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ABSTRACT 
The concept of information hiding modularity is a cornerstone of 
modern software design thought, but its formulation remains 
casual and its emphasis on changeability is imperfectly related to 
the goal of creating value in a given context.  We need better 
models of the structure and value of information hiding, for both 
their explanatory power and prescriptive utility.  We evaluate the 
potential of a new theory—developed to account for the influence 
of modularity on the evolution of the computer industry—to 
inform software design. The theory uses design structure 
matrices to model designs and real options techniques to value 
them.  To test the potential utility of the theory for software we 
represent a model software system in its terms—Parnas’s 
KWIC—and evaluate the results.  We contribute an extension to 
design structure matrices and show that the options results are 
consistent with Parnas’s conclusions.  Our results suggest that 
such a theory does have potential to help inform software design. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – methodologies, 
representation.  

General Terms 
Software Engineering, Economics 

Keywords 
Strategic software design, design structure matrix, design rules. 

1. INTRODUCTION 
In 1972 Parnas introduced information hiding as an approach to 
devising modular structures for software designs [8].  The 
approach promised to dramatically improve the adaptability of 
software.  The idea is to decouple design decisions that are likely 
to change so that they can be changed independently.  Parnas 
supported his claim that information hiding produces better 
designs with a case study comparing the changeability of two 
versions of KWIC (Key Words in Context), one modularized 
around processing steps, the other using information hiding. 

This idea has been broadly influential, catalyzing the 
development of abstract data type programming languages, 
object-oriented design and programming, and the discipline of 
software architecture.  Through all these developments, Parnas’s 
formulation has been adopted largely without change.   

We identify an issue for software designers that neither Parnas’s 
formulation nor subsequent developments based on it adequately 
address.   A designer is responsible for producing the greatest 
benefit for any given investment of time, talent, money, and other 
resources.  Modularization decisions have a tremendous impact 
in this dimension. However, the information-hiding decision 
process does not account explicitly for the costs and benefits of 
modularization, so it does not help designers to design most 
effectively for value added. 

In particular, the current formulation does not address two key 
questions from a value-maximization perspective: (1) which of 
the available modularizations is best; (2) at what point should 
one be selected in the face of uncertainty about the first question? 
Today, designers are encouraged to make modularization 
decisions at the earliest stages of design. Yet, at these stages they 
are often unsure of which decisions are likely to change and of 
the dependencies among them.  Moreover, the information-
hiding criterion is a qualitative process of modularization against 
a set of design decisions.  The principle way to evaluate such a 
modularization is to test whether it hides the information it was 
meant to hide (which is self-referential).  We lack precise, 
quantitative models of the value of proposed modularizations.  In 
particular, we lack models for assessing the relative value of 
proposed modularizations for the same system. 

In this paper we introduce an approach to modeling software 
designs that addresses these problems, with an emphasis on the 
question of relative valuation.  In particular, the approach allows 
us to value modular structures relative to inferred non-modular 
designs, and thus against each other. The approach follows the 
theory that Baldwin and Clark developed to account for the 
influence of modularity on the evolution of computer system 
designs and the structure of the industry that creates them [1][2].   

A key idea in this work is that modularity in design creates value 
in the form of options to improve a system by experimenting 
with new implementations and substituting superior ones.   The 
value of such options is modeled quantitatively. This idea, which 
is consistent with our work on the options value of flexibility in 
software [4][11][12], promises to help link structural aspects of 
design to value as an objective. Parnas’s ideas influenced 
Baldwin and Clark’s theory, but our adaptation of the theory to 
software design appears to be novel. 

To test of the potential of the theory to value modularization 
decisions in software we reformulate Parnas’s KWIC analysis in 
terms of the theory.  Two hypotheses underlie this approach.  



First, Parnas’s example can be mapped in terms of theory. 
Second, the resulting mapping will produce valuation results 
consistent with Parnas’s widely accepted conclusions.     

