
cycle history process by {I/5}. We describe T;’s total input process by concatenating T)'s
predecessors’ input processes {I7} = {I}31% -+ + I}]. Lemma 5-2 implies that the processes
{Ir} j =12, k are mutually independent. As demonstrated in Chapter 3, if the input
process {17} is a Markov chain, then {H} will be a-Markov chain. Since we analyze the
event functionals in topological order, we may assume that the equilibrium state proba—
bilities of each process {I%} are known. Likewise, we may assume that each (system
graph) predecessors’ work nodes’ equilibrium probabilities of changing state are known.
Having made these assumptions, we must demonstrate how to calculate {H[}’s equili—
brium state probabilities, and T;’s work nodes’ probabilities of changing state.

T;’s work nodes’ equilibrium evaluation probabilities are easily calculated from its
(system graph) predecessors’ work nodes’ probabilities of changing state. Let W be a T;
work node, and let (s,,7y),- - (s;,T;) be its initiation predecessors in WPG. For each
j=1,---,I,let O, be the equilibrium probability that functional 7', changes its state at
logical time s; + L(T';). W is evaluated if and only if at least one of its initiation prede—
cessors changes state. Since W’s initiation predecessors behave independently, W's equili—
brium evaluation probability is given by

7
Prob{W is evaluated} = 1~— _III(I -0 (5-1
J=

which is one minus the probability that W is not evaluated.

54

To analyze other aspects of {H/[}’s behavior, we analyze the behavior of a stochastic
process whose states are the concatenation of {H[}’s states with {I7}'s states: {HI]). The
H; component of the state is interpreted as T;’s cycle history vector from the last cycle,
while the 7; component represents the input presented to 7; during the current cycle. It
is useful to treat a state of {HPI} as a vector of its constituent cycle history vectors:
<H; L, Lz >. Then {HPIPPs transition probability from <H; 1y, - Iz> 10
<H; Iy - Iz > is 0 if H; is not the result of applying 7;’s functional definition to
H;’s last component and the input vectors [;;, j = 1,--- k. If H; is the proper result, the
trapsition _probability is just the probability that the collective input vector
<I;;," L > occurs in the next cycle. By independence, this probabilig;y is just the pro—

duct of the constituent processes’ equilibrium state probabilities: _IEIProb{f ;7). This

J
specification of process states and transition probabilities defines {H]'I}; we assume that
{H}PI is ergodic, and so solve for its equilibrium state probabilities.

We still need to find the 7'; work nodes’ probabilities of changing T';’s state. We can
simplify our analysis by collapsing {H]IF}'s state space; we partition its states so that
states with common H; components are grouped together. For each vector H;, we sum the
equilibrium probabilities of all states in H;’s partition set to find the equilibrium proba-
bility of observing H; in a cycle. We sum all the transition probabilities of states in H;’
partition set to states in H,’s partition set to find the transition probability of {HP} pass—
ing from H; to H;. Likewise, to find the equilibrium probability of {H}} passing from
H; back into H;, we sum the transition probabilities between states in H;’s partition set.
T;’s work nodes’ probabilities of change are easily found from this collapsed chain. Con-—
sider a state vector H; = <h!,--+ h*>. If b is a different value than h™™!, we know
that the work node associated with the mth component of T’;’s history vector changes T;’s
state in all cycles corresponding to states in H;'s partition set. We find this occurrence’s
equilibrium probability by examining every one of {H['}’s state vectors, summing the
equilibrium probabilities of those showing a difference between the m—1st and mth com~—
ponents. This procedure is applied for m = 2,- - ,w. It is only slightly more complicated
to determine the the probability of the first possible 7; evaluation changing T’s state.
We examine each vector H;, summing the transition probabilities from H; to vectors H;
whose first component is different from H;'s last component. Any such transition
represents a way for the first possible evaluation of 7; to change T’s state. We multiply
H,’s equilibrium state probability with the sum of these transition probabilities; we per—
form this analysis for each state of {H 7}, and sum the resulting products. This final sum is
the equilibrium probability that the first possible evaluation of 7; results in a state
change. '

This whole procedure is based on the foreknowledge of T;’s (system graph) predeces—
sors’ behavior. To begin the construction we must consider functionals without predeces—
sors, the generators. We assumed that a generator’s cycle history vector process is an
ergodic Markov chain. These processes’ equilibrium state probabilities can ‘be determined,
and the probabilities of the history vector’s components changing state can be found in
the fashion described above. We also note that generators are aiways evaluated at their
scheduled times, so that their evaluation probabilities are always one.

5.3. Lower Bounds on Cycle Time Moments

The previous section showed how to calculate a work node’s evaluation probability
and the probability of changing its functional’s state. We now use these probabilities to
bound the cycle execution time first and second moments from below. Our derivation
depends on the assumption that every work assignment node’s predecessors are probabil-
istically independent. We first show how these bounds are derived given this assumption,
and then examine the generality of that assumption.

55

5.3.1. Derivation of Lower Bounds

In Chapter 4 we showed that a cycle’s execution time under hyper—message syn-—
chronization is optimal over the class of non-predictive synchronization protocols; the
cycle execution time moments are thus minimized under hyper—message synchronization.
However, these minimized moments are too difficult to determine exactly, this determina~
tion is a generalization of finding PERT network moments [Elm67, HaW66, Mar65, RoT77] .
We can bound these moments from below by assuming independence among each work
assignment graph node’s predecessors.

Under hyper—message synchronization, a work assignment node must wait for mes—
sages from certain predecessors. Its execution {or hyper—execution) is initiated as soon as
the last of these messages arrive. The node’s execution initiation time is max{X -, X,}
where the X, are the appropriate predecessors’ message arrival times. Noting that the max
function is convex, we see that Jensen's inequality {Ma(O79] might help us bound the mean
execution initiation time from below.

Lemma 5-3: (Jensen's Inequality) Let XX, ---,X, be independent random
variables, and let g be a convex function from R" into R. Then

Elg(x,-- X2 gEIX,)- - .EIX,D

W

We can use this inequality to bound a work assignment graph node’s mean execution ini-
tiation time from below if the node’s predecessors’ message arrival times are independent.
We suppose that a partitioned system’s work node evaluation probabilities and probabili-
ties of changing state are known. We assume that the work assignment nodes have been
topologically sorted, and will process the nodes with respect to this order. Let W be a
node with predecessors Py, - ,P,. We will assume that Py,---,P; are W's initiation
predecessors, that Py, is W's execution predecessor, and that Pryp, - ,F; are W's logical
non—initiation predecessors. Let Sy be a successor of W in the work assignment graph.
We develop a lower bound on the mean arrival time of W’s message 10 Sy .

Let A1, P;, W) be the arrival time of P;’s message to W under hyper—message syn-
chronization given that P; is evaluated, and let A0, P;, W) be the arrival time of P;’s
message to W given that P; is not evaluated. The unconditional arrival time of P;’s mes~
sage to W is denoted A(P;, W). Let A(1, P;, W) be a lower bound on E[AQ, P,, W), and
&, P;, W) be a lower bound on E[A(L, P;, W)]. Let MO, P,, W) be a lower bound on
E[A, P;, W)), and &0, P;, W) be a lower bound on E[A(0, P;, W] Let AM(P;, W) be a
Jower bound on E{A(P;,, W), and £(P;, W) be a lower bound on E[A(P;, W)} If W has
no predecessors in the work assignment graph, we take each of these bounds to be zero.
Since we are processing nodes in topological order, we may assume that these bounds have
been previously determined for each of W’s predecessors P;. Define XI(1 ,W) to be W's
execution initiation time given that W is evaluated, and let XJ{0, W) be its execution
initiation time given that it is hyper—executed. X (W) denotes W's execution delay when
evaluated.

We show how to derive lower bounds on the first two moments of AW, Sy), the
arrival time of W's message to a successor Sy . This derivation requires the consideration
of four cases, depending on whether Sy is a logical or execution successor of W, and
depending on whether W is evaluated. We consider each of these four cases in turn.

56

W Ewvaluated, Sy Logical Successor

If W is evaluated and Sy is a logical successor, the arrival time of W’s completion
message to Sy is equal to W’s execution initiation time, plus its execution delay X (W),
plus the communication delay D{(W, Sy) between W’s processor and Sy ’s processor {note
that D(W, Sy) = O if these processors are identical). Then the mean arrival time of W's
message to Sy is given by

E[AL W, Syl = E[XI(Q, W)+ X(W) + DIW, Sy). (5-2)

We thus derive a lower bound on the arrival time of W'’s message to Sy by deriving a
lower bound on E[X7(1, W)}

- W is evaluated if and only if at least one of its initiation predecessors changes state;
an initiation predecessor can change state only if it is evaluated. Given that W has I ini-
tiation predecessors, there are 2 — 1 different ways in which each of W's initiation
predecessors can either be evaluated or not, with the proviso that at least one initiation
predecessor is. We let J be the collection of all binary vectors of length I with at least
one "1" component. We can describe the particular evaluation occurrences of W's initiation
predecessors with a vector J = < jq,---,j; > € J: the mth component f, is a 1 if initia—
tion predecessor P, is evaluated, otherwise j, is zero. For a particular vector J, the pro—
bability that the evaluation occurrences described by the vector actually occur is the pro—
duct :

ProbJ) = ILProb} (5-3)

where, when j; =1, Prob{j;} is the probability that predecessor P; is evaluated; when
ji = 0 Prob{j;} is the probability that P; is not evaluated. We are interested first in the
probability that the evaluation combination described by J occurs, and that at least one
initiation predecessor changes state. By the definition of conditional probability, we
know that this probability is equal to the probability that at least one initiation prede—
cessor changes state given the vector J, times Prob{J} given above. Suppose then we are
given J. The probability that at least one initiation predecessor changes state is one minus
_the probability that every initiation predecessor does not change state. Given that an ini—
tiation predecessor P, is evaluated , we need to know the probability that it will not
change state. We may assume that we know the unconditional probability that P,
changes state, and the probability that P, is evaluated. Let Q,, be the unconditional pro—
bability of P, changing state, and let p, be the probability that F, is evaluated. We
know that

Qn = ProblP, changes state | P, is evaluated }-p,,

+ Prob{P,, changes state | P, is not evaluated {1 — p,,).

The second term in this sum is zero since no functional changes state without being
evaluated. Then the conditional probability that P,, does not change state, given that it is

evaluated is 1 — g—":‘— We can now determine the probability that given J, at least one

m
initiation predecessor changes state. Let V(J) be the set of indices of J's components
which are 1. Given J, the probability that at least one of the predecessors identified by
V{P) changes state is equal to
Q;

1— I aQ--=-) (5-4)
i eV D

Then the probability that the evaluation combination described by J occurs, and at least

57

one evaluated predecessor changes state is given by

1— H (1--Q~f~)

7 .
ie Vi) P ';'E[iPrOb {‘h } . (5—5)

We need to determine the probability that the predecessor evaluation behavior
described by a vector J occurs given that at least one initiation predecessor changes state.
By the definition of conditional probability, this probability is equal to the probability
that J occurs and at least one initiation predecessor changes state (given above) divided by
the unconditional probability that at least one initiation predecessor changes state. We
denote this quotient by Prob{J.}, and observe that

Q]2 .
i egU) a P;)];'gszb{J'}

-
Prob{J .} = (5-6)

I
1—n00-0)
i=l
W ’s execution is not initiated until W receives a message from each of its predeces—

sors. Given that W is evaluated, and given a vector J € J describing W's initiation prede-
cessors’ evaluation behavior, we have

XI(1, W) = max {rl_ng{f\(ji, P W), }E?éJA(Pf' W)}}. (5-7)

By the assumed independence of W's predecessors, we may zpply Jensen’s inequality to
discover

E[XI{, W)] 2 max

;?égc{E[A(j;, P;, WL, !nggék{E{A(Pi. wil } | (5-8)

2 max{mgf{k(jj, P;, W)}, max {\(P;, W)})

I <i &k
since A(j,,Z;, W) € E[A(;, P;, W)), for each i =12,---,I, and A(P;, W) € E[A(P;, W)]
fori = I+1,-- k.

We can use the result above to bound E[X7(1, W)] from below. We condition on
each possible state change occurrence combination described by the set J:

EIXIO,W)=E, [E{XI(1,W} ! J]}_ (5-9)

Z E; | max

1313}5?\(.}1, P;, W), ;@?ékmpf’ W)},

= ¥ Prob{J.}-| max

¥
Jel i

max{A(j;, P;, W), max {A(Z,, W)}}
iss <i gk

where E;_is the expectation operator with respect to the distribution of J conditioned on

at least onme of W's predecessors changing state. It follows from relation 5-2 that the
mean arrival time of W's message to Sy is bounded from below by

58

);(1, w, Sw) = 2 P?’Ob{]c } max m‘&a}{k(j,,f’“ W)},

(A2, WO (5-10)
Jel

max
T <i&k

+ X(W)+ DWW, Sw

Weé now consider the second moment of A(l, W, Sy). We have
EAQW Sy Y] = (5-11)

EIXIaQw@Pl+ 2E[XIQW)IKX (W)+D(W, Sy) + (X (W)+D(W, Sy)2

We have already bounded E{XI(1, W)] from below, we next bound E[XI(}, W)?] from
below in much the same manner. Given a vector J describing W’s predecessors’ evalua-
tion behavior, an immediate parailel to equation 5-7 is given by

2
XI(1, W)? = max lmax{A(j,-, P;, W)}, max {A(P;,, W)}
i<1 1<iSk

(5-12)

= max

i P. 2) 2
I;'!lé}i{A(J;, P, W) },Irggékm(?,, W)2}

where the second equality follows from the fact that all quantities involved are positive.
It follows that -

E [XI (Iv W)2] 2 max {IPQ-}‘{E[A(L » Pt') W)]2}’ nga'ék{'E[A(P‘ ’ W)}Z} (5"“13)

2 max

max{é(ji, Pi, W), max {£(P;, W)}}

i 1
where the first inequality follows from Jensen’s inequality, and the second inequality
follows from the use of known lower bounds. A lower bound on F[A(l, W, Sy)? is

derived as before by conditioning on the evaluation behavior of W's initiation predeces—
sors, and by using relation 5-11 and the lower bound A1, W, Sy).

E1L,W,Sy)= ¥ Prob{J.}| max
. J el

xygf{ﬁ(P WL, Ingiaékigil’,-‘, w)}} (5-14)

+ 201, W, Sy HX (W) + DIW, Sy) + (X(W) + DIW, Sy)2

59

W Hyper-Executed, Sy Logical Successor

W's behavior is somewhat different when it is hyper—executed. The arrival time of
W’s message at Sy is equal to W's execution initiation time, as W's hyper—execution and
jts hyper—message suffer no delay. W is evaluated as soon as the last of its no—change
messages is received from initiation predecessors. Given a vector J describing the pattern
of W's initiation predecessors’ evaluations, we have

XI1(0,W) = I}lg}t{A(jg, P, Wl (5-15)

Jensen’s inequality implies that
E[X1(0, W)} > max{E[AG);, P, W) (5-16)

£

> maxiAGi, P, W),

We need to calculate the probability that the vector J occurs given that none of W's
predecessors changed state. We know that

Prob{J} = ProblJ | W is evaluated}-Prob{W is evaluated}

+ Prob{J | W is not evaluated }'Prob{W is not evaluated}.

We have already calculated Prob{J} (equation 5-3), Prob{W is evaluated} (equation 5-1),
and Probl{J | W is evaluated} = Prob{J,} (equation 5-6) so that we can solve for the
probability of interest, denoted Prob{P:}. Then letting py denote the probability that w
is evaluated, we have

B{TY — .
Prob{s} = 272 \7) = ProbiUehpw (5-17)

(1 pw)

Recalling that the set J excluded the zero vector, we denote the set of all binary vectors
with I components by JUO. Just as before, we condition on the evaluation behavior of
W ’s initiation predecessors, and define

MO, W, Sw)= T Prob{J - maxir(j;, P;, WL (5-18)
JeJuo is7
By the same argument that established A(l, W, Sy) as a lower bound on E[A{L, W, Sw)i
we see that MO, W, Sy) bounds from below the mean arrival time of W's message 10 Sy
given that W is not evaluated.

An entirely similar derivation shows that a lower bound on the second moment
E{XI(0, W)]is given by

EO,W,8y)= ¥ Prob{f;}mgx{ﬁ{ju P, W) {5-19)
JeJud il

W Overall Moments, 5y Logical Successor

The previous two sections derive bounds on the moments of the arrival time of W's
completion message to Sy, conditioned on whether W is evaluated. To get bounds on W's
unconditional message arrival time at Sy we appeal to the law of conditional expectation
which states that

E[AW 8w 7] = pyw EIAQL W, Sy]+ (1 — pw FE[AO, W, Sy)]

60

where py is the probability that W is evaluated. py can be calculated as described by
equation 5—1. Applying the results of the previous subsections, we define

MW, Sw) = py ML W, Sw) + (1 — py A0, W, Sy) (5-20)
and

EW, Sy)= ?W-g(i, W, 8w) + (1 — py)0, W, Sy (5-21)

we observe that E[AW, Sy)] 2 MW, Sy) and E[AW, Sy)2 2 €W, Sy).

W Evaluated, S, Execution Successor

The case where W is evaluated and S, is its execution successor is essentially the
same as when Sy is a logical successor. W dispatches a release message simultaneously
with its completion messages. The arrival time of W’s message to its execution successor is
the same as the arrival time of its completion message to a logical successor in the same
processor. Thus we have the lower bounds

M1, W, 8,0 (5-22)
= J%Prob{fc }+| max [gxg{h(ji P WY, nggéﬁ{k(l’,-, Wit + XW)
and
&1, W, 8,.) (5-23)

= ¥ Prob{J }-| max
Jel

PEHEGEL WL oy,

{&(P,, W)}]
+ 2000, W, 5,)X (W) + X(W).

W Hyper—Exzecuted, S, Execution Successor

We now consider W's behavior with respect to its execution successor §, when W is
hyper—executed. W may dispatch its completion messages before it dispatches its release
message; however, its release message is never sent before its completion message goes out.
W sends the release message as soon as it receives the last of the messages from its initia-
tion and execution predecessors Py, ' P;4y. The release message arrives at the same time
as it is sent. ‘Then given a vector J describing W's initiation predecessors’ evaluation
behavior, we have

A0, W, S,) = max 1313}&{!\(@-, P, W)}, APy 1, W)L (5-24)

Then by jensen’s inequality,

61

Elmax ?é?{A(j,-, P, Wl A(PI+1vW)l (5-25)

2 max rt_n‘(a};{E[A(js, P, W), E[A(P;H,W)]}.

W

max mg}:{}\(ji, P;, W)}, }\(P;H,W)}.

Tﬁen we define

A0, W, S,) (5-26)

= ¥ Prob{.fg}-max{ max{A(ji, P, Wb, APy 4y, W)]
JeJuo sl

and observe as before that A0, W, S,) bounds from below the mean arrival time of W's
message to §,. Similarly, a lower bound on E[A(0, W, §,)?]is given by

£O, W, 5.) | (5-27)

= 3 Prob{JC—}-max{ maxté(;, P, W), §(P1+1,W)1
] EJ uo E\I

W Overall Moments, S, Execution Successor

Using reasoning entirely similar to that leading to the overall bounds for a logical
successor, a2 lower bound on W's mean message arrival time at its execution successor is
given by

AW, 8.0 = pyA1, W, 8,) + (1 - py A0, W, S,).

Likewise, a bound on the unconditional second moment is given by
EW,S,)=pyEQ,W,8)+{1— pw HEO, W, S,).

Lower Bounds on Cycle Execution Time Moments

The sections above show how to bound the arrival time moments of a work node’s
message to a successor. The cycle execution time moment bounds are derived from the sink
node’s predecessors’ termination messages moment bounds. Recall that a termination mes—
sage is sent when a release message would be sent. Let Sy,- .5, be the sink node’s termi-
nation predecessors. Then a lower bound on the mean cycle execution time is given by

max{ A(S;, Ps) }

isp
where A(S;, Ps) is derived under the assumption that Py is the execution successor of ;.
A lower bound on the second moment of the cycle execution time is given

62

max(&G,, P5) }
isp

where £(S;, Pg) too is derived under the assumption that Py is the execution successor of
S:.

The more usual second order moment is the second central moment, or variance. If
CX denotes the cycle execution time, then Var{CX] = E[CX?]- E[CX . We have only
lower bounds on E{CX?] and EICX)* so that we cannot make a quantitative statement
about Var[CX] We could however use these bounds and the variance formula to estimate
the true variance (provided that this estimate is positive). The square root of this vari-
ance estimation estimates the standard deviation of the cycle execution time.

5.4. Generality of Assumptions

The derivation of lower bounds assumed that every work assignment node’s prede—
cessors behaved independently. In this section we briefly consider the generality of this
assumption. We show by example that such work assignment graphs exist, but then supg—
gest that this assumption of independence is rarely valid in practice. Despite this, we
argue that there is some use for the bounds produced by simply assuming this indepen—
dence, even when this assumption is unsupportabie.

Consider the work assignment graph iliustrated in figure 5-1. We show that each of
a node predecessors’ behave independently. We first observe that work nodes (¢,,7),
(t3,T3), (t4,T4) and (¢5,T5) have no initiation predecessors, and so represent generator
event evaluations (which are evaluated every cycle). Since (t,,7) is always evaluated,
the arrival times of its release and its completion messages to (¢,, T ») are identical, con—
stant, and therefore probabilistically independent. Similarly, the arrival time of (¢4, T'3)’s
completion message at (£,,7,) is constant. It follows that the arrival times of (¢, T ,)'s
predecessors’ messages are probabilistically independent. For identical reasons, the arrival
times of (t¢, T'¢)'s predecessors’ messages are all constant, and are thus probabilistically
independent. Finally, we show that the arrival times of the terminal messages at Py are
all independent. We observe that the execution initiation times of both (¢, 7T,) and
(t¢, T¢) are constant. Whether (¢,,7,) is evaluated depends entirely on whether (¢4,7 1) or
(t3, T 3) changes state. Likewise, whether (¢4, T'¢) is evaluated depends entirely on whether
(t4 T o) or (5, T 5) changes state. Assuming that all generators’ transitions are independent
of each other, we conclude that {t,, T',P’s evaluation result is independent of (¢4, T¢)s
evaluation result. Given that their respective execution initiation times are constant, we
conclude that the arrival time of their respective termination messages at Py are indepen~
dent. The arrival time of (¢4, 7 4)'s termination message at Pg is seen to be constant;
whence the arrival times of termination messages at Py are zll probabilistically indepen—
dent. '

The assumption of independence among a node’s predecessors is more restrictive than
the example above might suggest. For example, suppose that work node W represents a
normal functional’s evaluation, and that W is both a logical and an execution predecessor
of work node V. Suppose also that it is possible for W to be either evaluated or hyper—
executed, and that it is possible that W’s incoming release message (when W is hyper—
executed) arrives either before or after W’s hyper—execution. W's execution initiation
time is thus variable, so that the arrival times of W's completion and release messages at
V are both variable. However, these two arrival times are not independent: they are
correlated on W’s (variable) execution completion time and the (variable) arrival time at
W of its incoming release message. As we will see in our chapter on partitioning (Chapter
8), we will want to construct partitions where a logical successor is placed in the same
processor as one of its logical predecessors. Thus the assumption of predecessor indepen—
dence is generally not valid, However, our bounds derivation may still be useful. The
relation expressed by Jensen’s inequality may be satisfied even when the arrival times are

63

Processor 1

(tg,T})

A

(tz, Tz)

x
-

initiation
B .
arc
execution
-
precedence

Processor 2 Processor 3

(¢ L T3) 163 5 Ts)

<..._____.-......._......_-._-...

Work Assignment Graph Preserving Independence

Figure 5-1

64

correlated; we just can’t prove that this relation holds. Nevertheless, we expect the
numbers to give us some "order of magnitude” information about the cycle execution time
moments; this information can be determined statically from the description of the simu~
lation. While we should not trust this information’s accuracy, there is a place for this
information in a Bayesian moment estimation context. We explore this idea further in
the following chapter.

5.5. Chapter Summary

Our investigation of a simulation’s run—time behavior shows that a work node may
or may not be evaluated during a cycle. We are thus led to consider a work node’s
evaluation probability. In this chapter we showed how we can apalyze a static descrip—
tion of a simulation and its inputs to determine each work node’s evaluation probability.
We showed that this probability’s exact derivation is possible only under a set of restrict—
ing assumptions; the system graph should be an in—tree, the input processes and initializa~
tion of functional states should preserve probabilistic independence. Even under these
assumptions the computation may be intractable due to its exponential complexity. We
also observed that the calculation might be used to estimate these probabilities even if
these restrictions are violated. A partitioning algorithm should consider how frequently
an event functional is evaluated as well as how long it takes to evaluate it; our evaluation
probability calculation algorithm is thus an important tool for intelligent partitioning
algorithms.

A natural way to measure the performance of a given partition is to calculate the
cycle execution time distribution’s moments. These moments are a function of the execu-—
tion work required intrinsically by the simulation system, the partition chosen, and the
synchronization protocol. We have shown how to calculate lower bounds on the cycle
execution time mean and second moment, recognizing that (i) the probabilities of work
node evaluation represent the simulation’s intrinsic behavior; (ii) the chosen partition can
be represented by the work assignment graph; (iii) we can model synchronization
behavior with the hyper—message protocol given in Chapter 4. Our derivation assumed
probabilistic independence among each work node’s work assignment prececessors. We
showed by example that this assumption is not vacuous »ut then showed = .7 most par—
titioned simulations will not support this independen - Finally, we ar: .d that our
bounds calculation procedure may be useful in a general :«iting, as it gives . 1 statically
determinable estimate of the cycle execution moments. We will find these ¢ mates quite
useful in the following chapter on statistical cycle execution moment estima:.un.

Chapter 6

Statistical Analysis

6.1. Chapter Overview

Variant simulation run—time behavior is one of the critical features distinguishing
the problem of partitioning a simulation from other partitioning problems. We must
evaluate a partition’s performance by looking at its resulting cycle execution time
moments. In Chapter § we derived lower bounds on these moments from a static descrip—
tion of the simulation and its inputs. We found that the mathematical soundness of these
bounds rests by necessity on assumptions which are often unsatisfied in practice. In view
of this difficulty, a statistical estimation of a partition’s cycle execution time moments is
appropriate. We propose to observe the running simulation’s behavior, and use these
observations to estimate the cycle execution time moments. Given statistical moment
estimates for two different simulation partitions we can decide which is most effective.

This chapter is divided into three sections. The first section gives an overview of
problems encountered in statistical moment estimation. The second section examines sta-
tistical moment estimation in a Bayesian framework. We justify the distributional
assumptions of this framework, and argue that the analytically derived Jower bounds can
be used to construct the Bayesian "prior" distributions. The third section examines a deci—
sion theoretic comparison of two partitions. We then show how the most effective parti—
tion is readily identified.

The discussions in this chapter do not advance the study of statistics., This chapter's
main contribution is the demonstration that formal statistical analysis can be applied to a
partition’s performance evaluation, and to the comparison of two partitions. This
demonstration enhances our ability to analyze a simulation for the purposes of partition—
ing.

6.2. Statistical Moment Estimation

In Chapter 3 we argued that a cycle's behavior is random and that our evaluation of
a partition should be based on its average performance over all possible cycles. This obser—
vation led to the investigation of analytical bounds on the cycle execution time moments.
We discovered that an exact calculation of these bounds is not generally tractable and
requires restrictive assumptions. We now explore the possibility of estimating cycle exe—
cution time moments statistically, A statistical approach raises certain issues we need to
resolve.

Statistical moment estimation implicitly assumes there is an underlying cycle execu-
tion time probability distribution. We first observe that the system cycle Markov chain
model of Chapter 3 provides the basis for this assumption. We recall that the states of the
system cycle Markov chain {©"} encode all normal functionals’ states at the beginning of
the cycle, and all inputs presented to the simulation during the cycle; this information
suffices for-the derivation of that cycle's execution time under hyper—message synchroni—
zation. The process {©" } eventually becomes ergodic, and advances into equilibrium. Once
in equilibrium, if we observe a cycle at random there is a probability . of observing
state ¢ of {©"}; Q. is state ¢’s equilibrium state probability. If we independently observe

65

66

another cycle, the probab:lity of observing state ¢ is again Q.. So long as the cycle obser—
vations are independent the probability distribution underlying these observations is
{@" }'s equilibrium state probability distribution. Since the cycle execution time distribu-
tion is completely determined by {@"}, it follows that there is an underlying common
probability distribution for independently observed cycle execution times.

We could conceivably calculate a partition’s mean cycle execution time from {er s
equilibrium cycle state probabilities and the hyper-execution graph technique of Chapter
4, We let F(WG,j,c) be the length of the longest path though the hyper—execution
graph HEG (WG, j,c) defined by work graph WG, partition ¥; and cycle ¢. Then if we
assume that {@"} has N states 1, 2,- -+, N, the mean cycle time (under hyper—message
synchronization) is simpiy ¥ Q.'F(WG,j,c). However, {©"}’s state space is potentially

cw]

huge. It is much more reasonable to statistically estimate the cycle execution time
moments, Standard statistical practice and theory require that we have a number of
independent cycle execution time observations; however, successive states assumed by {6"}
are correlated. Simulation practitioners face the same problem in the analysis of corre—
lated simulation output data. The two major ways of achieving independent observations
[are tiie method of independent replications [Law84] , and the method of batch means
Fis78] .

The method of independent replications uses samples from independently generated
runs of the simulation. Each restarted simulation may not be accomplishing any further
useful work; the additional simulation computation exists solely to ensure the probabilis—
tic independence of the cycles sampled from different runs. A batch means treatment
transforms a sequence of observations from a single run into a shorter sequence of
approximately independent and normally distributed observations. It partitions the obser—
vation sequence X, X,,---, X, -+ into adjacent groups, each with n observations. The
batgh mean observation for group X, *° » X4, is simply the sample mean
%ZX jn+i+ A batch means treatment is more consistent with our goal of high perfor—

E=1
mance than is independent replications: useful work can be accomplished while the data is
being gathered for transformation. A batch means transformation changes the distribu-—
tion of the data we deal with. If the orginal distribution’s megn and variance is x4 and o2,

e teres : o
the transformed distribution’s mean and variance are u and ==

The approximate normality and independence of batch mean observations makes this
method an attractive option; many statistical tests are based on the assumptions of
independent, normally distributed observations. Henceforth we will assume that a "cycle
execution time"zis really a batch means observation, normally distributed with mean u

. . o . .
and variance — Our estimation of “cycle execution time moments" is really the estima—

2
. o ,
tion of w and " To estimate the moments of the underlying cycle execution time dis—

tribution, we will estimate the parameters of this normal distribution. Mapping back to
the true moments is trivially accomplished.

