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ABSTRACT

In this paper, we derive a utilization bound on schedulability of apriodic tasks with arbitrary arrival
times, execution times, and deadlines. To the author’s knowledge, this is the first time a utiliza-
tion bound is derived for the aperiodic task model. It allows constructing an O(1) admission test
for aperiodic tasks. Earlier admission tests are at best O(n). We show that deadline-monotonic
scheduling is the optimal fized-priority scheduling policy for aperiodic tasks in the sense of maxi-
mizing the schedulable utilization bound. We prove that the optimal bound is 5/8. Our result is
an extension of the well-known Liu and Layland’s bound of In 2 (derived for periodic tasks). The
new bound is shown to be tight. We briefly generalize our results to tasks with multiple resource
requirements and multiple processors. Dynamic priority scheduling (EDF) of aperiodic tasks is

shown to have the same schedulability bound as for periodic tasks.

Our findings are especially useful for an emerging category of soft real-time applications, such
as online trading and e-commerce, where task (request) arrival times are arbitrary, task service
times are unknown, and service has to be performed within a given deadline. Owur result pro-
vides theoretical grounds for guaranteeing deadlines of individual aperiodic requests by observing
only the aggregate utilization conditions which simplifies achieving real-time assurances in such

applications.



1 Introduction

Research on real-time scheduling has traditionally classified tasks into periodic, sporadic, and ape-
riodic. A fundamental problem in real-time scheduling is that of computing the schedulability of a
task set. For periodic and sporadic tasks, many schedulability conditions exist that relate schedu-
lability to aggregate utilization. No such result exists for aperiodic tasks. In this paper, we prove
for the first time that aperiodic tasks with arbitrary arrival times, computation times and deadlines

are schedulable if their aggregate utilization does not exceed 5/8.

Aperiodic tasks (with unknown arrival times) are handled in prior literature in one of two ways.
The first approach requires creation of a high-priority periodic server task for servicing aperiodic
requests. Examples include the sporadic server [33], the deferrable server [40], and their varia-
tions [21]. The approach bounds the total load imposed on the system by aperiodic tasks allowing
critical periodic tasks to meet their deadlines. It usually assumes that aperiodic tasks are soft, and
attempts to improve their responsiveness rather that guarantee their deadlines. The second ap-
proach typically relies on algorithms for joint scheduling of both hard periodic and aperiodic tasks.
It uses a polynomial acceptance test upon the arrival of each aperiodic task to determine whether
or not it can meet its deadline. Examples include, aperiodic response-time minimization [20], slack
maximization [11], slack stealing [41], the reservation-based (RB) algorithm [8], and the guarantee
routines introduced most notably by the Spring kernel project [37]. In addition to being of higher
complexity than utilization-based tasks, such admission control algorithms must know the worst
case execution times of arrived tasks. This precludes their application to many soft real-time sys-
tems running on general-purpose platforms where worst-case execution times are too pessimistic
or difficult to predict. To date, no utilization-based schedulability test has been proposed for ape-
riodic tasks. In this paper, such a test is derived. The complexity of the test is O(1). An added
advantage of utilization-based admission control is that, if soft guarantees are sufficient, average
system utilization can be used for schedulability testing. This obviates knowledge of individual
execution times of incoming tasks. As long as the average utilization is below the bound, and if
each individual task contributes only a small fraction to utilization, new aperiodic tasks can be
admitted. Utilization-based admission control is especially attractive to large scale servers in which
individual requests consume only a small fraction of server capacity, but their exact execution times

are unknown.

The need for utilization-based admission control is further magnified with the recent increase in
soft real-time applications such as multimedia and online trading, where guarantees are required but
individual task execution times are unknown. Modern mainstream operating systems already do
task accounting that requires computing utilization. Thus, no significant operating system changes

are needed to implement utilization-based admission control. Quality of service adaptation capa-




bilities (such as image resolution control, video frame rate manipulation, color depth control, and
relaxation of response time requirements) inherent to many modern applications allow controlling
the utilization of a task set. If the utilization climbs, quality of service can be adapted to reduce
utilization to the desired value. In a previous paper, we explored techniques borrowed from auto-
matic feedback control theory to address the problem of stabilizing utilization around a given value
by adapting quality of service. Analytic results can be applied from classical feedback control to
guarantee convergence of utilization to the desired value within a specified time thus bounding the
duration of transient overload. If utilization is related to schedulability, the approach can be used
to keep the task set schedulable (i.e., to maintain its aggregate utilization below the schedulability
bound). The main hurdle in applying this technique is the lack of a theoretical understanding of
what this desired utilization bound should be in order for the task set to be schedulable. In this
paper, this bound is derived for the case of aperiodic tasks with arbitrary arrival times, execution

times and deadlines.

The rest of the paper is organized as follows. Section 2 describes related work. The main
contribution of the paper is presented in Section 3 which derives the optimal utilization bound for
aperiodic fixed-priority task scheduling. Section 4 derives the corresponding bound for dynamic-
priority scheduling. Section 5 describes simple extensions to tasks with pipelined stages of different
resource requirements. Finally, Section 6 presents the conclusions of the paper and avenues for

future work.

2 Related Work

To date, three main paradigms have been proposed for real-time scheduling. Perhaps the earliest
approach to providing guarantees in performance-critical systems has been to rely on static allo-
cation and scheduling algorithms that assume full a priori knowledge of the resource requirements
of tasks and their arrival times [4, 32,43, 44]. Rate monotonic scheduling theory [31] introduced a
second paradigm in which knowledge of task arrival times is not required. As a result, sporadic
tasks could be accommodated as long as their minimum inter-arrival time is known. The concept of
dynamic real-time systems [35], pioneered by the Spring kernel project [36, 37], introduced the third
major paradigm to describe applications where run-time workload parameters are unknown until
admission control time. It resulted in innovative planning-based scheduling algorithms that pro-
vide online guarantees for dynamically arriving tasks [17, 25, 28, 34, 38,46, 47]. Task execution times

where assumed to be known, e.g., using pre-run-time code analysis techniques such as [14, 39, 45].