Mapping the example did reveal one gap in the theory.  It lacked 
the means to represent how the environment in which software is 
deployed affects the value of its design.  We extended the model 
to represent the environment.  The extended theory helped in 
turn to clarify the information hiding idea, not in terms of 
decisions that are likely to change, but rather in terms of the 
invariance of visible decisions under changes in the environment. 

With the extended theory we were able to value each of the two 
modularizations against a common ancestral pre-modular design 
of KWIC.  Both modularizations are derived from that design by 
application of the splitting operator of the theory’s design 
evolution framework.  We found the extended theory to predict 
that the information hiding KWIC modularization is significantly 
better than the strawman design.  Our results provide an early 
data point suggesting that the extended theory has the potential 
to advance the development of precise models that have 
descriptive and prescriptive power for value-maximizing 
software design. 

The next two sections provide the background material for our 
analysis and discussion of KWIC, which follows in the three 
subsequent sections. 

2. BACKGROUND 
Baldwin and Clark’s theory is based on the idea that modularity 
adds value in the form of real options (options).  An option 
provides the right to make an investment in the future, without a 
symmetric obligation to make that investment.  Because an 
option can have a positive payoff but need never have a negative 
one, an option has a present value. It is like a lottery ticket.  

The important idea in this paper is that a module creates an 
opportunity to invest in a search for a superior replacement.  
Such an investment buys the designer an option to replace the 
current module with the best alternative, or to keep the current 
one, if it is still the best.  Intuitively, the value of such an option 
is the value added by the optimal experiment-and-replace policy.  
Knowing this value can help a designer to reason about both the 
initial investment in modularity, and how much effort to expend 
searching for alternatives.   

The idea that real options ideas can help us to analyze core issues 
in software design and engineering is not new.  Sullivan [12] 
suggested that such an analysis can provide insights concerning 
modularity, phased project structures, delaying of decisions and 
other dynamic design strategies.  Sullivan, Chalasani, Jha and 
Sazawal [11] formalized that options-based analysis, focusing in 
particular on the value of the flexibility to delay decision making.   

Withey [14] applied a related analysis to reasoning about the 
flexibility value of software product line architectures.  He did 
not appeal to real options concepts explicitly in his analysis. 

Favaro [6] developed an options-based approach to investment 
analysis for software reuse infrastructures.  The options approach 
was used to value the flexibility provided by reuse infrastructures 
to adapt in the face of uncertain conditions. The approach uses a 
Black/Scholes (arbitrage-based) valuation model.  Using such a 

model is technically valid only if market-traded assets are 
identified that track the risks in the option being priced.  Favaro 
assumed this condition to hold, but there are many cases in 
design where there will be no such tracking assets.  Beck [3] is 
popularizing intuitions emerging from options-based analyses.  

Baldwin and Clark appear to have been the first to observe that 
the value of modularity in design (of computer systems) can be 
modeled as options.  They do not to assume that tracking assets 
exist.  Rather, they make a statistical assumption: that the values 
of independently developed alternatives to an existing module 
are normally distributed about its value.  We discuss these ideas 
in more detail in the following section.  

3. BALDWIN AND CLARK’S MODEL 
The parts Baldwin and Clark’s theory that are most relevant to 
this paper are the representation of designs by design structure 
matrices (DSM) [10] [5]; the characteristics of modular designs; 
design evolution under modular operators; and the net options 
value (NOV) of modularity.  

3.1 Design Structure Matrix 
A DSM represents dependencies amongst the design parameters 
of a design.  A design parameter represents the range of choices 
that can be made about an aspect of a design.  Typical software 
design parameters include data structures, algorithms, procedure 
and type signatures.  Others might include graphical interface 
look-and-feel, interoperability, and performance characteristics. 