Given a set of independent cycle execution time observations, we can use standard
classical techniques [HoT83] to estimate the mean and variance. These techniques use only
the observed data to construct their estimates; but there is more information available
about the system than just the data, e.g. the system graph. A Bayesian estimation of dis—
tribution parameters may then be appropriate. In the following section, we consider a
Bayesian estimation of the cycle execution time parameters.

67

. 6.3. Bayesian Parameter Estimation

A Bayesian parameter estimation associates "belief" distributions with the parameters
mean and standard deviation. Loosely speaking, a belief distribution places probability
weights on potential values of a parameter. These weights reflect our beliefs about which
value the true parameter is likely to have. The Bayesian approach assumes the existence of
one "prior" belief distribution for the mean, and one for the standard deviation. These
prior distributions encode what we know about the system before we collect cycle execu—
tion time observations. The prior distributions and a set of independent observations are
combined using Bayes’ Theorem [Sch69], yielding "posterior” belief distributions for the
parameters. The posterior distributions describe how the additional information provided
by the observations update what we (ought to) believe about the true values of the cycle
execution time parameters. In contrast with classical point estimates, 2 Bayesian approach
estimates cycle execution parameters with probability distributions.

" A tractable Bayesian treatment requires certain assumptions about the data and
parameter distributions. In this section we argue that these assumptions can be justified,
and then examine construction of the prior distributions.

6.3.1. Distributional Assumptions

A full treatment of a Bayesian approach’s computational details is given in
[NoJ74Xchapter 7), and is not appropriate here. However, we should justify the
treatment's assumptions.

The Bayesian technique assumes that the data is normally distributed; data derived
from a batch means transformation is approximately normal. The cycle execution time
mean u and standard deviation o distributions are assumed to have certain forms so that
the application of Bayes’ theorem is tractable. The mean distribution is based on a
Student’s ¢ distribution and is symmetric and uni-modal. The standard deviation distri~
bution is based on a x? distribution; it too is unimodal, and has a relatively high variance.
Uni—modality for our parameter belief distributions does not violate anything we know
about the cycle execution time, and so is a reasonable assumption. Our limited simulation
experience with logic networks has shown the cycle execution mean to be relatively
stablie from run to run, while the cycle standard deviation is somewhat more variable.
These observations correspond well with the symmetric nature of the mean distribution,
and the relatively high variance of the standard deviation distribution. Thus the neces-
sary distributional assumptions can be justified.

The final assumption of the Bayesian treatment presumes that the marginal prior
distributions are independent. This assumption is harder to justify. Any non-—trivial prior
distributions we derive will be based on static information about the simulation system,
and will at best be approximate. If an oracle gave us the exact value of one parameter,
our understanding of the other parameter is not affected. Since the change in one
parameter’s value does not affect our understanding of the other’s, we conclude that our
initial understandings are independent.

Thus we see that the assumptions required by a Bayesian treatment can be bheuristi—
cally justified. We turn next to the determination of the prior distributions.

6.3.2. Prior Distributions

One of the attractive features of a Bayesian parameter e¢stimation approach is its
ability to incorporate "prior" information about the parameters.. Determining the prior
distribufions is a fundamental problem in any Bayesian treatment. In Chapter § we
developed lower bounds on the cycle execution time parameters. These bounds are deter—
mined statically, but require restrictive assumptions. We can use¢ these techniques to
obtain approximations when the assumptions are not satisfied. These approximations

68

should yield some (inexact) information about the system, and can be used to create prior
distributions.

We first reconsider the derivation of each work node’s evaluation probability. This
derivation depended on the node’s predecessors’ independent behavior. This assumption
will not be satisfied in most simulations. To test this assumption’s robustness, we per—
formed some experiments on small, randomly generated logic networks to determine the
correlation in a node’s predecessors’ behavior. The results were very encouraging:
significant correlation between two gates evaluation behavior was observed only when
those gates shared an input. Of course, this observation should be treated with some skep—
ticism as the networks studied were randemly generated. Nevertheless, these observations
do provide some hope that the assumption of independent behavior is not unreasonable.

The derivation of lower bounds on the cycle execution time moments requires
independence among all of a node’s work assignment predecessors; we may simply assume
independence in the general case. We can use the first moment bound as an estimator of
the mean, and the second moment minus the first moment squared as an estimator of the
variance. This variance estimator is then divided by n to refiect our batch means treat—
ment of the cycle execution time observations. The square root of this variance estimator
estimates the standard deviation (of the batch means cycle execution time data).

g The)prior distribution for the mean u is assumed to be distributed such that

y -

ﬁ—%——& has a ¢ distribution with v, degrees of freedom; »., { and x are the parameters
o

of this distribution. Following [NoJ74], we refer to this distribution as a ¢(»,, {, x) distri~
bution. This distribution is uni—modal; its mean, median and mode are all equal to §. Its

. . . : - K
variance (when it exists) is equal to Y
.

dard deviation & is assumed to distributed such that _Lz is a Y% random variable with v,

. The (batch means) cycle execution time stan—

o
degrees of freedom. We will say that the standard deviation T has a X~ '(v,, A) distribu~
tion. The mean of such a random variable is (approximately)

A i~
-3
the mode is
A
v, +11°
and the variance is approximately
A

2y, — Dy, — §>'

The t{v., {,) and x (v, A) distributions are completely specified by their respec—
tive parameters v.,{,k and v, A; prior construction requires quantification of these
parameters. We briefly sketch the role each parameter plays in shaping the cycle execution
mean distribution. . is a "degrees of freedom" parameter. Standard ¢ distributions have
only one parameter, the degrees of freedom, and can be constructed by taking the sum of
certain normalized random variables. The number of terms in this sum defines the stan—
dard t’s degrees of freedom. [NoJ74] argues that in a Bayesian prior distribution, the
parameter ¥, can be thought of as the number of observations our prior information is
"worth". The larger the value of v., the more weight is given to the prior distribution

69

when combined with observations in Bayes’ Theorem. The parameter { plays the role of
an addjtive offset: standard ¢ distributions are symmetric and centered at O; t(v,, {, k) is
centered at {. Finally, v, and k together form a scale factor whose effects are seen in the

variance: The variance for a standard ¢t with v, degrees of freedom is

v, — 2 v, —2°
An intuitive incorporation of our analytically derived estimations is to assume that
t{v,, ¢, k) is centered at our mean estimate, ie., set { equal to our derived mean. We stiil
must determine v, and x. [NoJ74] discusses guidelines in terms of credibility intervals.
v.'s and K’s selection defines the spread of the distribution; the wider the spread, the less
weight will be placed on the prior information.

We similarly determine the standard deviation prior distribution. The parameter v,
in x"v,, A) identifies degrees of freedom, and) is a scale factor. We can equate X~ e, A)'s

mode (point of maximum likelihood) with our analytically determined stan-

‘ v, +1
dard deviation estimate; this again centers the distribution. The spread of the distribution
is determined by a selection of v, and A subject to the centering constraint. Again, these
values might be determined using [NoJ74]'s guidelines.

In addition to [NoJ74]'s guidelines we suggest that our analytically derived estimates’
accuracy be considered. Uncertainty in our point estimates arises from assumption viola—
tions and the fact that the point estimates are constructed to be lower bounds. For exam~—
ple, we consider how a disparity between the lower bound and the true parameter value
can occur as a result of applying Jemsen’s inequality. Suppose that X, ---, X, are
independent random variables. Jensen’s inequality states that

Elmax{X,, ' .X,}] 2 max{E[X,],- - .E[X,]}

If the E{X.) are all equal, the difference between the left hand side and right hand side of
this inequality will tend to be significant: the likelihood that one of the X; exceeds its
mean is fairly large. On the other hand, if one particular E[X;] is substantially larger
than all the rest, that X; will almost always define the maximum, so that the difference
between E[max{¥X,,---,X,}] and max{E[X,}, - ,E[X,]} will tend to be small. As the
calculation of the bounds proceeds, we could compare the magnitudes of the E [X;ltogeta
sense of how accurate the substitution of max{E{X] .E[X,]} for Elmax{X,--- X1l
is, and define our priors’ variance accordingly.

We have not developed quantitative techniques for defining the priors’ variance; this
problem is worthy of future attention. In any event, the uninformed priors [NoJ74] can
be used. An uninformed prior assumes that any value for the parameter is as likely as
another, and so does not encode any information about the system. As we will see in sec—
tion 6.4, we may still benefit from a Bayesian estimation of the cycle execution time
parameters even if the uninformed priors are used.

6.3.3. Section Summary

We summarize our thinking about Bayesian parameter estimation. A Bayesian
approach is particularly useful when we have "prior” information about the parameters.
A Bayesian approach encodes this information with a "prior” distribution. A collection of
independent observations is combined with a prior distribution by means of Bayes’
theorem to produce "posterior” distribution for a parameter. This application of Bayes’
theorem requires certain distributional assumptions: we have justified those assumptions.
We have also considered the conmstruction of prior parameter distributions, and have
argued that our probabilistic techniques developed in Chapter § can be utilized.

70

The Bayesian approach may seem overly elaborate for the simple estimation of cycle
execution parameters. While the mathematics behind the approach is elaborate, the com~
putational details (given prior distributions) are quite simple. It is not necessary to expend
any great emergy comstructing prior distributions, the so—called "uninformed” priors
[NoJ74] work very easily into the model. The Bayesian framework for parameter estima-
tion is very useful when we compare two different partitions of the same system. As we
will next see, the identification of the "best” partition can be placed in a useful decision
theoretic framework supported by the Bayesian model.

6.4. Bayesian Partition Decision

We now consider the comparison of two partitions ¥, and ¥,. We suppose there are
posterior parameter belief distributions associated with both partitions’ cycle execution
time parameters. We would like to decide which of the two partitions is more effective.
We state this problem in Bayesian decision theoretic terms, and then show how the poste—
rior distributions are used to identify the partition with minimized expected "cost",

Decision theory considers the choice of some action on the basis of incomplete
knowledge of the true, unknown, world state, The action taken exacts some cost whose
value depends on the chosen action and on the true world state. As applied to our prob—
lem, the true world state consists of the true values of the cycle execution time parame—
ters; the action is choosing one of two partitions. We have flexibility in defining an
action’s cost. We will consider several appropriate cost functions. :

The simpliest cost of choosing ¥ is just ¥;’s true world cycle execution time mean
#;. This cost function is appropriate for selecting the partition yielding the lowest mean
cycle execution time. A useful variant is the sum g; + w0 ; of the chosen partition’s
true mean and its weighted standard deviation. We use this cost if we are concerned about
the mean cycle execution time, but are willing to accept a slightly higher mean in
exchange for much reduced variation.

More sophisticated cost functions reflect a chosen partition’s use. For example, the
system may be running with partition ¥,, and considers adopting ¥,. The choice to run
under ¥, requires us to first stop the system and perform the reassignment. Will this
change decrease the system’s overall finishing time? That depends on how much longer the
systern will run. We suppose that the system will run for M more batch cycles, a batch
cycle being the n system cycles defining a batch observation. The total remaining system
execution time under partition ¥; is the sum of M cycle execution times. If we let
CX (1), +++,CX (M) denote the remaining M n cycle execution times under ¥, and
let BX (1), -+ , BX;(M) be the M corresponding batch means, we readily see that

Mn A
Z‘,CX_,(i) = N'ZBXJ(E.).
i=i i=}

M

The remaining system execution time under ¥ is the random variable n-}_ BX ;(i). The
i=]

BX ;(i) are approximately independent and normally distributed with mean u; and vari-

ance O f, where u; is the true cycle execution t‘%me mean under ¥, o is the true cycle

— g; . -
execution time variance under ¥, and &) = -;J- Sums of independent normally distri~

buted random variables are themselves normally distributed; the remaining system execu-
tion time ynder ¥, is thus normally distributed with mean M -n-u; and standard devia-
tion VM n ;.

The partition should be chosen on the basis of its performance over the remaining
system cycles. As before, we may wish to measure this performance in terms of the mean

n

remaining system execution time or in terms of the mean and standard deviation of the
remaining system execution time, There is an additional overhead cost of changing from
one partition to another: if we are running under ¥;and choose ¥ ,, we suffer an overhead
delay U to actually perform the change in partitions.

Consideration of the partition replacement cost function raises an interesting issue.
If the system is running under partition ¥, how can we obtain the necessary ¥, cycle
execution time observations? While it is possible to measure ¥;’s performance, it would
seem that we can only estimate W,’s. It is desirable that the partitions’ performance be
measured using the same method. In Chapter 4 we showed how an observed cycle's execu—
tion time under hyper—message synchronization can be calculated. In order to compare ¥,
and ¥, on the same footing, we suggest that the cycle execution times under both parti-
tions be estimated using hyper—message synchronization. Even though measurements of
¥ ,’s performance are potentially available, estimated measurements are more meaning-
fuily compared to ¥,’s estimated measurements. We must then hope that these estimates
reflect the relative effectiveness of ¥, and ¥,.

We now show how the partition with the minimal expected cost of the two choices
is selected. A Bayesian decision theoretic apptoach uses the posterior parameter distribu-
tions as probability distributions of the true world state: the true cycle execution time
mean and standard deviation. The cost of a decision depends on the true world state; if the
cost function is reasonably simple and the posterior distributions are known, we can then
conceivably calculate the expected cost of a decision by taking the expectation of the cost
function with respect to the posterior parameter distributions. The optimal decision is the
one with minimized expected cost.

We show by example that the expected decision costs for our problem are .easily
found. Consider the decision to replace ¥, with ¥, in the remaining M n system cycles.
Assuming the M n-u, cost function, this decision’s expected cost is

Elcost of ¥,i= fProb{,u}-(U + Mmnu dp
Q

=] + M'R‘E[}Lz}

where Prob{u} denotes the posterior density function value associated with the possibil-
ity that the world state of g, is g Elu,]is the mean of u,'s posterior distribution. Simi—
larly, the cost of retaining ¥, for the remaining M cycles is M n-E{u,] Both of these
expected decision costs are trivially calculated, as Elu,] and Elu,) are easily calculated
(again, see {NoJ74] for details). The decision yielding the lowest expected cost is thus
readily identified. We observe that it is possible for Elu,] < Elw;], and still have
U + MnE[ul > Mn-E{u] the per cycle speedup available by using ¥, may not be
enough to overcome the overhead cost U suffered by changing the partition. ‘

The other proposed cost functions share this simplicity of identifying the best parti-
tion with respect to the chosen cost function.

6.5. Chapter Summary

In this thesis we continually observe that we must consider a partition's average
performance over all simulation cycles. In general, we cannot predict a proposed
partition’s performance with a static analysis. This chapter proposes a statistical estima-—
tion of a partition’s performance. In doing so, it both brings together much of our
analysis from earlier chapters, and identifies statistical tools that we can apply in this
estimation. In section 6.2, we showed there is an underlying probabilistic base for

72

statistical estimation, and showed how to transform cycle execution time observations for
eventual analysis. In section 6.3, we argued that a Bayesian estimation of the cycle execu-
tion time distribution parameters is appropriate. We argued that the assumptions of the
Bayesian model are justified, and examined the construction of prior distributions. In sec~
tion 6.4 we show how the posterior cycle execution time parameter distributions can be
used to select the better of two partitions. We identified several relevant decision cost
functions, and argued that the selection of the partition achieving minimized expected
cost is computationally trivial.

Chapter 7

Qualitative Analysis

7.1. Chapter Overview

We must ultimately compare two partitions by comparing the moments of their
resulting cycle execution time distributions. In Chapter 6 we propose that these moments
be estimated statistically. We can then quantitatively compare the partitions by numer-
ically computing and comparing their execution time moments. We now show that it is
sometimes possible to compare these moments qualitatively without actually computing
them. We use time complexity arguments to show that such a comparison can be compu-
tationally more efficient than a quantitative comparison.

In section 7.2 we motivate our development of qualitative partition comparison. In
section 7.3, we describe certain stochastic order relations, our basic tools for qualitative
comparison. A stochastic order relation between random variables states that one is proba-
bilistically larger than the other. We give conditions for random variables to be stochasti-
cally related. Sections 7.4 and 7.5 illustrate two different scenarios in which we might use
gualitative partition comparison. Section 7.4 shows how stochastic order relations might
be of use to a partitioning algorithm which sequentially assigns work nodes to processors.
In section 7.5 we consider a general qgualitative comparison of two partitions, present a
numerical example of general qualitative analysis, and identify an important application
for a qualitative comparison. :

The analysis developed in this chapter presented with two disclaimers. First, sto-
chastic order relations make statements about probability distributions. Our results are
generally of the form "If random variable X is stochastically related to random variable
Y, then this partition is better than that partition ". The X and ¥ we consider have dis—~
tribution functions which we cannot realistically quantify. However, it may be possible
to deal with stochastic order relations statistically. Our work lays the necessary proba—
bilistic base for statistical qualitative comparison, illustrated by example in section 7.5.
Our second warning is that gualitative comparison is not always possible. The conditions
for stochastic relations are often restrictive. Nevertheless, the power of stochastic order
relations is attractive enough to warrant a careful consideration of their potential appli-
cation.

7.2. Motivation for Qualitative Comparison

A statistical analysis of a simulation’s behavior observes a certain number of cycles,
calculating the cycle execution of each from its hyper—execution graph. This calculation
Las linear time complexity in the size of the work assignment graph; however, the work.
assignment graph might be very large. The time complexity of estimating a partition’s
cycle execution time parameters is O(Z+d), where Z is the sum of the number of nodes
and edges in the work assignment graph, and d is the number of cycle observations.

For large Z and d, determining the partition with smaller moments can.be computa—
tionally expensive, prohibiting much of this kind of comparison. For example, many
design automation heuristics [BrF76)] incorporate a perturbation phase where many small
perturbations of the solution are considered, and any perturbation improving performance

73

74

is adopted. A quantitative comparison of moments is just as expensive when the partitions
are very much alike as it is when they are very different. We are discouraged from using
a perturbation phase to improve a partition. In this chapter we show that there is a more
efficient approach. We identify circumstances where we may conclude that one partition
is superior to another, without explicitly estimating their respective cycie execution
moments.

7.3. Three Stochastic Relations

in this section we define three stochastic order relations, and identify conditions
where these relations hold.

Stochastic order relations relate random variables X and ¥ by considering E[g(X)]
and Ef[g(Y)], where g is a function of a certain class. The first stochastic order relation
we consider is that of stochastic variation [Ros83] .

Definition 7-1: Stochastically More Variable

Let X and ¥ be random wvariables., X is said to be stochastically more variable
than ¥, written X 2, Y, if and only if E[g(X)] 2 E[g(¥')] for every increas-
ing convex function g. |

a

The functions g{x)=x and h{(x)= x? are both increasing and convex, so that if
X 2,7, then X’ mean (E[X]= E[g(X)] and second moment (E[X?] = E[r(X)) are
greater than or equal to ¥’s mean and second moment, If X and ¥ have equal means, the
relation Var(X) = E[X?— E[X} implies that Var(X) 2 Var(¥Y). X 2,7 is then a
strong statement of X’s being more variable than ¥ (when their means are equal). An
equivalent characterization of the 2, relation is given in [Ros83] .

Lemma 7-12 [Ros83] Let X and ¥ be non-negative random variables. X 2, Y if
and only if for everya 2 0

[Probix 2 t}ar 2 [Probly 2t} ar.
0 0

a
Another useful result concerning stochastic variability is also given in [Ros83];

Lemma 7-2: [Ros83] If X, - ,X, are independent, and ¥, Y, are indepen—
dent,and X; 2, ¥;,i =12, - ,n, then

gX 0 X)) 2, gy Yy)

for all increasing convex functions g:R" —R.

0

The second stochastic order relation we consider is stronger than stochastic variabil-
ity.

15

Definition 7-2: Stochastically Larger

Let X and Y be random variables. X is said to be stochastically larger than Y, '
written X 2, ¥, if and only if E[f(X)] 2 E[f (¥)] for all increasing func-
tions f .

a

Clearly, when X 2, ¥, then X 2, ¥. An equivalent definition of the 2, relation
exists when X and ¥ are non—negative.

Lemma 7-3: [Ros83] Let X and ¥ be non-negative random variables. Then
X 2., Y if and only if
ProblX 2t} 2 ProblY 2 t}

forallt 2 0.

(]

A result entirely analogous to lemma 7-2 exists for the 2, relation. This result, lemma
7-3, and the definition of the 2, relation are all found in [Ros83].

The 2, relation is naturally extended to arbitrary vectors of random variables
[Ros83). This extension defines the jointly larger stochastic relation.

Definition 7-3: Jointly Larger

Let X = <X, ++,X,> and Y = <Y, ,¥, > be arbitrary vectors of random
variables. We say that X is jointly larger than Y, written X 2 ; Y, if
Elg(x,, - X0 2 Elg(¥y,- - X,)]

for all increasing functions g:R" - R,

0

This relation will be most useful to us if we can find conditions on the respective joint
densities of X and Y which imply that X 2 ; Y. We have discovered both a necessary
condition, and (stronger) sufficient conditions for joint dominance.

76

Lemma 7-4t Let X = <X,,--,X,> and Y = <¥,,---,¥, > be arbitrary vec—
tors of non—negative random variables. Then

{1 If X 2 Y, then for every vector <t,- - t, > with non—negative com~
ponents ,
PrOb{XI ? tb.“ 9Xn ?" tn} ? PrOb{_Yl 2 tl," . :Yn ¢>4 tn}' (7_1)

(iD) Suppose that for every subset D of vector component indices and every
non—negative vector <t,, -, > we have

Prob{X, >t forallieD 1 X, =t, forall j ¢ D)

2 Prob{Y; 2 t; forallieD | Y, =¢, forall j € D).

Furthermore suppose that the right hand side of this inequality is an in—
creasing function of every ¢;, j € D. Then X 2 i X.

Proof: We show first that X 2 ; Y implies the inequality 7-1. For every vector
T = <ty ,t, > we define the function f y:R" =R by

1 if x; 2 t; for i=lan
FrlEn 0 X) =ty sinerwise

This function is easily seen to be increasing in each argument. Furthermore,
Elf (X, . X)= ProblX 2 t,,- - X, 2 tp}.
Since E[f +(X)] 2 E[f +(¥)], inequality 7-1 follows directly.

Now we show conditions (ii) imply the definition of the 2 ; relation. We in-
duct on the number of vector components. The base of the induction argument,
namely n = 1, is easily satisfied, since this case reduces to the relation 2, . As
the induction hypothesis, we suppose that this implication is true for all random
vectors of length k—1. Let <X,,* X, > and <Yy, ,Y, > be vectors of ran—
dom variables satisfying conditions (ii). Let g:R* =R be an increasing function.
Now

E[g(Xls' t st)] = Exk Et‘f{g(Xi:' o ’X.l:wbtk)] ‘

where Eyx, is the expectation operator for X,,and E;f is the expectation operator
for the joint denmsity of X,,---,X;., conditioned on X, =1¢,. We let X*™!
denote the vector of X’s first Xx—1 components conditioned on X, = x; we like-
wise define Y)’f“ to be Y’s first k~1 components conditioned on ¥, = y. We first
demonstrate that X&“l 2, Y.L Let <ty," - t,-1> be a non-negative vector,
and let D be any subset of {1,---,k=1). Define D = {1, k—1} — D, and
D, =D U {k}. Then

Prob{X, 2 t,forallieD | X, =¢; for all j € D; X, =t}

= Prob{X; > t, forall i eD | X, = ¢, for all j € Dy}

77

Z ProblY; 2t forallieD | Y, =t; for all jeﬁk} (7-2)

= Prob{Y; 2 t;forallieD 1Y, =t for all jeD;Y, =) (7-3)

where the establishment of the inequality follows from our assumption that X
and Y satisfy the first of (ii)'s conditions. Thus vectors X/~ and Y 51 satisfy

the first of (ii)s conditions. Furthermore, the equivalence established between
lines 7-2 and 7—3 establishes that the second of {ii)’s conditions is satisfied as well.
The probability of line 7-2 is assumed to be increasing in any ¢;, j € 5k. In par—
ticular, it is increasing in any ¢;, j € D. The probabilities of lines 7-2 and 7-3 are
_equal, so that the second of (ii)s conditions is met. X£™! >, Y £~ then, by the

induction hypothesis.

For § > s, weshow that Y471 2 , Y# !, We have
§ i ts

Prob{y; 2 t;foralli e D | ¥Y; =¢t; for all j € D;¥; =5}

= Prob{Y;, > t; for alli €D | ¥, =t for all j € D;} when ; =5

2 Prob{Y; 2t forallieD 1 ¥, =t,for all jeD,} when t; =5 (7-4)

= Prob{¥, 2 t;forallieD | Y, =¢, for all j € D; ¥, =5} (7-8)

where the inequality is established because we have assumed the vector Y satisfies
the second of (ii)s conditions. Vectors Y #~! and Y #~! therefore meet (ii)’s first
condition. (ii)'s second condition is established by the equivalence of the proba~
bilities of lines 7-4 and 7-5. By ‘the induction hypothesis, we have
YETUZ, YEL

Having established these stochastic relationships, we exploit their properties to
show the desired result. Since X}~ 2 Y £, it follows by definition that

Et‘f(g(x 1T :Xk-—lvtic)] ; Et}; [g(Yls e rYk—l?sk)] . (?"'6)

since this restriction of g is still increasing in its first k—1 arguments. Now let
h.(s) be X,'s marginal density function. As inequality 7-6 is true for every &,
we have '

Ex, E;f[g(Xl,' " ’kal.tk)}] = fhx(S)'EsX[g(Xh' X8 ds
o

78

> [n(s»Eg(¥ iy ds. 7-7)
[

Now Y £7! 2, Y#~! whenever § > 5; it follows by definition that
Eizytg(yl, et ,}’k_l,s’)] ?’ Esy[g{Yl,' " !Yk--hS)] (7"“8)

whenever § > s. This expectation is therefore an increasing function of 5. Under
our assumptions about X and Y, it is not hard to show that X; 2, Y,;: choose

- D={1,"--k}and t; = 0 for f =12, k=1 Then (ii)’s first condition implies
that Prob{X, 2t} 2 Prob{¥, 2 t} for every non-negative ¢, so that
Elf (x.)1 2 E[f (¥,)] for any increasing function f. Let k,(s) be ¥};’s margi~
nal éevsity function. Since the expectation on the right hand side »f 7-8 is in-
creasin; in 5, we have

[rYEYg(¥)+ Vil ds 2 [Eg(Y 1+ Yiap,S)l ds
[o} [+}

= E[g(¥y,--- Y)L (7-9)

The chain of inequalities from 76 to 7-9 establishes
E[g(X;,' " ,Xk)] ? E[g(Yx,' A ,Yk)],

whence X 2 ;; Y by definition.

O

The presented sufficient conditions for joint domination are stringent. In the special
case where the X, are independent and the ¥; are independent, the necessary conditions
given by lemma 7-4 are also sufficient. It is easily seen that the necessary conditions
imply that X; 2, Y, fori =12, -- ,n;for any ¢,

Probi{X; 2t} = Prob{X; 2 t; X; 2 Ofor all j=i}
2 Prob{Y; 2 t;Y; 2 Ofor all j#=i }

=P?‘Ob{Yi 2t}.

Then we know that the independence of the X; and the independence of the ¥; imply
that

gXy - X)) 2, gy, -0 X))
for all increasing functions g. Thus
Elg(Xy,-- X012 Elg(¥,--- ¥,)]

for all increasing g, hence X 2 ; Y.

7.4. Sequential Assignment

We now consider how the 2, and 2, relations can be used by a partitioning
algorithm. One possible partitioning approach is to assign the work nodes sequentially,

79

attempting at every step to find the best assignment for the node. This might be accom—
plished by first sorting the work graph nodes topologically, and then by sequentially
assigning each node with respect to this order. We suppose that some number of work
graph nodes has aiready been assigned. We assume there are K processors, and that I,
denotes the last node assigned to processor i, To avoid explanation of special cases, we
assume that each processor is initially assigned a placebo node with no associated pre-
cedence, and zero execution cost.

Qur problem is to assign a node W to some processor. This assignment can be viewed
as the attachment of W to some I; with an execution precedence arc rooted in L;. We
generally assume that all of a functional’s work nodes must be assigned to the same pro—
cessor. Attaching W to L, also involves moving any previously assigned work nodes asso-
ciated with W’s functional to processor i as well. All other assigned work is assumed to
be fixed. We presume that some algorithm determines the resulting execution order
within processor i. Let F(L;) denote the finishing time of L;; F(L;) is the time at which
processor i completes all of the work assigned to it. We denote the attachment of W to
L, by W@L,. F (W@L;) is the finishing time of processor j with W attached. We would
like to attach W to a processor so that all moments of the assigned work’s finishing time
are minimized. Formally, we search for that L; such that

Elmax{F(L,), - ,F(W@L;), " -- ,F(LK‘)]"],

the nth moment, is minimized for all n. Since the max{ }* function is both increasing and
convex, stochastic order relations may help us identify this L.

We can use both the 2, and the Z relations to compare the assignment of W to
L; with the assignment of W to L;. Without loss of generality, we will use { =1 and
j =2 in the following discussion. Also without loss of generality, we assume that all of
W s ancestors reside in processors 1,2, ,p. We find it necessary to jointly treat all pro—
cessors holding W’s ancestors; this necessity stems from the observation that these proces—
sors’ behavior are correlated. Suppose we can group the processors so that the finishing
times of 1,2, - - ,p are all independent of the finishing times of p+1,--,K. We can then
compare the assignment of W to L with the assignment to L, without consideration for
the finishing times F(L,(),-** ,F{(Lg). This is not surprising, as W is in no way con—
nected with the processors p +1, - - - K. Our ability to make this comparison is formalized
by the next lemma. ‘

80

Lemma 7-5: Let

M, = max{F(W@L),F(L,), - ,F(L,)}
and

M ;= max{F(L) FIW@L,), - F(L,)}

Suppose there exists a p such that all of W’s ancestors reside in' processors
1,2, ++.p, and all finishing times F(L;), j > p are independent of F(L;),
1<i € p. Then

@ I
[ProviM >ty dt 2 [ProbiM, >t} dt
[0} 0

for all @ 2 0, then
max{F(W@L),F(L,), -+ . F(Lg)h 2, max{F (L) FW@L,),- - F(Lg)}.

Gi) If
Prob{M, > t] > Prob{M, > t}
for all ¢, then
max{ F(W@L),F(L,), -+ F(Lg)} Zgq max{F(L),FIW@Lj), - ,F(Lg)
Proof: We first demonstrate (i). Let U = max{F(L,),- - ,F{Lg)}. Frivolously,
we have I/ 2, U.By lemma 7-1, we have M, 2, M,. Now
max{F(W@L),F(L,),-+ ,F{Lg)}

1

max{ max{F(W@L,),- - ,F(L,)},max{F(W@L,), - ,F(Lg)} }
= maX{Ml,U}
2, max{M,U} by iemma 7-2

= max{F(L),FIW@L,), -+ F{Lg)l

Item (ii) is shown in a similar fashion.

