
Service Differentiation in Real-Time Main Memory Databases
�

Kyoung-Don Kang Sang H. Son John A. Stankovic
Department of Computer Science

University of Virginia�
kk7v, son, stankovic � @cs.virginia.edu

Abstract

The demand for real-time database services has been
increasing recently. Examples include sensor data fusion,
decision support applications, web information services, e-
commerce, and data-intensive smart spaces. In these sys-
tems, it is essential to execute transactions in time using
fresh (temporally consistent) data. Due to the high ser-
vice demand and stringent timing/data temporal consis-
tency constraints, real-time databases can be overloaded.
As a result, users may suffer poor services. Many transac-
tion deadlines can be missed or transactions may have to
use stale data. To address these problems, we present a ser-
vice differentiation architecture. Transactions are classified
into several service classes based on their importance. Un-
der overload, different degrees of deadline miss ratio guar-
antees are provided among the service classes according to
their importance. A certain data freshness guarantee is also
provided for the data accessed by timely transactions which
finish within their deadlines. Feedback control is applied to
support the miss ratio and freshness guarantees. In a sim-
ulation study, our service differentiation approach shows a
significant performance improvement compared to the base-
line approaches. The specified miss ratio and freshness are
supported even in the presence of unpredictable workloads
and data access patterns. Our approach also achieves a rel-
atively low miss ratio for the less privileged service classes,
thereby reducing potential starvation.

1. Introduction

The demand for real-time information services has been
increasing recently. Many real-time applications are be-
coming very sophisticated in their data needs. Applica-
tions such as agile manufacturing have a wide spectrum
of data that span from low level control data, typically ac-
quired from sensors, to high level management and busi-

�
Supported, in part, by NSF grants EIA-9900895 and CCR-0098269.

ness data. Other examples include sensor data fusion, de-
cision support, web information services, e-commerce, and
data-intensive smart spaces. A real-time database, a core
component of many real-time information services, can be
a service bottleneck. In real-time databases, it is desirable to
execute transactions within their deadlines using fresh (tem-
porally consistent) data which can reflect the continuously
changing external environments, e.g., current temperature
or stock prices. Current databases are poor in supporting
timing constraints and data temporal consistency. There-
fore, they do not perform well in these applications. For
example, Lockheed found that they could not use a com-
mercial database system for military real-time applications
and implemented a real-time database system called Eagle-
speed. TimesTen, Probita, Polyhedra in UK, NEC in Japan,
and ClusterRa in Norway are other companies that have also
implemented real-time databases for various application ar-
eas, but for similar reasons. While the need for real-time
data services has been demonstrated, it is clear that these
and other real-time database systems are initial attempts and
have not yet solved all the problems.

Due to the high service demand and stringent tim-
ing/data freshness constraints, real-time databases can be
overloaded. Many transactions, regardless of their impor-
tance, may suffer poor services, i.e., many deadline misses
and/or freshness violations. To address this problem, we
present a service differentiation architecture in real-time
databases, in which important transactions can be executed
in a preferred manner under overload. We classify trans-
actions into premium, basic, or best-effort classes based on
their importance. The main objective of our approach is to
limit the deadline miss ratios below the specified thresholds
in the premium and basic classes while trying to meet as
many best-effort transaction deadlines as possible (without
any guarantee). At the same time, we aim to support a cer-
tain freshness for the data accessed by timely transactions� transactions which finish within their deadlines � even
in the presence of unpredictable workloads and data access
patterns. Different degrees of miss ratio guarantees are pro-
vided among the service classes considering the real-time

database application semantics. For example, consider ag-
ile manufacturing. For the key process control and state up-
dates, a strong performance guarantee is required in terms
of both average and transient miss ratios. In contrast, rou-
tine remote process monitoring transactions can be satisfied
by guaranteeing the average miss ratio. The least important
transactions not related to the process control, state updates,
or remote monitoring can be handled in a best-effort man-
ner. A similar example can apply to other real-time database
applications such as stock trading.

To provide differentiated services in terms of miss ra-
tio, we extend a QoS-sensitive approach, called QMF [11],
which can support a single class of miss ratio and freshness
guarantees in real-time databases. We call the new approach
QMF � Diff (QMF with Differentiated services). Feedback
control is the key technology we use to achieve differenti-
ated miss ratio guarantees.

In the simulation study, we apply a wide range of work-
loads and data access patterns to model potential unpre-
dictability. The performance results show that our approach
can provide the specified guarantees on miss ratio and data
freshness, while other baseline approaches fail to support
the miss ratio and/or freshness guarantees in the presence
of unpredictable workloads and access patterns. Our ap-
proach also achieves the lowest miss ratios in the basic and
best-effort classes, respectively, compared to the baseline
approaches.

The rest of this paper is organized as follows. In Sec-
tion 2, the main performance metrics and QoS specification
issues are discussed. A detailed discussion of our differen-
tiated service architecture is given in Section 3. Section 4
presents the performance evaluation results. Related work
is discussed in Section 5. Finally, Section 6 concludes the
paper and discusses future work.

2 Performance Metrics and QoS Specifica-
tion

In real-time databases, workloads and data access pat-
terns can be time-varying. For example, in decision support
systems users may read varying sets of data and perform dif-
ferent arithmetic/logical operations based on the current sit-
uation. In this paper, we assume that some deadline misses
or freshness violations are inevitable due to unpredictable
workloads and data access patterns. It is also assumed that
a deadline miss or freshness violation does not incur a catas-
trophic result. A few deadline misses or freshness violations
are considered tolerable as long as they do not exceed cer-
tain thresholds. For this reason, we consider the miss ra-
tio and data freshness as key metrics in database QoS. A
database administrator (DBA) can explicitly specify the re-
quired database QoS in terms of miss ratio and freshness.
In this section, our real-time database model is discussed.

Main performance metrics are defined to represent the miss
ratio and data freshness perceived by users. QoS specifi-
cation issues are discussed in terms of main performance
metrics.

2.1 Real-Time Database Model

We consider the firm real-time database model, in which
tardy transactions � transactions that have missed their
deadlines � add no value to the system, and therefore, are
aborted upon their deadline misses. Transactions are clas-
sified as either user transactions or sensor updates. Contin-
uously changing real-world states, e.g., the current sensor
values, are captured by periodic updates. User transactions
execute arithmetic/logical operations based on the current
real-world states reflected in the real-time database.

In this paper, the main memory database model is con-
sidered. For their relatively high performance and the
decreasing main memory cost, main memory databases
have been increasingly used for real-time data management
such as online auction/stocking trading, e-commerce, and
voice/data networking [4, 5, 21]. In our main memory
database model, the CPU is the main system resource for
consideration.

2.2 Main Performance Metrics

In our real-time database model, two main performance
metrics are considered: per-class deadline miss ratio and
freshness of data accessed by timely transactions. In the
remainder of this paper, we follow a convention in which
the highest priority class is associated with the lowest class
number. Thus, Classes 0, 1, and 2 represent the premium,
basic, and best-effort classes, respectively.