With the advent of a new category of soft real-time applications such as multimedia, real-time
databases, and e-commerce, the concept of QoS adaptation was introduced into resource allocation

and scheduling. Typically, the approach assumes that the application can tolerate multiple levels




of service which vary in their quality and resource requirements. Given the requirements of dif-
ferent QoS levels, an adaptation mechanism can determine the right QoS level depending on load
conditions. Such QoS-adaptive service models were presented in [2, 3,9, 15, 16]. Resource allocation
mechanisms were developed to take advantage of adaptation. For example, the Q-RAM architec-
ture [27] introduces QoS-sensitive near-optimal resource allocation algorithms for applications with
multiple resource requirements and multiple QoS dimensions. FARA [29, 30] presents a hierarchical
adaptation model for complex real-time systems and algorithms for optimizing multi-dimensional
adaptation cost. An end-to-end QoS model is presented in [16] in the context of a middleware
approach to QoS management that requires application cooperation. The approach is extended
in [6] to account for practical limitations such as inaccuracies in estimating application resource
requirements. In [13] a dynamic distillation method is proposed to adapt to network and client
variability via on-line compression techniques. In the multimedia community several systems were
described with adaptive QoS as well [3, 7,10, 12,18, 19, 24,26,42]. A good survey of such architec-
tures can be found in [5]. While these approaches are more flexible in that they allow adaptation,
they still share in common with their predecessors the need to know the resource requirements of
tasks.

We envision a fourth paradigm for real-time scheduling that concerns aperiodic tasks (such
as requests on a web server) whose execution times (or more generally, resource requirements) are
unknown. The uncertainty in resource requirements may be due, for example, to data-dependencies
that make it impossible to predict the execution time of a task without interpreting the semantics
of its application-specific inputs. One measurable quantity in such systems would be the aggregate
utilization of the different resources. Theory is needed to relate such utilization to the schedulability
of aperiodic tasks. With the plethora of QoS adaptation mechanisms described in earlier literature,
feedback-based QoS-adaptation can be used to maintain the utilization within schedulable limits.
In earlier work [1,23], control-theoretical feedback-based mechanisms were introduced for QoS
adaptation that can maintain a desired average utilization. In this paper, we investigate the
problem of deriving a utilization bound for guaranteed schedulability. Future work of the author is
concerned with developing probabilistic guarantees on maintaining the utilization below the bound

using control-theoretical techniques.

3 The Generalized Bound for Fixed Priority Scheduling

Consider the simple model of scheduling independent aperiodic tasks on a uniprocessor. These
tasks may represent web requests, database transactions, online trades, or others. The service time
of each task is generally unknown. For example, it may depend on application data carried in

the request, whose application-specific semantics may not be understood by the operating system.




Task arrival times and deadlines are arbitrary. Let the arrival time of task T; be denoted A;, its
execution time (possibly unknown to the OS) be denoted C;, and its desired maximum response
time be denoted D;. The task meets its deadline if it finishes before A; + D;. In the rest of the
paper we call A; + D; the absolute deadline of the task and D; its relative deadline. The average
processor utilization U; contributed by this task is U; = C;/D; in the interval between its arrival

time and deadline.

At any given instant, t, let S(¢) be the set of all tasks that have arrived but whose deadline has
not expired, i.e., S(t) = {Ti|4; <t < A; + D;}. We call them the current tasks. Let n(t) be the
number of current tasks at time t. The utilization contributed by these tasks, called the current
utilization, is U(t) = Y p ¢ s@) Ci /D;. In this paper, we prove that using an optimal fized priority
scheduling policy, all tasks will meet their deadlines if V¢ : U(t) < % + Wt(%ﬁ' When the number
of current tasks, n(t), increases, the bound approaches 5/8. We also show that dynamic priority
scheduling (EDF) achieves a schedulable utilization bound of unity, as is the case with periodic

tasks.

3.1 Optimality and Fixed Priority Scheduling of Aperiodic Tasks

The difference between fixed priority scheduling and dynamic priority scheduling is somewhat
muddled in the case of aperiodic tasks. Since each task has exactly one invocation, the notion
of maintaining the same priority across multiple invocations (as is the case with fixed-priority
scheduling) is inapplicable. Thus, in the context of aperiodic tasks, we consider a scheduling
algorithm to be fixed priority if it (i) classifies all tasks into a finite number of classes, and (ii)
associates a fized priority with each class. More formally, from a mathematical standpoint, we

define fixed-priority scheduling as follows:

Definition: A fized-priority scheduling algorithm for aperiodic tasks is a function f(7) — P, that:
e maps an infinite set of task invocations T into a finite set of values P, and
° satisﬁeé’ f(T)|time:t - f(T)|time:t+av

This, for example, is akin to diff-serv architectures which classify all network traffic into a finite
number of classes and give some classes priority over others. EDF and FIFO by this definition
are not fixed-priority scheduling policies since they relate the “priority” of an aperiodic task to
absolute time (which is not a finite set), i.e., f(7) — t, where ¢ is interpreted as the set of absolute
deadlines in case of EDF, and absolute arrival times in case of FIFO. By the same token, any policy
in which task priorities are a function of task arrival times is not a fixed-priority policy. Note that,
such a function will either be monotonic or non-monotonic. In the former case, an infinite number

of priorities may exist, thus violating both parts of the above definition.!. In the latter case (e.g.,

!This should be understood in a mathematical sense. In reality, if the number of concurrent tasks at any given




f(1) = [Aj|lmod 10), the relative priority of two tasks arriving at times t¢g and tg +  may depend

on absolute time ¢y, violating the second property of the definition.