0

The preceding lemma identifies circumstances under which we can compare 1wo
potential assignments of W. However, we should stress that it might not be possible to
make this comparison. We have no assurances that the lemma’s hypothesis will be (non-
trivially) met; p could be equal to K. In fact, we must be able to compare each pair of

81

assignments if we are to prove that a particular assignment of W minimizes
Efmax{F(L,), - ,F(W@L,), - -- ,F(Lg)} this is not generally possible. Nevertheless,
this approach holds promise. Even if the stochastic relations induce only a partial order
on the possible assignments of W, it is useful to know that one assignment is provably
better (on the average) than another. Some computational savings might be achieved. using
this approach; lemma 7-5 says that we need not consider the work nodes in processors
p,-» K when we choose between placing W in processor 1 or 2.

To say that X 2, ¥ or X 2, Y is 2 much stronger statement than to simply say
E[X]12 E[Y] If assumptions of the form E[X] 2 E[Y] are strong enough to produce
lemmas of the form given in 7-5, it might well be argued that consideration of 2, and

2, relations is unnecessary. However, we can show by example that assumptions of the
form E[X] 2 ElY] are not strong enough. An analog to lemma 7-5 would say : If

Elmax{F(W@L),F(Lj), - - F(L,)} 2 Elmax{F(L,),FIW@L,), - ,F(L,)}]
then
Elmax{FW@L)F(Ly), - F(Ly W] Z Elmax{F(L)FW@L,), -, F(Lg}l

We discredit such a statement by giving an example of independent X, ¥, and Z such
that E[X1> E[Y] but E[lmax{X,Z}] < E[max{¥,Z}]. Let X be the constant 6, let ¥
be uniform on [0, 1], and let Z be the constant .75. We assume that ¥ is independent of
X and Z. Now E[X]= .6 > 5 = E[¥] Furthermore,

E[max{Y .z}l = Prob{Y € J5}{.75) + Prob{Y > JI5VE{Y 1Y > 75]
> 75

= E{max{X,Z}]

since E[LY +Y > 75} > .75

Given that the assumption E[X] 2 E[Y']is not strong enough to be useful while the
assumption X 2, ¥ is, we defend consideration of the stronger statement X 2, ¥.
First of all, 2, is easier to verify. The mathematical statement of lemma 73 is easier to
check than the statement of lemma 7-1. Furthermore, some interesting results about 2,
are known. For example, [Ros83] states that a normal random variable increases stochasti—
cally in its mean (it does not increase in its variance). If we can reasonably assume that
two random variables being compared are normal and have the same variance, then we
need only check their means to identify 2, . While comparing X and ¥, we may
therefore save some computational effort by testing for X 2, Y first. Many other results
concerning the 2, relation are given in [MaO79].

The statements of 2, and 2, are statements about probability distributions. In
view of the difficulty encountered simply trying to calculate the moments of the cycle
execution time, it may seem futile to develop a theory based on the entire distribution. In
answer to this objection, we appeal again to the necessity of treating partitioning in a sta-
tistical context. While we are not able to precisely ascertain that one random variable
stochastically dominates another, we might be able to examine observations of those ran—
dom variables and develop a reasonable confidence of this domination.

7.5. General Comparison

The previous section showed how a partitioning algorithm might employ the Z,
and 2, relations to qualitatively compare two potential "subpartitions” under

82

consideration. In. this section we show how any two partitions might be qualitatively
compared. This approach focuses on a vector of work nodes whose behavior refiects all
differences between two partitions. In subsection 7.5.1 we define this border vector and
show how to efficiently discover a border vector. We derive a border graph from this
vector, and illustrate the graph’s important properties. In subsection 7.5.2 we discuss a
transformation of the border graph into a hyper—border graph created as a function of an
observed cycle. We prove that the length of the longest path through a hyper—border
graph is equal to the cycle execution time of the observed cycle under hyper—message
synchronization. We then show how the border vector and hyper—border graph are used
to qualitatively compare two partitions. Subsection 7.5.3 gives a metric for the com-
parison of two border vectors related by 2 ;. In subsection 7.5.4 we present a numerical
example of how qualitative comparison can be statistically applied. Subsection 7.5.5 con-
cludes the development of qualitative analysis by proving that qualitative analysis can be
more computationally efficient than quantitative moment estimation.

7.5.1. The Border Vector
We begin our analysis with a definition.

Definition 7-4: Fixed, Stable Work Nodes

Let WG be a work graph, and let WAG(1) and WAG(2) be work assignment
graphs for WG under partitions ¥, and ¥, respectively. Let W be a work node.
W is said to be fixed if W resides in the same processor under ¥, and ¥,, and has
the same execution successor under ¥, and ¥, The system sink node is defined to
be stable. A general work node W is said to be stable if it is fixed, and has stable
work assignment graph successors under ¥, and ¥,.

0

We use the concept of fixed nodes to define a border vector which reflects differences
between WAG(1) and WAG(2).

Definition 7-5: Border Vector

Let WG be a work graph, and let ¥, and ¥, be two partitions of WG. Let
WAG(1) and WAG(2) be their respective work assignment graphs, and let
B = <B,, -+ .B;> be a vector of work nodes. B is said to be a border vector for
WAG (1) and WAG(2) if

D Fach B; is stable;

(i) For j = 1,2 every path through WAG(j) from a non-fixed node to the
system sink node must include some B;.

O

A border vector captures the topological differences between ¥, and ¥,. The topo—
logical differences between partitions are embodied by non—fixed work nodes, which con-
ceptually pass the effects of these differences along work assignment graph paths. Since

83

every path out of a non-fixed node to the sink includes a border node, the message timing
differences between two partitions is reflected in the difference in the border nodes’ joint
behavior under ¥, and their joint behavior under ¥,

There are partition pairs ¥; and ¥, such that no border exists for WAG(1) and
WAG(2): if work node S, is a predecessor of the sink Py in WAG(1) and is not fixed, then
$, is not a border node, so that the path from S, to Pg defies condition (ii) of definition

. 7-5. This observation leads us to necessary and sufficient conditions for the existence of a
border vector for work assignment graphs WAG(1) and WAG(Q2).

Lemma 7-6: Let WG be a work graph, ¥, and ¥, be partitions of WG, and
WAG(1) and WAG{2) be their respective work assignment graphs. Let
S, '+, 8. be the sink node’s predecessors in WAG(1). Then a border vector B
exists for WAG (1) and WAG(Q2) if and only if for { = 1,2, - k, §; is stable.

Proof: The argument of the last paragraph showed that every §; must be stable.
The sufficiency of this condition is easily seen. The vector <S8,,' -, §; > satisfies
condition (i) of definition 7-5 by assumption. Any path to the sink must pass
through one of the §;, so that <§,,- -, §; > also satisfies condition (ii).

a

We will always implicitly assume that the work assignment graphs under discussion
do have a border vector. The border vector identified by lemma 7-6 is not a particularly
interesting or useful one; we would like to trap the differences between partitions "far
back” from the sink as we can. We sketch here an efficient procedure for finding a better
border vector. This procedure requires the identification of stable work nodes. The
definition of stability suggests that the work nodes’ stability be determined by processing
nodes in reverse topological order (with respect to the work assignment graph). Then to
check for a node’s stability, we need to check that it is fixed and that each successor is
stable. The time complexity of determining all work nodes’ stability is seen to be
O(NE +1)), where there are N work nodes, and the maximum number of node successors
in the work assignment graph is F.

Let B be the vector of all stable successors of non-stable nodes. We claim that Bisa
border. Clearly the requirement that border nodes be stable is met. Let W be a non—fixed
node, and let W,P,,* -+ Py be any path through a work assignment graph WAG(j) from
W to the sink node. Let P; be the first stable node in this sequence. P; is thus the descen—
dent of a npon—stable node, and hence is in B. This path includes the border node P;; since
the work assignment graph WAG (j) was arbitrarily chosen, the argument works equally
well for WAG(1) or WAG (2). Consequently, condition (ii) of definition 7-5 is met; it fol—-
lows that B is a border vector. This B can be found while the nodes’ stabilities are deter-
mined, with no additional time complexity. Thus, given two work assignment graphs of
the same simulation, we can efficiently find a border vector for those graphs.

Given a border vector B and work assignment graph WAG(j), we define a subgraph
of WAG(j) called the border graph.

84

Definition 7-6: Border Graph

Let B = <B,,---,B, > be a border vector for WAG(1) and WAG(2). B’s border
graph for WAG(j) is the graph BG(j) composed of

(i) All of B’s nodes ;

(ii) All fixed work nodes having a path through WAG(j) to the sink node
which does not include some node in B; '

(ii1) The sink node Pg;
(iv) All arcs in WAG(j) shared by the nodes defined above;

O

Figure 7-1 illustrates two different work assignment graphs for the same system.
The vector <(1, Ts),(1, T¢)> is a border vector; figure 7-1 also illustrates the associated
border graph. We observe that the border graph is a common subgraph of both work
assignment graphs. We will soon prove that the border graph is always a common sub—
graph of its underlying work assignment graphs.

The following lemmas establish important properties of BG{j).

Lemma 7-7: Let BG(j) be a border graph for border B and work assignment
graph WAG(j), and let W be a node in WAG(j). If W does not appear in
BG(j), then every path in WAG(j) from W to the system sink must include
some border node.

Proof: W is either fixed or not fixed. If W is not fixed, then every path from W
through the system sink in WAG(j) includes some border node, by definition of
B. Suppose then that W is fixed. Since W does not appear in BG(]), all paths
from W to the sink in WAG(j) must include some border node, otherwise condi-
tion (ii) of definition 7-6 implies that W is in BG(j).

il
One use of lemma 7-7 is to aid in the proof of the next lemma.

Lemma 7-8: Let BG(j) be a border graph for border B and work assignment
graph WAG(j), and let W be 2 work node. If W appears in BG(j) and is not a
border node , then every one of W’ WAG{j) predecessors appear in BG(j).

Proof: Suppose W appears in BG(j) and is not a border node. For the sake of con—
tradiction we suppose that W has a WAG(j) predecessor P not in BG(j). We
may assume that P is not a border node, otherwise it would certainly be in
BG(j). By lemma 77, all paths from P to the sink in WAG(j) must include
some border node. Since W is in BG(j) but is not a border node, W is in BG(j)

85

0,71, o, T,
]
| v y
(0.7 10) 0, T, OT) f0,T3) /0,Ty
E v i ‘
: 0,Ty /©, T3 :
i L]]
v] v v
or,) U,Ts QT 0
: b W
! 2, Ty (2,Ty)
]
] v
BT BTy

"V F
Py

WAG()

logical
e
precedence

execution

-
precedence

precedence

WAG(2)

0T o) .

]

'

]

:

v

0T,y (LT3 T
H

t

(

v
Qr) QT

1
]
]
]
L}
* *
* * “'.
3T]2) 3T 9} -

N
Py

Border Graph for <(1,T5), (1,7 ¢)>
Border Graph

Figure 7-1

86

by means of condition (ii) of definition 7-6. Thus, a path w exists in WAG(j)
from W to the system sink which does not include a border node. But the path
which goes from P to W, and then follows path w7 does not include a border
node, a contradiction. P is consequently in BG(j).

0

The utility' of a border graph lies in the fact that if B is a border for two work
assignment graphs WAG(1) and WAG(2), then the border graph BG(1) is identical to the
border graph BG(2). _

Theorem 7-1: Let B be a border vector for WAG(1) and WAG(2). Then
BG(D) = BG(2).

Proof: We induct on a reverse topological sorting of BG(1)’s nodes to show that
(i) If W is a work node in BG(1), then W is a work node in BG(2);

(ii) If W is a predecessor of V in BG(1), then W is a predecessor of V in

BG(2). :
For the induction base, consider the sink node Py, and its predecessors S, - - ,5;.
Pg is in both BG(1) and BG(2) by condition (iii) of definition 7—6. Any S; which
is a border node is in both BG(1) and BG(2). Otherwise S; has a trivial path to
Pg which does not include a border node; §; is assumed stable (hence fixed) so that
S; is in BG(1) and BG(2) by definition. The only arcs out of the S; are directed to
P, whence the induction base is satisfied.

For the induction hypothesis let W be in BG(1) and suppose that all of W's
BG (1) successors are in BG(2). We first establish condition (i). The case where W
is a border node is trivial; we suppose that W is not a border node. By definition
7-6, W must have at least one WAG(1) successor Sy which is not a border node
and which has a path in WAG(1) to the sink not including a border node. Sy is
consequently in BG(1), otherwise lemma 7-7 is contradicted. The induction hy-
pothesis states that Sy is also in BG(2). We now claim that Sy is a successor of
W in WAG(2). If Sy is the execution successor of W in WAG(1), then it is in
WAG(2) since W is fixed. W’s logical successors in WAG(1) and WAG(2) are
identical, so that Sy must be a successor of W in WAG(2). Recalling that Sy is
not a border node, lemma 7-8 impiies that W is in BG(2). We have thus complet~
ed the induction on condition (i).

We now establish condition (ii). Let Sy be any successor of W in BG(1). By the
induction hypothesis, Sy is also in BG(2). We showed above that W's successors
are identical in WAG(2) and WAG(1). Sy is then a BG(2) successor of W since
BG(2) takes its arcs from WAG(2). This completes the induction on condition
(i), and the entire induction statement.

The induction statement we have proven shows that every node and every edge
in BG(1) appears in BG(2). Thus BG(1) is a subgraph of BG(2). But we can apply
the same form of argument to show that BG(2) is a subgraph of BG(1). Thus
BG(1) = BG(2. :

0

7.5.2. The Hyper—Border Graph

in Chapter 4 we defined the hyper—execution graph, a graph describing an observed
cycle’s behavior under hyper—message synchronization. A hyper—execution graph
HEG(WG,j.c) is created by modifying the topology of the work assignment graph
WAG(j), and then by weighting nodes and arcs. The longest path through HEG(WG,j.c)
is identical to the finishing time of the cycle ¢ under partition ¥;. In an similar fashion,
we will modify a border graph as a function of a cycle ¢ and partition ¥; to create a
graph HB(B,j,c). The length of the longest path through HB(B,j.c) is ¢’s cycle execu-
tion time under ¥; and hyper-message synchronization. We will call HB(B,j.c) the
hyper—border graph.

The border graph is a common subgraph of two work assignment graphs. We create
a hyper—border graph by first applying the work assignment graph to hyper-execution
graph transformation to the border graph. An evaluated work node W is represented in
the hyper-execution graph by a node R{W); a hyper~evaluated node W is represented by
two nodes JP(W) and EP(W). If work graph node W appears in the border graph, we
represent W in the hyper—border graph by either R(W), or IP(W) and EP(W) in exactly
the same way. Thus any node H appearing in the hyper—border graph also appears in the
hyper—execution graph. As done with the hyper—execution graph, we define hyper—border
graph arcs and weights entirely as a function of the set of evaluated work nodes.

At this stage of a hyper—border graph’s construction, we have a hyper—execution
graph induced by the transformation of the work assignment graph nodes appearing in
the border graph. We now change this topology slightly by removing all arcs directed to
nodes representing border nodes. Because the border graph is a common subgraph of the
two work assignment graphs, the hyper—border graph in its present state of construction
does not reflect any differences between the two partitions. To distinguish between parti-
tions, we add rootless weighted arcs, directed to hyper—border nodes representing border
nodes. The weights on these arcs will reflect the difference between the two partitions. If
a border node W is evaluated, we define two rootless arcs directed to R{W) in HB(B ,j.c).
One arc is the initiation arc, and is weighted by the time at which W begins its execution
in cycle ¢, under partition ¥, and hyper—message synchronization. A release arc is also .
directed to R{W). The release arc is weighted by the time at which W's execution prede—
cessor reports its completion to W under ¥; in cycle ¢. If a border node W is not
evaluated, the nodes IP{W) and EP(W) represent it in HB(B,j,c). We define a rootless
initiation arc directed to IP(W), weighted by the time at which W hyper—executes in
cycle ¢ under partition ¥; and hyper—message synchronization. We define a rootless
release arc directed to EP(W), weighted by the arrival time of W’s execution predecessor’s
release message. We see then that the only difference between HB(B ,l,¢) and HB(B 2.c)
is the weight given to the rootless arcs.

We next show that HB(B,j,c) can be used to calculate ¢’s cycle execution time
under ¥, and hyper—message synchronization. The only difference between HB{B 1)
and HB(B ,2,c) lies in the rootless arcs’ weights; this may allow us to compare their cycle
execution times by comparing these arcs’ weights. We are aided by further definitions. If
H is a HEG(WG,j,c) node, we let I, (H) be the length of the longest path through H in

88

HEG(WG,j,c), and we let ,(P;, H) be the length of the longest path through H in
HEG(WG,j.c) whose last arc passes from P; to H. We correspondingly define I, (&)
and 5,(P;, H) for H and P, in HB(B,j,c). w(H) is the weight assigned to node H (in
both graphs) and e(P;, H) is the weight on the edge between P; and H (in both graphs).
Our result is estabished with two lemmas.

Lemma 7-9: Let B be a border vector with respect to work assignment graphs
WAG(1) and WAG(2), and let HB(B,j,c) be hyper—border graphs, j = 1,2. If
node H has no predecessc: in HB(B,j,c) then L(H) = [,(H).

Proof: Suppose th .. has no predecessors in HEG(WB,j.c), so that
L(H)=w(H).If . incoming arcs in HB(B ,j,c) then H represents a border
node. These arcs - .ghted by zero since H is a root in HEG(WB,j,c); thus
LHY=w(H), » = L(H)=1L(H) Likewise, if H has no incoming arcs in

HB(B ,j.c) then ...i8)=w(H)=1(H) thus if H is a root in HEG(WB,jc)
the conclusion is established.

Suppose then that H has predecessors in HEG(WG,j,c). Let W be the work node
represented by H; we claim that W is a border node. If W has incoming arcs in
BG(j) then those arcs were removed in the transformation to HB(B ,j.c)k targets
of removed arcs always represent border nodes. But if W is a root in in BG(j),
then W is a border node, otherwise lemma 7-8 is contradicted. Thus H represents
a border node.

H has one of three forms. Suppose that H = EP(W). Let u be the weight on the
rootless arc into H, and let v be the weight on the rootless arc into JP(W). Since
w(H) = w(IP(W)) = 0 we have [,(H) = max{u, v}. But u and v are defined so
that max{u, v} is the time that W releases the processor under hyper—message
synchronization. By lemma 4-4, [(H) is identically this time. Thus
I(H)=L(H) '

The arguments for cases H = IP(W) and H = R(W) are quite similar. The
rootless arc weights are purposely defined so that L (H) = [,(H). This completes
the lemma's proof.

3

Lemma 7-9 establishes the induction base for the following lemma.

Lermma 7-10: Let B be a border vector with respect to work assignment graphs
WAG(1) and WAG(2), and let HB(B,j,c) be hyper—border graphs, j = 1,2. For
every node H in HB{B,j,c), L,(H)=[(H).

Proof: We induct on a topological sorting of HB(B,j,c)'s nodes. Lemma 7-9 es~
tablishes the induction base. For the induction hypothesis, let H be 2 node in
- HB(B ,j,c) with a non-empty collection of predecessors P, --,P; such that
each P; satisfies the induction statement. Suppose that H represents work node

89

W. W is not a border node, otherwise H would have no predecessors in
HB(B,j,c). Then lemma 7-8 states that all of W’s predecessors in WAG(j) ap-
pear in BG(j); since the transformation of BG(j) =HB(B ,j.c) is identical with
transformation WAG(j) - HEG(WG,j.c) with regard to non—border nodes, &
has exactly the same predecessors in HEG(WG,j,c) as it does in HB(B,jc).

Consider H ’s predecessor P;. We have
lx(P;,H) = lz(P,) + B(P,', W)+ w(H),

By the induction hypothesis, ,(P;) = L,(P;). Since the arcs and weights are
identical in HEG(WG,j.c) and HB(B,j.c), we have L (P, H)=4(P;, H).
Then

L.(H) = max{l (P;, H)}
isk
= eng{lb(ﬂ, H)}

= lb (H).

This completes the induction.

O

Corollary 7-1: The length of the longest path through HB(B,jc) is equal to the
cycle execution time of cycle ¢ under partition ¥; and hyper—message synchron-
ization.

Q

Every observed cycle’s execution time under hyper—message synchronization can be
found as the length of the longest path through a hyper—border graph. The length of this
~ path depends on the weights placed on the rootless initiation and release arcs. It is easily
shown that the longest path through a directed acyclic graph is an increasing function of
the node and arc weights. We state this as 2 lemma.

Lemma 7-11: Let G be a directed acyclic graph with weighted arcs and nodes.
The longest path through G is an increasing function of all the arc and node
weights. : '

Proof: Tt is directly shown by induction on a topological sorting of nodes that the
longest path to a node is an increasing function of the arc and node weights of all
its ancestors.

O

In particular, the longest path through a hyper—border graph is an increasing function of
the weights on the rootless arcs. By construction, there are two rootless arcs associated

90

with every border node. Cne arc is weighted by the border node’s execution (or hyper—
execution) initiation time, the other is weighted by the arrival time of the message releas—
ing the processor to the node. This collection of rootless arc weights is conveniently
expressed as a vector of real values.

Definition 7-7: Timing Vector

Let WG be a work graph, and let ¥, ¥, be two partitions of WG. Let
B = <B,, ' ,B,> be a border vector for WAG(1) and WAG(2), and let ¢ be a
cycle. We define the iiming vector BY(j,c), j =12 as follows. For
i =172, .k, the ith component of BT(j,c) is equal to the weight on the root—

' less initiation arc ¢ -uted to either R(B;) or IP(B;) in HB(B,j,c). The
(k + i)th component :. ~jual to the weight on the rootless release arc directed to
either R(B;) or EP(B;: > HBB ,j.c).

a

We can now show that the performance of partitions ¥, and ¥, on cycle ¢ might be
compared by analyzing their respective timing vectors BT (L¢) and BT(2,¢).

Lemma 7-12: Let

BT(1,c) = <by(d),*** byulc)>
and

BT(2,c) = <baylc), * * - bagfc)>

be timing vectors for partitions ¥, and ¥, on some cycle ¢. If byfc) 2 by(c) for
all 1 € i £ 2k, then the (hyper—message synchronization) cycle execution time
for ¢ under ¥, is greater than or equal to the cycle execution time under ¥,.

Proof: Lemma 7-11 implies that the length of the longest path through
HB(B,j,c) is an increasing function of its arc and node weights. The only
difference between HB(B ,i,c) and HB(B 2,c) is the weights given to the rootless
arcs. By assumption, the weight given to a particular rootless arc in HB(B Lc)is
greater than or equal to the weight given to that arc in HB(B 2,c). It follows
that the length of the longest path through HB(B L) is greater than or equal to
the length of the longest path through HB(B 2.c). By corollary 7-1, the length
of the longest path through HB(B,j,c) is equal to the cycle execution time of
cycle ¢ under partition ¥, using hyper—message synchronization. Our conclu~
sion follows dirsctly.

a

If b,{c) 2 bsic) for all 1 € i € 2k, we say that BT (1,¢) dominates BT(2,c). It is
intuitively obvious that if BT (1,c) dominates BT (2,c) on every cycle ¢, then the mean
cycle execution time under W, is larger than the mean cycle execution time under ¥,. In
fact, ¥,’scycle execution time is 2, than ¥,’s.

9

Lemma 7-13: Let CX(j) be ¥;’s cycle execution time random variable for
j =1,2, and suppose that BT (L,c) dominates BT(2,¢) on every cycle ¢. Then
Cx(2, CXQ).

Proof: In Chapter 3 we developed a Markov chain model of the simulation sys—
tem whereby the states of the model completely encode the behavior of the sys—
tem during a cycle. The size of this chain is finite, with states 1,2, -+ ,N; the
chain is assumed to be ergodic, with the equilibrium probability of state i denot—
ed by ;. Now let g:R—R be any increasing function. Then

Elg(CxX ()] = E, \Ecx . [g(CX (1) | system cycle c]

- where E, is the expectation with respect to the system states’ equilibrium proba—
bilities, and Ecy . is the expectation of the cycle execution time given the cycle
specification. However, if the cycle is specified, the cycle execution time is
specified. That is,

Ecx 1 [g(CX (1)) | system cycle ¢] = g(CX (1, ¢))

where CX (1, ¢) denotes the execution time of cycle ¢ under ¥,. Since BT (1¢)
dominates BT(2,¢c) on every cycle ¢, we conclude by lemma 7-11 that
CX{1,¢) 2 CX(2, c) for every cycle c. Since g is increasing, we must then have
that g{CX ({1, ¢)) 2 g{CX (2, ¢)) for every cycle ¢. Thus, '

Elg(CX ()] = E. |Ecx 1.[g(CX (D) | system cycle c]

= ¥ 0.gCx,c)

c=]

> ¥ 0.g(CX(2,¢)
o=l

= ElgCX @)

0

The hypothesis that BT (1,c) dominates BT (2,c) on every cycle ¢ is rather strong.
However, this result is useful in a statistical context. If we have a large number of obser~
vations and find BT (1,¢) dominating BT (2,¢) for all or most of the observed cycles ¢, we
are then reasonably confident that ¥, is the better partition.

7.5.3. Another Look at 2

We now consider what inferences can be made when BT (1) 2 ;; BT (2), where BT{j)
is ¥ ’s timing vector considered as a random vector. We would ideally prove that this
relation implies that the mean cycle execution time under ¥, exceeds that under W
While this may be true in practice, we immediately run into serious difficulties trying to
.prove such a result. This difficulty’s central cause lies in the correlation of the timing

92

vector’'s values and the hyper—border graph's topology. The translation of differences
between timing vectors into differences in cycle execution times depends intimately on
the structure of the hyper—border graph. When BT(1,¢)s component values tend to be
larger than BT(2,c)’s, it is conceptually possible that the hyper—border structure will
diminish the effect of these inequalities on the cycle execution times, so that ¥,’s cycle
execution times aren’t very much larger than ¥,’s. To compliment this, suppose that when
BT (2,c)s component values tend to be larger than BT (1,c)s, the associated hyper—border -
graph accentuates these differences, making W¥,’s cycle execution times much larger than
¥,’s. The combination of these situations could cause ¥,’s cycle time mean to exceed ¥,'s.
However, this worst case scenario is counter—intuitive. We understand that partitions’
timing vectors differ because one partition is more effective than another. We expect that
this effectiveness transcends the hyper—border graph topology.

We have just noted that timing vector values and hyper—border topologies are corre~
lated. We nevertheless consider a function which assumes these entities are independent.
This function chooses a system cycle at random in accordance with the system cycle pro—
cess equilibrium probabilities. The function independently selects a timing vector at ran—
dom, in accordance with the partition’s timing vector components joint probability distri~
bution. The chosen cycle defines a hyper—border graph topology; the chosen time vector
defines the weights on that graph’s rootless arcs. The length of the longest path through
the resulting hyper—border graph is the cycle execution time if the chosen timing vector
had been observed with the chosen hyper—border topology. Clearly, this function allows
unrealizable combinations of timing vector and cycles. However, we can still use this
function to compare two partitions by redefining our standard of comparison. We let
F{c, BI') denote the length of the longest path through the hyper—border graph defined
by cycle ¢ and timing vector BT. We let V be the random variable of the chosen cycle.
Then F(V, BT(j)) is the random "execution” time of this function using the timing vec—
tor distribution caused by partition ¥ ;. Our modified standard of comparison states that
V¥, is a better partition than ¥, if E{F(V,BT(1))] 2 E[F(V, BT(2))]. We can show that
this inequality holds whenever BT (1) 2 ;, BT(2).

Lemma 7-14¢t If BT(1) 2 ; BT(2), then E[F(V,BT())] 2 E[F(V, BT ()}

Proof: By the laws of conditional expectation,

E{FBTU)) = E, |E[F(c, BT(1) i cycle is ¢]

where E, is the expectation with respect to the system cycle. By assumption, the
selection of the cycle (and hence the hyper—border topology) are independent.
Thus

E Ez [FBTQ) | cycle is ¢]] =E, {E{F(c, BT(I))]]

= $0.-E[F(c BT

e=]

where F, denotes the function calculating the longest path through the hyper-
border graph whose topology is established by cycle ¢. However, lemma 7-11
implies that F(c,BT) is an increasing function of the components of the timing
vector BT'. Since BT (1) 2 ; BT(2), we must have

E[F{c BT()] 2 E[F(c,BT(2))]

for every ¢. Thus

93

cwl

$ 0, E[F(c BT > 50, E[F(c BTQ)]
el

= EIFBT)]

0

While the knowledge that BT (1) 2 ; BT(2) does not prove that partition ¥, yields
smaller cycle execution times, we do have a context in which ¥, yields smaller expecta~
tions of measurements very much like cycle execution times, Even so, we must face the
fact that BT(1) 2 ; BT(2) is a very strong mathematical statement whose veracity we
cannot generally hope to establish. But again, we must consider our application’s context.
If statistical observations tend to support the sufficient conditions for 2 ; established in
lemma 7-4 , we can reasonably expect ¥, to be better than ¥,. We might extend this
argument to situations where the observations support only the necessary condition for

2 s given by lemma 7-4. This condition is quite strong in itself. Our inability to prove
its sufficiency in the general case stems again from the possibility of counter—intuitive
correlation between components of the timing vector.

7.5.4. A Numerical Example

We now illustrate by example how our proposed qualitative approach can be used.
We suppose that a border vector of interest has two border nodes, B = <By, B,>. The
timing vectors BT (1) and BT (2) thus have four components. Let I; denote B;’s execution
initiation time under ¥ ;, and let R; denote B;'s release signal arrival time under ¥ ;. We
will assume that the random variables associated with a partition are independent; for
example, we suppose that Iy;, [z Ry and Rj; are all independent. In section 7.3, we
proved that if the components of a vector X = <X,---,X, > are independent and the
components of a vector Y = <Y, -+ ¥, > are independent, then the necessary condition
for 2 given in lemma 7-4 is also sufficient. Under this assumption of independence,
the necessary and sufficient condition is equivalent to saying that X; 2, Y; for each
{=1---,n. We present a numerical example in which we test for the conditions
Ili ?ﬂ Iz,' and Rli ?sx Rg;,i =12

To illustrate qualitative analysis, we randomly generated values for the border
nodes’ execution initiation and processor acquisition times under two partitions. Figure
7-2 illustrates two tables. The first table illustrates the simulated times; the data for ran—
dom variables we compare are enclosed in double barred columns. We associated two pro—
bability distributions with each random variable. One distribution governs the random
variable when its associated border node is evaluated, the other governs when the border
node is hyper—executed, The decision whether the node was evaiuated is also random. The
randomly generated data were adjusted to be consistent with the role they play. If B, was
assumed to be evaluated, then the Iy;, Ry; Iy, and Ry observations were generated from
the distributions governing evaluated node observations. Also, if B; is evaluated, then we
ensured that Ry is less than or equal to [. However, if B; is not evaluated, its hyper—
execution can precede the arrival of its incoming release message, so that R; can be either
greater than or less than [;.