The rows and columns of a DSM are labeled by the design 
parameters. A dependence between two parameters is 
represented by a mark (X).  A mark in row B, column A means 
that an efficacious choice for B depends on the choice for A. 
Parameters that require mutual consistency—algorithm and data 
structures go hand-in-hand, for example—are interdependent, 
resulting in symmetric (A,B) and (B,A) marks.  When one 
parameter naturally precedes the other—there is no GUI look-
and-feel unless there is a GUI—the parameters are called 
hierarchically dependent. Finally, independent design parameters 
may be determined and changed individually.  

Choosing the design parameters to model and the values they 
finally take on is the task of the designer.  In exploring the value 
of a design, the marks in a DSM represent the believed 
likelihood of deriving a benefit from recognizing and allowing 
parameter dependencies.  DSM’s are typically derived from 
experience with prior versions of the product or similar products. 
In early versions of a product, there may be relatively few marks 
in the matrix, capturing little more than the dependencies 
necessary to deploy a correctly functioning product.  A DSM for 
a subsequent version might include marks for subtle but 
powerful dependencies that were discovered through use of the 
product, additions to knowledge, and innovation.  Likewise, new 
design parameters will be recognized and added to the DSM over 
time. In these respects a DSM represents not just abstract design 
dependencies, but concrete requirements for communication 
amongst designers. 

3.2 Design Rules and the Evolution of Designs  
The dependence and interdependence of design parameters 
present challenges in design, because the designers managing the 
parameters have to communicate to achieve an optimal design.  If 



a parameter such as A in Figure 1 is changed, then the decisions 
for parameter B may need to be changed, hence propagating to C, 
and perhaps back to B again.  Such dependencies require 
communication and constrain the ability of designers to work 
independently.  These problems can be addressed by first 
clustering design parameters into (typically interdependent) 
proto-modules and then applying an operator called splitting. 

A B C

A .

B X . X

C X .  

Figure 1: An elementary DSM with three design parameters. 

Groups of interdependent design parameters are clustered into a 
proto-module to show that the decisions are managed collectively 
as a single design task (See Figure 2; the dark lines denote the 
desired proto-module clusters).  In essence, such a proto-module 
is a composite design parameter.  To be a true module, in the 
lexicon of Baldwin and Clark, there can be no marks in the rows 
or columns outside the bounding box of its cluster connecting it 
to other modules or proto-modules in the system. 

A-I B-C D-I A B-C D B C

A interface .

B-C D interface .

A X .

B-C data struct. X .

B X X .

C X .  

Figure 2: A modular DSM resulting from splitting, adding 
design rules, and clustering. 

Merely clustering cannot convert a monolithic design comprising 
one large, tightly coupled proto-module into a modular design.  
Interdependent parameter cycles must be broken to define 
modules of reasonable size and complexity.  Breaking a cycle 
between two interdependent parameters like B and C requires an 
additional step called splitting.   

The first step in splitting identifies the cause of the cycle—say, a 
shared data structure definition—and splits it out as its own 
design parameter (D).  B and C no longer cyclically depend on 
each other, instead taking on a simple hierarchical dependence 
on D.  However, B and C must still wait for the completion of 
D's design process in order to undertake their own.   

To counter this, a design as represented by a DSM can be further 
modularized during the process of splitting by the introduction of 
design rules.  Design rules are additional design parameters that 
decouple otherwise linked parameters by asserting "global" rules 
that the rest of the design parameters must follow.  Thus, design 
rules are de facto hierarchical parameters with respect to the 
other parameters in a DSM.  The most prevalent kind of design 
rule in software is a module interface.  For example, for the 
DSM in Figure 2, an "A interface" rule could be added that 
asserts that the implementation of B can only access the 
implementation of A through an interface defined for A.  Thus, A 
could change details of its implementation freely without 
affecting B, as long as A's interface did not have to be changed as 

well.  The effects of splitting B and C and adding design rules to 
break the non-modular dependences is shown in Figure 3. 

A B C

A .

B X . X

C X .  