One fixed-priority classification of tasks would be by their relative deadlines, D;. These deadlines
are typically derived from a finite number of environmental constraints and determine the maximum
response time within which the computing system must serve the task. It is therefore reasonable
to assume that the number of distinct relative deadlines can generally be made bounded by design.
For example, clients of an e-commerce server can be categorized into classes such as premium, basic,
and economy, each with a different relative deadline. Aperiodic requests from clients will be served
in accordance with these deadlines. We call a scheduling policy that assigns higher priority to
aperiodic tasks with shorter relative deadlines, an aperiodic deadline monotonic scheduling policy.
Unlike EDF| this policy is easily implementable on current mainstream operating systems which

support fixed-priority scheduling.

The traditional sense of optimality of a fixed-priority scheduling policy is that for any set of
task invocations, if the task set is schedulable by some fixed-priority policy it is schedulable by the
optimal policy. In the case of aperiodic tasks, no fixed priority scheduling policy is optimal in the
aforementioned sense. This lack of optimality is attributed to a semantic difference in the meaning
of “schedulability”. For periodic and sporadic task sets, schedulability generally refers to meeting
all deadlines of the given task set regardless of task arrival times. Schedulability is guaranteed by
considering a worst case task arrival pattern. The fact that an unschedulable task set may actually
meet all deadlines for some specific task arrival patterns is irrelevant. This independence of the
notion of schedulability from task arrival times makes it possible to compare prioritization policies
that do not take task arrival times into account (which is true, by definition, of all fixed-priority

scheduling policies). As a result, an optimal fixed-priority scheduling policy exists.

In aperiodic tasks, on the other hand, there is no notion of a fixed task set. Instead, we deal
with dynamically arriving task invocations. Schedulability is meaningful only for the particular
invocation arrival pattern that has occurred, which is in sharp contradiction to the case of periodic
and sporadic tasks in which schedulability is analyzed for a worst-case arrival pattern. Since fixed-
priority scheduling, by definition, is independent of task arrival times, there will always be a way
to pick those arrival times (without affecting task priorities) such that an invocation set becomes
unschedulable under a policy of choice while schedulable under another policy. This implies that

no fixed-priority policy is optimal.

To prove that a policy is not optimal, it is enough to show a single invocation set that is not
schedulable by this policy while schedulable by another. Thus, to prove that no fixed-priority

policy is optimal, we consider a specific example of a task set composed of two tasks, 17 and 75,

time is bounded, dynamic scheduling policies such as EDF can be implemented using a finite number of priority levels




of execution times 2 and 3, and relative deadlines 3 and 4, respectively. A fixed-priority policy
can prioritize these tasks in only one of two ways, (a) 71 > Ty (class A policy), or (ii) T» > T}
(class B policy). Figure 1-a shows that no class A policy is optimal because an arrival pattern
exists that makes the set unschedulable under class A while schedulable under class B. Similarly,
Figure 1-b shows that no class B policy is optimal because an arrival pattern exists that makes the
set unschedulable under class B while schedulable under class A. Thus, no fixed-priority policy is
optimal. An optimal policy, by necessity, would have to be a function of task arrival times (such
as EDF).
A A1+D A Aq+D
Tl 1 1 ‘ 1 ‘l 1 ‘ 1

A2 A2+ D2 A2 A2+ D2
2 I E— l W\ | ——] l B
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(a) Non-optimality of Class A
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T2 | l — | | —— } |
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(b) Non-optimality of Class B

Figure 1: Schedulability of Aperiodic Tasks

In the context of aperiodic fixed-priority task scheduling, we therefore suggest a different sense
of optimality of a scheduling policy. We call a policy optimal if it maximizes the schedulable
utilization bound. A task set is schedulable by the scheduling policy if the utilization bound is
not exceeded. Note that in order to guarantee schedulability of task sets that do not exceed the
bound, this bound must be computed for a worst case task arrival pattern. Hence, different fixed-
priority policies can be compared in the worst case, and an optimal policy can be established. In
essence, the bound classifies all possible invocation arrival patterns into those that meet the bound
(guaranteed to be schedulable) and those that do not (which may be unschedulable). A policy with
a higher bound will guarantee more task arrival patterns to be schedulable. The optimal policy

will guarantee schedulability for the largest set of arrival patterns. In the next section such a policy




and bound are derived.

3.2 The Optimal Utilization Bound

In this section, we derive the utilization bound for schedulability of aperiodic tasks under an optimal
fixed-priority scheduling policy, and show that aperiodic deadline monotonic scheduling achieves
the optimal bound. To provide more intuition into the construction of this derivation, we shall first

consider the simple special case of two current tasks.

Theorem 1: A set of aperiodic tasks in which at most two are current at any given time is
schedulable using an optimal fixed-priority scheduling policy if Vt : U(t) < %, where U(t) is the

current utilization at time t.