The 20 simulated observations shown are actually a subset of 50 generated observa—
tions. The second table in figure 72 reports the results of some simple analysis of these 50
observations. In lemma 7-3 we saw that X 2,Y if and only if
ProblX >t} 2 Prob{Y > t} for all ¢ > O. For each pair of compared random vari-
ables, we attempted to determine whether the compared variables observations support

94

20 Border Vector Observations

obs Iy, Iy 1y I3, Ry Ry Riz Ra
1)] 3.485 | 3221 4751 | 4435 | 3.485 | 3.097 § 4.751 3621
2 3.388 1969 B 4528 | 4.544 || 3.388 | 1787 || 4.528 | 3.854
3143292 2978 0 4058 | 3.590 | 2.992 | 2.623 | 3170 | 3.302
4 || 0.864 | 0.896 1.799 1.726 1.619 | 1.200 1.739 1.586
5 1.091 | 0582 || 4958 | 4.769 || 1.265 | 1.508 || 4.303 | 2976
6 i 0963 | 0.841 4167 3.838 || 1465 1.161 i 3.483 33838
T § 2927 | 2.987 “ 1.803 1.660 || 2.927 | 2.987 1.799 1102
8 1 1.024 | 0916 || 4519 | 3.922 || 1.384 | 1418 || 4519 | 3922
9 1.048 | 0.907 1.938 1.550 {| 1.233 | 1.385 || 1.524 1.411
10 || 3.901 | 3.253 1.821 2.034 || 2143 | 3.253 || 1.752 1.351
11 || 3.462 | 3.641 || 4.380 | 3.962 3,389 | 2472 || 4.380 | 3.962
12 | 3257 | 3.068 || 4856 | 3.213 {| 3.2587 | 1.797 || 4.044 | 3.213
13 J 3843 | 3.638 || 4.009 | 3.676 || 2.745 | 3.638 || 3.013 | 3.676
14 1221 | 1.050 ¥ 2.234 | 1.620 1.277 1.326 1.784 1.007
15 || 0.963 | 0.808 §| 2.107 | 1.752 || 1.554 | 1.569 1218 1.286
16 §| 3317 | 2.953 || 1.789 1.786 §| 2.706 | 2.148 1.745 1.441
17 | 3132 | 3196 || 3.849 | 4.460 | 2.061 | 3.196 || 3.639 | 4.460
18 || 2.883 | 2.503 § 2.058 | 1.939 || 2.380 | 2.066 || 1584 | 1.489
19 1.223 | 0.862 211 1.917 1.279 | 1.553 Il 1.494 1.117
| 20 f| 3.012 | 2.761 || 4.662 | 4.725 || 3.001 | 2.668 || 4.662 | 4.486

k I, Iy I,z I35 Ry Ry Ry Ry
1 os6 | 0.68 | 086 | 0.70 || 0.88 | 0.30 “ 090 | 0.74
24 056 | 056 || 060 | 058 [| 0.76 | 0.56 | 0.62 | 0.58
3056056058 058 056] 048] 058]| 0358
4056|0561l 058) 058 048] 038 | 058 | 0.58
s {054 | 0520 058|056 044|034} 058] 056
6!l 054 | 0.46 || 058 | 050 || 036 | 024 || 0.50 | 0.48
70044 | 040 050|030 0201018l 03| 03
s 1 036 | 018 || 036 | 020 §§ 018 | 0.08 || 030 | 020
9l 016 | 012 | 018 | 010 § 0.04 | 0.06 || 016 | 0.08

Example Data

Figure 7-2

95

this relation. We describe our procedure in terms of [jand 7,;. We pooled all observa—

tions of I,;and I,;,and identified the maximum value M and the minimum value m.
m

We let A = ".M..i%m; then for & =12, -9, we call the value m + kA the kth fixed
threshold for I and [,;. The fixed threshold values place the role of ¢ in lemma 7-3: we
ask whether the data supports the bypothesis that

PrOb{I“> m ‘+‘k'A} ?’ Prob{1’2;> m +kA}

for each fixed threshold m + k-A. For each k& and random variable X, we estimate
Prob{X > m + k-A} with the fraction of X 's observations which do exceed m + kA,

The results of this computation are reported in the second table shown in figure 7-2.
It appears that our observations support the hypothesis that 1,32, Iz, 11224 12
Ry 2, Ry,and Ry 2, Ry Assuming independence, we surmise that BT (1) 2 , BT(2);
we appeal to lemma 7-14 to conclude that partition ¥, is superior to partition ¥,.

This analysis procedure is relatively efficient. The values of M and m are obtained
in one scan of the data; the fixed threshold values are then readily calculated. For each
observation, the greatest X such that the observation exceeds m + k-A can be determined
in O(log,(9)) time with a binary search. Given this &, at most 10 estimations of the proba—
bilities Prob{X > k-A} will then need to be adjusted. With d data observations for each
random variable, we can judge whether the data supports X 2, Y in O{2:d-1010g,(9))
time. Ignoring the constants, we may say that this computation is linear in the number of
data observations. If the border vector has n components, then the complexity of deter—
mining whether each random variable pair satisfies 2. is linear in n-d.

The proposed procedure is merely a heuristic. It would perhaps be better to use a
more formal statistical test for X 2, ¥, if such a test were computationally efficient.
We have not discovered any formal statistical means of testing the hypothesis X 2, Y
in the literature. Qur general qualitative comparison scheme in a statistical setting might
well benefit from such a test,

7.5.5. Use of General Qualitative Comparison

We conclude our development of general qualitative partition comparison by consid-
ering appropriate circumstances for its use. Our ability to compare two partitions through
timing vectors depends on the border graph being essentially a subgraph of both parti-
tions’ work assignment graphs. The two partitions are identical "beyond” the border, so
that an analysis of the border’s behavior may indicate that one partition is superior. Of
course, to quantify the border timing vectors we must perform the same analysis as per—
formed in the moment estimation procedure, up to the border vector. The general qualita—
tive approach is useful when the analysis at the border is less time consuming than the
more straightforward estimation of cycle execution time parameters. When the difference
between two partitions is small, the border vector may be small. For example, the
difference between partitions in Figure 7-1 is reasonably small, and the border vector has
only two nodes.

The general moment estimation procedure carries its analysis into a region of the
work assignment graph not considered in the border analysis. This region is encompassed
by the border graph. The analysis is just "longest path” amalysis, known to have time
complexity equal to the sum of the graph’s nodes and edges. If we let S be the sum of
nodes and edges in the border graph, then the analysis performed by the general moment
estimation procedure which is not performed by the general qualitative approach has
time complexity O($z-d). We showed in the last section that the time complexity of the
illustrated analysis procedure was O(n-d), n being the length of the border vector. We

96

generally expect tha: = << 8. Comparing the two procedures’ complexity orders is not
always fair; however this comparison does suggest that computational savings are possible
using general qualitative comparison. The most promising situation for achieving these
savings is when we analyze a small change in a large work assignment graph. This is
exactly the situation we might encounter trying to improve a constructed partition by
considering small perturbations in the partition.

7.6. Chapter Summary

Throughout this thesis we have developed a understanding of the problems facing a
partitioning algorithm. We first observed that the behavior of the simulation varies from
cycle to cycle; we then saw that distributed simulations pose special synchronization
problems, and we developed graphical techniques for describing synchronization. We stu—
died analytic methods of determining a partition’s performance, and found that in general
we must make restrictive assumptions if we are to progress with such analysis. We are
left then with statistical methods of determining a partition’s performance. These sta~
tistical methods estimate a partition’s cycle execution time moments; as such, they are
quantitative in nature. In this chapter we developed a qualitative analysis technique.
We motivated this investigation with the realization that the quantitative techniques can
be computationally prohibitive in a situation where many minor perturbations of a par-
tition are being considered. We showed how stochastic order relations provide us with
the qualitative tools we need. We then developed a theory of border vectors, vectors of
work nodes which capture all message timing differences between two partitions. We
showed how two partitions are compared by analyzing the behavior of the border vector.
We illustrated the application of this technique with a numerical example, and further
strengthed the case for qualitative comaparison by showing that the time complexity of a
qualitative analysis can be significantly less than the time complexity of general cycle
execution time moment estimation.

Chapter 8

A Partitioning Heuristic

8.1, Chapter Overview

Previous chapters have examined issues in modeling and analyzing a distributed
simulation system. The analysis developed in those chapters is intended to support the
partitioning of a simulation. In this chapter we propose a partitioning algorithm; in doing
s0, we show how some of our analytic tools can be used, Finding an optimal partition is
an intractable problem; the algorithm we present is a heuristic. We report the results of
tests performed on the partitions produced by this algorithm, and argue that the algo-
rithm produces effective partitions.

This chapter is divided into 3 additional sections. The next section provides an over—
view of the partitioning problem, and examines important concerns any reasonable parti-
tioning algorithm will have to address. Following that, we propose a partitioning algo—
rithm based on the behavior of observed cycles. This heuristic addresses the concerns
identified by section 8.2. The final section discusses an empirical study of partitions pro—
duced by this algorithm, '

8.2. Problem Overview

In Chapter 2 we developed a formal model of simulations, defined in terms of event
functionals. The event functionals are evaluated to produce the simulation’s results. An
event functional may then be thought of as a software module, and its evaluation may be
thought of as that module’s execution. Definition 4-1 formally defines a partition. A par—
tition is intuitively understood to be an assignment of each event functional to a proces—
sor in a multi—processor computer system. Every evaluation of a functional is performed
in the functional's assigned processor. Our goal is to find a partition of a simulation
which effectively reduces the mean execution time of a simulation cycle over that of a
sequential simulation. This problem is an extension of a well~known NP—compiete
multi—processer scheduling problem: find a multi-processor schedule for a task system
which minimizes the system execution time [Cof76] . It follows that finding an optimal
partition for a simulation is at least as computationally intractable as this scheduling
problem.

This thesis has shown that there are a number of concerns a partitioning algorithm
will have to consider; including the following.

(1) The amount of execution required during a cycle will vary from cycle to
cycle. To conmstruct a partition which reduces the cycle execution time,
we will thus have to consider the frequency of a functional’s évaluation,
as well as its execution delay.

{ii) A distributed simulation needs to continually synchronize its processors.
A partitioning algorithm will have to consider the effect of this syn~—

97

98

chronization on the cycle execution time.

(iii) There is a non-zero communication delay between processors. The parti—
tioning algorithm must consider the effect of placing two communicating
- functionals in different processors.

An important observation in connection with concern (iii) is that some communications
are more critical than others. We illustrate this point by example.

Figure 8—1a illustrates a directed acyclic graph with weighted nodes; this graph is
interpreted as a task graph whose arcs define precedence, and whose weights define execu—
tion delays. (Z,j) denotes node i with weight j. The path with the longest length
through this graph is the sequence 1, 4, 6,7, with length 18. Now suppose we partition
this graph into three sets of nodes. Whenever node { sends an arc to node %, and { and &

. are assigned to different sets, we weight the arc with 1, a communication delay. We will
also say that i and k are separated. The length of the longest path through the resulting
graph is equal to the finishing time of the partitioned task system. Note that we cannot
separate nodes on the critical path without increasing the longest path length, However,
we can separate nodes 1 and 2 even though they communicate and still not increase the
resulting graph’s critical path length over the original graph. Figure 8-1b depicts an
assignment which does not increase the critical path length beyond 18; figure 8~1c depicts
an assignment which does increase this path length. The overall finishing time of the
system is apparently more sensitive to the separation of some communicating nodes than
it is to others,

This example illustrates the importance of considering how critical a potential
inter—processor communication is to the timely execution of the task system. We will see
that our proposed partitioning heuristic considers the importance of particular communi—
cations, the effect of synchronization, and the frequency of a functional’s evaluation.

8.3. A Partitioning Algorithm

In this section we describe an algorithm for constructing partitions. This algorithm
is motivated by a number of the observations made in this thesis. It is a statistical parti-
tioning algorithm, the partitions it constructs are based on a number of cycle observations.
Our algorithm considers the effect of communication delays, potential concurrency, syn—
chronization, and frequency of a functional’s evaluation.

Suppose that we have M independent cycle observations of some simulation system.
The first phase of our partitioning algorithm considers each observed cycle separately. In
Chapter 4 we defined a simulation’s work precedence graph; 2 work precedence graph is a
work assignment graph with the execution arcs removed. The work precedence graph
thus expresses only the logical precedence inherent in the simulation. Every potential
functional evaluation has a representing work node in the work predecence graph WPG.
An observed cycle can be thought of as a collection of functional evaluations and their
logical initiation times. We weight each work precedence graph node which corresponds
to an observed evaluation with the evaluation’s execution delay. All other nodes are
weighted by zero. We then find the critical path length through this weighted work pre—
cedence graph. Given the critical path length, the earliest starting time and the latest
starting time [SaH76] of each node is determined. The earliest starting time of a node W is
the earliest time at which W'’s execution can be initiated, subject to the precedence
expressed by the graph. W's latest starting time is the latest time at which W’s execution
can begin without increasing the length of the critical path. Figure 8~-2 illustrates the
graph of figure 8-la with the calculated earliest and latest starting times. The pair
<s,t> next to a node reflects that the node’s earliest starting time is s, and its latest

99

(1.1
2,0 - (3,0 (4,5)

NS

(5,2) (6,8

(7,4)

(a)

LY
m |
2.0 (3,1 (4,5)

NS

(5,2) (6,8)

N

{(7,4)

(b)

(1,D
/M
(z2,D (3,1 (4,5)

AV

(5,2) (6,8

N

(7,4)

{c)

Partitions of a Task System

Figure 8-1

100

starting .me is £. The time complexity of determining the critical path length and each
node’s ¢ iest and latest starting times is O{S + E) where § is the number of nodes and E
is the number of edges in the work precedence graph.

The length of a critical path through the weighted work precedence graph is the
absolute minimum execution time for the observed cycle. Suppose that we wanted to
partition the simulation so that every time this cycle occurred, the cycle execution time is
equal to this critical path length. The node’s earliest and latest starting times can be used
to derive necessary (but not sufficient) conditions on any partition which is optimal on
the observed cycle. Given every node’s earliest and latest starting times, we calculate
minimal overlaps, maximal overlaps, and minimal delays. Let W and V be any two
evaluated nodes in WPG, and suppose that neither node constrains the execution of the
other (which is equivalent to saying that there is no path in WPG between W and V).
Let e(W) and e(V) be the nodes’ respective earliest starting times; let /(W) and I(V) be
their latest starting times. We calculate the quantity

-+

mno(W, V)= min{s + X{W), ¢t + X(V)} — max{s, ¢}

min

see(W)J(W)], rde(V 3 (V)]
where {x}* is defined to be the maximum of x and O, and X (W) and X (V) denote the
execution delays of W and V. mno(W, V) is called the minimal overlap of W and V.
Given execution starting times s and ¢, the quantity inside of { }* above is the overlap in
W and V’s executions. The minimal overlap is simply the minimal possible (non-
negative) overlap. If mno(W,V) > 0, we know that W and V are assigned to different
processors in any partition yielding the WPG critical path length as the execution time
for the observed cycle. :

We also consider the maximal overlap mxo(W,V) between two evaluated work
nodes. The maximal overlap is equal to the maximum amount of time that nodes W and
V can be concurrently executed, given the earliest and latest starting time constraints.
mxo(W, V) is thus defined as

.

mxo(W, V)= min{s + X(W), ¢t + X(V)} — maxis, t}

s e W O 7 etV (V]
It is quite possible for mno(W., V) = 0 and mxo(W, V} > 0. This happens when one or
both of the nodes have enough slack (difference between earliest and latest starting times)
so that their executions don’t have to overlap, even though they can overlap. To quantify
both of these overlap possibilities, we define the weighted overlap to be the average of the
minimal and maximal overlaps:

wolW. V) = 12 mno(W, V) + mxo(W, V)).

The concept of a minimal delay is related to the minimal overlap. Suppose that W
and V are evaluated work nodes such that Vs evaluation depends directly on the result
of W' evaluation. We define the minimal delay function md (W, V)by

md(W,V) = {e(W)+ XW)+ C —1(V)}.

md (W, V) measures the overlap between the earliest possible arrival time of a signal sent
from W to V, and V’s latest possible starting time. This calculation considers the effect of
placing W and V in different processors, so that a communication delay C is incurred by
the signal. If md(W, V) > 0, we know that W and V are assigned to the same processor
in any partition yielding the WPG critical path length as the cycle execution time.

The values mno(W, V) or md(W, V) indicate whether it is necessary to assign W
and V to the same processor to achieve the critical path as the observed cycle’s execution

101

time. Furthermore, the magnitude of wo(W, V) and md(W,V) are a measure of how
strongly we should consider placing W and V in different processors (in the case of
wo(W, V) or how strongly we should consider placing W and V' in the same processor
(in the case of md (W, V'}). We use this observation to modify the work precedence graph
yet again, creating the overlap/delay graph. The overlap/delay graph’s nodes are identical
to the work precedence graph’s nodes. Then for every node pair W and V, we place an
undirected edge between W and V weighted by md(W, V) if md(W, V) is defined and is
greater than O, Similarly, we place an undirected edge between W and V weighted by
~wo(W, V) if no path exists in WPG between W and V, and if wo(W,V) > 0. The
negative sign is used to distinguish this weight from a minimal delay weight. Figure 8-3
illustrates the transformation of the graph in figure 8-2 into an overlap/delay graph.

Finally, we transform the overlap/delay graph into a concurrency/dependency
graph, or CD graph. The nodes of a CD graph are the event functionals. The edges of 2
CD graph are a function of the overlap/delay graph’s edges. An edge in the CD graph
exists between functionals T; and T'; if in the overlap/delay graph, some work node asso-
ciated with 7; shares an edge with some work node associated with 7';. This edge is
weighted by the sum of all edge weights between work nodes associated with T; and
work nodes associated with T'; in the overlap/delay graph.

The next stage of the algorithm is to create a single graph which represents all of the
observed cycles. We assume that a CD graph has been constructed for every observed
cycle. Given M cycle observations, the M different CD graphs can be merged into a sin—
gle collective CD graph. The nodes of this collective graph are again the event function—

-als. An edge will exist between T; and T'; in the collective CD graph if any one of the
CD graphs defines an edge between 7; and T;. The weight on an edge between 7; and T';
is equal to the average weight placed on this edge in the CD graphs. That is, if
W(T,,T k) denotes the weight on the edge between T; and 7, in the kth cycle
observation’s CD graph, and if W(I';,T;,k) is defined to be zero if no such edge exists,

M
then an edge from T; to T, in the collective CD graph is weighted by —ﬁ S WAT:.T; k)
k=1

The construction of the coliective CD graph does consider each of the points raised
by section 8.2. The work precedence graph defines logical precedence which is intrinsic to
the simulation. The synchronization required by a distributed simulation is a function of
this precedence. By using critical path analysis of the work precedence graph, we are
considering the synchronization constraints of a distributed simulation. The construction
of the coliective CD graph also considers the relative importance of communication
delays; the md(W,V) metric measures the criticality of communication between
evaluated work nodes. The frequency of a functional’s evaluation also plays a role in the
construction of the collective CD graph. The —wo(W, V) and md(W, V) edge weights
are defined only for evaluated W and V. Since the weights on the collective CD graph
are ultimately a function of the measured overlaps and delays, we see that the collective
CD graph does implicitly encode the functionals’ frequency of evaluation.

Our next step is to partition the collective CD graph’s nodes into as many sets as we
have processors. All the functionals within a set are assigned. to the same processor. The
partitioning decision is based on the edge weights found in the collective CD graph. Con-
sider again the fact that the overlap/delay graph edge weights defined by the minimal
overlap function are negative, while the weights defined by the minimal delay function
are positive. Thus, an edge between functionals in the collective CD graph gives us some
evidence indicating whether the functionals should be placed in the same processor, or in
separate processors. An edge weighted with a large negative number implies that the
functionals should be separated; an edge weighted with a large positive number implies
that the functionals should be placed in the same processor. This observation suggests that
we partition the collective CD graph so that the sum of the weights on cut edges is

102

1) <0,0>

<11t> 210 (GBU 45 <>
\/ <1;'1y
<2,12> (5.2) {68 <66>

hve

(7,4) <14,14>

Earliest and Latest Starting Times

Figure 8-2

1,0

(2,1) 2

/

(7,4)

An Overlap/ Delay Graph

Figure 8-3

103

minimized. An edge is cut if its two functionals are placed in different processors.

The K~partition problem in graph theory is to partition the nodes of an edge—
weighted graph into K sets such that the sum of cut edges is minimized. This problem is
known to be NP—complete; many heuristics have been suggested in the context of design
automation [FiM82,KeL70,Kri84]. We attempted to use such heuristics to partition the
collective CD graph, but did not achieve good partitions. We then realized that instead of
irying to minimize the sum of cut edges, we should use the edge weights to guide the par—
titioning process in exploiting what we know about this problem. In particular, we know
that nodes which tend to be on a critical path should be placed in the same processor. To
apply this knowledge, we modified a K~partitioning heuristic studied in {Los8S} .

We define a cluster of functionals to be any collection of functionals already
assigned to a particular processor. Given a cluster, and an unassigned functional T;, we
define the attraction between the cluster and functional to be the sum of the weights on
edges shared by 7; with functionals in the cluster. Let W(I,,T,) be the weight on an
edge between T; and T, and let C; be a cluster. Then the attraction of C, and T';, denoted
A(C, . T;), is given by

A(Ck, Ti)= Z W(T;,TJ)

T, €C,

Our heuristic’s fundamental idea is to merge the cluster—functional pair with the highest
attraction. Suppose first that we have somehow selected X functionals as cluster seeds;
we briefly defer describing the selection of these seeds, Every cluster seed is defined to be a
cluster. The attraction of every unassigned functional to every cluster is calculated. Now
the algorithm iterates; at each step, the cluster~functional pair with highest attraction is
selected, and the functional is assigned to that cluster. Suppose that functional 7; is
assigned to cluster Cp. If T, is any unassigned functjonal which shares an edge with T;,
then T ,’s attraction with cluster C, is augmented with the weight of the edge shared by
T; and T;. The algorithm then chooses another cluster—functional pair to merge. The
algorithm terminates when every functional has been assigned to some cluster. Since clus—
ters and processors are synonymous, the clusters define our partition.

The initial selection of the X seed nodes can be performed in an analogous manner.
First, the two functionals with the lowest attraction are chosen to form an anti—cluster.
The attraction of every functional with this anti—cluster is calculated. The anti~cluster is
augmented successively with the functional having lowest attraction until K functionals
reside in the anti—cluster, These X functionals are taken to be the cluster seeds.

This heuristic does exploit the knowledge that functionals on a critical path should
be placed in the same processor. Such critical functionals will tend to share edges with
relatively large positive weights. These weights will boost the attraction between a criti—
cal functional and a cluster which contains other critical functionals. Any negative
weights on edges shared by a critical functional with functionals in a different cluster
will decrease the attraction between the critical functional and the cluster. We have
observed our algorithm’s step by step construction of partitions, and have seen that nodes
which tend to be on critical paths are merged together first,

Before discussing an empirical study of our algorithm’s performance, we consider its
overall time complexity. As stated before, the complexity of finding a critical path and
all earliest and latest starting times is O(S + E), where S is the number of work nodes,

“and E is the number of graph edges. Given M cycle observations, the complexity of this
step over all observed cycles is O(M (S + E)). We create the overiap/delay graph by
determining the minimal delay and minimal overlap values from a node-weighted work
precedence graph. This computation essentially requires the examination of each pair of
evaluated work nodes, and has time complexity O($?); the overall complexity of this

104

step is O(M $2). The transformation of an overlap/delay graph into a CD graph can be
done in O($ + E) time; a single scan of the nodes determines their functional associations,
as does a single scan of the edges. It follows that the construction of the collective CD
graph from the individual CD graphs has time complexity O(M S + E)). The step dom~
inating the collective CD graph’s construction is the edge weight calculation. We showed
that this step has complexity O(M $2).

We turn next to the complexity of our X —partitioning algorithm. Finding the two
functionals sharing the most negative edge in the collective CD graph has complexity e,
where e is the number of edges in the collective CD graph. The attraction of every other
functional to this initial anti-cluster is determined in linear time O(N), N being the
number of functionals in the collective CD graph. These attraction values can be placed
in a priority queue in O(N) time. At every step, the functional having the lowest
attraction is picked off the head of the priority queue, and is merged into the anti-cluster.
We observed that this merger will affect the attraction value of every unassigned func—
tional sharing an edge with the merged functional. We may then be required to calculate
as many as e new attraction values, e being the maximal degree of a collective CD graph
node. O(logN) time is required to insert a new attraction value into the priority queue, 80
that the overall complexity of inserting the new attraction values is Ofe-logN). The
anti—cluster construction phase has K iterations, so that the overall complexity of finding
the K seed nodes is O(X -e:log N). The analysis of the rest of the X —partitioning algo—
rithm follows much the same form. Calculating the attraction of the the N-—K unas—
signed functionals to the K initial clusters requires O(K{N—K)) time. Let
Ny = K{N=K). The collection of cluster-functional attractions can be arranged in a
- priority queue in O(Ng-log N x) time. The algorithm then iterates N—K times. Each
iteration, the cluster—functional pair with highest attraction is found and merged,
affecting as many as e attraction values. Updating the priority queue of attractions has
complexity O(e-log Ng). Thus, the final stage of the X —partitioning algorithm has time
complexity O((N—K)elog Nx). For K << N, this complexity clearly dominates the
time complexity of finding the initial X cluster seeds.

We showed that the time complexity of creating the collective CD graph is
O(M-S?), and that the time complexity of partitioning the collective CD graph is
O((N —~K)e-iog (K {N—K))). It is not possible to determine a priori which of these com—
plexities dominates the other. In our experience, S tends to be less than 10 times as large as
N, and X << N. In practice, the number of evaluated functionals is substantially less
than than S; while the worst case behavior of creating the CD graph is OgM ‘S?%), the

average case will be substantially better. The value of e can be as large as %— We have

used large values of M, on the order of M = 100. In our experience with this algorithm,
the collective CD graph construction phase tends to dominate the time complexity.

8.4. An Empirical Study

In this section we report the results of an empirical study of partitions produced by
our partitioning algorithm. We first discuss the parameters of this study, and then
describe the tools used to implement the study. We outline our means of analyzing the
partitions’ performance; we finally present and analyze our results.

£.4.1. Study Parameters

Qur study focused on two parameters for each of two simulation systems. One
parameter is the communication cost C. The other is the number of processors targeted by
the partition. Two values of C were used. One value is simply 0. The other value is V2 of
the mean execution- delay for an event functional. We created partitions for 2, 3, 4, 5, 10,
15, and 20 processor systems,

105

We examined two different logic network simulations. System 1 is a network
describing an adder with carry look—-ahead logic; the network is described in [Bae80], page
96. System 2 is an insertion permutation network described in [DaR85}, page $66. Both
networks are reasonably complex; System 1 has 69 event functionals, and generates 99
work nodes. System 2 has 87 event functionals, and generates 527 work nodes. While these
systems are small by logic network standards, they are fairly large if viewed simply as a
group of interacting simulation entities.

8.4.2. Study Tools

The performance of partitions produced by our algorithm were studied by simulat—
ing the execution of the simulation systems on a distributed system. Parameters to the
simulation include logic network description, the number of processors, the partition of
that network, and the communication cost between processors. Another program analyzes
output from this simulator, and creates the collective concurrency/dependency graph. A
final program accepts the collective concurrency/dependency graph and partitions it
These programs were all run on the University of Virginia Department of Computer
Science’s VAX 11/780.

8.4.3. Performance Analysis

Heuristics are often judged by the closeness of their solutions to the optimal solution.
We were prohibited from such a comparison by the size of the systems we studied. Nor
are there other simulation partitioning algorithms to compare ours with. We choose to
compare our partitions’ performance with the performance of randomly generated parti-
tions. In addition, we calculate a lower bound on the achievable mean cycle execution
time. The lower bound is quite simple. We measured the mean critical path length ue
through the work precedence graph, and we measured the mean volume uy of simulation
work that was executed in a cycle. A lower bound on the achievable mean cycle execution
time (for the cycles from which these measurements were taken) is max{ uc, £y,
where n is the number of processors. Note that this Jower bound does not take into
account any communication delay.

In Chapter 6 we present a statistical means of estimating the cycle execution time
parameters, and of determining which of two partitions is more effective. We will use
this method to compare the performance of partitions generated by our algorithm with
the performance of (uniformly) random partitions. The cost function we adopt is the
sum of the cycle mean and standard deviation. The prior distributions used in this
analysis are the uninformed priors. According to the decision theory referred to by
Chapter 6, the better partition is the one whose expected sum of mean and standard devi-
ation is smallest. The expectation is taken with respect to the posterior distributions of
the mean and standard deviation.

8.4.4. Study Results

The tables given below summarize the results of our simulation study. The
automatically generated partitions were created from 100 cycle observations. The cycle
execution time statistics were taken from a different collection of 100 cycles. In the tables
below, LB denotes the lower bound on the mean cycle execution time; Elg,], Elo,] and
Elp,), Elo,] denote the mean posterior mean and standard deviation of the random par-—
tition and our partition, respectively. We have also calculated the relative difference
between the expected decision costs.

106

Simulation System 1
Processors | C LB | Elu] | Elu,l | Elo,]| Elo,] | relative difference
1 e 50 -~ 64.5 "" 19.24 -
2 0 25 31.59 30.09 6.35 6.56 0.035
3 0 16.67 | 27.31 21.53 5.75 383 0.303
4 0 12.5 19.22 18.13 3.66 3.47. 0.059
5 4] 10.0 181 15.45 3.10 3.15 0172
10 C 6.6 16.90 10.52 2.61 2.65 0.481
15 0 6.6 11.09 8.68 1.87 2.33 0.177
20 0O 6.6 11.18 8.14 2.04 1.96 0.308
2 0.5 28 37.00 35.00 6.32 6.00 0.057
3 0.5 | 16.67 27.11 25.65 5.48 3.60 0114
2 0.5 12.5 25.84 23.03 529 38 0.160
5 0.5 10.0 23.53 19.88 386 317 0.188
10 0.5 6.6 18.38 16.04 2.41 1.68 0173
15 0.3 6.6 16.90 14.32 1.76 1.73 0.163
20 0.5 5.6 15.22 13.51 1.70 2.17 0.079

The first row of the table above shows that the average simulation workload is 50, while
the average running time for a sequential simulation is 64.5. This seeming discrepency is
caused by the simulation’s modeling of event list overhead. This overhead is not con-
sidered in the average workload figure. It would also appear that we achieve super—linear
speedup with 2 and 3 processors: 30.09 < 64.5/2 and 21.53 < 64.5/3. This too is an artifact
of modeled event list overhead. The cost of maintaining an events list is proportional to
its length, so that in our model, the sequential simulation is suffering more overhead.