Figure 3: A modular DSM resulting from splitting, adding 
design rules, and clustering. 

In Baldwin and Clark’s terminology, a design rule is a (or part of 
a) visible module, and any module that depends only on design 
rules is a hidden module.  A hidden module can be adapted or 
improved without affecting other modules by the application of a 
second operator called substitution.  

The splitting and substitution operations are examples of six 
atomic modular operators that Baldwin and Clark introduced to 
parsimoniously and intuitively describe the operations by which 
modular designs evolve. The others are augmentation, which 
adds a module to a system, exclusion, which removes a module, 
inversion, which standardizes a common design element, and 
porting, which transports a module for use in another system.  
We do not address these other operators any further in this paper. 

3.3 Net Options Value of a Modular Design 
Not all modularizations are equally good.  Thus, in evolving a 
design, it is useful to be able to evaluate alternative paths based 
on quantitative models of value.  Such models need not be 
perfect.  What is essential is that they capture the most important 
terms and that their assumptions and operation be known and 
understood so that analysts can evaluate their predictions. 

3.3.1 Introduction to Real Options Concepts 
Baldwin and Clark’s theory is based on the idea that modularity 
in design multiplies and decentralizes real options that increase 
the value of a design.  A monolithic system can be replaced only 
as a whole.  There is only one option to replace, and exercising it 
requires that both the good and the bad parts of the new system 
be accepted.  In a sense, the designer has one option on a 
portfolio of assets. A system that has two modules, by contrast, 
can be kept as is, or either or both of the new modules can be 
accepted, for a total of four options. The designer can accept only 
the good new modules.  By contrast, this designer has a portfolio 
of options on the modules of the system.  A key result in modern 
finance shows that all else remaining equal, a portfolio of options 
is worth more than an option on a portfolio. 

Baldwin and Clark’s theory defines a model for reasoning about 
the value added to a base system by modularity.  They formalize 
the options value of each modular operator:  How much is it 
worth to be able to substitute modules, augment, etc.   

3.3.2 The Net Options Value of a Modular Design 
In this paper, we address only substitution options.  Splitting a 
design into n modules increases its base value S0 by a fraction 
that is obtained by summing the net option values (NOVi) of the 
resulting options:   

V = S0  + NOV1 + NOV2 + … + NOVn  (1) 



NOV is the benefit gained by exercising an option optimally 
accounting for both payoffs and exercise costs. 

Baldwin and Clark present a model for calculating NOV.  A 
module creates an opportunity to invest in k experiments to (a) 
create candidate replacements, (b) each at a cost related to the 
complexity of the module, and, (c) if any of the results are better 
than the existing choice, to substitute in the best of them, (d) at a 
cost that related to the visibility of the module to other modules 
in the system:   

NOVi = maxki {σini
1/2Q(ki) – Ci(ni)ki - Zi } (2) 

First, for module i, σini
1/2Q(ki) is the expected benefit by the best 

of ki independently developed candidate replacements under 
certain assumptions about the distribution of such values.  
Ci(ni)ki is the cost to run ki experiments as a function Ci of the 
module complexity ni.  Zi = Σj-sees-icinj is the cost to replace the 
module given the number of other modules in the system that 
directly depend on it, the complexity ni of each, and the cost to 
redesign each of its parameters. The max picks the number of 
experiments ki that maximizes the gain from module i. 

Figure 4 presents a typical scenario: module value-added 
increass in the number of experiments (better candidates found) 
until experiment costs meet diminishing returns.  The max is the 
peak. In this case, six experiments maximizes the net gain and is 
expected to add about 41% value over the existing module. 
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Figure 4. The value added by k experiments. 