� Miss Ratio : For user transactions, admission controls
are applied to reduce the chance of potential overload,
which can lead to undesirable consequences, e.g., the
loss of profit or reduced product quality in stock trad-
ing and agile manufacturing. For admitted transac-
tions, Class 0 receives both the transient and (long-
term) average miss ratio guarantees. Class 1 receives
the average miss ratio guarantee while Class 2 receives
the best-effort service (without any miss ratio guaran-
tee). For the admitted transactions in Class

�����������
	�

, let ������������ and �� ������� ��� represent the number
of transactions that have missed their deadlines and the
number of transactions that have finished within their
deadlines, respectively. The miss ratio of the transac-
tions belonging to Class

�
measured within a certain

time interval is:

��� �! #" ���%$ ������������
�������������&'�(������� ���

��)%

� Freshness : Data in real-time databases can become
out of date due to the passage of time, e.g., current
sensor readings or stock prices. Thus, it is impor-
tant for a real-time database to continuously update the
(sensor) data to maintain the temporal consistency be-
tween the real-world states and the values reflected in
the database. To measure the freshness of data in real-
time databases, we use the notion of absolute validity
interval [19]. A data object X is related to a timestamp
indicating the latest observation of the real-world. X
is considered temporally consistent or fresh if (current
time � timestamp(X)

� ��� � ���
) where ��� � ���
 is the
absolute validity interval of X. Therefore, absolute va-
lidity interval is the length of the time a data object
remains fresh. We further classify the data freshness
into: database freshness and perceived freshness [11].
Database freshness, also called QoD (Quality of Data)
in this paper, is the ratio of fresh data to the entire data
in a database. In contrast, perceived freshness is de-
fined for the data accessed by timely transactions as
follows. Let us call the number of data accessed by
timely transactions �����	�	
���	
� . Let ������
��� represent
the number of fresh data accessed by timely transac-
tions.

Perceived Freshness �" ���%$�������
���
�����	�	
���	
�

��)%

We consider the miss ratio and perceived freshness
as two main aspects of QoS in real-time databases.
(Database freshness can also be considered one aspect
of the database QoS. However, we separately call it
the QoD for the clarity of presentation. Therefore,
we limit the scope the database QoS to the miss ra-
tio and perceived freshness.) In a QoS specification
only the perceived freshness is considered since tardy
transactions add no value to our firm real-time database
model. In this way, we can leverage the inherent lee-
way in the QoD. Under overload, the QoD can be
traded off for a certain subset of cold data to reduce
the update workload as long as the perceived freshness
requirement is not violated. As a result, the deadline
miss ratio of user transactions can be improved with-
out affecting the perceived freshness. A detailed dis-
cussion is given in Section 3.3.

2.3 Transient Performance Metrics

Long-term performance metrics such as average miss ra-
tio are not sufficient for the performance specification of
dynamic systems, in which the system performance can be
time-varying. For this reason, transient performance met-
rics such as overshoot and settling time are adopted from
control theory for a real-time system performance specifi-
cation [14]:

 t s

Miss Ratio
Threshold

Miss Ratio
(%)

M p

Time (sec)

Figure 1. Definition of Overshoot and Settling
Time in Real-Time Databases

� Overshoot (
���

) is the worst-case system performance
in the transient system state. In this paper, it is consid-
ered the highest miss ratio over the miss ratio threshold
in the transient state as shown in Figure 1.

� Settling time (��) is the time for the transient overshoot
to decay and reach the steady state performance as
shown in Figure 1. In the steady state, the miss ra-
tio should be below the miss ratio threshold.

As discussed before, the transient performance metrics
only apply to Class 0. It is very hard, if at all possible, to
provide transient performance guarantees for transactions
belonging to Classes 1 or 2. Class 0 workload can be time-
varying. As a result, the performance of lower priority
classes can be disturbed when Class 0 workload increases
suddenly.

2.4 QoS Specification

In a QoS specification, a DBA can specify a threshold
of the deadline miss ratio for each service class and the tar-
get perceived freshness (������������
	�). In this way, a DBA can
explicitly specify the tolerable per-class miss ratios and the
perceived freshness desired for a specific real-time database
application. In this paper, we consider the following QoS
specification as an example to illustrate our approach for
service differentiation: “QoS-Spec = � (���! � ") ,

�"� �
#��)

, � � " ����$ �&%), ����' �)(�)
,
���+*

= best-effort,
���,��������
	�.-0/21)43 ”. Note that this specification requires
us to limit the average miss ratio below 1% for Class 0. We
also set

�"�
= 30%, therefore, a

���+
overshoot should not

exceed "65 #) �") $ � " & � 5 #�
 , and the overshoot should
decay within 100sec. The average miss ratio should be be-
low 5% for Class 1, while the best-effort service is specified
for Class 2. At least 98% perceived freshness is required
for timely transactions. This is a stringent QoS require-
ment considering the specified average/transient miss ratio
requirements and the required data freshness. Further, the

maximum allowed performance difference in terms of aver-
age miss ratios between Classes 0 and 1 is only 4% which
might not leave a large leeway for temporary relaxations of����'

, if necessary. In Section 4, various experiments are
performed to determine whether or not this QoS specifica-
tion can be supported even in the presence of unpredictable
workloads and data access patterns.

3 Differentiated Service Architecture

In this section, we present our differentiated service ar-
chitecture as shown in Figure 2. A transaction is scheduled
in one of the multi-level ready queues according to its ser-
vice class. The transaction handler executes queued trans-
actions. At each sampling instant, the current miss ratios,
perceived freshness, and the CPU utilization are monitored.
The miss ratio and utilization controllers derive the required
CPU utilization adjustment (��� in Figure 2) considering
the current performance error such as the miss ratio over-
shoot or CPU underutilization. Based on ��� , the QoD
manager adapts the database QoD, if necessary. The update
scheduler schedules an incoming update according to the
update policy currently associated with the corresponding
data object. The admission controller enforces the remain-
ing utilization adjustment after potential QoD adaptations,
i.e., �����6
�� . Each component is discussed in detail below.

QoD
Manager

Update
Scheduler

∆ U

Adapted Update Policy

Admission
Controller

Ready Queue

Update Streams

User
Transasctions

Transaction Handler

CC FM Sch.

Block Queue

Monitor

Terminated

Miss Ratio 0

Abort/Restart

Blocked

Preempt

Freshness

Dispatched

∆ U new

Q 0

Q 1

Q 2

MR Controller 0

MR Controller 1

. . .

. . .

Util. Controller

. . .

Miss Ratio 1

Utilization

Utilization
Threshold
Manager

Figure 2. Real-Time Database Architecture for
Service Differentiation

3.1 Transaction Handler

The transaction handler provides an infrastructure for
real-time database services, which consists of a concur-
rency controller (CC), a freshness manager (FM) and a ba-
sic scheduler. For concurrency control, we use two phase
locking high priority (2PL-HP) [1, 10], in which a low pri-
ority transaction is aborted and restarted upon a conflict.
2PL-HP is selected since it is free of a priority inversion.

The FM checks the freshness before accessing a data
item using the corresponding ��� � . It blocks a user transac-
tion if an accessing data item is currently stale. The blocked
transaction(s) will be transferred from the block queue to
the ready queue as soon as the corresponding update com-
mits.