Proof: Let the term critically schedulable task pattern denote a task pattern in which adding
an arbitrarily small amount of execution time to some task(s) causes a task to miss its deadline.
Note that the top priority task will not miss its deadline unless its computation time is larger than
its relative deadline. Thus, to compute a utilization bound we consider the schedulability of the
lower priority task, say T5. In the rest of this derivation we shall analyze the interval [Ag, A2 + D3]
during which 75 is current. In this interval, 75 may be preempted by a chain of higher priority
tasks. No two tasks in that chain may be current at the same time, since this would bring the total
number of current tasks to 3. Let us call the chain sparse if there is a gap between the deadline of
some high priority task in the chain and the arrival time of the next. Otherwise, the chain is called
packed (in which case the deadline of each task in the chain is the arrival time of the next). Let
the last task in the chain that preempts 75 be called 7. Let, U(ty;) be the maximum current task
utilization in the interval Ay <t < Ay + Do, ie., U(tp;) = maza,<¢<a,+0,U(t). We shall search

all the critically schedulable task patterns for one that minimizes U (tp;).

First, we shall prove that the minimum value of U(t;) is achieved when the utilization U(t)
is constant for all £ in Ay < t < As + Dy. This statement is proved by contradiction. Assume
that in the critically schedulable task pattern that minimizes U (tp;), the utilization U(t) for some
t = t;, was lower than U(tp;). In such a case, one can always find another critically schedulable

task pattern with lower U(ty;) as follows:

e Case 1, Sparse Chain: Consider the case where the chain of higher priority tasks that
preempt T5 is sparse, i.e., there is a gap between the deadline of one such task and the arrival
time of another. Let the beginning and end of this gap be denoted by t¢ and t; respectively.
Obviously, the maximum current utilization U (¢p;) cannot occur inside the gap. We can
reduce U (tp;) by reducing the execution time of the high priority task that is current at ¢; by

an arbitrarily small amount é, and creating a new high priority task with an arrival time ¢g,




deadline t; and execution time §. The transformation does not change the total time that 75 is
preempted. Thus, 75 remains critically schedulable. The resulting critically schedulable task
pattern has a lower maximum utilization since the execution time of a task that contributes

to U(tpi) was reduced. An example of this transformation is shown in Figure 2-a.

e Case 2, Packed Chain: Counsider the case where the chain of higher priority tasks is packed.
Thus, the number of current tasks is exactly 2 everywhere in the interval Ay <t < Ay + Ds.
Since U (t) is not the same everywhere in this interval, it must be that at least two high priority
tasks are present that differ in their C;/D;. Let t;, be a time instant at which U(¢;,) < U (tn;).
We can reduce U (tp;) by reducing the execution time of the high priority task that is current
at tp; by an arbitrarily small amount §, and adding § to the execution time of the high priority
task that is current at t;,. An example of this transformation is shown in Figure 2-b. As
before, the transformation does not change the total time that 75 is preempted. 715 remains
critically schedulable. The resulting critically schedulable task pattern has a lower maximum

utilization since the execution time of a task that contributes to U(tp;) was reduced.

From case 1, we conclude that the maximum utilization U (tp;) of a sparse chain can always be
reduced. From case 2, we conclude that the maximum utilization of a packed chain can always be

reduced unless U(t) is constant. It follows that:

Property 1: The minimum lower bound on utilization that makes task T3 critically schedulable
occurs for a task set in which the high priority task chain is packed in the interval where 7% is
current, Ay <t < Ay + Ds.

Property 2: The minimum lower bound on utilization that makes task 75 critically schedulable
occurs for a task set where U(t) remains constant in the interval where T5 in current, As < ¢t <
Az + Ds.

Let the constant utilization referred to in Property 2 be denoted by U. It is desired to find the
minimum U over all possible task patterns subject to the conditions of Property 1 and Property 2.
Consider a task in the high priority chain that preempts 75. Since all tasks in the chain have the
same utilization, we arbitrarily choose the last task, called T;. Let that task arrive T' time units
after the arrival time of 15, i.e., A — Ao = T. Because it is the last task, its absolute deadline is
larger than that of Ty, i.e., A; + D1 > Ay + Dy, or equivalently, T'4+ D; > Djy. The utilization U
must be minimized with respect to the three attributes of task 77, namely, its execution time Cf,
its relative deadline D1, and its arrival time, T, relative to that of T5. Thus, the derivation of the

least upper bound undergoes three steps:

e Step 1: Minimize U with respect to the execution time Cfj.
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Figure 2: Reducing the Maximum Utilization

e Step 2: Minimize U with respect to the deadline D;

e Step 3: Minimize U with respect to T'.

The result is a globally minimum expression for U. These steps are described below.

Step 1, minimizing U w.r.t. C;: We prove that U is minimized when C; = Ay + Dy — A; (or

equivalently C; = Dy — T'). This result is proved by considering the following two cases:

e Case 1: C; > Dy —T. This case is depicted in Figure 3-a (left). The utilization is U =
C1/D1 + C3/Dy and is constant in the interval Ay < ¢t < Ay + Dy. Note that while we do
not know how many high priority tasks may have preceded T (i.e., executed in the interval
T shown in Figure 3-a), we know that their utilization must have been equal to U; = Cy/D;
for Property 2 to hold. In the worst case, the first of these tasks arrives together with T5.
Their combined execution time that preempts 75 is therefore T'Cy/D;. For T» to be critically
schedulable, it must execute for a duration Co = T — T'Cy/D; (note that it cannot execute

after the arrival time of T7). Substituting for Cs in U, we get:
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T Ch T
U= —+ —(1- — 3.1
D,y + D1( Dz) (3.1)
From Equation (3.1), since T' < Ds, the quantity (1 — Dlz) is positive. Thus, U is minimum

when () is minimum, i.e., when Cy = Dy — T'. This is shown in Figure 3-a (right).