This phenomenon is discussed in [Dav84, Rey83l.
The table below reports our measurements of simulation system 2. The dynamics of

system 2 are different than those of system 1 because its space of possible cycles is much

larger.

107

Simulation System 2
Processors | C | LB | Eiu.] | Elu,] | Elo,] | E [o,] | relative difference
1 - 60 - 61.32 - 19.02 . -
2 0 30 | 44.90 44.60. 13.76 11.57 0.044
3 0 20 35.86 3293 9,12 8.04 0.098
4 0 15 32.51 30.34 7.95 871 0.036
] 4] 12 29.59 27.58 8.26 6.93 0.097
10 0 8.5 | 2493 22.80 554 6.15 0.052
15 0 8.5 23.56 21.01 5.67 5.40 0.107
20 0 8.5 20.31 17.95 5.24 5.00 0.113
2 05 | 30 | 6221 | 5491 | 13.45 | 1080 0.151
3 05§ 20 §7.38 5513 8.56 8.58 0.035
4 05 1] 15 47.15 46.86 1.57 7.90 ~0.001
5 0.5 12 45.42 40.58 7.61 7.69 0.099
10 0.5 1 85 40,39 38.73 6.41 7.48 0.013
15 051 85 37.48 3216 5.05 851 0.129
20 0.5 | 85 351 33.05 4.01 3.78 0.062

The following data was measured after altering system 2’s input characteristics to
increase the amount of simulation activity. We also raised the communication cost to 2.

Simulation System 2: High Volume, High Communication Cost

Processors | C | LB | Elu,] | Elx,] | Elo,] | Elo,] | relative difference
1 - 110 - 118.76 - 9.9
2 2.0 85 147.72 | 129.17 20.89 11.21 0.201
3 2.0 36 140.85 | 128.73 5.56 6.61 0.082
4 20 | 27.5 | 132.76 91.88 3.34 4.80 .408
s 2.0 22 130.95 85.21 3.64 4.29 0.504

8.4.5. Analysis of Results

It is difficult to judge the performance of our automatically generated partitions. The
lower bound on performance is quite weak as it does not consider communication delays

. H) .
nor precedence (when the bound is equal to —;L). We can’t expect any partition to closely

foliow this bound as a function of the number of processors. We do observe that in the
case of system 1 with zero communication costs, our partitions’ mean cycle execution time
approaches this minimum well before we use as many processors as we have functionals.
This shows that the critical paths are being found and are being placed in common pro—
cessors. The non—critical functionals are being assigned so that the critical path length is
not increased much.

The figures represented do show that our partitions are doing something right. Given
enough processors and no communication costs, the absolute minimum cycle execution
time mean is approached. In system 2, we also observed that under high communication
costs our partitions are far superior to random partitions. However, the execution cycle
times under such high communication costs were worse than a sequential simulation until
we had at least 4 processors. Under the lower communication costs shown, our partitions

108

are, on the average, 12% better than random partitions. This is evidence that out part1-
tioning algorithm is in some ways effective.

If we compare the relative differences achieved by our partitions with system 2 (its
first table) with those achieved with system 1, we note that we performed better on sys—
tem 1. One explanation is that system 2’s behavior during a cycle is very much more vari-
able than system 1's. It may be that 100 cycle observations were not enough to capture
any relatively dominant patterns of behavior. It may also be that there aren’t any dom-~
inant patterns of behavior. A statically defined partition may simply not be good enough
when the simulation’s behavior varies wildly. An open field of inquiry is the characteri—
zation of simulations that are amenable to a static partitioning for parallel execution.

8.4.6. Caveats

The study we report is too small to be conclusive. It does provide us with evidence
that some of the ideas motivating our heuristic are well-founded. At present, we cannot
look at performance figures and know whether our partitions are achieving close to
optimal performance. Before we can lay claim to a truly effective partitioning algorithm
we need to resoive a number of critical issues.

() Insight into System Structure: Perhaps the most critical issue is finding
means of analyzing simulations to determine whether or not they are
amenable to distributed simulation. No partition will perform well if the
system should not be distributed.

(i) Lower Bounds: Better lower bounds on achievable performance are need—
' ed. Such bounds might well come out of a successful treatment of item
(i) above.

(iii) Adaptive Number of Processors: Under significant communication delays,
it may be better to use fewer processors than are available. A partitioning
algorithm should be able to detect and react to this situation.

The work developed in previous chapters of this thesis may provide the basis for treating
these problems.

8.5. Chapter Summary

In this chapter we identified important concerns that any partitioning algorithm
will have to consider. We then described a partitioning algorithm which takes each of
this concerns into account. We implemented this algorithm and studied the performance
of partitions it created on logic networks taken from the literature. The results of our
empirical study indicate that the partitions created by our algorithm can be effective. In
addition, this algorithm and its analysis show how some of the tools developed earlier in
this thesis can be applied to a partitioning algorithm. '

The work reported in this chapter should be viewed as a first step in the design of
partitioning algorithms. The study of our algorithm does validate the importance of our
ideas about partitioning. But our understanding of this problem is woefully incomplete.
We need to develop better insights into when a simulation can be effectively partitioned
for parallel execution, how well we can expect a partitioned simulation to perform, and
how many processors should be used in a parallel execution. These are all open problems

109

which must be treated before we can be confident that we are partitioning simulations as
well as can be expected.

Chapter 9

Dynamic Partitioning Decisions

9.1. Chapter Overview

The dynamics of a distributed simulation system are governed by the distributions
of the values assumed by the generator event functionals. If those distributions were to
change in the middle of a simulation run, the running behavior of the simulation may
drastically change. As a consequence, a once good partitioning of the simulation may
become bad. In this chapter we describe a decision process that anticipates, detects, and
reacts to such a change. We first model the repartitioning problem as a Markov decision
process. Within this model, we are able to develop a strong result: the identification of a
decision policy which optimally balances the risks and benefits of repartitioning. Two of
the parameters in the decision model represent guantities which are not known until a.
behavioral change is first detected. We demonstrate that the optimal policy does not need
values for these parameters before change is first detected.

Dynamic load balancing in distributed systems has recently received some attention.
[ChK79] treats a system with a central scheduler and a number of heterogeneous proces—
sors. Arriving jobs are assumed to be independent, and all load balancing is centralized in
the scheduler. [Ni81] demonstrates optimal probabilistic load balancing strategies for a
number of queueing networks; [TaT85] describes means of determining an optimal static
load balancing policy in a system where each processor receives its own job stream, The
jobs in this system are assumed to be independent. [FLZ] argues that simple load balancing
heuristics perform well. In {RaS84, Sta84b] we find heuristics for distributed load balanc—
ing using bidding algorithms. Again, the jobs in the system are assumed to be independent
of each other. [Sta85] describes decentralized load balancing based on Bayesian decision
theory; again the jobs are assumed to be independent. None of these models fit our needs.
We assume no central scheduler, and we know that the "jobs" in our system are heavily
influenced by precedence relations: We approach dynamic partitioning differently. We do
not consider letting the functionals migrate dynamically. Instead, we wait until we have
evidence that the current partition is no ionger working well, and then decide whether to
change it.

9.2. Problem Statement

‘We suppose that a simulation description has already been distributed across a com~
puter system, and consider the running behavior of that system. We expect that the sys-
tem is running optimally when the sum of processor utilizations (excluding system over~
head) is maximized. The sum of processor utilizations during a cycle is thus a good meas~
ure of system performance during that cycle; there may be other measures of perfor-
mance. Let Z; denote the sum of processor utilizations over the ith cycle. Since the cycles
form a stationary process {Ros83], and each processor utilization during a cycle is com—
pletely a function of that cycie, the process of utilization sums is itself a stationary pro—
cess. We now consider the possibility that at some unknown time ¢, the sequence Z,,
Zy 41,0+ - forms a stochastic process that is different from 20,2, -+ ,Z,..;. f 5 is a time
greater than or equal to ¢, we will say that a change has occurred by time s. If a change
occurs and the mean measure £, is observed to decrease, we can conclude that the system

110

111

is not running at the level of performance it once had. This drop in performance can be
caused by a change in the dynamics of the running simulation; a change which causes
undue synchronization blocking as a result of the partitioning. The system performance
might be improved then by repartitioning. This chapter examines the issue of detecting
such change, and deciding whether to repartition. To this end, we model the problem as a
decision process. :

A decision process can be thought of as a sequence of actions; time is divided into
intervals, and an action is chosen at the end of each interval as a function of the decision
policy. Each possible action has an associated cost. The decision process we envision for our
problem must determine at each interval whether a change has occurred. The process has
the option of either calculating a new partition (we presume that some statistical parti-
tioning aigorithm is employed), or continuing with the old one. If a new partition is cal-
culated, it is tested against the old partition on the most recent cycle profiles; this test
determines if a substantial enough improvement in the finishing time can be expected by
using the new partition; Chapter 6 showed how this could be done in a Bayesian decision
framework. The cost of the decision to repartition has two components. The system
suffers delay due to the calculation and testing of the new partition; the second com-
ponent is a benefit, or negative cost. This benefit is achieved if the new partition is found
to be superior to the old one; the benefit is the expected differential in system finishing
time between the system running under the old partition and the system running under
the new partition. If the new partition is adopted, the decision process is considered to
have stopped. Otherwise we conclude that the change did not occur, and continue the
decision procedure. Once the decision process decides to stop, no further change is tested
for; our decision model assumes that at most one new partition will be adopted during the
simulation session. In practice, we expect that the decision process will actually be res—
tarted after a stop decision. However, this more general model proved to be much less
tractable, and was not pursued.

When the decision process does not choose to calculate a new partition, the system is
run for the next interval of time under the old partition. This decision exacts a "lost
opportunity” cost if the change has already occurred and future repartitioning benefits are
achievable. The decision to continue foregoes the benefit of the new partition for the next
interval.

The cost of a decision policy is the sum of the costs incurred at each decision dictated
by that policy. An optimal decision policy is one with minimal expected cost. We intui-
tively see that the optimal policy must balance the costs and benefits of repartitioning
with the costs of not repartitioning. We are able to characterize the structure of an
optimal decision policy.

The similar change detecting problems have been treated in depth in [RSB79] ; our
work differs principally in that we require the repartitioning benefit to vary as a func—
tion of time. This difference does have a significant impact on the problem solution. The
general statistical field of sequential analysis [Gov75] treats the problem of deciding when
to stop sampling; however, this sort of analysis generally assumes distributional
knowledge of the quantities involved, and focuses on the minimization of the number of
samples taken. This minimization metric gives equal cost to each sample; we will observe
that a precise model of our problem will give observations unequal expected costs.

9.3. Problem Formulation

In this section we model the dynamic repartitioning problem as a Markov decision
process. This requires a precise definition of Markov decision processes, and the formula-
tion of dynamic partitioning within the confines of this definition. This formulation
depends on our ability to calculate the probability of the anticipated change having

112

already occurred. This probability is affected by a statistical procedure which examines
recent system behavior and decides whether the change has occurred. We will treat the
statistical issues of detecting change first, and then proceed to the larger task of formulat-
ing dynamic partitioning in terms of a Markov decision process.

9.3.1. Statistical Issues in Detecting Change

We must address two issues. Most statistical tests assume that observations are
independent; many assume that observations are normally distributed. To use such tests
we must first transform our measurements. The second issue is simply detecting change.
We propose solutions to both of these problems.

9.3.1.1. Measurement Transformation

We treated this problem in Chapter 6 and proposed using the batch means transfor-
mation. We will assume that b cycle measurements are batched into a single transformed
observation. We recall that observations transformed by this method are approximately
normal and independent. '

9.3.1.2. A Clustering Decision Procedure

Our task is to examine transformed utilization sum measurements as they become
available, and determine if and when a significant difference occurs in these observations’
distribution. We can use solutions to the so~called model identification problem [BoS83] to
detect this change. Applied to our situation, the model identification problem decides
whether two groups of independent normal cbservations are best described as being drawn
from the same distribution, or from two different distributions.

Using a model identification approach, we detect distributional change in the
sequence of normal random variables by first creating adjacent groups of equal size ¢. We
assume the existence of a base group taken before a change could have occurred. A test
group is statistically compared with the base group for distributional equivalency. Posi-
tive indication of a distributional difference is evidence for the change having already
occurred.

A new model selection procedure is particularly well suited for our problem.
[BoS83] describes the AJC model selection criterion. This criterion attempts to describe
data with a probabilistic model having as few parameters as possible; at the same time, it
attempts to choose the model that best fits the observed data. We are to decide whether
the base and test groups are best described with two parameters {the common mean and
variance), or four parameters (separate means and variance). For each of these two
models, we calculate the statistic :

AIC = =2U(K)+ 2K

where K is the number of mode! parameters, and [(K) is the maximized log-likelihood
function {Kal79] using K model parameters. The model with the smallest AIC statistic is
chosen. To apply this technique to our probiem, let 63, 6&, and &7 respectively denote
the sample variances from the base group, the test group, and the pooled test and base
groups. Then calculate

AIC, = g--;n(o 208) + 8
and

AIC; = clnlod) + 4.
If AIC, < AIC;, then the two groups are considered to be distributionally distinct. The

113

advantage of this approach is its simplicity. The significance level of the statistic is
effectively chosen by the derivation of the statistic, and no statistical tables need be
stored. Furthermore, the calculations take linear time in the size of the groups.

The model selection criterion provides a statistical means of testing for change.
While giving us information about a potential change, there is a non-zero probability
that it fails to correctly identify whether the change occurred. Given a prior probability
of the change having already occurred and an AJIC test result, we can use Bayes’ theorem
to calculate a posterior probability of the change having already occurred. To use Bayes’
theorem we need to know the accuracy of the AIC procedure. We denote the probability
that the model selection statistic falsely indicates a change by a (type I error); we denote
the probability that a true change is not indicated by 8 (type I error). Later analysis will
find it necessary to assume that o and § are small enough so that1 ~a — 8 2 0. It seems
entirely reasonable to expect this much accuracy from the statistical test.

9.3.2. The Decision Process Model

‘We begin our development of the decision model with a precise definition of Markov
decision processes. Then we formulate dynamic partitioning in terms of such a process.

9.3.2.1. Markov Decision Models

This section briefly defines Markov decision processes, and presents an important
result about such processes. Qur notation is taken largely from [Ros70] .

We comsider a stochastic process whose state we observe at each of a sequence of
timest =0,1,2,---,N.Let I be the set of all possible states. At each time j, the state of
the process is discerned to be some s € /. Then a decision is made, choosing some action a
from a finite set A of actions; action a in state s incurs a cost C(s,a). C{s,a) may be ran-
dom: we assume that E[C(s,a)] < oo for all states s and actions a. The process then passes
into another state; the transition probabilities p;,(a) are conditioned both on the previous
state, 5, and the action taken, a. The expected total cost of a decision policy is the
expected sum of all the costs incurred at each decision step.

In our search for an optimal policy, we restrict our attention to the class of station-
ary policies, those policies which are deterministic functions of the discerned state. A
useful body of results exist for the identification of optimal stationary policies. Perhaps
most useful is the following statement [Ros70] of a functional relationship satisfied by an
optimal policy’s cost function.
Theorem 9-12 [Ros70] Let V(s) be the expected cost of the process which starts in
state s and which is governed by the optimal stationary policy. Then,

V(s)=miﬂ ElC(s,a)} + fpsq(a)'V(q)
a € qéf

Furthermore, the policy which, when in state s chooses the action minimizing
the right hand side of the above is optimal. :

-

The function V (s) is known as the optimal cost function.

Another intuitive meaning of V(s) is that it denotes the expected future costs of the
process in state s, given the process is governed by the optimal decision policy.

114

9.3.2.2. Model Formulation

To model repartitioning as a Markov decision process we must define the decision
epochs, the process states, the set of actions, the state dependent action costs, and the state
and action dependent transition probabilities. Each of these issues is addressed in turn.

9.3.2.2.1. Time Steps and Process States

We can test for change every b-c system cycles. We consider time to be divided into
a sequence of decision steps, with b-c system cycles defining the period between two adja—
cent decision steps. Time n is considered to be the time corresponding to the nth decision
step. We assume that the entire execution session constitutes N decision steps.

Our decision model revolves around the probability that the anticipated change has
already occurred. We let p, denote the probability that the system has changed by time
n. The state of the decision process at time n is defined to be the pair <p,.n>. The cen—
tral activity of the decision process is maintaining p, as a function of time.

9.3.2.2.2. Maintaining the Probability of Change

We suppose that the decision process is in state <p,n>. A number of probabilities
are of interest to us. Let p’(p,) denote the probability that the system will have changed
by time n+1, conditioned on the value of p,. This probability depends on prior
knowledge of the distribution of the time of change. Supposing that such information is
not precisely known, it is reasonable (and convenient) to assume that the failure rate of
this distribution is some constant ¢. Using simple conditioning arguments we have for
any p €[0,1]

pp)=p + ¢l —p) {9-1

=(1—¢)p + ¢.

Given p,, the probability of change by time n+1 is enhanced by a test for change at
time n +1. This posterior probability is calculated directly by Bayes’ Theorem [Sch69]. If
the last observation indicated change, the posterior probability is

pipHi—B).
el -8+ 0 -p (pha
for any p = p,. Likewise, given a negative indication of change, the posterior probability
is '

pélp) = (9-2)

P {p)B
P+ —-p (pNi—a)

peip) = (9-3)

These equations maintain p, for each n as a function of the prior probability p, -,
and a change test result.

9.3.2.2.3. Decision Actions and Costs

The decision process has two options in state <p,.n>; it may choose to contfinue, o1
it may choose to test. The test decision causes the calculation and possible adoption of a
new partition. The Markov decision model requires us to define state dependent action
costs. We define these costs by considering the effects of the chosen action.

Test Decision Consequences and Costs

The decision to test initiates a two step process. We assume that the system is halted,
and a new partition is calculated. Given a new partition and performance traces of recent

115

system behavior we predict the performance of the system under the new partition. We
then compare the performance of the system under the old and new partitions, and choose
the better partition. We will assume that the new partition is chosen if and only if a
change occurred and is significant enough to warrant repartitioning. As a consequence, if
we retain the old partition we redefine p, to be 0. The system is restarted once the
appropriate partition is selected. The decision process is considered to have stopped if the
new partition is chosen. If the old partition is chosen, the decision process resumes with
P, = O as its initial prior probability.

We assume that the computational delay of calculating and testing a new partition is
some constant D;. If the new partition is chosen, an additional delay of D, is incurred to
physically effect the repartitioning. Under a new partition, we expect a resultant speedup
over the time to finish the session under the old partition. This differential speedup is
estimated when the system initially indicates change; the speedup, or gain over one deci—
sion step’s worth of time is denoted by G. Given a finite number of N decision steps, the
overall speedup resulting from a new partition chosen at time n is GAN —n +1).

Integrating all of these observations, we see that the expected cost of the test decision
in state <p,,n > is

ElC(<p, ,n>,test)) = D; — p,"|GN —n +1)— D,

Continue Consequences and Costs

The consequences of the continue decision are substantially simpler. A continue
decision simply allows the system to run for one more time period under the old parti-
tion. The system is then tested for change and a new posterior probability of change is
calculated. A "lost opportunity” cost is associated with the continue decision, as the process
foregoes any possible benefit from repartitioning in the next decision step’s worth of sys—
tem time. Presuming that we use a statistical partitioning algorithm, we expect that a
new partition (based on the same performance metric distribution as the old partition)
will not perform better than the one in use. We therefore expect to benefit from a new
{statistically generated) partition only if the change has already occurred: the probability
of this is p,. We incur no cost by continuing if the change has not yet occurred. Conse-
guently, the expected cost of the continue decision in state <p,,t > is simply

ElC(<p,.n>, continue)] = p, -G

9.3.2.2.4. State Transition Probabilities

After an action in state <p,.n’>, the process makes a state transition; we first con—
sider the transition after a decision to continue. By continuing, the system runs under the
oid partition until time n+1, at which point the system is again tested for change. The
posterior probability p,., defines the next state <p,.;,n+1>; depending on the outcome
of the change test at time n+1, p,,, is equal either to p°(p,) or p(p,). The state transi~
tion probabilities from <p,.n > after a continue decision are thus defined by the proba-
bility of observing a change at time n+1.

Let ¢°(p,) denote the probability that the change test will report a change at time
n+1, conditioned on p,. We recall that « and 8 denote the true type I and type II errors
of the test procedure; again, direct conditioning arguments establish that for any p € [0,1]

g p)=p (pH1—-B8)+ (1~ p (pha (9-4)
and the probability of observing no change at time n+1 is

116

¢%lp) =1—gq°(p)
=p (p)B + 1~ p (p)1— a

Consider the transition probabilities out of <p.,n > after a test decision. The new
partition is adopted with probability p; in this event the decision process stops so that
there is no next state. Conversely, the probability of rejecting the new partition is 1 — p.
After rejection, we infer that p = Q; the state of the process at time n+1 is thus one of
the two states reachable from state <O >, and depends again on the outcome of the
change test at time n+1. Thus for any state <p,n+1>, the probability of passing from
<pm> into <p,a+1> is 1~ p times the probability of reaching <p,n+1> from
<0, >.

© 9,3.2.2.5. Process Optimal Cost Function

We may now restate the functional relationship satisfied by the optimal cost func—
tion. A further definition will enhance the readability of this relationship. Recall that
V(<p,n>) denotes the minimal expected future costs of the decision process in state
<p.,n>. Theorem 9-1 states a relationship the optimal cost function satisfies in terms of
the minimal expected future costs of the process at time step n+1, given p, = p. We
. denote this expectation by E,[<p,n >], and observe

Definition 9-1: Next Step Minimized Cost Function

El<pn>1=g(p)V(<p(pln+1>) + ¢(p)V(<pi(pln+1>)
denotes the expected minimal expected future costs of the decision process at time
n+1, given the state at time n.

&
* Theorem 9-1 may thus be restated in terms of our problem’s notation as follows.
Dy —p iGN —n +1~D,|+(1—p)rE,[<0On>]
pG + EJl<pn>]

Vi<p,n>)=min (9-5)

The optimal decision in state <p,n> is the action associated with the cost function
defining this minimum.

Since the decision process will always stop at or before time N, we define we define
V(<p,N+1>) = 0 for every p € [0,1]

9.4. Optimal Decision Policy

We can now demonstrate that the optimal decision policy is characterized by a
sequence 7y, ,7ry of constants from the interval [0, 1] The optimal decision in state
<p.,n > is to test if and only if p > m,. The optimal policy is implicitly given in the
statements of Theorem 9-1 and equation 9-5: given state <p,n >, the optimal decision is
to choose the action with minimal expected future cost. For a given time n, if we can
characterize each action’s expected future cost as a function of p, we can then compare the
actions’ expected future costs over the range p € [0,1] and determine the optimal decision
as a function of p. To show that the suggested policy is optimal, we need to demonstrate

17

the existence of 7, € {0,1] such that p > w, if and only if the expected future cost of the
test decision in <p,n > is less than the expected future cost of the continue decision in
<p,n>. We next present a number of lemmas which establish the existence of such 7,.

9.4.1. Properties of V(<p,n>).

The optimality of the proposed policy is shown by demonstrating certain properties
of the optimal cost function. We show that for any given time step n the minimal
expected future test decision cost is linear in p,, while the minimal expected future con—
tinue decision cost is concave in p,. We also demonstrate important inequalities.

The optimal cost function’s value at <p,n > is the minimum value of two func-
tions evaluated at <p,n>. One function expresses the minimal expected future costs
after a decision to test, and is denoted by

ECT(<pn>}=Dy; —p'lGN ~n +1)—=D, | + (1 - prE,[<On>]

The second function expresses the minimal expected future costs after a decision to con—
tinue and is denoted by

ECC(<pn>)=pG + E[<pn>l
We first demonstrate that for fixed n, ECT(< - ,n>) is a linear function in p.
Lemma 9-1: For fixed 1 € n € N, ECT(< :,n>) is a linear function of p.
Proof: For fixed n, the value of E,[<On >] is independent of the value of p in

ECT(<p,n>), and is thus constant. The degree of p in ECT is one, and all other
components of ECT are constant.

0

The concavity of ECC(< *,n>) in p for fixed n follows principally from the fol-
lowing lemma reported in [RSB79], and stated in terms of our notation.

Lemma 9-2: [RSB79] If V(< - ,n+1>) is a piecewise linear and concave function
of p, then E,[< - ,n>]is a piecewise linear and concave function of p.

0

For notational convenience, we say that a real-valued function is plec if it is pilece—wise
linear, continuous, and concave. Using this, we have

Lemma 9-3: For every 1§ n € N, V(< - n>) and ECC(< - ,n>) are plcc

functions of p.

Proof: We induct on n; we show that for every 1 € n € N, both V(< - n>)
and ECC(< -,n>) are plcc functions of p. For the base case we consider
n = N. Now for any p €[0,1},

ECC{<p N>)=pG + E,[<p,N>]

xp-G

since V{<p,N+1>) = 0 for all p. Thus ECT(< +,N >) is picc. The concavity
and continuity of ECT(< -,N>) follows directly from its linear nature.

118

Furthermore, V is defined as the pointwise minimum of ECT and ECC, and
piecewise linearity, continuity, and concavity are all preserved under the point—
wise minimum operator; hence V{(< - ,N >) is a plecc function of p, and the in-
duction base is satisfied. For the induction hypothesis, we suppose that both
ECC(< - ,n+1>)and V(< - ,n+1>) are plcc functions of p; and again consider

ECC(<pn>)=pG + EJf<pn>l

E,[< -,n>]1is a plec function of p: the induction hypothesis satisfies the hy—
pothesis of the lemma 9-2. The class of picc functions is closed under addition
and pointwise minimum, thus it follows that both V(< -,n>) and
ECC(< - ,n>) are plecc functions, completing the induction.

O

It is easy to compare the values of ECT and ECC at domain points <1 >. Once we
have established these values at such points we can infer the relationship between ECT
and ECC at all domain points; this relationship is established with arguments concerning
global functional behavior, e.g., concavity. The following two lemmas establish that
ECC is everywhere less than ECT once the process has crossed a certain threshold in
time. ‘

Lemma 9-4: There exists a non-negative integer Ko such that
Vi<in>) = ECC(<1n>) =GN —n + Dforall N—Ky+1<n £ N.

Proof: Let K be the largest integer such that 2-G-Ko € D, + D,. We demon-
strate inductively that K has the required property. Consider
Dy~ G + D,
V{<LN >) = min{ ~

If Ky,> 0, the value for V(<LN>) is easily seen to be given by
ECC(<1,N>)=G. For the induction hypothesis, suppose there is an
n 2 N — K, + 1such that

V(<,n+1>) = ECC(<1n+1>) = G{(N — (n+1) + 1).
Then

Dy ~G{N —n +1)+ D,

V(<1,n‘>) = min G + E,,[<1,n>}

[Da—G{N —n + D+ D,
=miN e 4 vi<Ln+1>)

' D;,—G{N —n +1+ D,
FMMEN -n + 1)

where the second step follows from the definition of E,{<1,n>] and the obser-

19

vation that given p, = 1, then p,4; =1 regardless of the change observation at
time n+1. The third step follows by the induction hypothesis. Since
n 2N —Ky+1,it follows that Ko 2 N —n + 1. Thus

ECT(<1n>)— ECC{(<1in>)=D; + D, —2GN —k + 1)
Z D; + D, —2G K,y

2z 0

by definition of Ko Thus V(<1n >) is defined by ECC(<1n >), and has the re—
quired form.

|

Consider the function graphs representing ECT(< -,n>) and ECC(L -,n>) as
functions of p for some n greater than N — X, Lemma 9-4 proves that ECI' exceeds
ECC at p = 1. We next endeavor to show that on such graphs, the vaiue of ECC is less
than the value of ECT for all p. We know that ECT is a decreasing (linear) function of -
p, and we know that ECT exceeds ECC at p =1. We simply establish that ECC is an
increasing function of p to prove that ECT exceeds ECC for all p.

Lemma 9-5: For all n such that N 2 n > N ~ Ko, ECC{<p,n>) is an in—
creasing function of p, and V(<p,n>) is defined by ECC(<p,n>) for all

p €[01]

Proof: We first establish the following proposition: if V(< - ,n+1>) is increasing
in p, then ECC{< -,n>) is increasing in p. The proof of this is achieved by
taking the derivative of ECC with respect to p, and observing that it is positive
wherever it is defined. As a first step in taking the derivative, we refer to equa—
tions 9-1 and 9-4, noting that

() m (1 e M — oy
—c};q (pY=01Q — ¢l —a— B

Z0

since 0<¢p <1 and 1—a—~8 20 by generél assumption. Recalling the
definition of E,[<p.,n>] the full derivative of ECC(<p,n>) with respect to p
is given by the chain rule, and can be expressed as

4.

d —
dpECC(<p,n>) =G + 2

g (prV(<ps(pln+1>) — V(< pslpln +1>)

d — d -
[+ . < + [. [.
+q (p)——de(<p (phn+i>)+ g (p)—"de('(p (pln+1>)

120

The non-negativity of this expression follows directly from the increasing na-
ture of V(< n+1>) and the observation that p<(p) > p®(p). Since
ECC(< « ,n>) is piecewise linear, this derivative exists almost everywhere; since
this derivative is non—negative and ECC is continuous, we have that ECC is in—
creasing (non—decreasing) in p.

This last result allows us to inductively show that ECT(< - ,n>) everywhere
defines V(< - ,n>) and is increasing for all n such that N 2 n > N — K,.
Consider the base case of n = N. ECC(<p,N >) = p-G for all p, so that ECC is
increasing in p. ECT exceeds ECC at p =1, and ECT is décreasing in p. It fol-
lows that ECT exceeds ECC for all p, whence V is defined by ECC for all p.
For the induction hypothesis, let n > N — K be such that ECC(< - n+1>}is
increasing in p, and V{(<p n+1>) = ECC(<p,n+1>) for all p. By lemma 94,
ECT exceeds ECC at p = 1. Since V(< - ,n+1>) increases in p, we have demon—
strated that ECC(< -,n>) increases in p. Exactly as before, we observe that
ECT (< - ,n>) decreases in p, from which it follows that ECT(<p.,n >) exceeds
ECC(<p,n>) for all p. Thus V{(<p,n>)is defined by ECC(<p,n>) for all p,
completing the induction.

g

Lemma 9-5 establishes that N — K is a critical point in time. The continue deci~
sion is always optimal after this time. In terms of the probability thresholds w,, we
have m, =1 for all N — Ko < n € N. This is intuitively reasonable, since the total

benefit of repartitioning diminishes with time. ‘

We have yet to consider the optimal decision policy for times less than N — K. The
structure of the policy follows from the relationship between ECT(<1n>) and
ECC{<1,n>), and global behavior of the cost functions. The following lemma shows

that ECT (<1,n>) is exceeded by ECC{(<1,n >).