By the basic scheduler, user transactions are scheduled in
one of multi-level queues (� 	� � ' , and � * as shown in Fig-
ure 2) according to their service classes, i.e., Classes 0, 1,
or 2. A fixed priority is applied among the multi-level ready
queues. A transaction in a low priority queue can be sched-
uled if there is no ready transaction at the higher priority
queue(s). A low priority transaction is preempted upon the
arrival of a high priority transaction. In each queue, trans-
actions are scheduled in EDF manner. To provide the data
freshness guarantee, all updates are scheduled at � in this
paper.

By applying the fixed priority among the service classes,
we provide a basic support for the service differentiation
in real-time databases. However, this is insufficient to pro-
vide guarantees on the miss ratios (in premium and basic
classes) and perceived freshness in the presence of unpre-
dictable workloads/access patterns. For this reason, we ap-
ply the feedback control as follows.

3.2 Feedback Control

It is well known that feedback control is very effective in
supporting a required performance specification when the
system model includes uncertainties [18]. The target perfor-
mance can be achieved by dynamically adapting the system
behavior based on the current performance error measured
in the feedback control loop. Due to its robustness, feed-
back control has recently been applied to various types of
computational systems to provide performance guarantees
[2, 15, 16, 20]. We extend a feedback control scheduling
policy, called FC-UM [15], to provide the differentiated ser-
vice among the service classes in terms of miss ratio. FC-
UM is selected since it can provide a certain miss ratio guar-
antee without underutilizing the CPU given unpredictable
workloads.

3.2.1 Utilization Controller

One utilization control loop is employed to prevent a poten-
tial underutilization, similar to FC-UM. This is to avoid a
trivial solution, in which all the miss ratio requirements are
satisfied due to the underutilization. At each sampling in-
stant, the utilization controller computes the utilization con-
trol signal ����
�� � � based on the utilization error which is the
difference between the target utilization and the current uti-
lization measured by the Monitor at the current sampling
instant as shown in Figure 3 (a). We further extend the

utilization controller by employing the utilization threshold
manager as follows.

Transactions

(a) Utilization Control Loop

T k

(b) MR - Loop k

MR kMiss Ratio
Controller k

RTDB
E k ∆U k

-

Utilization
Controller RTDB

Target
Utilization

 + error ∆U util

Measured
Utilization

Transactions

-

+

Figure 3. Miss Ratio/Utilization Controllers

3.2.2 Utilization Threshold Manager

For many complex real-time systems, the schedulable uti-
lization bound is unknown or can be very pessimistic [15].
In real-time databases, the utilization bound is hard to de-
rive, if it even exists. This is partly because database ap-
plications usually include unpredictable aborts/restarts due
to data/resource conflicts. A relatively simple way to han-
dle this problem is to set/enforce a pessimistic utilization
threshold. However, this can lead to an unnecessary under-
utilization. In contrast, an excessively optimistic utilization
threshold can lead to a large miss ratio overshoot. It is a
hard problem to decide a proper utilization threshold in a
complex real-time system such as a real-time database.

To address this problem, we propose a novel online ap-
proach in which the utilization threshold (the target utiliza-
tion in Figure 3 (a)) is dynamically adjusted considering the
current real-time system behavior as follows. Initially, the
utilization threshold is set to a lower utilization set point,
e.g., 80% 1. If no deadline miss is observed at the current
sampling instant in Classes 0 and 1, the utilization thresh-
old is incremented by a certain step size unless the resulting
utilization threshold is over 100%. The utilization threshold
will be continuously increased as long as no deadline miss
is observed in Classes 0 and 1. The utilization threshold
will be switched back to the lower utilization set point as
soon as the miss ratio controller takes the control. This is
to prevent a potential miss ratio overshoot due to an over-
optimistic utilization threshold. Note that our approach is
self-adaptive requiring no a priori knowledge about a spe-
cific workload model and is computationally light-weight.

1For the performance evaluation, we actually set the lower utilization
set point to 80%.

Using our approach, the potentially time-varying utilization
threshold can be closely approximated.

3.2.3 Miss Ratio Controllers

In our approach, miss ratio controllers are employed for
Classes 0 and 1, respectively, to provide guarantees on their
miss ratios. Each class � ��� � � � "
 is associated with
a certain miss ratio threshold ��� as shown in Figure 3 (b).
In Class � , a miss ratio control loop

��� ������� �	� com-
putes a miss ratio control signal ����� based on the current
performance error
�� , which is the difference between the
class-specific threshold ��� and the current miss ratio of the
user transactions in Class � ,

��� � , measured by the Moni-
tor at the current sampling instant. When overloaded, ����
can become negative to request the reduction of the CPU
utilization.

By using separate miss ratio control loops for Classes 0
and 1, respectively, we can support the flexibility against
varying workload mixtures among the service classes. A
miss ratio control loop generates a null signal when there
is no workload belonging to the corresponding service class
independently from the other miss ratio controller. For ex-
ample,

��� ������� � ' generates a null signal when all in-
coming transactions belong to Class 0 and

��� ������� �
can support the specified

���+
guarantee.

3.2.4 Derivation of a Single Control Signal

From the two miss ratio control signals (���� where
� �

� � "), a single miss ratio control signal, ������ , is
derived. To derive ������� , we need to consider three
cases: both ��� and ��� ' are currently negative, one of
the two is negative, or none of them is negative. In the
first case, both

���+
and

����'
are violated. Hence, we

set ������� ��
'
��� ���	� to require enough CPU uti-

lization adjustment (i.e., reduction) to avoid a significant
miss ratio increase in the consecutive sampling instants.
When one of the two control signals is negative, we set
�������� � ��� ����� � � ��� � ��� '
 to reduce the miss ra-
tio in the corresponding service class. If both of the two
miss ratio control signals are non-negative, we take a min-
imum of the two control signals to support a smooth tran-
sition from a system state to another, similar to [15]. After
deriving ������� , we set the current control signal ��� � ��� ����� � � ����
�� � � � �������
 for a similar reason.

3.2.5 Integrator Antiwindup

Each feedback controller in Figure 3 is a digital PI (pro-
portional and integral) controller. Combined with a pro-
portional controller, an integral controller can improve the
performance of the feedback control system. However, care

should be taken to avoid erroneous accumulations of con-
trol signals by the integrator which can lead to a substantial
overshoot later [18]. For this purpose, the integrator anti-
windup technique [18] is applied as follows.

� Case 1 (��������� ����
�� � �) : All integrators of
��� �

����� � � ��� � � � "
 are turned off, since the current
���# ����
�� � � .

� Case 2 (������� � ����
�� � �) : In this case, the integra-
tor of the utilization controller is turned off, since cur-
rently ���# ������� . For the miss ratio controllers, if
both ��� and ��� ' are negative, turn on the integra-
tors for both

��� � ����� � and
��� � ����� � ' . This

is because the current ��� �
'
��� ���	� . Otherwise,

turn off the integrator of
��� � ����� �	� � �� ��� � "

whose miss ratio control signal is larger than the other.

3.2.6 Profiling and Controller Tuning

To support the specified miss ratio guarantees, we tuned the
miss ratio controllers for Classes 0 and 1 as follows.