Case 2: Cy < Dy — T. This case is depicted in Figure 3-b (left). In this case, for task T5 to
be critically schedulable, Co = Dy — C; — T'Cy/D;. Substituting for Co in U, we get:

Di1+T
D,

G

=1
U Dy

(

—1) (3.2)

Note that by definition of 7%, its absolution deadline is after that of T5. Thus, Db';T > 1,

and (Dl,#tT — 1) is positive. It follows that U is minimized when C; is maximum, i.e., in this
case, when C; = Dy — T'. This is depicted in Figure 3-b (right).

U U
- e
| ' |
A T Dli A T Dy
T | t |
D, Dy
(a) Case 1: C4 > Dy —T
U U
c, c, |
AT AL
| . | | I |
A T Dli A T Dy
T | t |
D, Dy
(b) Case 2: C; <Dy —T

Figure 3: Computing C; for Minimum U

From Case 1 and Case 2 above, U is minimized (with respect to C1) when C; = Dy —T.2 Note that

for a given task set, one can always choose task arrival times such that the condition C; = Dy — T

is satisfied. Since fixed-priority scheduling is independent of task arrival times, no matter how task

priorities are computed, an adversary can always choose task arrival times to satisfy the minimum

Liu and Layland [22] proved a similar result for the special case of periodic tasks.
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utilization condition. Thus, this condition applies to all fixed-priority scheduling policies including

the optimal policy.

Step 2, minimizing U w.r.t. D;: From Equation (3.1) or Equation (3.2) which can be shown to
be equivalent when C; = Dy —T), it is easy to see that U decreases when Dy increases. In particular,
if D1 = oo, the utilization bound is 7'/ D2, which reduces to 0 when 7" is 0. Thus, it is possible to
miss deadlines even at an arbitrary small utilization. To obtain a meaningful bound, the deadline
D; must be upper-bounded. Note that it is impossible to achieve an upper bound on D; that is
lower than D, since 77 and 75 may have the same relative deadline. Thus, the minimum upper
bound achievable on D; is Dy. It corresponds to the best achievable utilization bound. Incidentally,
deadline monotonic scheduling sorts tasks in the order of their relative deadlines such that deadlines
of higher priority tasks are upper-bounded by those of lower priority tasks. Substituting with
Dy = Dy =T + C} in either Equation (3.1) or Equation (3.2), the best utilization bound becomes:

TC:
U=1- m (3.3)
Step 3, minimizing U w.r.t. 7: We minimize U with respect to T by setting dU/dT = 0.
Note that one can choose task arrival times (without affecting task priorities under fixed-priority
scheduling) to produce an arbitrary T regardless of the scheduling policy. Setting the derivative of
Equation (3.3) to zero results in the condition T' = C;. Therefore, from Equation (3.3), U = 0.75.
An example critical task set with a constant 0.75 utilization is shown in Figure 4. Theorem 1 is

thus proved. O

Do

Figure 4: A Minimum Utilization Task Set
Note that the derivation of the optimal bound suggests the optimal fixed-priority scheduling
policy. We have shown that achieving the optimal bound requires only that the deadline of the
higher priority task be upper-bounded by that of the lower priority task. This is a property
of aperiodic deadline monotonic scheduling. Thus, this policy is optimal. Next, we generalize

Theorem 1 to an arbitrary number of current tasks.
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Theorem 2: A set of aperiodic tasks is schedulable using an optimal fized-priority scheduling policy
if Vt:U(t) < 2+ ﬁ, where n is the mazimum number of current tasks in the system, and U(t)

158 the current utilization at time t.

Proof: To prove the theorem, we shall first extend Property 1 and Property 2 to the case
of an arbitrary number of current tasks, then follow Step 1, Step 2, and Step 3 of the proof
of Theorem 1. Let us consider a critically schedulable task pattern. By definition, some task
in this pattern must have zero slack. Let us call this task 7). Counsider the interval of time
A, <t < A, + D, during which T, is current. At any time ¢ within that interval, U(t) =
Cn/Dn+ X1 ~1, Ci/ Di + X1, o1, Ci/ Dy, where Cp,/ Dy, is the utilization of task Ty, > 7. .1 Cy/D;
is the utilization of higher priority tasks that are current at time ¢, and > ., Ci/D; is the
utilization of lower priority tasks that are current at time ¢. Since lower priority tasks do not affect
the schedulability of T;,, U(t) is minimized when 3 7. 7. C;/D; = 0. In other words, one can always
reduce the utilization of a critically schedulable task pattern (in which task 7, has zero slack) by
removing all tasks of priority lower than 7,. Thus, in the remainder of this proof, to arrive at a
minimum utilization bound, 7;, must be the lowest priority task. This is an intuitive result, since

one would expect it to be “easier” to cause the lowest priority task miss its deadline.

As before, let us define a chain of tasks as a task sequence in which no two tasks are current
at the same time. A chain is sparse if it contains a gap between the deadline of one task and the
arrival time of another. Since at any given time in the interval A,, <t < A, + D,, the number of
current tasks is at most n, we can string all tasks of higher priority than 7}, into n—1 chains. (Task
T, constitutes the nth chain.) To make the treatment of the problem easier, we logically regard
gaps in sparse chains as tasks of an infinitesimally small execution time. Thus, we can claim that
all chains are packed. Let U(tp;) = maxa, <¢<a,+p, U(t). If U(t) is not the same everywhere in
the interval 4, <t < A, + D,, it must be that at least two high priority tasks are present in some
chain j that differ in their C;/D;, such that the task with the higher utilization is current at tp;.
In this case, we can reduce U(tp;) by reducing the execution time of the high priority task which
is current at tp; in chain j by an arbitrarily small amount d, and adding é to the execution time
of a task with a lower utilization in the same chain. The transformation does not change the total
time that 75 is preempted. Thus, 75 remains critically schedulable. The resulting task pattern has
a lower maximum utilization because the execution time of a task that contributes to U(tp;) has
been reduced. We have shown above that U(ts;) can be reduced whenever U(t) is not constant.
Thus:

Property 3: The minimum lower bound on utilization that makes T;, critically schedulable occurs

when the utilization U (t) remains constant in the interval where T, is current, A, <t < A, + D,.