Lemma 9-6: ECT{<ln>») < ECC(<in>) for all »n such that
o \<-. n <N "'""Ko.

Proof: We induct again on n. Letn = N — K. Lemma 9-4 established that

V(<KL N~K+1>) =GN —(N - Ko+ D+ 1

= _G'Ko.

It follows that the optimal cost function satisfies

VIKLN=Ko>) =i ¢ 4 g [<1,N—-K,>]

121
Dy —G{EKo+ 1D+ D,
=M o V(SN ~K g+1>)

Dd - G(Ko + 1) + D,.
=W G 4G Ko

i Dd”G'(K0+1)+Dr
S GK,+ 1)

Consequently,
ECT(<1,N—Ky>)— ECC(KILN~Ky>)= D; ~2G(Ko+ D+ D,.
By definition, Ko is the largest integer such that
D; —2G-Ky+ D, 20,

from which it follows that the optimal decision at <LLN — K> is to test.

We suppose for the induction hypothesis that

V{(<1,N =K o~{k=1>) = BCT(<1,N—K o~k -1)>)

= Dy —GAN — (N=Ko~k—-1) + 1) + D,
for some k 2 1. Then

VIKLN=Ko~k>) = mini & 4 v (<1, N~K=k=1>)

Dd"‘"G'(Ko"'k"'I)“F‘D;

=mine L p, —GAN —(N—Ko—k=1) + 1 + D,

Dy —G{Ko+k+1+ D,

=min f _GAKo+ k =1 + D,

:DJ_G'(KO+JC +1}+D,~

= BCT{<1,N—K,~k>)

which completes the induction argument.

[

We now consider the global behavior of ECT and ECC. Lemma 9-1 proves that
ECT{(< *,n>) is decreasing and linear in p; Lemma 9-3 proves that ECC(< - ,n>) is
concave in p. These facts suffice to show the existence of a number w, such that

122

ECC(<pn>) < ECT(<pn>)if and only if p < m,.

lemma 9-7: Let n S N — Ko There exists w7, €[01] such that
ECC(<pn>) < ECr(<p,n>) if and only if p < w,. Furthermore, either
w, =0 or m, is the single point in [01] at which
ECT (<, ,n>)= ECC(<,,n>).

Proof: We adapt a solution given in [Ros70] for sequential analysis. We first note
that V(< - ,n>) must be convex in p, as it is the pointwise minimum of two
convex functions. By definition of convexity, for every p,,p, and A in {0,1] we
have

V(<hp,+(1-Nrpdn>) 2 AV{(<pn>) + Q=-AVI(<pn>).

We now show that the set of all p such that V{(<p,n>) = ECT(<p,n>) must
be an interval [m,,1}. Let m and b be those constants such that

ECT{<pn>)=mp + b,
and suppose that p;and pj, p; § p,, are points such that
Vi<pn>)=mp; +b P =1, 2.

Conpsider any p, such that p, € p, € p, There exists a A €[0,1] such that
p = Ap;+ (1-A)p, By the convexity of V, we must have that

V{<pam>) 2 MV (<pyn>) + A=AV (<payn>).

=mp, +b
However, by definition of V(<p,,,n > we must have
Vil<p, n>) S ECT{(<p,.n>)=mp, +b,
from which it follows that
V(<p,,n>)=m—p, +b

Consequently, the set of all p such that V(<p,n>) = ECT{<p,n>)isan inter—
val subset of [0,1] Let w, be the infimum all such p; since
Vi{<in») = ECT(<1,n>) by lemma 96, the form of this interval is [m,,1].

Finally, we show that wr, is either O or is the single point of intersection between
ECT and ECC.If ECT and ECC do not intersect, then 7, is clearly 0. Now
suppose that ECT and ECC are equal across an interval {py,p,} Since ECC is
piecewise linear and concave, the slopes on its graph’s sequence of line segments
must be strictly decreasing as p increases. In particular, the slopes of all its seg—
ments to the right of the one on which ECT coincides are less than ECT ’s slope.
The continuity of ECC then ensures that ECC(<1,n>) < ECT(<1,n>), a con—
tradiction of lemma 9-6. Thus, if ECT and ECC intersect, they intersect in at
most one point.

123

(i

9.4.2. Optimal Policy Structure

The previous section provides us with all the tools needed to determine the optimal
policy structure. The principal result determining this policy is stated in Theorem 9-1: the
action minimizing the expected future process costs is optimal. For every state <p,n >,
the optimal decision is to test if and only if ECT'(<p,n>) is less than ECC(<p,n>).
Lemmas 94 and 9-6 prove that if K is the largest integer such that 2.G K, < D; +D,,
and if n is greater than N — K, then V(<p,n>)= ECC(<p,n>) for all p. The
optimal policy for any process reaching time N —K, + 1 without stopping is simply to
always continue through time N. Lemma 9-7 in turn shows that if n & N — K, there
exists a threshold w, such that V{<pn>)= ECC(<p,n>) for all p € m,, and
V(<p,n>)= ECT(<p,n>) for all p > m,. Consequently, the optimal decision for the
process in state <p,n > to make is to test if and only if p > w,. '

The preceding paragraph proves the following theorem.

Theorem 9-2: There exist constants g, ', 7wy such that the optimal decision
decision in state <p,n> is to test if and only if p > r,. Furthermore, there
exists an integer Kosuch that o, =1foralln > N - K.

0

The 7, defining the optimal decision policy cannot generally be analytically
derived. The 7, are obtained through explicit solution of the optimal cost functions. In
Appendix A we consider how these 7, can be obtained numerically. We show that their
exact solution is computationally intractable, and propose an approximation method
which is in some sense optimal.

9.5. Waiting for Change

The derivation of the optimal decision policy assumes that all decision model
parameters are known a prioti, By contrast, our real world assumptions state that we do
not have prior knowledge of the nature of the change; we are prohibited from finding the
values of B and G before the change occurs. In this section, we address this seeming con—
traction of assumptions by deriving conditions on the model parameters ¢, o, and g such
that under the optimal policy, the decision process will always wait for at least one
change to be detected before deciding to repartition. Under these conditions we can derive
an upper bound on p, given that no change has yet been detected. When the optimal
threshold 7, is greater than this bound, the policy of waiting for change is optimal.

We may assume that po = 0. We are interested in calculating p, given that the
change test has not detected a change by time n. This probability is expressed recursively
using equation 9-3.

124

Definition 9-2: Probability of No Change by Time n

Let C(n) denote p, given that no change has been detected by time n. Then

C{0) =0
and
At = e P (En)s
Clnty pCHNB + U~ p (CHN1 - a)
]

For any n, we could use the equation above to numerically compute C(n). This
approach gives us no understanding though of how that probability behaves as a function
of n. We are led to consider an easily calculated upper bound on all C(n). This bound is
derived from the observation that p°(p) is a contraction mapping.

Definition 9-3: Contraction Mapping
Let g be a function on fa,b). g is said to be a contraction mapping on [a,b] if
(i) pelap]l => glplelab]

(it) g's derivative g exists, is continuous, and ig(p)l € L <1 for some L
and for all p in[a,bl
&

The following theorem is taken from [PhT73], and illustrates our interest in péip)
as a4 contraction mapping.

Theorem 9-3: [PhT73] Let g be a contraction mapping on [a,b]. Then
(1) The equation p = g(p) has a unique solution in [a,b], say p,.

(i) Given any pg € la b), the sequence p, defined by

Pr+i = S(Pr)

converges from one side to p;.

a

The definition of C(n) defines a sequence in the form of conclusion (ii) in theorem
9-3, If we can show that p°{ -) is a contraction mapping on some interval {0,5], and if we -
can show that the sequence’s one sided convergence is from the left, then the solution p.
to the equation p = p°(p) will bound C(n) from above for all n. We first present condi—
tions under which p°() is a contraction mapping.

125

Lemma 9-8: Let ¢ be the smallest positive solution to the equation
1~¢)p +dB+ 1 —(1=d)p —pHl—ad|P -0 — M1 —a)f =0

and let p, be the smallest positive solution to the equation p = p¥lp) If p, < c,
then p®(-) is a contraction mapping on [0,p,).

Proof: Recalling equations 9-1 and 93, we have
(1~ ¢)p + ¢)B
(1=¢)rp +@)B+ (0 ~1~)p —dH1—a)
The derivative with respect to p of the numerator is (1 — ¢)8; and the derivative

of the denominator is (1 —¢Ma + B —1. We apply the quotient rule for
derivatives, and after much algebra, find that

__‘i..pc‘(p) - (1 — M1 — a)rB
dp® [((1 “pp+ OB+ U—1—¢)rp —pH1—a)

p(p) =

. 9-6)

> 0.

When p = 0, the denominator of equation 9-6 is
(68 + 1 - @M1~ @] = ¢*67+ 2680 ~ 9}1 ~ @) + A = ¢F1— .
We now demonstrate that the derivative given in equation 9-6 is less than one at
p = 0. By general assumption, 1 ~ a — § 2 0. It follows directly that
0<¢B+1~¢y1l—~a~—pB)
so that
| ' (1—¢)B < ¢pB + (1 — M1 — a).
Then
B < 2¢B+(1—¢¥1—a)
so that by multiplying everything by (1 —)1 — o),
(1 — @M1 — a¥B < 2¢B1 — $)H1 — o) + [(1 ~ M1 —)2

< |6+ 1 —p¥a - a)]Z.

This shows that the numerator in equation 9-6 is strictly less than the denomi~
nator; hence the derivative is less than one at p = 0. Comparison of equation 9-
6's denominator with equation 9-4 shows that this denominator is simpty ¢°{(p)
squared. g°(-) is easily seen to be strictly decreasing (and less than 1) in p on
[0,1}; it follows that the derivative in equation 9-6 is strictly increasing in p.
Thus, if ¢ is the minimal positive solution to the equation equating the numera-
tor and denominator of equation 9-6, then the derivative is strictly less than 1 on
the interval [0,c). Then if we let L be the the value of this derivative at p,, the

derivative is less than or equal to L on [0,p.} Furthermore, p°(-) is increasing on

126

on [0,p,] since its derivative is always positive on this interval; it follows that
p(p) e [0,p,] for all p in [O,p.] By definition then, p°(-) is a contraction map~
ping on [0,p,].

0

The requirement that the solutions ¢ and p, exist and are related by p, < ¢ may
seemn stringent. In practice, we have observed that this is always the case for all o, 8, and
¢ under our operational assumptions. Table 9-1 gives the values of p; and ¢ for several
assignments of «, 8, and ¢.

a | B | ¢ | ¢ Ps
D011 |.001] .75 | 000125
1 01 | .001 | 90 ; 000011
1 11 {.001] .75 | 000112
111 |4 74 | 0138
1 11 |5 J2 | 125
212 15 J2 1 .33
2 1315 81| 6
31215 J | 4
3 1.2 | .00t .65] .0004

Values of p.

Table 9-1

This table strongly suggests that p, < ¢ in general; however, we have not yet been able
to prove this. The remaining discussion implicitly assumes that the hypothesis of lemma
9-8 is satisfied.

When p?(-) is a contraction mapping on [0,p,] we can bound the values of C{n)
from above. ‘
Lemma 9-9: Suppose that p°(-) is a contraction mapping, and let p, be the smal-
lest positive solution to the equation p°(p) = p. Then C(n) < p, for every n.

Proof: Theorem 9-3 states that the sequence defining the values of C(n) converges
to p, from one side. Since C(1) > C(0), it follows that the convergence is from
the left. The conclusion follows immediately.

Q

If no change has yet been observed by time n, then p, < p,. Table 9-1 shows that
for small ¢, p, is small. If no change has been observed by time »n, and if p, < w,, then
it follows that p, < ,; hence choosing to continue if no change has ever been detected is
the optimal decision. This proves theorem 9-4.

127

Theorem 9-4t Suppose that no change has ever been detected by time n. If
p. < m,,then the optimal decision at time n is to continue.

a

We believe that the values of the optimal decision thresholds 7, are likely to be
quite high. This belief stems from the observation that when p, is not close 10 1, one or
two (consecutive) positive change indications will greatly increase the probability of
change. When substantial assurance that the change occurred is so quickly gained, we
expect that the thresholds 7, will be close to 1. Under these circumstances, we expect that
ps < m, so that the hypothesis of Theorem 9-4 is satisfied.

9.6._ Model Parameters Reconsidered

Solving for the optimal decision thresholds requires that we quantify each model
parameter. In this section we consider each parameter and suggest how it might be
estimated.

a, B: The type I error « is the probability that the AIC test falsely indicates a
change. o« would seem then to be a function of the base group’s distribution and the size
of the test clusters. We could estimate « as a function of these parameters by performing
a simulation study which measures the type I misclassifications, The type II error B is the
probability that the AIC test falsely indicates no change. 8 would seem to depend on the
difference between the base cluster distribution and the changed distribution. f's behavior
as a function of this difference could also be established through simulation. The m, solu-
tion procedure would have access to the tables created by these simulation studies.

¢: The change time failure rate ¢ is a critical component of our model. In the
absence of any other information, we might assume that a change in the time period
[0, N']is as likely as not. In this case, we let ¢ be the parameter of the exponential distri-
bution whose median is N.

G: It is not generally possible to predict the exact gain available by repartitioning.
We might assume that we can achieve the old level of performance. Further research into
this problem might establish upper and lower bounds on G. In this case, Appendix B
shows that any point estimate of G between an upper and lower bound is a "good" guess
in the sense that the resulting estimations of w7, lie in some interval with the true m,.

Dy, D,: It is reasonable to assume that we know the running time of our partition—
ing algorithm. It is also reasonable to assume that we know how long it takes to effect a
new partition.

9.7. Chapter Summary

Since any good partitioning algorithm is based on the anticipated run-time behavior
of the simulation, we are vulnerable to unexpected change in the nature of this behavior.
This chapter treats this problem by formulating the repartitioning problem as a Markov
decision process. This process continually tests for change, deciding if and when to repar~
tition the simulation system. On the basis of observed change, the decision process main—
tains a probability that the change has already occurred. The decision process balances the
potential benefit and risks of repartitioning in such a way that the expected cost of the
decision process is minimized. The optimal decision policy is characterized by a sequence
o, -+ vy Of probabilities, so that repartitioning is chosen at time n if. and only if the
probability that the change occurred by time n exceeds the threshold 7.

The derivation of the optimal decision policy assumed that all decision model
parameters are known a priori. This assumption conflicts with the real world assumption

128

that the nature of any behavior change is not known until the change occurs. We have
demonstrated that under real world conditions, the optimal policy will not call for a new
partition before change is observed. It is not necessary then to have a priori knowledge of
all decision model parameters, we may estimate the parameters at the time that change is
observed. '

Chapter 10

Conclusions

Simulation is one of the most important and widespread uses for computers today.
As multi~processor computer systems become more common, finding an automated means
of partitioning complex simulations for parallel execution emerges as an important prob—
lem. In this thesis we have laid the foundations for a treatment of this problem, proposed
a simulation partitioning algorithm, and developed an optimal repartitioning decision
process. In this final chapter, we summarize our results, discuss the relative strengths and
weaknesses of our approach, and identify issues that should be addressed in our future
research. We then outline our conclusions, and ruminate on the significance of our work.

10.1. Summary of Results

The work presented in this thesis provides a firm analytic framework in which the
problem of partitioning a simulation can be studied. We provide tools for modeling and
analyzing the run—time behavior of a distributed simulation, and argue that the behavior
and analysis of a running distributed simulation is best treated statistically. We propose a
statistical partitioning algorithm, and we formally examine the issue of dynamically par—
titioning a simulation.

We now highlight the contributions made by each chapter. Chapter 2 proposed a
model of simulations which, unlike previous models, lends itself to a certain amount of
quantitative analysis. It also identified a set of execution sequencing rules which were seen
to be the basis for synchronization in distributed simulations. Chapter 3 made the
important observation that a simulation’s run—time behavior is complex. It showed how
to deal with this complexity in the event that the simulation behaves cyclically. It aiso
placed the analysis of running simulations on firm mathematical ground by modeling a
running simulation as a Markov chain. It also observed that the performance of a parti~
tion has to be treated in terms of its average behavior. Chapter 4 explored the relation-
ship between synchronization and the cycle execution time. It defined a number of graphs
which express the synchronization needs of the simulation. The importance of these
graphs is refiected by their continual application throughout this thesis. Chapter 4 showed
how synchronization in a distributed simulation can be modeled: this is an important
result in that synchronization plays a large role in determining the overall execution time
of a distributed simulation. Chapter 4 aiso showed how a given cycle’s execution time can
be estimated. Chapter § analyzed the probabilistic behavior of a running simulation. The
importance of this work is, paradoxically, that extremely restrictive assumptions must be
made to proceed with a tractable mathematical treatment. While the analysis given has
some use, the real contribution of this chapter is that static probabilistic analysis is not a
reliable means of predicting a simulation’s behavior under some partition. Chapter 6 fol—
lows naturally from Chapter 5; if static analysis is not reliable, then we will have to use
statistical analysis. Chapter 6 shows that a statistical approach is well-founded, and
identifies an appropriate statistical technique for this analysis. Chapter 7 develops a
theory of comparing the performance of two partitions qualitatively. This theory is the
basis for achieving computational savings when searching for the better of two partitions.
We show that these results are applicable in an important application area. Chapter 8
proposes a statistical partitioning algorithm. This algorithm and the analysis of the

129

130

partitions it produces show how tools developed in earlier chapters can be used. An
empirical study of the partitions produced by this algorithm show it to be effective.
Chapter 9 develops an optimal dynamic partitioning decision process. This work is quite
important; this thesis shows that we must treat partitioning in a statistical context, which
leaves our partitions vulnerable to radical changes in the simulations behavior. We have
shown how to optimally deal with this problem.

10.2. Strengths and Weaknesses

We now reflect on the relative strengths and weaknesses of our research. Chapters 2,
3 and 4 develop a model of running simulations, The outstanding strength of this model is
its tractability: we can calculate any given cycle’s execution time under hyper-message
synchronization. This tractability has come at the cost of generality. The most prominent
among our simplifications are the assumptions of non—interference among evaluations of
the same functional, fixed logical delays for functional evaluations, and cyclic generator
inter—evaluation times. We have not discovered any reasonable means of relaxing the
assumption of non-interference. Even if a simulation’s behavior does not satisfy this
assumption, it is possible to model the behavior as though there is no interference. The
assumption of fixed logical delays is quite critical to the approach developed in this thesis.
If we allow the logical delays to vary, we can no longer build the work graph or any of
its derivatives. We see the problem of relaxing this assumption as the major burdle in
extending our work. We will discuss some of our ideas concerning the relaxation of this
assumption in the next section of this chapter. The assumption that the simulation has a
cyclic nature is fairly common (e.g. regenerative simulation [Hel79, MeH82D and there are
ways of defining cycles other than the way we've proposed. Our proposed method is more
in keeping with the simulation of logic networks than with, say, quening networks.

The strength of the material developed in Chapters 2, 3, and 4 is thus seen to be its
tractability. The weakness is the simplifying assumptions prerequisite to that tractability.
However, these simplying assumptions can be defended as being acceptable modeling
assumptions.

Chapters S, 6 and 7 use the model developed in earlier chapters to analyze the per-
formance of a partitioned simulation. We have already pointed out the weakness of the
exact probabilistic analysis: it requires very restrictive assumptions. But this same obser—
vation is the strength of the statistical analysis; we can analyze the system statistically
even if the underlying probability structure is extremely complex. The strength of our
work in qualitative analysis is that it provides a probabilistic base for a statistical
approach to qualitative comparison. The major weakness in our development of statistical
analysis is that we have not addressed all of the issues that might be raised. For example,
our treatment of the Bayesian priors is incomplete, and we have not addressed the issue of
how many observations we should collect for analysis. Our omission of these issues can
be defended on the grounds that their investigation constitutes major efforts which are
tangential to the overall focus of this thesis. ‘

Thus the strength of our developments in Chapters 5, 6, and 7 is in the provision of
mathematical techniques which we can use to analyze and compare the performance of
partitioned simulations. The weakness in our approach is that we have not addressed all
aspects of a statistical approach. We identify the furthered investigation of these aspects
as an important next step in our research.

Chapter 8 proposes a partitioning algorithm and studies the performance of parti-
tions created by this algorithm. The strengths of the material developed in Chapter 8 are
twofold. Qur heuristic and its analysis demonstrate concretely how the analytic tools
developed in earlier chapters can be applied to a partitioning algorithm. Furthermore, our
heuristic is useful because the partitions it produces are effective. The major weakness of

131

this material is its incompleteness. We present the results of studying two complex simu—
lation systems; clearly a more exhaustive study is called for. Variations on our algorithm
should be considered, as should entirely different approachs to partitioning. The continua-
tion of algorithm development and study is premiere on our list of future research efforts.

Chapter 9 completes our study of statistical partitioning by developing an optimal
repartitioning decision process. The strength of this decision model lies in the protection it
affords a statistically partitioned simulation. Our development of this decision process has
two weaknesses. One is inherent in the model; certain parameters of the model are
difficult to determine exactly. Nevertheless, these parameters can be estimated, so that the
decision model is usable. The second weakness is the lack of any performance analysis of
a simulation using the decision process. While we can defend this omission on the grounds
that the decision process is optimal (given the modeling assumptions), we do think that a
performance study would further our understanding of this decision model and the sensi~-
tivity to its parameters. Such a study joins our list of future research efforts.

10.3. Future Research

Throughout this thesis, we have identified areas that we feel merit further research.
We summarize these areas in their order of importance.

(i) Relax model assumptions, Some of the assumptions in our model are res—
trictive. We will investigate ways of relaxing these assumptions, and the
implications of doing so.

(i) Characterize simulations amenable to partitioning. It is fruitless to distri—
bute a simulation if its internal structure prohibits it. We need to
develop ways of analyzing a simulation to determine its suitability for
parallel execution. '

Gii) Algorithm development and testing. We should continue developing and
testing static and dynamic partitioning algorithms.

(iv) Further statistical work. We should take a closer look at means of deter—
niining Bayesian prior distributions, and the sensitivity of our model to
changes in the prior. We should address the issue of how many observa—
tions are needed to produce an acceptable partition.

We sketch our ideas about each of these areas.

Many simulations’ components do not have constant logical delays associated with
them. An important extension to our work would consider ways in which we could treat
such simulations. By relaxing the assumption of constant delays, we lose our ability to
numerically analyze the work graph and its derivative graphs. We could define
corresponding graphs, but they would certainly be too large for computational purposes.
It may be possible to circumvent these difficulties by concentrating on the behavior of the
simulation during the observed cycles. Given an observed c¢ycle, we would define a graph
corresponding somehow to the hyper—execution graph. Ideally, the length of the longest
path through this graph would be equal to the cycle execution time under some extension
of hyper—message synchronization to this system. Our statistical analysis could then be
concentrated on this graph rather than the hyper-execution graph. One possible graph is

132

defined as follows. The nodes of the.graph are the functional evaluations during the cycle.
We suppose that every functional’s minimal logical delay is known, so that the minimal
time between an evaluation of T; and a (transitively) subsequential evaluation of T'; can
be calculated. Then a work node W =(t,T;) has an incoming arc from every node
V ={(s,T;) such that s < ¢, and the difference between Vs logical completion time and
W’s logical initiation time is greater than the minimal time it takes an evaluation of T';
to affect an evaluation of T;. Such a graph expresses precedence which must be satisfied;
we hope that it expresses ail of the precedence which must be satisfied.

After relaxing our model assumptions, we should be able to treat a more general
class of simulations. We can then consider the problem of analyzing a simulation for the
possibility of parailel execution. This analysis will still have to be statistically based. It
could be based on a better theory of lower bounds on execution time. It will certainly
have to take into account the synchronization needs of a distributed simulation. We will
probably need a more finely tuned mechanism for specifying when a functional’s state
change must affect the state of another functional (this would come out of relaxing the
model). We will need to look at the collection of observed cycles and consider the varia-
blity in the cycle behavior. Too much variability probably defeats a static partitioning.

A promising different approach to partitioning is hierarchical partitioning. A model
of simulation like DEVS [Zei84] defines the simulation in structured levels. Such structure
should give a partitioning algorithm further information about the nature of the simula—
tion. A hierarchical model of simulation might lend itself to a top—down approach to
partitioning rather than the atomic-level approach we have examined. A hierarchical
approach would probably be easier to implement in a simulation system than an imple~
mentation of an atomic—level approach.

We also need to examine the sensitivity of our dynamic repartitioning decision pro-
cess. Determining the optimal decision policy can be computationally expensive, and it
may be that we can easily approximate the optimal decision thresholds (for example,
choose 7, = .99 for all n) without serious consequence.

To complete our proposed statistical approach, we should take a formal look at
determining how many cycle observations are "enough”. The theory of sequential analysis
might be applicable to this problem. We should aiso determine whether any significant
gain is achieved by using prior distributions other than the uninformed priors. If so, we
need to automate the construction of the prior distributions.

10.4. Conclusions

The single most important conclusion we offer in this thesis is that simulations need
to be statistically partitioned for parallel processing. Towards this end, we have
developed models, algorithms, and means of analysis to support statistical partitioning.
The bulk of our work is independent of any particular partitioning algorithm; we have
provided an analytic framework in which the partitioning and analysis of distributed
simulations can be approached. This work is prerequisite to any development and analysis
of simulation partitioning algorithms. This work is also prerequisite to any analysis
which determines whether or not 2 simulation is even ameanable to parallel execution.
The automated partitioning of simulations for parallel processing is the next logical step
in the study of distributed simulation; our work is thus an important step furthering this
field of study. We next argue that our work is important in a more general context.

An abstracted view of our partitioning problem sees the issue as one of placement.
We need to place "entities" in "places” 50 as to improve some measure of performance. The
entities are related to each other in a non-static way, and the costs associated with the
way we place the entities are also dynamically changing. The dynamic behavior of these
relations and costs is too complicated to statically analyze, so we propose to observe the

133

dynamic system, and make our placement decisions on the basis of these observations. We
note that this scenario describes systems other than distributed simulations. For example,
[Sta84a)] discusses the problem of program restructuring to reduce page faults; this problem
fits in the described scenario (although it lacks the parallel component of our problem).
Synchronization requirements are not unique to distributed simulation; some variation of
our approach could conceivably be applied to partitioning some larger class of general
programs.

In this thesis we have examined the issue of automatically partitioning a simulation
for parallel execution. We have provided algorithms and means of analysis to deal with
this problem. In one sense, our work is theoretical, as attested to by the plethora of
definitions, lemmas and theorems. Still, this theory has been developed with a practical
goal always in- sight. The work presented here is focused entirely on problems related to
modeling, analyzing and partitioning distributed simulations. While this work is impor-
tant in the context of distributed simulation, it is also applicable to a larger class of prob—
lems in computer science. Further research efforts will continue our development in the
context of distributed simulation, and will aiso investigate means of applying our
approach to more general problems.

Appendix A

Numerical Solution Techniques

In Chapter 9 we demonstrated the existence of probability thresholds 7, which
define the optimal stationarv repartitioning decision policy. For this result to be of practi-
cal use, we must be able i~ determine these thresholds. A useful closed non—recursive
solution is not generally poss:ble, so we consider a numerical solution. ‘We first discuss an
exact recursive solution procsdure, and note that the nature of the problem prohibits us
from using this procedure for very many recursive steps. Next, we demonstrate how one
plcc function may be optimally approximated with another for any desired degree of
accuracy. We then propose a comprehensive approach to the approximation of the m,, and
show that the overall error in the optimal cost functions can be made as small as desired.

Exact Segment Endpoint Mapping

We first show how to numerically find the thresholds 7, in such a way that the
only error is due to digitizing real numbers. We also show that the nature of the problem
prohibits the general use of this procedure.

Lemma 9-3 shows that for every n, both V(< - ,n>) and ECC(< - ,n>) are piece-
wise linear functions of p. In theory, we can represent these functions by their sequence
of (two~dimensional) linear segment endpoints {p,f (p)). We next develop a procedure
which exactly determines V(< - ,n >)'s segment endpoints given V(< - ,n+1>)'s segment
endpoints, Discussion of this procedure is aided by naming the domain component of
these endpoints.

Definition A-1t Domain Trunsition Point

Let f be a piecewise linear function of p, and let py be a point in f’s domain
such that

Flpo) =mypo+ b,

=mypy + b

for some m, ® m,and b, # b,. Then p, is said to be a domain transition point,
and the two—dimensional point (p,f (p)) is said to be a segment endpoint for f .0
and 1 are considered to be domain transition points, and (0,f {(0)) and (1, f (1)) are
considered to be segment endpoints.

G

We are principally int:.:sted in characterizing V(< - ,n>)s linear segments as a
function of V(< p,n+1>7s. * » recall that

134

135

V{<p.,n>) = min{ECC(<p,n>), ECT(<p,n>)}

and that ECT(< - ,n>) is simply linear in p. We need then to consider ECC(< - ,n>)'s
linear segments as a function of V(< - ,n+1> s, The first step is to identify the value of
ECC(<p,n>)at p in terms of values of V(< - ,n+1>).

Lemma A-1: Let p € [0,1], and suppose that m,,b,,m,, b, are numbers such that

V(<p(pln+1>) = mypf(p) + b,

and
Vi<p®(pln+1>) = mypi(p) + b,.
.Then
ECC(<pn>)=mgyp + b,

where

my=G + (1= $H[t = Bm + Brms| + (1 — o — HB, — b)) (A-D
and '

by=¢r [(1 - Bym,+ Bm 2] + ab,+ (1 —a)b, (A-2)

Proof: By the definition of ECC(<p,n>) we have .
BCC(<pa>)=pG + ¢<(p) |m,-pc(p) + bI] + (1 = g (p D mapt(p) + b} (A-3)

The expressions given for m, and bj follow directly by expanding p°, p°, and ¢°
into their expressions as functions of p, and then algebraically collecting
coefficients of p.