� ��� � ����� � : To tune the digital PI con-
trollers of FC-UM, the miss ratio gain � � � ��� � � � �� � ��� � �	� �6�	��
� �	

 � � ���������� �6�	��
� �	
 3 , should be derived under
the worst case set-up to support a certain miss ratio
guarantee [15]. To derive ��� , the performance of the
controlled system, i.e., a real-time database in this pa-
per, should be profiled. We have performed the profil-
ing in [11]. Average miss ratio was measured for loads
increasing from 60% to 200% by 10%. From this, we
derived � � "65 "��21 	 when the load increases from
110% to 120%. In that profiling, every update is ap-
plied immediately in a preferred manner to user trans-
actions, and user transactions are scheduled in a single
service class. In this paper, updates and Class 0 user
transactions are scheduled at the same priority level,
i.e., at � in Figure 2. However, in a transient state
all pending updates may have earlier deadlines than
Class 0 user transactions. As a result, user transac-
tions should be scheduled after all pending updates.
(Note that transactions are scheduled in EDF manner
in each ready queue.) Therefore, this can be consid-
ered the worst case for Class 0 user transactions in
which the highest

���+
can be observed and can be

used to tune the PI controllers in the
��� ������� � .

Using the miss ratio gain (� �), we apply the Root Lo-
cus design method in Matlab [18] to tune the PI con-
trollers. The sampling period for feedback control is
set to 5sec. We have selected the closed loop poles
at � 	� � ' � 5 ��� 1 � � 5 (6# / . The feedback control sys-
tem is stable, since the closed loop poles are inside
the unit circle. Given a unit step input in Matlab, the

tuned feedback control system can provide the follow-
ing transient performance, which meets the miss ratio
overshoot and settling time requirements for Class 0
specified in QoS-Spec:

– The theoretical overshoot is 18%. Hence, ideally
a
���

overshoot should not exceed "65 "�1)
") $ � "�& � 5 "�1
 .

– The theoretical settling time is 80sec. Ideally,
a transient

���+
overshoot should decay within

80sec.

� ��� � ����� � ' : For
��� � ����� � ' , we use the same

control gains (i.e., KP and KI) derived for Class 0. One
may argue that this is an optimistic design decision
for

��� � ����� � ' , since Class 1 user transactions
can suffer a significant deadline miss ratio when the
Class 0 workload suddenly increases. However, we
have made this design decision considering the rela-
tively less stringent performance requirements of Class
1 (i.e., no transient miss ratio constraints are required
and a relatively high average miss ratio can be toler-
ated according to QoS-Spec). Further,

��� � ����� � '
can achieve the desired average miss ratio, since the
feedback control system is stable (i.e., the closed poles
are inside the unit circle). In Section 4, we verify that
the average

����'
threshold (5%) is actually satisfied.

3.3 QoD Manager

In general, it is hard to meet both the timing and fresh-
ness constraints at the same time. High update workloads
may increase the deadline miss ratio of user transactions,
however, infrequent updates reduce the QoD (database
freshness) [4]. As a result, transactions may have to use
stale data. (For this reason, we do not consider design-
ing a separate feedback controller to manage the freshness.
The specified miss ratio and freshness can pose conflict-
ing requirements leading to a potentially unstable feedback
control system.) To address the problem, we use the QoD
manager (an actuator from the control theory perspective).
When overloaded (i.e., ����� �), the QoD manager can de-
grade the current QoD to reduce the update workload and
improve the deadline miss ratio, as a result. In fact, it might
not be necessary to schedule all incoming sensor updates.
Some data objects can be updated very frequently, but ac-
cessed infrequently. In contrast, other data objects can be
accessed frequently within consecutive updates. Based on
the access update ratio (AUR), we classify data as hot or
cold: a data object is considered hot if the corresponding
accesses are more frequent than the updates, i.e., AUR - 1.
Otherwise, it is considered cold. It is reasonable to update
hot data in an aggressive manner. If a hot data object is out

of date when accessed, potentially a multitude of transac-
tions may miss their deadlines waiting for the update. For
cold data objects, we can save the CPU utilization by ap-
plying a lazy update policy when overloaded. Only a few
transactions might be affected by the update delay. We se-
lect immediate and on-demand policies as the aggressive
and lazy update policies, respectively.

D = Dimm

Dimm

Dod

Dimm

Dod

(a) Initial State (b) Moderately
Loaded State

(c) Overloaded
State

AUR < 1

AUR =1

Figure 4. Update Policy Adaptations

For example, consider Figure 4. � is the set of the entire
(sensor) data in a real-time database, � � ��� is the set of data
updated immediately, and � ��� is the set of data updated on
demand. Initially, every data is updated immediately (i.e.,
� �� � ���). A subset of cold data can be updated on de-
mand as the workload increases. The QoD is degraded, as
a result. The QoD degradation is stopped once the required
CPU utilization adjustment (���) is achieved or the degra-
dation bound (i.e., AUR = 1) is reached. The update policy
is switched back to the immediate policy for a certain sub-
set of data when the perceived freshness is violated. Using
dynamic change of update policy, the QoD manager dif-
ferentiates the QoD among hot and cold data classes when
overloaded. For more details about the QoD management,
refer to [11].

3.4 Update Scheduler

The update scheduler decides whether to schedule or
drop an incoming update based on the update policy se-
lected for a data object. Immediate updates will always be
scheduled, whereas on-demand updates will be scheduled
only if any transaction is blocked to access a fresh version
of the corresponding data.

3.5 Admission Control

The admission controller is another system component
that enforces the control signal in addition to the QoD Man-
ager. After possible QoD adaptations, the admission con-
troller is informed of the adjusted control signal, called
�����6
�� , as shown in Figure 2. The admission control is
necessary since the QoD Manager itself might not be able
to enforce the required utilization adjustment (i.e., ���)

Table 1. Settings for Data and Updates
Parameter Value
#Data Objects 1000
Update Period �����
	������������������������������! �" �����
	���������������$#������
Actual Exec. Time %&����&')(
� ���! �" �+* ���! �" �
Total Update Load ,-����.

Table 2. Settings for User Transactions
Parameter Value���! �" �����
	�������0/��������$#��������1 �! �" ���! �"32 ���54 � ��6 � � " �
Actual Exec. Time %&����&')(
� 1 �! �" �+* 1 �! �" �%�798;:;8�< ���! �"32

DAF =>�����?�A@��B�
#Actual Data Accesses %&����&')(
�C%D798;:;8�<��FE %�798;:;8�<+�

entirely. The QoD degradation bound (AUR = 1) can be
reached before achieving ��� or the perceived freshness re-
quirement is currently violated, therefore, no QoD degra-
dation is possible. In contrast, more incoming transactions
should be admitted when underutilized.

An incoming user transaction can be admitted if its es-
timated CPU utilization requirement is currently available.
The current utilization is examined by aggregating the uti-
lization estimates of previously admitted transactions which
are in the same or higher service class(es). This is a priority-
aware approach. A high priority class transaction is not
rejected due to the low priority class transactions already
admitted.

4 Performance Evaluation

In this section, we analyze the performance of our ser-
vice differentiation approach. For this, we have developed
a real-time database simulator. The workloads used for our
experiments are discussed. Baseline approaches are intro-
duced for performance comparisons and the performance
evaluation results are presented.