We now proceed with minimizing the utilization U with respect to the attributes of higher

priority tasks, namely, their execution times Cj, their deadlines D;, and their relative arrival times.
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The minimization undergoes three steps:

Step 1, minimizing U w.r.t. C;: For each higher priority chain ¢, 1 < ¢ < n — 1, consider the
task T; that arrives last within the interval 4,, <t < A, + D,,. Let the utilization of this task be
U; = C;/D;. Since T; is the last task, its deadline is outside this interval (note that C; may be zero
if T; is a gap). The lowest priority task 7, is preempted by all tasks 71, ..., T,—1, and all tasks
that precede them in their chains since the arrival time of T},. Let the sum of execution times of
all tasks that precede T; in chain 7, and preempt T;,, be Cp,. Since the utilization U(t) is the same
in the interval A, <t < A, + Dy, it must be that 371 ,-, 1 Cp, = Y 1<i<p_1(Ai — 4n)Ci/D;. In
the worst case, task T}, arrives simultaneously with the first task in each chain, and is therefore

preempted by the entire » ,.,-,_; Cp,. Since T}, has no slack, its execution time is then given by:

Cn=D,— Z (A; — Ap)Cyi/D; — Z (C; — over flow;) (3.4)

1<i<n—1 1<i<n—1
Where over flow; is the amount of computation time of task T; that occurs after the deadline of

task Tj,. Let overflow = 37y.,-,_, overflow;. Substituting for C, in U = 33,;,, Ci/D;, the

utilization is given by:

U=1+(1—Di) > ci/Di—Di > (Ai— An)Ci/Di +

n 1<i<n—1 N 1<i<n—1

over flow

D (3.5)

Among tasks T1, ..., T,,_1, where task T} is the last task in chain k, let the latest task completion
time be Ej.s¢. Let Si be the start time of T;. To minimize U with respect to the computation

times of these tasks, we shall inspect the derivative dU/dAy. Three cases arise:

1. T} arrives while a task of higher priority is running: In this case, T} is blocked upon arrival.
Advancing the arrival time Az by an arbitrarily small amount does not change its start time
(and therefore does not change the start or finish time of any other task). Consequently,
over flow remains constant, and dover flow/dAy = 0. Thus, from Equation (3.5), dU/dAy =
_D%L(g_i)' This quantity is negative indicating that U can be decreased by increasing the

arrival time Ay.

2. T}, arrives while a task of lower priority is running: In this case T}, preempts the executing task
upon arrival. Advancing the arrival time Ay by an arbitrarily small amount reorders execution
fragments of the two tasks without changing their combined completion time. Consequently,
over flow remains constant, and dover flow/dAy, = 0. Thus, from Equation (3.5), dU/dAy, =
_D%L(g_i)' This quantity is negative indicating that U can be decreased by increasing the

arrival time Ay.
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3. T} arrives while no task is running: In other words, it arrives at or after the completion time
of the previously running task. Let us define a busy period as a period of contiguous CPU
execution of tasks T1,...,T, 1. The execution of these tasks forms one or more such busy

periods. Two cases arise:

e A. T} is not in the busy period that ends at Ej.s: Advancing Aj will not change
over flow. Thus, doverflow/dA = 0, and dU/dA; = —DLH(%). This quantity is

negative indicating that U can be decreased by increasing the arrival time Ay.
e B. T} is in the busy period that ends at Ej,5;. Three cases arise:

— (I) Ejgst > Dy In this case, over flow > 0. Since no other task was running when 7},
arrived, advancing the arrival time of T} will shift the last busy period and increase
over flow by the same amount. It follows that doverflow/dA; = 1. Thus, from
Equation (3.5), dU/dAj, = Din(l - %) This quantity is positive indicating that U

can be decreased by decreasing Ay.

— (II) Ejgst < Dy: In this case, over flow = 0. dU/dAy = _DLn(-g_i). This quantity is

negative indicating that U can be decreased by increasing the arrival time Ay.

— (III) Ejgst = Dp: From (I) and (II) above, it can be seen that limpg, ., +dU/dAy #
limElast_}D;dU/dAk. Thus, the derivative dU/dAy is not defined at Ej,¢ = D,
From the signs of the derivative in (I) and (II), it can be seen that U has a minimum
at Ejgs¢ = D

From the above, U can be decreased in all cases except case 3.B.(III) where a minimum occurs.
Since the above cases exhaust all possibilities and 3.B.(III) is the only minimum, it must be a
global minimum. In this case, each task T}, arrives while no task is running (by definition of case 3)
and contributes to a contiguous busy period that ends at Ej, 5 (by definition of subcase B) where
Eyus¢ = Dy, (by definition of subcase III). In other words, each task arrives exactly at the completion
time of the previous task (for the busy period to be contiguous), with the completion of the last
task being T),. For simplicity, let us re-number tasks 77, ...,Tj,_1 in order of their arrival times. It
follows that U is minimized when C; = A;11—A4;, 1 <i<n—2and C,_1 = D, — A,,_1 as depicted
in Figure 5. Since fixed-priority scheduling is independent of task arrival-times, no fixed-priority
policy can prevent the aforementioned sequence of arrivals from occurring. Regardless of how tasks
are prioritized, an adversary can always choose their arrival times to satisfy the minimum utilization

condition derived above.

