
Abstract

The Counterflow Pipeline (CFP) organization may be a
good target for synthesis of application-specific micro-
processors because it has a regular and simple struc-
ture. This paper describes early work using CFP’s to
improve overall application performance by tailoring a
CFP to the kernel loop of an application. A CFP is cus-
tomized for an application using the kernel loop’s data
dependency graph to determine processor functionality
and interconnection. Our technique builds the design
space for a given a data dependency graph and explores
the space to find the design with the best performance.
Preliminary results indicate that speed-up for several
small graphs range from 1.3 to 2.0 and that our design
space traversal heuristics find designs that are within
10% of optimal.

1. Introduction

Application-specific microprocessor design is a good
way to improve the cost-performance ratio of an appli -
cation. This is especially useful for embedded systems
(e.g., automobile control systems, avionics, cellular
phones, etc.) where a small increase in performance and
decrease in cost can have a large impact on a product’s
viability. A new computer organization called the Coun-
terflow Pipeline (CFP), proposed by Sproull , Suther-
land, and Molnar [6], has several characteristics that
make it a possible target organization for the synthesis
of application-specific microprocessors. The CFP has a
simple and regular structure, local control, high degree
of modularity, asynchronous implementations, and
inherent handling of complex structures such as result
forwarding and speculative execution.

This document summarizes our Counterflow Pipe-
line synthesis technique and preliminary results.

1.1. Synthesis Strategy

Most high-performance embedded applications have

two parts: a control and a computation-intensive part.
The computation part is typically a kernel loop that
accounts for the majority of execution time. According
to Amdahl’s Law [3], increasing the performance of the
most frequently executed portion of an application
increases overall performance. Thus, synthesizing cus-
tom hardware for the computation-intensive portion
may be an effective technique to increase performance.

Our synthesis system uses the data dependency graph
of an application’s kernel loop to determine processor
functionality and interconnection. Processor functional-
ity is determined from the type of operations in the
graph and processor topology is determined by explor-
ing the design space of all possible interconnection net-
works.

1.2. Counterflow Pipeline

The Counterflow Pipeline has two elastic pipelines
flowing in opposite directions. One is the instruction

pipeline. It carries instructions from an instruction fetch
stage to a register file stage. When an instruction issues,

reg_file

mem_return

Arbitration

iu_return

iu_launch

mem_launch

eff_addr

branch

reg_fetch

instr_fetch

M
e
m
o
r
y

I
U

In
st

ru
ct

io
ns

R
es

ul
ts

Dataflow

Figure 1: Example Counterflow Pipeline

Automatic Counterflow Pipeline Synthesis

Bruce R. Childers, Jack W. Davidson
Computer Science Department

University of Virginia
Charlottesville, Virginia 22901

{brc2m, jwd}@cs.virginia.edu

an instruction bundle is formed that flows through the
pipeline. The instruction bundle has space for the
instruction opcode, operand names, and operand values.
The other is the results pipeline that conveys results
from the register file to the instruction fetch stage. The
instruction and results pipelines interact: instructions
copy values to and from the result pipe.

Functional units (or sidings) are connected to the
pipeline through launch and return stages. Launch
stages issue instructions into functional units and return
stages extract results from functional units. Instructions
may execute in either pipeline stages or functional units.

A memory unit connected to a CFP pipeline is shown
in Figure 1. Load instructions are fetched and issued
into the pipeline at the instr_fetch stage. A bundle
is created that holds the load’s memory address and des-
tination register operands. The bundle flows towards the
mem_launch stage where it is issued into the memory
subsystem.

When the memory unit reads a value, it inserts the
value into the result pipeline at the mem_return stage.
In the load example, when the load reaches the
mem_return stage, it extracts its destination operand
value from the memory unit. This value is copied to the
destination register value in the load’s instruction bun-
dle and inserted into the result pipe. A result bundle is
created whenever a value is inserted into the result pipe-
line. A result bundle has space for the result’s name (i.e.,
register name) and value. Results from sidings or other
pipeline devices flow down the result pipe to the
instr_fetch stage. Whenever an instruction and a
result bundle meet in the pipeline, a comparison is done
between the instruction operand names and the result
name. If a result name matches an operand name, its
value is copied to the corresponding operand value in
the instruction bundle. When instructions reach the
reg_file stage, their destination values are written
back to the register file and when results reach the
instr_fetch stage, they are discarded. In effect, the
register file serves as a history buffer of results that have
exited the pipe.