4.1 Simulation Model

In our simulation, we apply a certain workload consist-
ing of data updates and user transactions which access data
and perform (virtual) arithmetic/logical operations based on
the accessed data. Update and user workload models are
summarized in Tables 1 and 2, and described as follows.

4.1.1 Data and Updates

There are 1000 data objects in our simulated real-time
database. Each data object � � is periodically updated by
an update stream, � �� � � � � , which is associated with an es-
timated execution time (

�� �) and an update period (� �)
where " � � � " ����� .

�� � and �!� are uniformly dis-
tributed in a range (1ms, 8ms) and in a range (100ms,
50sec), respectively. Upon the generation of an update, the
actual update execution time is varied by applying a normal
distribution � � � � � � �

�� � ���

�� �
 for � �� � � � � to in-
troduce errors in execution time estimates. The total update
workload is manipulated to require approximately 50% of
the total CPU utilization if every update is scheduled by the
immediate update policy.

4.1.2 User Transactions

A source, � � � � % � � , generates a group of user transac-
tions whose inter-arrival time is exponentially distributed.
� � � � % � � is associated with an estimated execution time
(

�� �) and an average execution time (�
�� �). We set

�� � � � ��� � � � � 	 � �.$ � 1 � �.$�
 2. By generating multi-
ple sources, we can derive transaction groups with different
average execution time and average number of data accesses
in a statistical manner. We set �
�� � � " &
 $
 ���
 $

�� � , in which
 $
 ��� is used to introduce the execution
time estimation errors. Note that the simulator is only aware
of the estimated execution time. Upon the generation of a
user transaction, the actual execution time is generated by
applying the normal distribution � � � � � � � �
�� � ��� �
�� �

to introduce the execution time variance in the user transac-
tion group.

The number of data accesses for � � � � % � � is derived
in proportion to the length of

�� � , i.e., ���	��
�� <
data access factor

$

�� � � " � �� ��
 . As a result, longer
transactions access more data in general. Upon the gener-
ation of a user transaction, � � � � % � � associates the actual
number of data accesses with the transaction by applying
� � � � � � � ���	��
�� < � E ���	��
�� <
 to introduce the variance
in the user transaction group.

We set deadline = arrival time + average execution time$
slack factor for a user transaction. A slack factor is uni-

formly distributed in a range (20, 40). For an update, we set
deadline = next update period.

4.2 Baselines

To our best knowledge, no previous research has applied
feedback control and QoD adaptations to provide the ser-
vice differentiation in real-time databases. For this reason,

2We assume that user transactions execute longer than updates since
they access data and perform arithmetic/logical operations based on the
accessed data in our model.

we have developed two baselines as follows to compare the
miss ratio and perceived freshness with QMF-Diff :

� Basic-IMU : In this approach, a basic service differen-
tiation is provided by using the fixed priority schedul-
ing among the service classes and the priority-aware
admission control as described in Sections 3.1 and 3.5,
respectively. The immediate update policy is used for
all updates, therefore, it provides the highest possi-
ble QoD. All the shaded components in Figure 2 are
turned off. Thus, the feedback control and QoD adap-
tations are not applied.

� Basic-ODU : This is similar to Basic-IMU except that
every data is updated on demand. An update is sched-
uled if at least one user transaction is blocking to ac-
cess the fresh version of the corresponding data. Be-
cause of lazy updates, the QoD (database freshness)
is generally low compared to Basic-IMU approach.
However, the user transaction miss ratio can be im-
proved due to the relatively low update workload. In
QMF-Diff, the QoD can be dynamically adjusted be-
tween the highest value supported by Basic-IMU and
the lowest value provided by Basic-ODU.

When the on-demand update policy is applied, it is pos-
sible that a blocked transaction can not finish in time to wait
for an on-demand update. This problem can be handled in
one of the two alternative ways: either aborting the corre-
sponding user transaction, or allowing a stale data access to
meet the transaction deadline [4]. The selection between the
two alternatives is application dependent, that is, it depends
on the criticalness of the stale data access in a specific real-
time database application. To consider the former approach,
we have to define another performance metric such as abort
rate due to stale data accesses. For the clarity of presenta-
tion, we take the latter approach. An in-depth comparison
between the two alternatives is reserved for future work.

4.3 Experimental Goals

The main objective of our simulation study is to show
whether or not our approach can provide the performance
guarantees as specified in Section 2.4 (QoS-Spec), that is,
per-class miss ratios are below the specified thresholds and
the perceived freshness is above the required target value
even in the presence of unpredictable loads and data ac-
cess patterns. For this purpose, we vary the applied work-
loads from various aspects. The workload variables and the
presented experiments are summarized in Tables 3 and 4.
They are described in detail as follows.

Table 3. Workload Variables
Variable Meaning1������ ��'�� Applied Load (%)� ��6 � � Execution Time Estimation Error�	�
�

Hot Spot Size (%)�	��
Highest Class Ratio (%)

Table 4. Presented Experiments
Expr. Vary Fix

1
1������ ��'��D= EstErr = 0� ��. ��������. ���F����. ��/�����. HSS = 50%�	�� =-/���.

2
�	�� = AppLoad = 200%/���. �A@���. ������. �$#���. ��������. EstErr = 1

HSS = 50%

4.3.1 Workload Variables

� AppLoad : Computational systems may show differ-
ent performance for increasing loads, especially when
overloaded. We use a variable, called � ��� � � � � , to ap-
ply different workloads in the simulation. Note that
this variable indicates the load assuming that all in-
coming transactions are admitted and all updates are
immediately scheduled. The actual load can be re-
duced in a tested approach by applying the admission
control and scheduling the updates according to the se-
lected update policy. For performance evaluation, we
applied � ��� � � � �% � �) � " ���) � " (�) � and

	 ���)
.

� EstErr (Execution Time Estimation Error) :
 $
 ��� is
used to introduce errors in execution time estimates as
described before. We have evaluated the performance
for
 $
 ��� = 0, 0.25, 0.5, 0.75, and 1. In general,
a high execution time estimation error could induce a
difficulty in real-time scheduling.

� HSS (Hot Spot Size) : Database performance can vary
as the degree of the data contention changes [1, 9].
For this reason, we apply different access patterns by
using the � � � access scheme [9], in which �) of
data accesses are directed to �) of the entire data in
the database and � - � . For example, 90-10 ac-
cess pattern means that 90% of data accesses are di-
rected to the 10% of a database (i.e., hot spot). When
� �� (�)

, data are accessed in a uniform manner.
We call a certain � a hot spot size (� �	�). The perfor-
mance is evaluated for � �	� 10%, 20%, 30%, 40%,
and 50% (uniform access pattern).

� HCR (Highest Class Ratio) : In general, the perfor-
mance of a service differentiation scheme may change

according to the high priority class workload. In our
approach,

����'
and

���+*
could increase as the Class

0 load increases due to the fixed priority scheduling
applied among the service classes. To adjust the Class
0 workload, we define a workload variable:

��� � #" ��� $ #Class 0 User Transactions

�
*
��� #Class k User Transactions

��)%
 5

We evaluate the performance for ��� � 20%, 40%,
60%, 80%, and 100%.