The NOVi formula assumes that the value added by a candidate 
replacement is a random variable normally distributed about the 
value of the existing module choice (normalized to zero), with a 
variance σi

2ni that reflects the technical potential σi
 of the module 

(the standard deviation on its returns) and the complexity ni of 
the module. The assumption of a normal distribution is 
consistent with the empirical observation that high and low 
outcomes are rare, with middle outcomes more common.  The 
Q(k) represents the expected value of the best of k independent 
draws from a standard normal distribution, assuming they are 
positive, and is the maximum order statistic of a sample of size k. 

4. OVERVIEW OF ANALYSIS APPROACH 
As an initial test of the potential for DSM’s and NOV to improve 
software design, we apply the ideas to a reformulation of 
Parnas’s comparative analysis of modularizations of KWIC (a 
program to compute permuted indices) [1]. The use of KWIC as a 

benchmark for assessing concepts in software design is well 
established [7][9]. 

Parnas presents two modularizations: a traditional “strawman” 
based on the sequence of abstract steps in converting the input to 
the output, and a new one based on information hiding.  The new 
design used abstract data type interfaces to decouple key design 
decisions involving data structure and algorithm choices so that 
they could be changed without unduly expensive ripple effects.  

Parnas then presents a comparative analysis of the changeability 
of the two designs.  He postulates changes and assesses how well 
each modularization can accommodate them, measured by the 
number of modules that would have to be redesigned for each 
change.  He finds that the information-hiding modularization is 
better.  He concludes that designers should prefer to use an 
information hiding design process: begin the design by 
identifying decisions that are likely to change; then define a 
module to hide each such decision. 

Our reformulation of Parnas’s example is given in two basic 
steps.  First, we develop DSM’s for his two modularizations in 
order to answer several questions.  Do DSM’s, as presented by 
Baldwin and Clark (as well as in the works of Eppinger and 
Steward [5][10], who invented DSMs), have the expressive 
capacity to capture the relevant information in the Parnas 
examples?  Do the DSM’s reveal key aspects of the designs?  Do 
we learn anything about how to use DSM’s to model software? 

Second, we apply Baldwin and Clark’s substitution NOV model 
to compute quantitative values of the two modularizations, using 
parameter values derived from information in the DSM’s 
combined with the judgments of a designer.  The results are 
back-of-the-envelope predictions, not precise market valuations; 
yet they are useful and revealing. We answer two questions.  Do 
the DSM’s contain all of the information that we need to justify 
estimates of values of the NOV parameters?  Do the results 
comport with the accepted conclusions of Parnas?   

Our evaluation revealed one shortcoming in the DSM framework 
relative to our needs.  DSM’s as used by Baldwin and Clark and 
in earlier work do not appear to model the environment in which 
a design is embedded.  Consequently, we were unable to model 
the forces that drove the design changes that Parnas hypothesized 
for KWIC.  Thus, DSM’s, as defined, did not permit suffiently 
rich reasoning about change and did not provide enough 
information to justify estimates of the environment-dependent 
technical potential parameters of the NOV model.   

We thus extended the DSM modeling framework to model what 
we call environment parameters (EP).  We call such models 
environment and design structure matrices (EDSM). DP’s are 
under the control of the designer.  Even design rules can be 
changed, albeit possibly at great cost.  However, the designer 
does not control EP’s.  Our extension to the EDSM framework 
appears to be both novel and useful.  In particular, it captures a 
number of important issues in software design and, at least in the 
case of the Parnas modularization, it allows us to infer some of 
Parnas’s tacit assumptions about change drivers.   

The next section presents our DSM’s for Parnas’s KWIC.  Next 
we present our NOV results.  Finally, we close with a discussion.  



5. DSM-BASED ANALYSIS OF KWIC  
For the first modularization, Parnas describes five modules: 
Input, Circular Shift, Alphabetizing, Output, and Master Control.  
He concludes, “The defining documents would include a number 
of pictures showing core format, pointer conventions, calling 
conventions, etc. All of the interfaces between the four modules 
must be specified before work could begin….This is a 
modularization in the sense meant by all proponents of modular 
programming. The system is divided into a number of modules 
with well-defined interfaces; each one is small enough and 
simple enough to be thoroughly understood and well 
programmed [8].” 