The interaction between instruction and result bun-
dles are governed by special pipeline and matching
rules that ensure sequential execution semantics. These
rules govern the execution and movement of instruc-
tions and results and how they interact.

Arbitration is required between stages so that instruc-
tion and result bundles do not pass each other without a
comparison made on their operand names. In Figure 1,
the blocks between stages depict arbitration logic. A
final mechanism controls purging the pipeline on an
exception. A poison pill is inserted in the result pipeline
whenever a fault is detected. The poison pill purges both
pipelines of all instruction and result bundles. This

purge mechanism can also be used for speculative exe-
cution when a branch target is mispredicted.

As Figure 1 shows, stages and functional units are
connected in a very simple and regular way. The con-
nections correspond to bundled interfaces of micropipe-
lines. The behavior of a stage is dependent only on the
adjacent stage in the pipeline, which permits local con-
trol of stages and avoids the complexity of conventional
pipeline synchronization.

1.3. Experimental Framework

Figure 2 depicts the synthesis framework. The sys-
tem accepts a C source file containing a loop that drives
customizing a CFP processor. The loop is compiled by
the optimizer vpo [1] into instructions for the SPARC
architecture [5]. During optimization, vpo builds the

data dependency graph for the kernel loop. A separate
synthesis module uses the graph to determine computa-
tional devices and emits a CFP specification indicating
those elements. The specification is an input to a per-
mute module that derives all legal CFP topologies for
the listed processing elements. vpo emits optimized
SPARC instructions that serve as input to a schedule
module that determines all legal instruction schedules.
The cross-product of pipelines from permute and
instruction schedules from schedule defines the design
search space. A final module evaluate traverses the
search space to collect simulation statistics for every
processor/schedule combination. These statistics are
used to pick the best pipeline/schedule combination and
to emit a visual representation of the design space. The
visual representation shows the overall design space and
simulation details for each design point.

.

. . .

vpo

permute schedule

evaluate

design search space

kernel loop

design space view best pipeline

Figure 2: Synthesis framework

Figure 3 shows the visual representation of a single
design point. The top half of the figure shows resource
usage for every instruction and result per cycle. The

boxes labeled with I indicate instructions as they flow
from the instruction fetch stage toward the register file.
The boxes labeled with R indicate results flowing from
the stage where they are produced to where they are
consumed. The second half of the figure shows the stall
density of instructions. This graph shows how long an
instruction spends in each pipeline stage. It is especially
useful for understanding where instructions stall in the
pipeline.

2. Synthesis Methodology

We are exploring techniques for synthesizing a
Counterflow Pipeline customized to a kernel loop. Our
first experiments used an iterative refinement methodol-
ogy to derive a pipeline layout [2]. The iterative
approach picks a pipeline layout, executes the kernel
loop using the layout, collects an execution trace, and
refines the layout using the trace. This is repeated itera-
tively until there are no further performance gains.

The iterative refinement work verified that customiz-
ing a CFP to a kernel loop can improve performance. It
also demonstrated that minimizing the distance results
flow between their production and consumption affects
performance because the further a result flows, the
greater the latency of conveying the result. If there are
many instructions between the set and use of a source
operand, the latency can be very high since a compari-
son of the operand’s name is required with every inter-
vening instruction’s source and destination register
names.

The iterative refinement technique suffers from the

disadvantage that it does not lend itself well to automa-
tion because it requires careful hand-tuning of a CFP
design. Our experience with this technique suggested a
second synthesis methodology. Instead of iteratively
refining a design, we generate all processor topologies
for a given set of functional units and pipeline stages to
pick the best one.

Although it not apparent how to build the full design
space for a traditional microprocessor organization, it is
straightforward for the CFP since pipeline stage order
specifies processor topology. This is true for all Coun-
terflow Pipeline computational elements since they are
connected via the pipeline. For example, a memory unit
has launch and return stages that connect it to the pipe-
line. A CFP design space is all permutations of stages
for a given partitioning of functionality. A partitioning
of processor functionality is an assignment of data
dependency graph nodes to computational elements
such as pipeline stages and sidings.