Let T = A; — A,,. Since overflow = 0 at the global minimum, from Equation (3.4), C,, =
Dy, — 3 i<i<n-1{Ci + (4i — A,)Ci/D;}, where A; — A, = T + >71<j<;_1 Cj. Substituting for

A; — A, we get the expression:
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Dn
Figure 5: Schedulability of Aperiodic Tasks
Co=T(Q1— 3 C/D)— > (G Y  Cj/Dj) (3.6)

1<i<n—1 1<i<n—2  i+1<j<n—1

Substituting in the utilization expression U(t) = Y, Ci/D;, we get:

U:T/Dn+(1 _T/Dn) Z Cz/Dz + Z (Cz/Dn Z Cj/Dj) (37)
1<i<n—1 1<i<n—2 i+1<j<n—1
Step 2, minimizing U w.r.t. D;: The utilization in Equation (3.7) decreases when Dy, ..., D,

increase. To achieve a meaningful utilization bound, these deadlines must be upper-bounded by the
scheduling policy. The minimum achievable upper bound on these deadlines is D,, since it is possible
for all relative deadlines to be equal. Subject to this observation, in the best scheduling policy the
schedulable utilization bound is minimum when D; = Dy = ... = D,, 1 = D,,. Equation (3.7) can

be significantly simplified in this case. The resulting utilization is given by:

T 1<i<n-1Ci + Zi<i<n—2(Ci Xit1<j<n-1Cj)

U=1-
(T + X1<i<n-1Ci)?

(3.8)

Step 3, minimizing U w.r.t. T": Since arrival times of tasks 71, ..., T, 1 are spaced by the respec-
tive task computation times, as found in Step 1, to obtain the condition for minimum utilization,
it is enough to minimize U with respect to T'. We set dU/dT = 0. Setting the derivative of Equa-
tion (3.8) to zero, we get T' = Y, ;~,,_1 Ci. Note that the value of T' depends on task arrival times.
Thus, regardless of the used ﬁxea—lgriority scheduling policy, an adversary can choose task arrival

times (without affecting task priorities) to produce T that satisfies the above minimum schedulable
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utilization condition. Substituting with 7' = 37, ,.,,_; C; in Equation (3.8) and simplifying, we
get:

5 1 i<n_1C}
po2y L Zicien L (3.9)
8 8(Xicicn1Ci)
) Cc?
The quantity (ZL&SLCZV in Equation (3.9) is lower bounded by 1/(n — 1) which corresponds
1<i<n—1 %4

to the case where task computation times Cy, ..., Cp_1, are equal. Consequently, the optimal lower

bound on the utilization of a critically schedulable aperiodic task set is:

5 1

The theorem is thus proved. O

The bound presented in Theorem 2 is tight. From the construction of the proof it can be seen
that the bound is achieved if task 7}, is preempted by n — 1 packed chains of higher priority tasks.
Each chain may consist of two tasks of equal utilization, the first of which arrives together with
Ty. The second task in each chain j, 1 < j < n — 1, has an arrival time 4; = (j — 1)T/(n — 1), a
computation time C' = T/(n — 1), and a relative deadline D = 2T. Note that this implies that the
first task in chain j has a relative deadline T+ (j —1)C and a computation time {T'+(j—1)C}C/D.
Task T, which is critically schedulable, has a computation time 7' — 3>y <, _1{T + (j —1)C}C/D

and a deadline of 27'. This worst case task pattern is shown in Figure 6.

C=T/(n-1)
u ] |
L
T C=T/(n1) D=2T
| - |
C=T/(n-1) D=2T

C=T/n-1)

D=2T

Figure 6: The Worst Cast Task Pattern
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In the above proof, in order to obtain the optimal utilization bound we had to upper-bound
the relative deadlines of higher priority tasks. In particular, we made use of the assumption that
the relative deadlines of the n — 1 higher priority tasks can be upper-bounded at best by that of
the lowest priority task. We observed that this bound is tight. No policy can reduce it (since all
tasks may have the same relative deadline). We also observed that aperiodic deadline monotonic
scheduling ensures that relative deadlines of higher priority tasks are upper bounded by those of

lower priority tasks. Thus, we arrive at the following corollary:

Corollary: Aperiodic deadline monotonic scheduling is an optimal fixed priority scheduling policy

in the sense of mazximizing the schedulable utilization bound.

Theorem 2 and its corollary establish a tight utilization bound on the schedulability of aperiodic
tasks and an optimal fixed-priority aperiodic task scheduling policy. Tasks in different contexts
can mean different things, such as service requests, packets, transactions, etc. We addressed fixed-
priority scheduling because of its particular importance as it is widely supported by current oper-

ating systems, unlike more esoteric real-time scheduling algorithms.

The derived bound makes possible an O(1) schedulability test based on current utilization. The
test increments current utilization by C;/D; of the arrived aperiodic task. The task is admited if
the new current utilization does not exceed the bound. Otherwise, utilization is rolled back to its
previous value and the task is rejected. Upon task deadlines, current utilization is decremented
by C;/D; of the task whose deadline expired. The derived utilization bound may be of interest
in several contexts. For example, in the context of packet scheduling on network routers, the
bound states that current communication link utilization due to real-time traffic should be less
than 5/8 for all real-time packets to meet their deadlines (the remaining utilization can be allotted
to best effort traffic). Other applications that may benefit from this bound could be web servers
with guaranteed response time, databases with real-time transactions, and in general, adaptive

real-time applications operating in aperiodic environments.