4.3.2 Experiments

Even though we have performed a large number of experi-
ments for varying values of � ��� � � � � �
 $
 ��� � � �	� and
��� � , we present only two sets of experiments as shown in
Table 4 due to the space limitation. We have verified that
all the experiments other than
 � � � � ����� � $ 1 and 2 show
a consistent performance trend: only our approach can pro-
vide guarantees on

���+
,
����'

, and perceived freshness,
while the baselines fail to provide guarantees on miss ratios
and/or perceived freshness in the presence of unpredictable
workloads and access patterns. In that sense, we present

 � � � � ����� � $ 1 and 2 that represent the two ends of the
spectrum.

� Experiment 1 : As described in Table 4, no error
is considered in the execution time estimation, i.e.,

 $
 ��� �

. Note that this is an ideal assumption
since precise execution time estimates are usually not
available. Performance is evaluated for � ��� � � � �
70%, 100%, 150%, and 200%. In all the other sets
of experiments, we fix � ��� � � � � 	 ���)

to com-
pare the adaptiveness of Basic-IMU, Basic-ODU, and
QMF-Diff under overload. We also fix ��� � 	 �) .
Hence, the best case settings in our experiments are
applied for
 � � � � ����� � 1.

� Experiment 2 : In this set of experiments, the worst
case settings in our experiments are applied. We set
� ��� � � � � 	 ���)

and
 $
 ��� " , i.e., the high-
est load and the largest execution time estimation er-
ror are applied in our experiments. We also increase
��� � 20%, 40%, 60%, 80%, and 100% to stress
the modeled real-time database. As ��� � increases,
miss ratios, especially

��� '
and

���+*
, may increase

significantly. (We fix ��� � 	 �)
in all the other

sets of experiments.)

In our experiments, one simulation run lasts for 10 min-
utes of simulated time. For all performance data, we have
taken the average of 10 simulation runs and derived the 90%
confidence intervals. Confidence intervals are plotted as

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100
A

ve
ra

ge
 M

is
s

R
at

io
 (

%
)

Class 0

Class 1

Class 2

Figure 5. Average Miss Ratio for Basic-IMU

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Class 2

Figure 6. Average Miss Ratio for Basic-ODU

vertical bars in the graphs showing the performance evalu-
ation results. (For some performance data, the vertical bars
may not be noticeable due to the small confidence intervals.)
Figures 5 through 9 and Figures 10 through 14 present
the performance evaluation results for
 � � � � ����� � $ 1 and
2, respectively.

4.4 Experiment 1: Effects of Increasing Load

In this section, we compare the performance of Basic-
IMU, Basic-ODU, and QMF-Diff for increasing � ��� � � � � .
As shown in Figures 5, 6, and 7, all tested approaches
have shown near zero

���+
in terms of average. We have

also observed that none of them has violated the specified���
overshoot, 1.3% as specified in Section 2.4. This

is mainly due to the best-case settings, especially because

 $
 ��� � and ��� � 	 �) . Therefore, concerning the
miss ratio we only compare the average miss ratios among
the service classes in the remainder of this section.

4.4.1 Average Miss Ratio

As shown in Figure 5, for Basic-IMU,
����'

increases
as the � ��� � � � � increases violating

��� '
threshold (5%)

when � ��� � � � � " (�) and 200% due to the relatively
high update workloads. The corresponding

����'
values are

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Class 0

Class 1

Class 2

Figure 7. Average Miss Ratio for QMF-Diff

60 80 100 120 140 160 180 200

AppLoad (%)

80

82

84

86

88

90

92

94

96

98

100

A
ve

ra
ge

 P
er

ce
iv

ed
 F

re
sh

ne
ss

 (
%

)

Basic-IMU

Basic-ODU

QMF-Diff

Figure 8. Average Perceived Freshness

	 � 5 � (�� 1 5 � 	�) and ����5 # 1 � 1 5 /��) , respectively, and
���!*

values are near 100%. In contrast, both Basic-ODU and
QMF-Diff have limited

���+
and

����'
below the specified

thresholds achieving near zero
���!

and
����'

as shown in
Figures 6 and 7.

4.4.2 Perceived Freshness

Basic-IMU provides 100% perceived freshness as shown in
Figure 8. This is because every update is scheduled imme-
diately in Basic-IMU. QMF-Diff supports near 100% per-
ceived freshness. The lowest freshness is /2/ 5 � �(� 5 #�	�)
when � ��� � � � � " (�) exceeding the ������������
	� /21) .
However, Basic-ODU has failed to support the ��� ��������
	� .
When � ��� � � � � 	 ���)

, it showed 121 5 (2(�� � 5 " #) per-
ceived freshness. This is because every data is updated on
demand in Basic-ODU. As a result, many user transactions
are forced to read stale data to meet their deadlines. To ver-
ify this, we have measured the average QoD for Basic-ODU
in 10 simulation runs when � ��� � � � � 	 ���) . The aver-
age QoD provided by Basic-ODU was only / 5 " � � 5 � 1) .

4.4.3 Average Utilization

In Figure 9, Basic-IMU shows the highest utilization
among the tested approaches due to the high update work-
load. As shown in Figure 9, Basic-ODU shows the sig-

60 80 100 120 140 160 180 200

AppLoad (%)

0

20

40

60

80

100
A

ve
ra

ge
 U

ti
liz

at
io

n
(%

)

Basic-IMU

Basic-ODU

QMF-Diff

Figure 9. Average Utilization

0 20 40 60 80 100

hcr (%)

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Basic-IMU

Basic-ODU

QMF-Diff

Figure 10. Average Miss Ratio for Class 0

nificant underutilization until � ��� � � � � " ���) due to
unscheduled updates. Both in Basic-IMU and Basic-ODU,
the utilization increases sharply as the � ��� � � � � increases
leading to potential overload, in which

����'
threshold or

the ���,��������
	� is violated, respectively, as shown in Figures
5 and 8. In contrast, QMF-Diff shows a relatively stable
utilization ranging from ��� 5 � # � � 5 1 #) to 1�� 5 "�/ � � 5 1 	�)
as � ��� � � � � increases from 70% to 200% as shown in Fig-
ure 9. Note that in
 � � � � ����� � 1 only QMF-Diff can sup-
port both the ������������
	� and miss ratio guarantees on

���!
and

����'
, while Basic-IMU and Basic-ODU fail to pro-

vide
����'

and perceived freshness guarantees, respectively.
Our approach also produces the lowest miss ratio for Class 2
among the tested approaches, e.g., when � ��� � � � �% 	 ���)
QMF-Diff has " � 5 � 1 � � 5 (�) ���!* (Figure 7), while Basic-
IMU and Basic-ODU have near 100% and 70% miss ratios
for Class 2, respectively (Figures 5 and 6).