Given a data dependency graph G = (N, E), where N
is a set of nodes and E is a set of edges, our synthesis
system proceeds in three steps:

1. Partition: , assign n to a pipeline stage or
functional unit. If n is assigned stage s, add s to
the set of stages PS. If n is assigned a functional
siding, add the functional unit’s launch stage to
PS. Low latency operations are assigned unique
pipeline stages, while high latency operations
may share sidings.

2. Permute: For the set PS of pipeline stages and
the set S of legal instruction schedules, construct
the design space .

3. Evaluate: , simulate d to determine
performance, where HD is a subspace determined
by applying some search heuristic.

It is not practical to exhaustively search the entire
design space for most dependency graphs. Although the
space could be small, it is not likely with aggressive
instruction-level parallelism transformations such as
speculative and predicated execution, software pipelin-
ing, if-conversion, etc. are applied [4].

Result flow distance and critical path stage order are
important factors in obtaining good performance from a
CFP design. A heuristic that uses these to guide the
exploration of a CFP design search space may narrow
the space sufficiently and accurately so a good stage
order and schedule are found. Our present heuristics do
not consider instruction schedule because the data
dependency graph constrains the number of schedules.

Figure 3: Visual representation of a design point

n N∈∀

D p= erm PS() perm S()×

d∀ H∈ D D⊆

We consider two heuristics. The first confines the
search space to designs that have pipeline stages in
order of the critical path:

Heuristic 1: For all nodes and edges
 on the critical

path, evaluate only designs that have the partial
order wrt. pipeline
stages.

This order overlaps the execution of instructions
from different loop iterations (loop-carried dependences
may affect this, of course). Stages that execute non-criti -
cal path instructions may occur any place in the pipeline
(no constraints are placed on the order). Figure 4 shows

an example data dependency graph with the critical path
highlighted. The partial order for this example is:

For example, op1 can appear any place, while op5
must appear after op4 and before op6. Although this
heuristic determines good pipeline layouts, in many
cases it must consider a large number of design points.

A second heuristic preserves critical path order using
the instruction dependency graph to define operation
partitions by drawing cuts across each level of the
graph.

Heuristic 2: For the graph , divide N
into K partitions, where K is the maximum path
length in E. Use the partitions to impose a partial
order on pipeline stages such that
and then is in the partial
order. Assign nodes to a partition according to
some assignment heuristic and the dependence
edges E. Evaluate only designs that have the partial
order wrt. pipeline stages.

The cuts determine a partial order that places opera-

tions from level n before operations from level n+1
(root is level 0) in a pipeline. For example, Figure 5
shows two possible assignments of operations to graph
cuts. The partial order for the greedy assignment is:

In this example, op1, op2, and op3 all must occur
within the first three pipeline stages (in any order), op4
occurs in the fourth position, op5 in the fifth, and op6 in
the sixth position.

Nodes can be assigned to different instruction parti-
tions. Greedy assignment may work well since assign-
ing nodes to early instruction cuts ensures those
operations begin executing as soon as possible. Late
assignment may also work since it can minimize the dis-
tance results flow between their definition and use. Fig-
ure 5 also shows the dependency graph with late
assignment of nodes to partitions. Late assignment

works best for this graph since it minimizes the distance
results move between their production and consump-
tion. The partial order for late assignment is:

3. Results

Preliminary results for several small graphs are
shown in Figure 6. The speed-up in the figure is relative
to a general-purpose pipeline that has separate sidings
for memory, multiplication, and integer operations and a
pipeline stage for branch resolution. The figure shows
speed-up for three pipeline orders: optimal, heuristic 1,
and heuristic 2. In all cases, the partitioning of function-
ality is the same: every graph node is assigned an unique
pipeline stage or siding. The optimal pipeline had the
best performance from all pipeline stage permutations.