O

The nature of ECC(< - ,n'>)'s linear response at p depends on the nature of the
linear responses of V{< +,n+1>) at p°(p) and p°(p). To determine ECC(< - ,n>)s seg~
ment endpoints in terms of Vi< n+1>)s segment endpoints, we need to consider con-
sider how p°(-) and p¢(-) behave as functions of p.

Lemma A-2: p°(-) and p®(-) are increasing continuous functions of p.

Proof: The continuity of p°() and p®() follow from the observation that both
the numerator and denominator in their respective quotient forms are continuous,
and that the denominators are never 0. Equation 9-6 gives the derivative of
p°(+) with respect to p; this derivative is positive over {0,1]. Precisely the same
treatment can be made to the function p°(:), yielding again a positive first
derivative. Both p°(-)and p°(-) are thus increasing and continuous.

0

136

By the closure of continuity under functional composition, it follows that
V(<pe(-)n+1>) and V(<p®(-)n+1>) are continuous functions of p. From this, we
observe
Theorem A-1: Let pel01]l, and let m,b be numbers such that
ECC(<p,n>)=mp +b. If neither p(p) nor p%(p) is a domain transition
point for V(< «,n+1>), then there exists a maximal interval {{, u] containing p
such that ECC{(<q,n>)=m-q + b for all q €[Z, u).

Proof: Let I° and u® denote, respectively, V(< n+1>)s greatest domain transi—
tion point less than p°(p), and its least domain transition point greater than
p(p). Similarly define I° and u® for p¢{p). It follows that there are numbers
my, by, my, by such that

Vi<pa+i>)=myp+b; for all p eli°uc]
and
Vi<pna+1>)=myp + b, for all p €[1°uF]

Now let §f be the solution to the equation

P8 = 1°
and let 85 be the solution to the equation
pe(8) = uc.

The increasing continuity of p°(-) ensures that if p €{8f,8;], then
p°(p) eli®, u] Furthermore, [8f, 8] is the largest interval such that

p €[8f, 851 => Vi<p(phn+1>)=mp(p)+ b,

We similarly define an interval [87,8¢] by considering’ p°(p), and note that it too

is maximal. Then let [= min(8f, 8f) and u = min(8Z, 85). By construction, for
any p €ll, u] we have

Vi<p(pln+i>)=myp + b,
and
V{<p(pln+1>) = myp + b,
Thus, by lemma A-1, there exists m, b such that
-ECC{<pn>)=mp+b

for all p €[l, u]. Furthermore, {I, u]is the largest interval for which this is true.

0

We see that to find ECC(<p,n>)s domain transition points (and hence its s:gment
endpoints), we simply find those p that are mapped by either p° or p° onto
V{< - ,n+1>)s domain transition points. We state this observation as a corollary.

137

Corollary A-1: Let T be the set of all V(< -,n+1>)s domain transition points,
and let @ be the set of all non-negative solutions to either of the following
equations

plg)=t forteT {(A-4)

pilg)=t forteT. (A-5)
Then Q is the set of all domain transition points for ECC(<p,n>).

B

Once ECC(< +,n>)s domain transition points are identified, the piecewise linear
structure is revealed. Each segment’s linear coefficients is determined by lemma A-1. We
can store these endpoints in a linear list, ordered by value of the domain transition points.
‘We can achieve this sorted order by exploiting the increasing nature of p° and p°. We
may suppose that V(< - n+1>)s domain transition points are sorted. We first calculate
all of ECC(< - ,n>)s domain transition points generated by equation A—4. We use an
increasing sequence of ts in this process; the increasing nature of p° ensures that the
sequence of solutions is increasing., The same reasoning applies to the domain transition
points generated by equation A-5. We can then merge the two increasing sequences to
produce all of ECC(< -+, >)s domain transition points in increasing order. If
V(< - ,n+1>) has D domain transition points, then ECC(< -,n>) has as many as 2-D;
the computational complexity of determining ECC(< - ,n >)s domain transition points is
seen to be O(2-D).

Our ultimate goal is to determine the linear segments of V(< + ,n>). V(< ,n>)s
linear segments are the same as ECC{(< - ,n>)s whenever
ECC(<p,n>) € ECT(<p,n>). ECT(< -,n>)is known to be linear; given the function
V(< - ,n+1>) it is easy to calculate ECT’s linear coefficients by means of equation 9-5.
We determine ECC(< - ,n>)s domain transition points 8; and 8§, between which ECT
intersects ECC, and calculate the domain point 7, at which they intersect. All of
ECC(< + ,n>7s domain transition points less than #, are domain transition points of
V(< - ,n>) w, and 1 are the only other domain transition points of V(< - ,n >).

We have shown how to numerically determine the thresholds w, without error
(other than that error inherent in digitizing real numbers). If V(< -,n>) has D domain
transition points, the complexity of this procedure is O(2-D); while the procedure is com—
putationally efficient in the number of domain points, the number of domain points may
double at each step in the recursive solution. Finding w7, exactly thus has complexity
O(2¥ ™), We consider next an approximation technique to use in place of the exact solu—
tion.

Approximating plcc Functions

Since an exact solution of the w,’s is not always feasible, we must use approxima—
tions. We next consider approximating a plcc function having k segments by a plcc
function with j segments, j € k. The approximation method is shown to be computa-
tionally optimal within a certain class of approximations.

Qur proposed technique approximates a concave piecewise linear function with
another concave piecewise linear function such that (i) the error is bounded by €, and (ii)
within a class of approximations, ours uses the minimal number of linear segments neces—
sary to bound the error by €. We first define the class of approximations on which it is
optimal.

138

Definition A-2: Interior Approximation

Let g be a plec function, and let @ be a piecewise linear approximation to g such
that if {p,a{p)) is a segment endpoint of a, then a(p) = g{p). We say that a is
an interior approximation to g.

O

One prime motivation for using an interior approximation is that it will preserve
concavity. Not all approximations will, as shown by figure A-1. Our proof that interior
approXimations are concave uses the concepts of the interior and exterior of a functional
graph.

Definition A-3: Interior of Functional Graph

Let g be a function on [0,1], and let x € [0,1]. A two-dimensional point (x,y} is
said to be in g’s interior if y € g(x); otherwise (x,y) is said to be in g’s exterior.

0

Lemma A-3: Let g be a concave function on [0,1] and let a be an piecewise linear
interior approximation. Then a is concave.

Proof: Suppose not. Then there exist py, p3, and A in [0,1] such that
allpy+ (1= Arpa) > Nalp)+ (1 — Na(p,h

Geometrically, this means that there is a chord on a’s function graph that exceeds
a over some interval (x,,x,) where a and the chord intersect at both x and x,.
Since a is piecewise linear, its two intersections with this chord must lie on two

* different linear segments. Consequently, there is at least one of a’s domain tran—
sition points ps in (xy,x5). But, a{ps) = g(ps) by construction; hence the chord
exceeds g's graph over some subinterval of (x,x;) as well. The concavity of g
ensures that a(p) € g(p) for all p, consequently the chord endpoints (p,a{p,))
and (p,, a(p,)) lie in the interior of g’s functional graph. A straight line between
any two points in the interior of a concave function’s graph must remain in the
interior. Thus there is a contradiction, having already shown that part of the
chord lies in g's exterior. a is therefore concave. Figure A-2 illustrates this ar-
gument.

0

A piecewise linear interior approximation a of the plcc function g can be thought
of as a sequence of intervals over which g is approximated by a straight line forming a
chord to g’s function graph. We call this straight line a first order approximation, and
‘call its domain an approximation interval. We first consider where the maximal error in
such an interval occurs.

139

T LYY

function ~ approximation

Non—Concave Approximation

Figure A-1

X, Ps X

Lemma A~3

Figure A-2

140

Lemma A-4: Let g(-) be a plec function on [Z, u], and let
alpl=mp + b

be a first order approximation to g on [{, u]. Among all of g’s segments on [, u},
let mq be the least siope greater than or equal to m, and let (xo,g{xo)) denote the
right endpoint of this segment. Then the error g(p) — a(p) on [, u] is maximized
at Xo.

Proof: Consider any segment .of g over [f, u] with slope m, 2 m; let [I, u.] be
the domain interval of this segment. Let p ¢ [Z; .], and consider the difference

gp)l—alp)=myp +b, —mp+b

={m;, —m)p + (b, — b,

The expression above shows that the error is an increasing function of p. It fol-
lows that the error at w, is greater than or equal to the error at I,. An entirely
similar argument shows that if m, < m, then the error at /; is greater than the
€rror at ¥;. The result follows by observing that the sequence of slopes of g's seg—
ments from ! to u is strictly decreasing, a result of g’s concavity.

O

Given the left endpoint of an approximation interval, our technique will find the
unique right endpoint such that the maximal error of the resultant first order approxima-
tion is exactly €. To show that this technique is feasible, we show that the maximal error
over an approximation interval is a continuous, strictly increasing function of the right
interval endpoint. The first step is a demonstration that the slope of the first order
approximation is strictly decreasing in the right endpoint.

Lemma A-S: Let g be a plcc function, and let a(- lu) be the first order approx—
imation over [/, #]. Then for fixed I and u large enough that a # g somewhere
on [Z, u], the slope of a(- lu) is a continuous strictly decreasing function of u.

Proof: The slope m(u) of a(- lu)is given by

mle) = Eﬁ‘i——j‘j@ (a-6)

The continuity of m(u) follows immediately from the continuity of its consti-
tuent numerator and denominator. Now the derivative of m(u) with respect to u
is

im(u) - w —1rm, —(glu)— g
du {u—17

where m, is the slope of g at gu). Whenever g and a are not identical on [¢, u],
the concavity of g forces m, to be strictly less than m{u); it follows from equa—
tion A~6 that the numerator of the derivative above is less than 0. Since the
denominator is positive, m(u) is decreasing in u.

141

a
An immediate implication of this Iemma is stated as a corollary.

Corollary A-2: For fixed [and fixed p >1l,alplul)isa contmuous decreasing
function of .

O

Next we show that the maximal error over an approximation interval is a continu-
ous, increasing function of the right endpoint.
Theorem A-2: Let g be a picc function on [0,1], let 0 £ [< 1 be fixed, and let
v(u) denote the maximal error of the interval approximation a(- ,l,u) over [Z, u),
I < u. Then y(u) is a continuous, increasing function of «.

Proof: For any u, the error y(u) is given by
v(u) = molu)xgu) + bolu) — alxolullu) (A-7)

where mo(u) and bglu) are the parameters of g's segment over each of which the
maximum error occurs, and xo(u) is its right domain endpoint. As u increases,
mo(w), bolw), and xolu) are constant so long as mo(u) remains the least of g’s seg—
ment slopes greater than m(u). On intervals [u;u,] such that melu), bolu) and
xo(u) are constants, equation A~7 shows that y(x) is increasing, since a(xou)lu)
is decreasing. To complete the proof, we need only show that y(u) is continuous
at points us where mo{u) changes. mo{u) changes precisely g’s segment to the im~—
mediate right of the one defining mo(u) has a slope equal to the slope of the first
order approximation. The approximation and this latter segment are then parallel,
so that the error is uniform across the segment. In particular, the error is equal at
this segment’s two endpoints, making the error continuous at us.

0

We use the fact that the approximation error is a continuous increasing function of
the right endpoint to show that we can pick a right endpoint so the the maximal error is
exactly €.

Lemma A-6: Let [be fixed, and let [u,u,] be an interval such that
(i) g is linear on fu;u;),

Gi) ylup) < € € ylu,)
Then there exists a point #, € [u;,u,]such that y(z,) = e.

Proof: The existence of such a point follows directly from the continuity of
¥(-). We show how to construct the point . We suppose that gu) = mwu + b
for u € [uu,], and suppose that the segment endpoint at which the maximal error
occurs is (xo,y0). We let (1,y,) be the left endpoint of the first order approxima-—

142

tion. Given u as the right endpoint, the slope of the ﬁﬁrst order approximation is
given by
' : mu+b -~
mu) = E T2 7N
u -1

and the intercept by
blu) =y, — m@u)i
The error is given by
viu) = yo‘w m(u)xy + bu)

and through simpie algebraic rearrangement, we solve the equatiozﬁ ¥,) = € for
i, to ind
" ""'l'(y; + Yo E} - b‘(x.g + 1)
B TGt Dm —(y, + yo—©

]

We can now describe our approximation technique. Given a plcc function g on [0,1],
and desired accuracy of €, we take O as a left endpoint. In increasing order of i, we exam~—
ine g’s ith smallest domain transition point x;, calculating the first order approximation’s
maximal error over [0,x;]. We thus identify the least x; such that the error over [0,x;]
exceeds €. We know then that the interval [x;_;,x;] contains a point x, such that the max-
imal approximation error over [0,x,] is exactly € : we use lemma A-5 to calculate this x,.
We choose x, as the interval’s right hand endpoint (and the next interval’s left endpoint).
This procedure is repeated until the entire interval [0,1} is covered by approximation
intervals.

We demonstrate that the complexity of this procedure is linear in the number of g's
domain transition points. Consider the behavior of the algorithm in determining one
interval endpoint. We can use a pointer maxp to point to the segment endpoint defining
the maximal error, and a pointer nxtp to point at one of g's domain transition endpoints.
Initially, both pointers are set to the interval’s left endpoint, [. Iterating on i, g’s next
domain transition point x; is examined, and the siope of the first order approximation on
{f, x;] is calculated. The segment defining the maximum error over this interval cannot
lie to the left of the current position of maxp, since the slope of the first order approxi-
mation is decreasing in its right endpoint, The slopes of segments to the right of the one
pointed to by maxp are scanned until the appropriate one is found. The maximal error on
[Z,x;] is calculated; we iterate again on [if this error is less than €. Once the interval
holding the right endpoint is found, determination of that endpoint requires constant cal—
culation. In the course of finding x, then, each of g’'s domain transition points in [T.x,]is
scanned at most once by maxp and exactly once by nxtp. It follows that the complexity
of covering [0,1] with approximation intervals is linear in the number of g’s domain
transition points.

Another useful feature of our proposed approximation technique is that it minimizes
the number of approximation intervals necessary to bound the maximum error by €. The
demonstration of this fact is aided by the following definition.

143

Definition A-4: Minimal Segments in Interior Approximation

Let g be a plcc function on [a,b], and let € 2 0. Then N [la,b]) denotes the
minimal number of segrents required by an interior approximation to g on [a,b]
to bound the maximal error by €.

0
Then we have the following.

Theorem A-3: Let g be a plec function on [0,1), and let a be the interior approx—
imation constructed by the proposed technique. Then for every €, e has exactly
N {[0,1D linear segments.

Proof: Let x, -+ ,x, be the sequence of interval endpoints chosen by the approx—
imation technique. We inductively show that for every k =1, - - ,n,

(i) Ne({O,xk D = k;
(i) For every 8 > 0, N([0,x;, + 8)D > k.

As the induction base, we consider k¥ = 1 and observe that both conclusions are
immediately satisfied. For the induction hypothesis, we suppose that the conclu—
sions are true for some k—1. By the induction hypothesis, [0,x; —;] is minimally
covered by k-1 segments. The construction of x; ensures that the maximal error
on [x;_;x] is precisely € whence we have N 0.x. D < k. But
N ([0,x;_; + 8] > k~1 for any 8§ > 0, so we must have N ([0,x,]} = k. To show
that conclusion (ii) is true as well, pick & > O and consider any interior approxi-
mation of g on [0,x; + 8] whose maximal error is bounded by €; let y, be the left
endpoint of the approximation segment whose right endpoint is x; + 8. We show
that y; > X;-;: we have shown that 2 first order approximation’s error is increas—
ing in its right domain endpoint; entirely similar arguments establish that this
error increases as the left domain endpoint decreases. The fact that y, > X -
then follows from the observation that the maximal error of the first order ap—
proximation to [x;_;,x;, + 8] is greater than €. By the induction hypothesis,'we
nave N{0,5.]) = k; consequently, N {[0x, + 8] > k, completing the induction.
Conclusion (i) with ¥ = n proves the theorem.

2

Approximating 7, ‘
We now describe a comprehensive approach to the calculation of the thresholds .
We first outline the overall approach. We then describe a closed form solution for

V{(< -,n>) when m, =1, and finally show that the error between the true optimal cost
functions and their approximations can be made arbitrarily small.

144

Chapter 9 demonstrated that the continue decision is optimal if no change has yet
been detected. We suppose that change is first detected at time ¢. The full decision model
parameters can then be estimated, and the decision thresholds 7, for n 2 t can be calcu—
lated. Starting with n = N, some initial number of thresholds oy, - Fy.z can be
determined exactly as previously shown. The remaining thresholds Wy .z~ * 7, Will be
approximated. We suppose an error tolerance € has been chosen; let € be ka—“t- The
proposed approximation procedure is now described recursively. We consider the function
V(< - ,N —k>) to be its own approximation. Then for each i, N —k >i 2 ¢, the
approximation technique takes the approximation to V(< - i +1>) and uses the exact seg-
ment mapping technique to approximate functions ECC(< + i>) and ECT(< - i>). The
approximation of ; is taken to be the intersection of these two functions. Then, in order
_ to reduce the number of domain transition points, we take the optimal interior approxi-
mation of this first approximation to V(< +,i>), forcing the maximal error between the
first and second approximations to be precisely €. It is important to note that & bounds
the error between the two approximations of V{< -,i>): it does not bound the error
between the true V(< -,i>) and either of these approximations. The domain transition
points of the second approximation to V(< -,i>) are used to approximate
ECcC(< - ji—1>)and ECT(< - i—1>), and so on.

Our derivation of the optimal policy structure showed that N — K + 1 was a criti-
cal threshold in time: for all n 2 N — Ko+ 1, 7, =1; it is equivalent to say that
V{<p,n>)= ECC(<pn>) for all such n. This knowledge allows us to derive a closed
form expression for V{< - ,N —K y+1>); the exact numerical solution phase of the calcu—
lation can then begin atn = N — K,

Le_mma A-T:

)N -k G+2)N —-K 0+1

-1"(1_“;’ +N—K0+1-(1~—¢}1_(l"¢’

V(<p,N~Ko+1>) = G-|p 3

Proof: For p € [0,1] we define the operator (p), by
W (pk=p;
G (pr=p({p)y)forn >0

We briefly note that for any n this operator is linear in p, a fact easily shown by
induction. We now inductively prove that for j € Ko —1,

ECC(<p,N — j>)=G-$ (p). (A-8)
=0

We use j = 0 as the induction base, and note that the equation above reduces to
p'G as required. We suppose that equation A-8 is true for some j -1 < Ko~ 1,
and consider the function

ECC(<p,N ~ j>)=pG + E,[<p,N —(j—~1)>]

=pG + ¢*(p}ECC(<p*(p)N — (j—-D>) + g*(prECC(<pf(p) N — (j—1)>)

145

= pG + ¢ ENC T () + NG T (p5(p));
i=0 i=0

- .
=pG + G-J}: p ((p)) by linearity
i=0

=6-$(p)
i=0

which completes the induction argument. The lemma’s conclusion follows from
the identity [Knu73]

n . I_xn-H
> &= -——— when x #1
=0 l1—-x

and some algebraic rearrangement.

a

The proposed approximation procedure asks that the user supply a desired error
bound €; the approximation procedure then forces the maximal error between a function
s . s €
and its interior approximation to be exactly € = Nk We next demonstrate that the
proposed procedure does in fact bound the total error in the optimal cost function by &.

In the course of the approximation process, the function V(< « ,n >) is approximated
twice. The first approximation is denoted by AV (< - ,n>), and is the one used to approxi-
mate m,. AV{< -,n>)is then itself approximated by the optimal interior approxima—
tion, denoted by AV, (< - n>). AV, (< - ,n>) is used to create AV(< - ,n—1>), and so
on. Lemma A-8 shows that the approximation error in any optimal cost function is
bounded.

Lemma A-8: Foreveryi = N -k, N -k -1, ---, and every p,

| Vic<pi>)— AVI(<pi>) € (N -k —i)e,
Proof: We induct on i, using { = N — k as a base. AV(< - ,N—k >) is identical
to V(< - ,N—k>), as AV(< - ,N—k>) denotes the function obtained from an
exact segment mapping of V(< + ,N—k+1>). The induction base is thus satisfied.

We suppose that the conclusion is true for some i +1, and consider the optimal in—
terior approximation o AV (< - n+1>). By construction, we have

JAV, (<pi+1>) — AV{<p,i+1>)] € g
for all p. Then

| AV, (<pi+1>) — V(<p,i+1>)] = (A-9)

AV, (<pi+1>) = AV(<pi+1>) + (AV(<p i+1>) — V(<p i+1>)|

146

< 1AV, (<pi+1>) = AV(<pi+1>)| + |AV(<pi+1>) — V(<pi+1>)]
Ce+N —k—i-1e

=(N —k —i)e,
Next consider the approximation AECC(< - i+1>) to the true ECC(< - i+1>)
AECC(<pi>)=pG + g (prAV, (<p*(p)i+1>) + ¢°(p)AV (< p(p)i+1>).
Fquation A~9 implies that

| (ge(p)V (< pc(p)i+1>) + g (p)V(<p¥(pli+1>)) —

(g°(p)AV, (< p(p)i+1>) — ¢(p)AV, (< p¥(p)i+1>)]

L q¢°(pHN —k —i)eg+ ¢°(pN — k —i)e&

=(N ~k ~i)g
so that for p less than or equal to the true {(unknown) 7; we have
|AECC(<pi>)—V(<pi>)| S N —k —i)e.
We can similarly show that for p greater than the true 7
|AECT (<pi>) —Vi<pi>)| S (W —k — i)e.
Thus we have
|AV(<pi>)~Vi<pi>) S (N —k —i)e

for all p, completing the induction.

i

The proposed approximation procedure does not attempt to bound the error on the
approximated r,. Given the approximations of ECT'(< ' ,n>) and ECT (< : ,n>) within
some error bound € we can construct upper and lower bounds 7}, 7% on the true m, as
illustrated by figure A-3 . Clearly, these bounds are sensitive to the slopes of the inter—
secting approximation segments. However, no matter what the approximated 7, are, we
are assured that the expected cost of the resuiting decision process is within € of the true
minimal expected cost. Even if the approximated m,s are wildly different from the true
ones, the bound on the cost function error ensures that

147

Error in Approximating 1,

Figure A-3

148

Appendix B

Sensitivity to G

An important parameter of our dynamic repartitioning decision process is the per
time step speedup from repartitioning, G. The true vaiue of G will not generally be
known. However, given bounds on the true G, we might choose a point estimate of G
between the bounds. Consideration of such a heuristic leads to a natural question: how
good are the resulting estimations of #,? In this section we treat this question, and find
the intuitive result that these estimations are as good as the bounds on G are tight. Let G*
bound G from above, and denote the w, generated by using G = G* by w;; similarly
define 7} for the lower bound on G, G'. The major result of this appendix demonstrates
general conditions under which the true m, are tightly bounded from below by w7, and
are tightly bounded from above by 7.

A caveat: our derivation of this section’s result uses a slightly different decision
model. We were not able to derive these same results for the model already described (we
will later identify thé missing steps which would provide the same results for this
model). We first describe this model, and then embed this model into a system in which
G is continuous. The optimal cost functions are shown to continuous and differentiable
(almost everywhere) in the parameter G. We then show that the point of intersection
(ie., 1,) between functions ECT (<p,n>) and ECC{<p,n>) is a continuously decreas—
ing function of G. Thus if we bound G from above and below, we know that the true
threshold 7, lies between the) given by the system using G's lower bound, and 7,
given by the system using G's upper bound. Furthermore, we can predict the relative
effect of using either pessimistic or optimistic point estimates of G: pessimistic estimations
lead to higher estimations of ,, while optimistic estimates lead to lower estimations of
Mo ‘

Changing the Model

The decision model of Chapter 9 is general and powerful. It is particularly useful in
its ability to model the continuation of the process after rejection of a newly calculated
partition. This same feature makes further analysis of the optimal cost equations very
difficult. Consequently, we now consider a slightly different model. Instead of allowing
the process to continue after rejecting a new partition, we require it to stop. If a new
partition is created and adopted, the same reward is earned as before. If a new partition is
rejected at time n, a penalty 7-G{N ~— n) is incurred; 0 < 7 X1. This penalty is seen to
depend both on the number of remaining decision steps, and on the gain G. The penalty
serves as an additional cost to help prevent premature repartition calculation decisions.

The optimal cost function equations for the new model are

Dy ~pGAN —n+D =D, | + 1= p)TGWN —n)

. (B-1)
V(<p,n>)= min pG + E[<pn>]

A complete analysis of this model could be made as before; the optimal policy for this

149

model is still characterized by a sequence o, * - - 7y . Of course, these thresholds need not
be the same as the ones for the earlier model.

A Larger System
The optimal cost functions defined by equation B-1 implicitly assume that the
parameter G is constant. We pow consider G to be continuous. To show the system’s
dependence on G, we include G in the state <p,n,G >. OQur first task is to show that the
functions V(<p,n,G >) are continuous and differentiable {almost everywhere) in G.
Lemma B-1: For every fixed n and every fixed p € [0,1}, V{<p.,n,G>) is a con~
tinuous and finitely piecewise linear function of G.

Proof: We induct on n, using n = N as the induction base. If p € 7y, then
Vi<p,NG>)=pG,
which is seen 0 be simply linearin G. If p > 7y, then
Vi<p,NG>)=D; -~ pG +p-D,,

which again is linear in G. For the induction hypothesis, we suppose there is a n
such that for all fixed p €[0,1}, V(<p,n+1LG >) is a continuous, finitely piece—
wise linear function of G. This assumption implies that for all fixed p the func—
tion E,[<p,n,G >]is a continuous finitely piecewise linear function of G. Thus
the function

ECC{<pnG>)=pG + E[<p,n,G>)]

is continuous and finitely piecewise linear by the closure of such functions under
addition. Equation B-1 shows that ECT(<p,n,G >) is simply linear in G. For a
given Gy, the definition of V{(<p,n,Go>) depends on the relationship of p to the
thresholds 7, (G) that arise from the use of G = Go. Both ECC(< - ,n,G >) and
ECT (< - ,n,G >) are continuous and finitely piecewise linear in G. As functions
of G then, they cannot intersect more than a finite number of times (if an inter~
val [G,,G,] occurs where the functions are identical everywhere on the interval,
we consider oniy the interval endpoints to be true intersections). Thus the
function min{ECT(<p,n,G>), ECC(<p,n,G>)} is continuous, and piecewise
linear with only a finite number of linear segments. This completes the induc—
tion argument.

G

Two immediate consequences of this last pbservation are stated as corollaries.

Corollary B-1: For every fixed n and every fixed p €[0,1], V(<p,n,G>) is
differentiable in G except at a finite number of points (a set of measure O).

O

150

Corollary B-2: For every fixed n and every fixed p € [0, 1], both the left handed
and right handed derivatives of V(<pn,G>) with respect to G exist.

0

The remaining analysis is concerned with the derivatives E%V(< p.n,G>) the
corollaries above state that these derivatives exist almost everywhere, and that the left

and right—handed derivatives {Bar76] always exist. We let it be understood then that for
any function F, —%F (<p.,n,G>) refers to the right~handed derivative, and so ensure
the existence of the derivative under discussion.

Segment Parameter Derivatives

We now focus on the partial derivatives of V(< - ,n,G >)s linear segment (in p)
parameters, the slope and intercept. The main thrust of this analysis demonstrates condi—
tions under which

4 : > .9
aGECC(<p,n,G >) Z aGECT(<p,n,G>).

The linear segments discussed here will always be the se%ments defined by consider—
ing V(< - ,n,G>) as a function of p. We define m{G) and b.(G) to be the parameters of
V(< n,G>)s segment with p = 0 as the left domain endpoint. We likewise define
mi(G) and bi(G) to be the parameters of V(< - ,n,G>)s ith segment. We let L denote
the number of segments V(< + 2,G >) has (letting L’s dependence on n be understood).
We identify ECC{< -+ ,n,G>)s segment parameters in a similar way: Mi(G) and Bi(G) ;
we let X enumerate ECC(< - ,n,G >)'s segments. These definitions cause a function’s ith
non—zero domain transition point to be the right endpoint for the ith segment, and the
left endpoint for the i +1st segment. Finally, we note that we may express the derivatives
of V(< +,n,G>)and ECC(< - n,G>)as

—éﬂG-V(<p,n,G >) = --a—m,’;{G)-p + éz—;—b,‘;(G) for appropriate i

aG
and
—é%—ECC(<p,n,G >) = E%-M,‘;(G)-p + %B};(G) for appropriate i.
Our first lemma shows that the sequence -é%m.,‘;((}) + -é%-b,‘;(G), i=12,---,L is
decreasing. |

Lemma B-2t For everyn,G,and{ =12, ---,L -1

..ﬁ.. i ...Q.. i "Q,, i+1 ,__a___ i+E .
aGmn(GH aGbn(G)Z 3G ™ G) + (‘)Gb" (G).

Proof: We induct on n, using n = N as the base. If 7y = 1, then V(< - ,N,G>)
is strictly linear in p and the conclusion is trivially satisfied. If wy < 1, then
V(< < ,N,G >) consists of two linear segments. For p € my, it is easily seen that

—é%m,&(c;) =1 s%bh‘r(G) =0,

For p > my, we have

LGy =1 D p26)=0
5G my 8G N
so that the induction base is satisfied. For the induction hypothesis we suppose
that the lemma’s conclusion is true for some n+1. We will first show that the se-

quence S%—M,‘;(G) + B%-B,‘;(G) is decreasing in i. Let q; be ECC{< -,n,G>)s
jth domain transition point (j = 0, K), so that M#HG) and Bi(G) define
ECC(< ,n,G>)s linear response for p just less than (and equal to) ¢,; M,/**G)
and B{*YG) define ECC(< - ,n,G >V's linear response at p just greater than (and
equal to) ¢;. Lemma A—1shows that these parameters are themselves constructed
from certain V{< * ,n+1,G >) segment parameters: let a and z be integers such
that m2,.(G) and b2, ,(G) define V(< - n4+1,G >)’s response at p arbitrarily close
to p°(q;) on the left, and m?.,(G) and b7, (G) define V(< - ,n+1,G >) response
at p arbitrarily close to p°(g;) on the left. Equations A~1 and A-2 construct
MIHG) and BJ(G) in terms of these parameters. Now, ECC{(< - ,n,G >)s domain
iransition points are directly related to V(< ' ,n+1,G>)s domain transition
points by way of equations A-4 and A-5 . If g, is caused by a transition in
V(< - ,n+1,G >) at p°(g;), then the resulting change in ECC(< - ,n,G >) param—
eters is effected by replacing m2,,(G) with m21HG) and b2,,(G) with b21HG) in
equations A-1 and A-2. Likewise, if ¢, is caused by a transition in
V(< - ,n+1,G >) at p®lg;), we replace m?,;(G) with m2{}(G) and b7,,(G) with

b71HG) . If V(< - ,n+1,G >) has transitions at both p°(g;) and p°(q,), then both
substitutions are made. By applying these observations to equations A-1 and A-2,
a minor bit of algebra reveals that

() If p°(q;) is a domain transition point for V(< - ,n+1,G >) and p®lq;) is not,
then

9 O pie)) - (9 1 ..53._ YY) =
(aGMj(G) + aGB Zi(ed); (aGMf"‘“ (G + =B/ UG =

(- g (—"Lm“(c) + é%b,;‘ﬂ(c)) - (—aﬁa metNG) + é%b,‘fi;‘((}))

2 0 by the induction hypothesis;

(ii) If p®(g;) is a domain transition point for V(< - ,n+1L,G >) and p°(g;) is not,

- then

_.6... _ﬁ_ — _ﬂ_ +1 _,a__ +1 —
(GGM»’(G)+ BAG)» (aGMJ G) + 3G B{*NG)

151

152

p-l(Lme, G) +

2 s ,fH(G))m(é%m,fi’f(G) + LpztG))

oG

Z 0 by the induction hypothesis;

(iii) ¥f both p°(g;) and p°(q;) are domain transition points for V(< - ,n+1,G >)
then

3, D piey — (B pri+ 8 p; -
(aGM,{(GH aGB,;’(G)) (aGM,{ YG) + BGB,{“(G))

(1~ B)-{(E%mgﬂm + é%—b,?ﬂ((;)) ~ (-é%m#I}(G) + é%bgi%((}))]

+ B

(*éaG'-m,fH(G) + E%b,fﬂ(G)) - (E%m,fi%(G) + —é%-b,fif((}))]

2 0 by the induction hypothesis.