4.5 Experiment 2: Effects of Increasing the High-
est Class Load

In real-time database applications, the ��� � value might
not be fixed but time-varying. This can affect the perfor-
mance of the modeled real-time database. Miss ratios, espe-
cially

����'
and

���+*
, may increase as ��� � increases. To

quantify this, we evaluate performance for ��� � values in-
creasing from 20% to 100%. When ��� � becomes 100%,

0 20 40 60 80

hcr (%)

0

20

40

60

80

100

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Basic-IMU

Basic-ODU

QMF-Diff

Figure 11. Average Miss Ratio for Class 1

0 20 40 60 80

hcr (%)

0

20

40

60

80

100

A
ve

ra
ge

 M
is

s
R

at
io

 (
%

)

Basic-IMU

Basic-ODU

QMF-Diff

Figure 12. Average Miss Ratio for Class 2

every transaction belongs to Class 0 and the service differ-
entiation is not applicable, as a result. In this section, we
mainly focus on miss ratio comparisons among Basic-IMU,
Basic-ODU, and QMF-Diff. Perceived freshness has also
been measured, but it is not plotted in this section to avoid
repetition. Concerning the perceived freshness, Basic-IMU
and QMF-Diff have shown near 100% perceived freshness
for all tested ��� � values, while Basic-ODU has failed to
support the ������������
	� , similar to the results described in the
previous section. QMF-Diff has shown 100% perceived
freshness except when ��� � 1 �) in which the per-
ceived freshness is /2/ 5 / 	 � � 5 " (�) .

4.5.1 Average Miss Ratio

As shown in Figure 10, for Basic-IMU and Basic-ODU the
average

���
continuously increases as ��� � increases,

violating the specified
���+

threshold (1%). In contrast, for
QMF-Diff the average

���+
is maintained near zero despite

the increasing ��� � as shown in Figure 10.
In Figure 11, the average

��� '
is plotted for increas-

ing ��� � values except when ��� � " ���) , in which
there is neither a Class 1 nor a Class 2 transaction. Both
Basic-IMU and Basic-ODU show significant violations of
the

����'
threshold (5%) as ��� � increases. Especially,

Basic-ODU, which showed a good performance in terms
of
���

and
����'

in
 � � � � ����� � 1, fails to support both

0 20 40 60 80 100

hcr (%)

60

70

80

90

100
A

ve
ra

ge
 U

ti
liz

at
io

n
(%

)

Basic-IMU

Basic-ODU

QMF-Diff

Figure 13. Average Utilization

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (sec)

0

5

10

15

20

M
is

s
R

at
io

 (
%

)

Class 0
Class 1

Figure 14. Transient Miss Ratios in Classes 0
and 1 for QMF-Diff (HCR = 80%)

�����
and

�����
guarantees as shown in Figures 10 and 11.

In contrast, QMF-Diff supports the
�����

and
�����

guar-
antees. Our approach shows near zero

�����
and the worst�����	��
� ��������� �����

when ��� �������� as shown in Fig-
ures 10 and 11. As shown in Figure 12, our approach also
shows the lowest miss ratio for Class 2, similar to the perfor-
mance evaluation results presented in the previous section.
In Figures 11 and 12, for a few cases

�����
and

�����
de-

crease when ��� � increases from 60% to 80%. This is due
to the priority-aware admission control described in Section
3.5. As ��� � increases, more Class 0 transactions arrive.
As a result, lower priority transactions have a less chance to
get admitted and the deadline miss ratio for those admitted
may decrease.

As shown in Figures 10 and 11, for QMF-Diff the dif-
ference between

�����
and

�����
is below 3% satisfying the

allowed maximum difference (4%) described in QoS-Spec.
(The average

�����
is near zero and the highest

�����
is
� ��� �!��� �����

when ��� �"�#���� .)

4.5.2 Average Utilization

As shown in Figure 13, for Basic-IMU and Basic-ODU
the utilization is near 100%, whereas for QMF-Diff the
utilization is approximately between

����%$&����
. In the

baseline approaches, the simulated real-time database is
overloaded leading to the violations of the specified

�����
and

�����
guarantees as discussed before. QMF-Diff ex-

ceeds the lower utilization set point of 80% except when

��� �"�#���� as shown in Figure 13.

In QMF-Diff, the utilization decreases slightly as ��� �
increases. This is because

���'$�(*)�)�+,�
requests rela-

tively large utilization reductions for the increasing
���-�

.
The utilization increases again when ��� �.�./0����

, in
which

����$1(*)�)�+2�
does not request any utilization re-

duction since no Class 1 transactions are generated. QMF-
Diff satisfies our main objective which is to provide guar-
antees on

�����
,
�����

, and perceived freshness without
severely underutilizing the CPU instead of maximizing the
CPU utilization.

4.5.3 Transient Miss Ratio

Concerning transient performance, we only have to con-
sider QMF-Diff. For Basic-IMU and Basic-ODU, the spec-
ified average

�����
is already violated as shown in Figure

10. For the baseline approaches, we found that the transient�����
violates the specified 1% threshold and the overshoot

does not decay in the experiments.

For QMF-Diff, we have found that the
�����

overshoot
and settling time specified in QoS-Spec are satisfied dur-
ing the transient state for all tested ��� � values. The only
exception is when ��� �"�"/0���� where 2.92%

�����
over-

shoot is observed in the transient state. (The average
�����

threshold is not violated.) However, this is an extreme case
in which the service differentiation is not applicable and the
most stringent miss ratio guarantee is required among the
tested ��� � values since all transactions belong to Class 0.
Despite the stringent requirement the degree of violation is
not significant compared to the allowed overshoot in QoS-
Spec (1.3%), i.e.,

/3� 4�
��5�6
� ��
��7$�/3� 8�
. More impor-

tantly, the miss ratio overshoot at ��� ���9/0���� decays in
10sec (two sampling periods). For other ��� � values, the
overshoots also decay within 10sec, which is much shorter
than the specified settling time (100sec). Therefore, we can
conclude that QMF-Diff closely meets the

�����
transient

performance specification.

We also compare the transient
�����

and
�����

for QMF-
Diff to show the performance difference in the transient
state. In Figure 14, we compare the transient miss ratios for
Classes 0 and 1 when ��� �"�#���� in which the worst (av-
erage)

�����
is observed for QMF-Diff among all the tested

workloads. In Figure 14, two horizontal lines are plotted to
represent the 1% and 5% miss ratio thresholds for Classes 0
and 1, respectively. (The confidence intervals are not drawn
for the clarity of presentation.) The specified

�����
over-

shoot and settling time are satisfied at the expense of the
temporary relaxations of the

�����
guarantee under over-

load.

5 Related Work

Service differentiation techniques have been widely
studied in various computational systems such as web
servers, network routers, and proxy caches [3, 6, 7, 8, 13,
16]. By providing the differentiated service, system re-
sources can be effectively utilized, especially when over-
loaded. However, the related research is relatively scarce in
real-time databases despite the increasing service demand.

Existing service differentiation models can be catego-
rized as: basic differentiation models [3, 6], proportional
differentiation models [8, 17], absolute guarantee models
such as the one proposed in [13], or hybrid models [7, 13].
In the simplest service differentiation models, called basic
models in this paper, a high priority class receives a bet-
ter service. However, no guarantee is provided on the ser-
vice delay and the performance difference among the ser-
vice classes is usually unknown. Our admission control and
fixed priority scheduling applied among the service classes
are similar to a service differentiation scheme developed in
the context of a web server [6]. However, neither database
issues nor performance guarantees are considered in their
work.