The bound can be used in an average sense. Instead of maintaining a running estimate of cur-
rent utilization, one may rely on estimates of average utilization measured over finite time intervals.
The accuracy of such an approximation needs to be studied and probabilistically guaranteed, which
is an interesting avenue for future research. The approximation eliminates the need to know task
computation times as long as the total utilization is known. It may be of great value to applica-
tions such as large servers in which computation times of individual requests are unknown, and
each request consumes only a small fraction of the total capacity. Controlling only the aggregate
utilization to maintain schedulability allows per-task guarantees to be attained by mechanisms that

require only aggregate knowledge. The approach clearly has great scalability benefits.
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4 The Bound for Dynamic Priority Scheduling

For completeness, in this section, we consider dynamic-priority scheduling. It is easy to show that
EDF is the optimal dynamic priority scheduling algorithm for aperiodic tasks and that the optimal
utilization bound for dynamic priority scheduling is 1. To see that, consider a hypothetical processor
capable of generalized processor sharing. The processor assigns each task T; (of execution time C;
and deadline D;) a processor share equal to C;/D;. All current tasks execute concurrently. Each
task will terminate exactly at its deadline. The maximum schedulable utilization of this processor
is trivially U = 1. One can imagine that such a processor, in effect, schedules current tasks in a
round-robin fashion, assigning each an infinitesimally small time slice that is proportional to its
share, C;/D;. We shall show that this round-robin schedule can be converted into an EDF schedule

without causing any task to miss its deadline.

Let us sweep the round-robin schedule from its beginning to its end. At every time ¢, let
us choose among all current tasks the one with the earliest deadline, say T}, and consolidate its
round-robin slices scheduled in the interval [A;,¢]. Consolidation is effected by shifting these slices
towards the task’s arrival time, displacing slices of tasks that have not been consolidated. Since
we are merely switching the order of execution of task slices within an interval that ends at ¢, no
slice is displaced beyond ¢. Since task T; was current at time ¢, it must be that ¢ < A; + D; (the
absolute deadline of T}). Thus, no slice is displaced beyond T}s deadline. However, since T is the
task with the shortest deadline among all current tasks at time ¢, no slice is displaced beyond its
task’s deadline. The resulting schedule after the sweep is EDF. Thus, EDF has the same utilization
bound as generalized processor sharing. In other words, it will cause no aperiodic deadline misses

as long utilization is less than 1. This result is similar to the case of sporadic tasks.

5 Extensions to Multiple Resources

It is straightforward to extend aperiodic task schedulability analysis to a special case of multiple
resource requirements in which execution on different resources is pipelined. Consider a task model
in which each task T} is represented by a vector of stages in which each stage ¢ has a resource
requirement C; for resource r;, and a relative deadline D; The task arrives at time A;, with an
end-to-end relative deadline D; = }_; D}. Such a task set is schedulable if each individual resource
is schedulable. If the utilization of each resource remains below the bound defined by Theorem 2,
individual task stages will meet their deadlines. Thus, the end-to-end relative deadline of each task
will be met. This simple model approximates applications such as web and e-commerce servers.
In a web server, processing of a user’s request proceeds on multiple stages each of which requires

a different resource. First, CPU is needed for protocol processing and user authentication. Next,
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disk bandwidth is needed to read the requested file (web page) by the disk controller. Then, CPU
is needed again to prepare the file for transmission. Finally, link bandwidth is needed to transmit
the file by the network adaptor. All deadlines will be met if the current utilization of each resource
(CPU, disk bandwidth, and communication link) is kept below the schedulable bound.

More complicated schedulability analysis is needed in the case where tasks require several re-
sources together. Critical sections, for example, belong to this category of models, since they imply
that tasks require both the CPU and some additional serial resources at the same time. Schedu-
lability analysis in the presence of critical sections has been studied in the case of rate monotonic
scheduling. In essence, the utilization bound is decreased by the worst case blocking delay. We
believe that the approach will apply to the aperiodic task case as well. However, schedulability
analysis in the presence of critical sections is beyond the scope of this paper. Other interesting
extensions left for future work include those to multiprocessor scheduling, non-preepmtable tasks,

intertask communication, and general precedence and mutual exclusion constraints.

6 Conclusions and Future Work

In this paper, we derived, for the first time, the optimal utilization bound for the schedulability
of aperiodic tasks under fixed-priority scheduling. The bound allows an O(1) admission test of
incoming tasks, which is faster than the polynomial tests proposed in earlier literature. We also
showed that aperiodic deadline monotonic scheduling is an optimal policy in the sense of maximizing
the schedulable utilization bound. This result may be the first step towards an aperiodic deadline
monotonic scheduling theory — an analog of rate monotonic scheduling theory for the case aperiodic
tasks. Such a theory may prove to be of significant importance to many real-time applications such
as real-time database transactions, online trading servers, and guaranteed-delay packet scheduling.
In such applications aperiodic arrivals have deadline requirements and their schedulability must be

maintained.

While we limited this paper to the first fundamental result, our investigation is by no means
complete. We will explore in subsequent publications extensions of the theory to the case of depen-
dent tasks, multiple resource requirements, precedence and exclusion constraints, non-preemptive
execution, and other task dependencies in a multi-resource environment. We shall also extend our
results to multiprocessor scheduling of aperiodic tasks. While a multiprocessor can be trivially
considered as a set of uniprocessors, it is interesting to investigate whether or not better bounds

are possible when all processors share a single run queue.

Finally, to make the results more usable, it is important to investigate methods for aggregate

utilization control that would maintain the utilization below the schedulability bound. Statistical
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properties of the task arrival process can be combined with mathematical analysis of feedback

control loops to derive probabilistic guarantees on meeting task deadlines. This avenue is currently

being pursued by the author.
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