Since g, was chosen arbitrarily, the sequence E%—M,i(G) + -5%-3,‘;(6),
i=12,+°",K is decreasing. ¥ m, =1, then ECC(<-,n,G>) defines

V(< n,G>) everywhere, and we are done.

We suppose that 7, < 1; V(< -,n,G>) has only one segment whose parameters
mi(G) and bi(G) are not identically M}(G) and BI(G): its last segment, defined
by ECT(< -,n,G>). To complete the proof of the lemma, we show that the

smallest possible value of ~ﬁ~M,; (G) + —ﬂ*B,’; (G) exceeds "ﬁwm,{*(G) + ——ﬂ—b,{“(G').

oG 8G aG oG
¥ V(< - ,n+1,G >) has exactly J linear segments, the induction hypothesis im-
plies that
‘-é%m;;ﬂ(m + -é%b;H(c} > E%m,{ﬂ(c) + é%bgﬂq;) (B-2)

for all i = 1,2, --,J — 1. As shown before, the sum E%-M,i(G) + -é%-B,‘;(G) can

be expressed by differentiating the sum of equations A-1 and A-2 : equation B-2
then implies that this sum is minimized by using m/.,(G) and 5].,(G) as the
constituent paramete:s in lemma A-1: ‘

O arx A x 9 8 .7
BGM”(G}+ GGb,,(G)?l-f- BGmRH(G)+ 6Gb"+1(G)'

153

The values of m7/,,(G) and b/,,(G) depend on the value of m,4. If w4 =1,
then V(< - ,n+1,G>) is simply linear with a known closed form expression

(lemma A-7). In this case, we have

Bt 6) + Lobd, (G =

aG oG
— (1 =) Fo*? g gy =K gl
1-a g) +N--Ko+1-—(1-—qf>)-1 a f
> 0.

If 7,41 < 1, then m),(G) and b/ ,,(G) are the parameters of ECT(< * ,n+1,G >);

that is,
éﬁ’am,{ﬂan + -éﬁéb,{+,<o) = S%m,{ﬂ(c)q + 6%’”{“(6)
= 5%—ECT(<I,n +1,G>)
=—{N ~n)

Regardless of the value of 7, ., we have

D arx L prigy) > - —
aGMn(G)-t-aGB,,(G)/—{N n—1.

The same argument that derives equation B—3 shows that
D) + L bUG) = —(N — 1 +
6Gmﬂ((;) aGb,,(G) (N —n + 1.
We therefore have

A 9 4 9.
aGM,{‘(G)»i» aGB;E(G)> aGm,%(G)-i— aGb,{"{G),

which completes the induction argument, and the proof of the lemma.

g

The next Jemma gives general conditions under which

8 > -4
aGECC(<,p,1'1,,G>) aG,E’(’L‘?I’(<p,n,(3'v>).

Lemma B-3: Suppose 7, 2 6foralln,and ¢N S 1. Then forallp 2 6

0 > -4
aG.I‘E.'CC(<p,n,G>) aGECT(<p,n,G>).

(B3}

154

Proof: Let py,-+-,py-y be V(< +,n,G>)s domain transition points {not 0 or D.
We first prove the following proposition:

For every n,and every i = 1,2, -, L—~1

D iy + Dp I i 4 O i+l
aGm,,(G)p; + aGb”(G) Z 6Gm,;“(G)p, + aGb" (G).

We induct on 7, using n = N as the induction base. The same observations that
establish the induction base of lemma B-2 show that this induction base is also
satisfied. For the induction hypothesis, we suppose that the conclusion is true for
some n+1. Let q,," - - ,qx denote ECC(< - ,n,G >)s domain transition points; we
first show that for every ¢,
5%1\4,;(5 Vg, + ',-é%—B,;"(G) > —B%—M,{*‘I(G)-qj + éﬁéggﬂ(c).
Choose arbitrary (non O or 1) g;. For a function F(p), we denote

& pg)=du

= m Flg)
oG 1 4G »—e ?
P<q

and

& rio) = Sy
aGF(q) GGEE;L Flg).
P>

Using these definitions, we note that
& nG>) = L MAG)e. + LB
BGECC(<q”n’G >) aGM,,(G)qJ + (‘)GB”(G)
and that
i A = D i)y, + B gl
aGECC(<q,,n,G>) aGM" (G)q’+aGB“ (G).

Again we let @ and z be integers such that mg,(G) and b7, (G) define
V(< - ,n+1,G >)s linear response at p arbitrarily close to p°(g;) on the left;
similarly, m2,,(G) and b7 ,,(G) define V(< + ,n+1,G >)'s linear response at p ar~
bitrarily close to p®(g;) on the left. If p{(g,) is a2 domain transition point for
V(< - ,n+1G >) and p°{g,) is not, then

—gaECqu_,-,n,G >)=gq; + qC(qj)‘—gaVkpC(q,_),n +1,G>)

+ ¢,)-géw <p¥lg In+1G >)

155

D.pa. (G)

=gy +q°(q1 -ﬁ-mn+;(G)p (qj)+ BG

+ 4%(g,) {E%mﬁ(c;)p (q,) + 5%— 1(0)]

Furthermore,
+ +
ﬂ«.E'f:c(<qj,n >)=gq; + qC(qj)--gEV(.<p°(qj),n+1,G >)

8G

+ qg(qj)'-géV(<p°—(qj),n +1,G >)

=g +q°(g,;)

E%m,fi';‘((?)'pc(qj) + -%-b::i%(@)*

+ g%(q,) [ecm,,ﬂ(G)-pc_(qj) + t—a%- ,f+1(G)].

But
"éac’;‘m,‘f“((;)‘pc(qj) + -éaG—bgHI(G) > —e%mgmc)-pc(q, + B%bgmc)
by the induction hypothesis. It follows that
D ariCra. + L BHC) = L MG g, + D g+
{-}GM"(G)q’ + BGB (G) 2 3G M/ G)rq; + aGB (G).

Entirely similar arguments establish this same inequality in the cases where (i}
p(g;) is a domain transition point and p°(g;) is not; (iD) both p°(g;) and pélg;)
are domain transition points for V(< - ,n+1>).

For an arbitrary domain transition point g; of ECC(< - ,n,G >), we have esta~
blished that

—a%m,gcc)-qj + 5%3,;(5) > E%M,;ﬂ(c}_q, + —(%BN(G) (B-4)

If V(< -,n,G>)is identically ECC(< - ,n,G>) on {0,1], the induction argument
is compteted. We now suppose that 7,4; < 1; note that we are not copsidering
the special case where 7, < 1and 7,.; = L This case is treated later.

The proof of lemma B~2 showed that

156

9. . > 0 pri+ 8 pi+ : -~
aGMJ(G)+ BXG) 2 aGMj (G) + 6GB" (G). (B-5)

Consider

%MJ(G) ~ -a-Mf“(G)

as a function of g, it is linear. Furthermore, equations B~4 and B-5 show that
when ¢ = g; or when ¢ =1, this function exceeds the value

B 6) - L BiG)
oG " G " T
It follows from linearity that

E%MJ(G) ~ ~—3~Mf+1)

q 2 6%.8,{“(6) - %B,{(G)

for all g €[g;, 1]. By simpiz algebraic rearrangement, it follows directly that for
any g €[g;, 1),

S%M,f(c)-q + E%Bf((;) E%M,{“(G)-q + B%B,{'*‘(G).

For every j =12, - ,K~1and ¢ €[q;, 1], we then have

6 J . _&_B:G _&, X . _Q_BK .
aGMn(G)q-l— P G) 2 aGM,,(G)q+ 3G X(G) (B-6)

To complete the induction argument, we need to show that

9y B pr-ye) 2 __Q__ I D,z
aGM (G)ar, + aGB) mHG)ym, + aGb (G).

Equation B—6 provides us with a means of boundmg

Boari- Q pi
é)GM (G)':rﬁ-b-aGB (G)

from below. If we can determine the parameters MZX(G), BXG) of
ECC{(< - ,n,G >V rightmost segment, then equation B~6 will ensure that

O aez-t O pr-iey > B arx 8 px _
BGM (G, + BGB (G) 2 SGM (Grm, + aGB (G). (B-7)

The parameter derivatives of FCC(< -,n,G >)s rightmost segment are deter—
mined by considering ECC{(< - ,n,G >) for p so large that p°(p) > .., ! such p
exist since p°(+) is continuous and p¢(1) = 1. For such p we have

ECC(<pnG>)=pG + q(prECT(<p(pln+1,G>) + ¢°(prECT (<p*(pln+1G >)
=pG + Dy +p(pHD, —GAN —=n))

+Q—~p pH)TG{N ~n -1

From this latter equation it can be determined that

-é%-w(m =1+ 1~ ¢H~(N=n) = TN —n~1))

and

B%B,ff(c;) = TN ~n=1) = ¢{N—n + T {N—n—~1).
We may then restate equation B~7 as
—é%-m,fﬂ(cm + B%B,;"“‘(G) >

1+ (1 —¢H—~N-n)~TAN-n~-1D|mn,

+ TN ~n-1)} — ¢p{N—-n~1 4+ T{N-n—1).

Let p 2 .6, and consider the difference

O ki, 4 Oonk
= MHG)p + L BEG)

_,_ﬁ,__ L ' .ﬂ_. L e
aGmn(G)p + aGb,,(G)]

[1 + (1 = gH—~N—n) = T{N—n —1)]'p — $N —n +T (N —n~1)

+ TAN=n=D + [(N—-n+D + T{N-—r_z)]-p — TN =n)

=1+ —¢H~(N-n) = TN-n—-1D) +(N—n+1) + TN —n)ip

~ p(N=-n+T{N-n-1) + (T'{N~n—1 — TN —n)).

The expression above can be directly coerced into the form

2p —(1=p)p{N-—n + TAN-n~-1)+ (1 — pHTAN—n—-1)—T(N~-n).

Since 0 < 7 £ 1, we have
T{N-n—-1)=~TA{N~n) 2 —%

likewise

157

(B-8)

- (B-9)

(B~10)

158

T{N-n-=1) < N —n. (B-1D)
Expression B—9 is thus greater than or equal to
2p — (1~ plp2{N —n)~(1-p).
The assumption that ¢-N & 1 causes this expression to exceed
2p =21 —p)~Q1-p)

which is non—negative when p 2 6. For any p 2 .6 then,

Bopxc)y + L pxicy > A o 4 Dbk

BGM" (Grp + aGB" G) 2 g'}Gm,{‘(G)p + aGb”(G)'
If m, 2 .6, equation B—7 implies that
O MGy + - pI-vg) 2 Ol 9.5
36 M G)m, aGB" G) > aGm(G)-vr,, + 3G HG).

Under the assumption that m,.; < 1, this last observation completes the induc—
tive proof that

é‘a(';‘m,f(G)'pj + -é%b,z(c) > ~a%m,{+1((;)'pj + %bgﬂcm

for each of V(< * n,G >)'s (non O or 1) domain transition points p;.

The final step in this induction proof showed that if #,,; < 1,then forp 2 6

r eay s A
aGECC(<p,n,G>) GGECT(<p,n,G>),

the statement of this lemma. We have two loose ends yet to consider. We need
still to establish this inequality for n such that 7, =1 or 7, 4+; = 1. The latter si-
* tuation completes the induction argument that
8 8 4 8, i+ 8 5+
p: + b 2 J/ p . + b/
aGm”(G)p’ 3G HG) 2 aGm" (G)p; 3G 2 (G)
for zll domain transition points p;. If mw, =1, this last inequality has already
been established, but we have not yet established that

-é%-ECC(<p,n,G >) 2 *éaG—ECT(<p,n,G >)

under the conditions stated by the lemma.

Suppose then that 7, ,; = 1 {note also that if 7, =1 we must have 7, ,, = 1). Let
J be that integer such that n = N — j; the proof of lemma A-7 expresses a
closed form for ECC(< - ,n,G >): We have

1= =N/t

(1—¢)~/
3 X

+N—j-1=-gi= 3

E%Ecckp,N-j,G >)=p

Now (1 — ¢) < 1, and

159

1— (1 ‘;;Q)N—j - NE—I(I” ¢);
i =0

so that
~—————@—-1“(1; X eN-j-1
and
L roci<pan>) > p =t ‘f)””"'“ + N=j =1~ $HN=j=D

> 0,
Now,

—é%-ECT(<p,N-j.G >) = —pdj + 1)+ 1= p)T].

< 0
when p 2 6and 0 < T € 1. Thus, when p 2 .6,
EegECC(<p,n,G>) > ECT(<pnG>),

as required.
a

7, (G) Is Decreasing

The point at which functions ECC(< :,n,G>) and ECT{(< -,n,G>) intersect
depends on the value of G. We illustrate this dependence on ¢ by denoting the point of
intersection by 7,{(G). Let D(<p,n,G >) be the function defined by

D(<pn,G>)= ECT(<p,nG>)— ECC(<pnG>)

If N £ 1and p 2 6 then lemma B-3 implies that —%—D(< p.n,G>) < 0. Now con~

sider the graph of the function y = D(<p,n,G>). When 0 < 7, (G) < 1, lemma 9-7
implies that D(<On,G>) > 0 and D{<1,n,G>) < 0. Furthermore, D(<p,n,G>) is
continuous and differentiable (almost everywhere) in G, and intersects the line y =0
exactly once, at p = 7, (G). 7w,(G) is itself a continuous and differentiable function of G,
a consequence of D{(<p,n,G>) continuity and differentiability. We have just seen that
for large enough (fixed) p, the value of D(<p,n,G>) at p decreases as we increase G.
Consequently, if D(< -,n,G >)s point of intersection with y = O is greater than .6, the
point of intersection decreases as we increase G. If the difference D(<1,n,G >) is positive,
then ECT(< - ,n,G>) and ECC(< +,n,G>) do not intersect, and 7, = 1. m, will not
vary as a function of G until ECT(<Ln,G>) € ECC{(<1n,G>). Thus if

D{<1,n,G>)} > 0, we have 3G 7,{G) = 0. These observations ¢stablish

160

Lemma B-4 If ¢N < 1, and 7,(G) 2 6 for all n, then

9. <
aG'n'n(G) £0.

i

We can usefully apply this last observation if a system’s true gain G, is bounded
from above and below.

Theorem B-1: Let Gy be the largest G such that for levery n and G €[0,Gz] we
have 7, (G} 2 6. 1f0 € G, £ G, £ G, < Gy, then

m,(G,) € m,(G;) € 7,(G,)).

Proof: Lemma B—4 shows that 7,(G) is a strictly decreasing function of G on the
interval [G;, G,). The result follows immediately.

o

The Original Model

The derivation of theorem B-1 rests on a slightly different decision model than was
initially proposed. We identify here two inequalities whose establishment will verify
theorem B-1's application to the original decision model.

The original decision model identifies the cost of a premature decision to calculate a
new partition as E,[<0,p,G >1; the second model uses TN — n). Theorem B-1 will hold
for the original model if certain inequalities known to be satisfied by the latter cost are
also satisfied for the former cost. Equation B—10 remarks that '

TAN-n=1) = TAN~-n) 2 —1;

the corresponding inequality required is

—é%—E,,{<0,n+1,G >]- E%Evko,n,q 12 -1

Likewise, equation B—~11 notes that
TAN—n—1) < N —n;
this inequality’s counterpart is

9 < N —
GGEV{<0'n+LG>} N —n.

Both of these inequalities can be established if
12 5aG—V(<p,n+1,(; >) - E%V(<p,n.6 >) z —1 (B-12)

This latter inequality seems quite reasonable, especially in light of the fact that we can
prove that

G ZV(kpa+lG>)—ViKpnG>) 2 ~G

for all p, n, and G. However, so long as inequality B-12 remains unproven, we can only

161

conjecture that theorem B-1 is applicable to our original decision model.

Significance of Result

Having labored through many detailed arguments leading to theorem B-1, we do
well to consider the significance of this result. In the real world, the value of G can only
be estimated We want to estimate G at the time that a change is detected: this means that
we want to estimate G as quickly as possible. Theorem B-1 shows us that under certain
conditions, the optimal cost equations are well~behaved with respect to G. Given rapidly
calculated bounds on the true G, we are assured that if we use a point estimate of G
between these bounds, the resulting estimation of #, (for every n) must lie in the smal—
lest interval Anown to contain the true 7,. Theorem B-1's chief significance then is that it
tells us that the heuristics we have to use to estimate the wr, are well-founded.

The hypothesis of theorem B-1 assumes that ¢N < 1 and o, 2 6 for all n. We
note briefly that we expect these assumptions to be satisfied by most operational scenarios.
In general, we anticipate that the costs associated with repartitioning to be significant
relative to the gain. If a change has truly occurred, the likeiihood of next observing a
change is high, and the resultant positive indication of change will substantially increase
the probability of change. If p, = .6, and a positive indication of change at time n+1
causes p,.;>> .6, it seems likely that w, >>.6; the additional certainity of change
achieved by waiting is relatively cheap. We also assume that ¢'N £ 1. In the absence of
any detailed knowledge about the possibility of change, it would be reasonable to assume
that having a change occur in [O,N] is as likely as not. The failure rate ¢ associated with

such an assumption is less than “1%}"’ suggesting that ¢'N € 1 is also reasonable.

Bibliography

References

(Bae80} J. Baer, Computer Architecture, Computer Science Press, Rockville, MD, 1980,

[Bar76] R. G. Bartle, The Elements of Real Analysis, Wiley and Sons, second edition
1976.

[Bok81] S. H. Bokari, A Tree Algorithm for Optimal Assignments Across Space and
Time in a Distributed Processor System, [EEE Trans. on Software Eng. 7, 6
(November 1981), 583~589.

[BoS83] H. Bozedogan and S. Sclove, Multi~Sample Cluster Analysis Using Akaike’s
Information Criterion, Annals of the Institute of Statistical Mathematics 36, 1
(1983), .

[BrF76] M. A. Breuer and A. D. Friedman, in Diagnosis and Reliable Design of Digital
Systems, Computer Science Press Inc., 1976.

[ChM79] K. M. Chandy and J. Misra, Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs , IEEE Trans. on Software Eng. 5, §
(September 1979), 440~-452.

[ChA82] T.C. Chou and J. A. Abraham, Load Balancing in Distributed Systems, /EEE
Trans. on Software Eng. 8, 4 (July 1982), 401-412.

[ChK79] Y. Chow and W. Koehler, Models for Dynamic Load Balancing in 2
Heterogeneous Multiple Processor System, IEEE Trans. on Computers C-28, 5
(May 1979), 354-361. _ .

[Cof76] B. G. Coffman, Computer and Job/Shop Scheduling Theory, Wiley & Sons, New
York, 1976.

{Com82] J. C. Comfort, The Design of a Multi-Microprocessor Based Simulation
Computer, Proceedings of the 15th Annual Simulation Symposium, , 1982, 45-53 .

[Con85] A. 1. Concepcion, Distributed Simulation on Multi-Processors: Specification,
Design, and Architecture, Ph.D. Dissertation, Wayne State University, January
1985.

D. Davidson, A Distributed Simulation Implementation, M.S. Thesis, University

[Davs4]

162

of Virginia, January 1984.

[DaR85]

[DuB82]

[DKW82]
[ELZ]

| [E1-78]
[E1mé67]

[FiM82]

[Fis78]
[GaTg4]
[Gov75]
[Haweé6]

[Hel79]

[HoT83]
[Ho182}

[HoP84]

163

M. Davio and C. Ronse, Insertion Networks, JEEE Trans. on Computers c-34, 6
(June 1985), 565-569.

M. Dubois and F. A. Briggs, Performance of Synchronized Iterative Processes in
Multiprocessor Systems , JEEE Trans. on Software Eng. 8, 4 (July 1982), 419~
431

A. Dutta, G. Koehier and A. Whinston, On Optimal Allocation in a Distributed
Processing Environment, Management Science 28, 8 {(August 1982), 839853,

D. Eager, E. Lazowska and J. Zahorjan, Dynamic Load Sharing in Homogeneous
Distributed Systems, 84—10~01, University of Washington.

O. I El-Dessouki, Program Partitioning and Load Balancing in Network
Computers , Ph.D. Dissertation, Illinois Inst. of Technology, December 1978.

S. E. Elmaghraby, On the Expected Duration of PERT Type Networks,
Management Science 13 , (1967), 299-306.

C. M. Fiduccia and R. M. Mattheyses, A Linear-Time Heuristic for Improving
Network Partitions, Proceedings of the 19th Design Automation Conference, ,
1982, 175-181.

G. S. Fishman, Grouping Observations in Digital Simulation, Management
Science 24, (1978), 510-521.

A. Gabrielian and D. B. Tyler, Optimal Object Allocation in Distributed
Computer Systems, Proceedings of the Fourth International Conference on
Distributed Computing Systems, , 1984, 88-93.

Z. Govindarajulu, Sequential Statistical Procedures, Academic Press, 1975.

H. O. Hartley and A, W, Wortham, A Statistical Theory for PERT Critical Path
Analysis, Management Science 12, (1966), B469-B481.

P. Heidelberger and D. L. lglehart, Comparing Stochastic Systems using
Regenerative Simulations with Common Random Numbers, Advanced Applied
Probability 11, (1979), 804819,

R. Hogg and E. Tanis, Probability and Statistical Inference, Macmillan , New
York, 1983.

L. J. Holloway, Task Assignment in a Resource Limited Distributed Processing
Environment, Ph.D. Dissertation, U.C.L.A., 1982.

S. V. Hoover and R. F. Perry, Validation of Simulation Models:The
Weak/Missing Link, Proceedings of the Winter Simulation Conference, Dallas, ,
November 1984, 293-295,

164

{1gS83]

{JeS82]

[Ka179]

[Kel.70]

[K1e76]

[Knu73]

[Krig4]

[Law84]

[Lo81]

{Lo84]

fLos85]

[Ma0Q79]

[Maré5]

[MeHS82]

{Nis1]

[NiR84]

D. Iglehart and G. Snedler, Simulation of Non—Markovian Systems, [BM
Jowrnal of Research & Development 27, S (September, 1983), 472-80.

D. R. Jefferson and H. Sowizral, Fast Concurrent Simulation Using the Time
Warp Mechanism, Rand Report to the Air Force FN-1906-AF, , December 1982.

J. G. Kalbfleish, Probability and Statistical Inference II, Springer—Verlag, 1979.

B. W. Kernighan and S. Lin, An Efficient Heuristic Procedure for Partitioning
Graphs, Bell System Technical Journal, , February, 1970, 291307,

L. Kleinrock, Queueing Systems, Volume 2:Computer Applications, Wiley and
Sons, New York, 1976.

D. Knuth, The Art of Computer Programming, vol. 1 , Addison-Wesley, second
edition 1973.

B. Krishnamurthy, An Improved Min—Cut Algorithm For Partitioning VLSI
Networks, IEEE Trans. on Computers C-33,5 (May 1984), 438—446.

A. Law, Steady—State Confidence Interval Methodology, Proceedings of the
Winter Simudation Conference, Dallas, , November 1984, 243-250 .

V. Lo and J. W. 8. Liu, Task assignment in Distributed Multiprocessor Systems,
Proceedings of the 1981 Int'l Conf on Parallel Processing, , 1981, 358-360.

V. Lo, Heuristic Algorithms for Task Assignment in Distributed Systems,
Proceedings of the Fourth International Conference on Distributed Computing
Systems, , 1984, 30-39.

S. Losen, A Global Algorithm for the Multi-Partitioning of Graphs, M.S. Thesis,
University of Virginia, August, 1983.

A. Marshall and I Oklin, Inequalities: Theory of Majorization and Its
Applications, Academic Press, New York, 1979.

J. 1. Martin, Distribution of Time Through a Directed, Acyclic Network,
Operations Research 13 ,(1965), 46-66.

M. 8. Meketon and P. Heidelberger, A Renewal Theoretic Approach to Bias
Reduction in Regenerative Simulations, Management Science 26, (1982), 173~181.

L. M. Ni and K. Hwang, Optimal Load Balancing Strategies for A Multiple
Processor System, Proceedings of the 1981 Int'l Conf on Parallel Processing, ,
1981, 352-357.

D. M. Nicol and P. F. Reynolds, Problem Oriented Protoco! Design, Proceedings
of the Winter Simulation Conference, Dallas, Texas, November 1984, 471-474.

[Nic84]

[NoJ74]

[PMWS0}

[PhT73]

[Pri79]

[PrKs4]

[RaH80]

[RaS84]

[RSB79]

[Rey82]

[Rey83]

[RoT77]

[Ros70]

[Ros83]

[SaH76]

165

D. M. Nicol, Synchronizing Network Performance, M.S. Thesis, University of
Virginia, January 1984.

M. R. Novick and P. H. Jacksom, Statistical Methods for Educatwnal and
Psychological Research, McGraw—Hill, New York , 1974.

J. K. Peacock, E. Manning and J. W. Wong, Synchronization of Distributed
Simulation Using Broadcast Algorithms, in Computer Networks, vol. 4, North
Holland Publishing Co., 1980, 3-10.

G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis,
Academic Press, 1973.

C. C. Price, A Nonlinear Multiprocessor Scheduling Problem, Ph.D.
Dissertation, Texas A&M University, , May 1979.

C. C. Price and S. Krishnaprasad, Software Allocation Models for Distributed
Computing Systems, Proceedings of the Fourth International Conference on
Distributed Computing Systems, , 1984, 40—48.

C. V. Ramamoorthy and G. S. Ho, Performance Evaluation of Asynchronous
Concurrent Systems Using Petri Nets, JEEE T'rans. on Software Eng. 6]
(September 1980), 440-449,

K. Ramamritham and J. A. Stankovic, Dynamic Task Scheduling in Distributed
Hard Real-Time Systems, Proceedings of the Fourth International Conference
on Distributed Com putmg Systems, , 1984, 96-107.

A. Rapoport, W. E. Stein and G. J. Burkheimer, Response Models for Detection
of Change, D. Reidel Publishing Company, Boston, 1979.

P. F. Reynolds, A Shared Resource Algorithm for Distributed Simulation,
Proceedings of the Ninth Annual International Computer Architecture
Conference, Austin, Texas, April 1982, 259-266.

P. F. Reynolds, Private Communication, , August 1983.

P. Robillard and M. Trahan, The Completion Time of PERT Networks,
Operations Research 25,1 (January 1977), 15-29.

S. Ross, Applied Probability Models with Optimization Applications , Holden—
Day , San Fransico, 1970,

S. Ross, Stochastic Processes, Wiley and Sons, New York, 1983,

S. Sahni and E. Horowitz, Fundamentals of Data Structures , Computer Science
Press, Rock ville, MD, 1976.

166

[Sa183]

[Sch69]

[Sch83]

[Sip84]

[SmL82]

[Stag4a)

[Sta84b]

[Sta85]

[St077]

[TaT8s)

[TCB78]

[Wyss4]

[Yysst}

M. A. Salichs, Task Assignment Across Space and Time in a Distributed System,
Proceedings of the Fifth IFAC Workshop, , May 1983, 131-141.

S. A. Schmitt, An Elementary Introduction to Bayesian Statistics, Addison—
Wesley, 1969.

L. Schruben, Simulation Modeling With Event Graphs, Comm. ACM 25, 11
(November 1983), 957-963.

H. I. Sips, Task Distribution on Clustered Parallel or Multiprocessor Systems,
Proceedings of the Fourth International Conference on Distributed Computing
Systems, , 1984, 126—130.

C. U, Smith and D. D. Loendorf, Performance Analysis of Software for an
MIMD Computer, 1982 ACM SIGMEI'RICS Conference Proceedings, , 1982,
151-162.

J. Stamos, Static Grouping of Small Objects to Enhance Performance of a Paged
Virtual Memory, ACM Transactions on Computer Systems 2, 2 (May 1984),
155-180.

I A. Stankovic, An Adaptive Bidding Algorithm for Processes, Clusters, and
Distributed Groups, Proceedings of the Fourth International Conference on
Distributed Computing Systems , , 1984, 126-130.

1. A. Stankovic, An Application of Bayesian Decision Theory To Decentralized
Control of Job Scheuling, JEEE Trans. on Computers C-34, 2 (February 1985),
117-130.

H. S. Stone, Multi~Processor Scheduling With the Aid of Network Flow
Algorithms, JEEE Trans. on Software Eng. 3,1 (January 1977), 85-93.

A. N. Tantawi and-D. Towsley, Optimal Static Load Balancing, Journal of the
ACM 32, 2 (April 1985), 445-465.

D. Towsley, K. M. Chandy and J. C. Browne, Models for Paralliel Processing
Within Programs: Application to CPUI/QO and 1/O:/O Overlap,
Communications of the ACM 21, 10 (QOctober 1978), 8§21-830.

D. Wyatt and S. Sheppard, A Language Directed Distributed Discrete
Simulation System, Proceedings of the Winter Simulation Conference, ,
November 1984, 463464,

S. 8. Yau, C. C. Yang and S. M. Shatz, An Approach to Distributed Computing
System Software Design, JEEE Trans. on Software Eng. 7, 4 (July 1981), 427~ -
435.

167

[Zei84] B. Zeigler, Multifacetted Modelling and Discrete Event Simulation, Academic
Press, London, 1984.