In proportional differentiation models such as [8], the ra-
tio of service delays between service classes can be main-
tained roughly as a constant, however, no upper bound is
specified on the service delay. By memory management
and scheduling, a proportional service differentiation is pro-
vided in real-time databases [17]. Given enough memory,
queries can be processed in time. Otherwise, temporary
files should be used during the query processing to save
the intermediate results. As a result, the query processing
may slow down. Admission control is used to avoid an un-
bounded miss ratio increase under overload. In this way,
query response time was differentiated among the service
classes. However, no upper bound is provided on the aver-
age or transient miss ratio. Data freshness issues are also
not considered.

In the absolute guarantee model, some subsets of all
service classes can receive certain delay guarantees even
at high workloads. When overloaded, limited system re-
sources will be allocated according to the priority of the
class [13]. This model is similar to our model in the sense
that we also enforce the miss ratio below certain thresholds
in the premium and basic classes. However, database issues
are not considered in their work.

Hybrid models such as [7, 13] can provide both the
absolute and proportional service differentiation. In [13],
a proportional differentiation and an absolute guarantees
are provided under nominal and severe overload, respec-
tively. Their approach exclusively considers the connection
scheduling in the web server, and therefore, is not directly
applicable to real-time databases. Also, the performance

can fluctuate during the switching from one service differ-
entiation model to another due to the delayed switching to
provide a smooth transition. A hybrid model is provided in
the context of network routers [7], however, their work does
not consider any end-system issues such as databases.

The notion of QoD was introduced in [12]. They con-
sider the trade-off issues between response time and data
freshness in the context of web databases. However, neither
the miss ratio nor data freshness guarantee is considered.

Feedback control has been increasingly applied to QoS
management and real-time scheduling recently [2, 7, 15, 16,
20]. However, to our best knowledge none of them con-
sidered service differentiation issues in real-time databases
considering timing and data freshness constraints.

6 Conclusions and Future Work

The demand for real-time database services has been in-
creasing recently, e.g., sensor data fusion, decision support,
web information services, e-commerce, online trading, and
data-intensive smart spaces, in which it is desirable for users
to receive guaranteed real-time database services. In QMF-
Diff, a database administrator can explicitly specify the re-
quired database QoS including the miss ratio differentiation
among the service classes. According to the experimental
results, our approach can provide the specified QoS when
the baseline approaches fail to support the miss ratio and/or
freshness guarantees in the presence of unpredictable work-
loads and access patterns. Our approach also shows the rel-
atively low miss ratio in the basic and best-effort classes
compared to the baseline approaches, thereby reducing po-
tential starvation. The importance of the work can increase
as the demand for guaranteed real-time database services
increases.

We are currently further investigating the database QoS
and service differentiation issues. The current state-of-art
from the real-time database and QoS research will be lever-
aged and further enhanced. A unifying framework, which
provides a database QoS specification API and enforces the
specified QoS in multiple QoS dimensions such as deadline
miss ratio, data freshness, and security is under investiga-
tion. Selecting an effective QoS enforce order based on the
interactions among multiple QoS dimensions and determin-
ing their performance effects are interesting research issues.
We also plan to apply our database QoS management tech-
niques to realistic workloads such as stock trading and agile
manufacturing.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling Real-Time
Transactions: A Performance Evaluation. ACM Transac-
tions on Database System, 17:513–560, 1992.

[2] T. F. Abdelzaher and K. G. Shin. Adaptive Content Delivery
for Web Server QoS. In International Workshop on Quality
of Service, June 1999.

[3] T. F. Abdelzaher and K. G. Shin. QoS Provisioning with
qContracts in Web and Multimedia Services. In Real-Time
Systems Symposium, Phoenix, Arizona, December 1999.

[4] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying Up-
date Streams in a Soft Real-Time Database System. In ACM
SIGMOD, 1995.

[5] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, S. Haldar,
S. Joshi, A. Khivesera, H. F. Korth, P. McIlroy, J. Miller,
P. P. S. Narayan, M. Nemeth, R. Rastogi, S. Seshadri, A. Sil-
berschatz, S. Sudarshan, M. Wilder, and C. Wei. DataBlitz
Storage Manager: Main Memory Database Performance for
Critical Applications . In ACM SIGMOD - Industrial Ses-
sion: Database Storage Management, 2000.

[6] N. Bhatti and R. Friedrich. Web Server Support for Tiered
Services. In IEEE Network, September 1999.

[7] N. Christin, J. Liebeherr, and T. F. Abdelzaher. A quantita-
tive assured forwarding service. Technical Report CS-2001-
21, Computer Science Department at University of Virginia,
2001.

[8] C. Dovrlois, D. Stiliadis, and P. Ramanathan. Proportional
Differentiated Services: Delay Differentiation and Packet
Scheduling. In SIGCOMM, Aug 1999.

[9] M. Hsu and B. Zhang. Performance Evaluation of Cau-
tious Waiting. ACM Transactions on Database Systems,
17(3):477–512, 1992.

[10] J. Huang, J. A. Stankovic, D. F. Towsley, and K. Ramam-
ritham. Experimental Evaluation of Real-Time Transaction
Processing. In IEEE Real-Time Systems Symposium, pages
144–155, 1989.

[11] K. D. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelza-
her. A QoS-Sensitive Approach for Timeliness and Fresh-
ness Guarantees in Real-Time Databases. Technical Report
CS-2001-22, Computer Science Department at University of
Virginia, Oct. 2001.

[12] A. Labrinidis and N. Roussopoulos. Adaptive WebView
Materialization. In the Fourth International Workshop on
the Web and Databases, held in conjunction with ACM SIG-
MOD, May 2001.

[13] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A
Feedback Control and Design Methodology for Service De-
lay Guarantees in Web Servers. Technical Report CS2001-
6, Computer Science Department at University of Virginia,
2001.

[14] C. Lu, J. Stankovic, T. Abdelzaher, G. Tao, S. H. Son, and
M. Marley. Performance Specifications and Metrics for
Adaptive Real-Time Systems. In Real-Time Systems Sym-
posium, Orlando, Florida, November 2000.

[15] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback
Control Real-Time Scheduling: Framework, Modeling and
Algorithms. Journal of Real-Time Systems, Special Issue
on Control-Theoretical Approaches to Real-Time Comput-
ing, 2002. To appear.

[16] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated
Caching Services; A Control-Theoretical Approach. In 21st
International Conference on Distributed Computing Sys-
tems, Phoenix, Arizona, April 2001.

[17] H. Pang, M. Carey, and M. Livny. Multiclass Query
Scheduling in Real-Time Database Systems. IEEE Transac-
tions on Knowledge and Data Engineering, 7(4):533–551,
August 1995.

[18] C. L. Phillips and H. T. Nagle. Digital Control System Anal-
ysis and Design (3rd edition). Prentice Hall, 1995.

[19] K. Ramamritham. Real-Time Databases. International Jour-
nal of Distributed and Parallel Databases, 1(2), 1993.

[20] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A Feedback-driven Proportion Allocator for
Real-Rate Scheduling. In Proceedings of the Third Sym-
posium on Operating Systems Design and Implementation,
1999.

[21] TimesTen Performance Software. TimesTen
White Paper. Available in the World Wide Web,
http://www.timesten.com/library/index.html, 2001.