n1 n2 … nk, , ,{ }
n1 n2,() n2 n3,() … nk 1– nk,(), , ,{ }

n1 n2« n2 n3« … nk 1– nk«, , ,{ }

op1

op4

op5

op6

op3op2

Figure 4: Example data dependency graph

op2 op4 op4 op5 op5 op6«,«,«{ }

G N E,()=

ni∀ partitionk∈
nj∀ partitionk 1+∈ ni nj«

op1 op4 op2 op4 op3 op4 op4 op5 op5 op6«,«,«,«,«{ }

op5

op6

op3

op4

op2op1

Assignments

Greedy
Late

Figure 5: Greedy assignment of graph cuts

op1 op5 op1 op3« op2, op4 op2 op1
op3 op6 op4 op5 op4 op3« op5 op6«, ,«,«

,«,«,«{
}

The heuristic 2 pipelines use late assignment to allocate
graph nodes to partitions.

The benchmarks in the figure are small data depen-
dency graphs that have less than 8 nodes. The graphs
contain mostly low latency integer operations, although
graph 10 has two memory references and a multiplica-
tion. We selected these initial benchmarks because they
were small enough to generate the full design space and
demonstrate the effectiveness of the search heuristics.

The figure shows that the search heuristics find pipe-
lines that are nearly as good as optimal. The perfor-
mance difference between the heuristically determined
pipelines and the optimal pipeline is generally less than
10%. This difference is partly influenced by start-up
cost: The optimal stage orders usually have a lower
start-up penalty because they order stages to favor
requesting source operands from the register file

Both search heuristics work well . Heuristic 2 does
nearly as well as heuristic 1, while evaluating fewer
designs. Indeed, for graphs 3, 5, 7, and 10, heuristic 2
finds the same pipelines as heuristic 1.

Table 1 shows a comparison of the number of designs

evaluated by each heuristic. The first column of the
table is the total number of points in each design space,

while the second and third columns is the number of
points each heuristic evaluates. Both heuristics reduce
the search space; however, the amount of the reduction
is dependent on the shape of the dependency graph.

Table 1 and Figure 6 show that the heuristics con-
strain the search space to a small number of pipelines
and find designs that are nearly as good as optimal.
Although these initial experiments are small , we expect
the heuristics to also work for full applications.

4. Conclusion

This paper describes preliminary experiments that
indicate the Counterflow Pipeline organization is a flex-
ible target for high-level synthesis of application-spe-
cific microprocessors. We are continuing to research the
performance potential of custom CFP’s, including
micro-architecture extensions that may greatly improve
performance without sacrificing ease of design.

References

[1] Benitez M. E. and Davidson, J. W., “A Portable
Global Optimizer and Linker” , Proc. of the SIG-
PLAN Notices 1988 Symposium on Programming
Language Design and Implementation, pp. 329–
338, Atlanta, Georgia, June 1988.

[2] Childers B. R., Davidson J. W., and Wulf W. A.,
“Synthesis of Application-Specific Counterflow
pipelines” , Workshop on the Interaction between
Compilers and Computer Architecture, held during
ACM HPCA-2, San Jose, Ca., February 3–7, 1996.

[3] Hennessy J. L. and Patterson D. A., Computer
Architecture: A Quantitative Approach, 2nd edi-
tion, Morgan Kaufmann Publishers, Inc., San
Francisco, Cali fornia, 1996.

[4] Rau B. R. and Fisher J. A., “ Instruction-level par-
allel processing: History, overview, and perspec-
tive”, J. of Supercomputing, Vol 7, pp. 9–50, May
1993.

[5] SPARC International, Inc., The SPARC Architec-
ture Manual, Version 8, Prentice-Hall , Inc., Engle-
wood Cliffs, New Jersey, 1992.

[6] Sproull R. F., Sutherland I. E., and Molnar C. E.,
“The Counterflow Pipeline Processor Architec-
ture”, IEEE Design and Test of Computers, pp. 48–
59, Vol. 11, No. 3, Fall 1994.

Graph Total Designs Heuristic 1 Heuristic 2

1 72 12 6

2 960 160 32

3 480 20 8

4 240 10 4

5 360 15 6

6 960 160 32

7 10,800 450 60

8 7,920 330 44

9 17,280 720 96

10 33,696 7,056 288

Table 1: Number of design points

Graph

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

S
p

ee
d

-u
p

Opt

H1

H2

Figure 6: Speed-up for several small graphs