5.1 A DSM Model of the “Strawman” Design 
We surmise Parnas viewed each module interface as comprising 
two parts: an exported data structure and a procedure invoked by 
Master Control.  We thus took the choice of data structures, 
procedure declarations, and algorithms as the DP’s of this 
design. The resulting DSM is presented in Figure 5.  DP’s A, D, 
G, and J model the procedure interfaces, as design rules, for 
running the input, shift, sort and output algorithms.  B, E, H, and 
K model the data structure choices as design rules. Parnas states 
that agreement on them has to occur before independent module 
implementation can begin.  C, F, I, L, and M model the 
remaining unbound parameters: the choices of algorithms to 
manipulate the fixed data structures. The DP dependencies are 
derived directly from Parnas’s definitions. 

A D G J B E H K C F I L M

A - Input Type .

D - Circ Type .

G - Alph Type .

J - Out Type .

B - In Data . X X

E - Circ Data X . X

H - Alph Data X X .
K - Out Data .

C - Input Alg X X .

F - Circ Alg X X X .

I - Alph Alg X X X X .

L - Out Alg X X X X .

M - Master X X X X .  

Figure 5: DSM for strawman modularization 

The DSM immediately reveals key properties of the design. 
First, the design is a modularization, as Parnas claims: designers 
develop their parts independently as revealed by the absence of 
unboxed marks in the lower right quadrant of the DSM.  Second, 
only a small part—the algorithms—is hidden and independently 
changeable.  Third, the algorithms are tightly constrained by the 
data structure design rules.  Moreover, the data structures are an 
interdependent knot (in the upper left quadrant).  The shift data 
structure points into the line data structure; the alphabetized 
structure is identical to the shifted structure; etc.  Change is thus 
doubly constrained:  Not only are the algorithms constrained by 
the data structure rules, but these rules themselves would be hard 
to change because of their tight interdependence.   

5.2 A DSM Model of a Pre-Modular Design 
By declaring the data structures to be design rules, the designer 
asserts that there is little to gain by letting them change.  
Parnas’s analysis reflects the costly problems that arise when the 
designer makes a mistake in prematurely accepting such a 
conclusion and basing a modularization on it.  Furthermore, we 
can see that the design is also flawed because most of the design 
parameters are off limits to valuable innovation.  The designer 
has cut off potentially valuable parts of the design space.   

One insight emerging from this work is that there can be value in 
declining to modularize until the topography of the value 
landscape is understood.  This conclusion is consistent with 
Baldwin and Clark’s view: “...designers must know about 
parameter interdependencies to formulate sensible design rules.  
If the requisite knowledge isn’t there, and designers attempt to 
modularize anyway, the resulting systems will miss the ‘high 
peaks of value,’ and, in the end, may not work at all [p. 260].” 

Letting the design rules revert to normal design parameters and 
clustering the data structures with their respective algorithms 
(because they are interdependent) produces the DSM of Figure 
6.  This DSM displays the typical diagonal symmetry of outlying 
marks indicating a non-modular design.  We have not necessarily 
changed any code, but the design (and the design process) is 
fundamentally different.  Rather than a design overconstrained by 
Draconian design rules, the sense of a potentially complex design 
process with meetings among many designers is apparent.  
Innovative or adaptive changes to the circular shifter might have 
upstream impacts on the Line Store, for example—a kind of 
change that Parnas did not consider in his analysis.  

A B C D E F G H I J K L M

A - In Type . X
B - In Data X . X X X X X X
C - In Alg X X .
D - Circ Type . X
E - Circ Data X X . X X X
F - Circ Alg X X X .
G - Alph Type . X
H - Alph Data X X X . X X
I - Alph Alg X X X X .
J - Out Type . X
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X .  

Figure 6: DSM for inferred proto-modular design 

5.3 DSM for the Information-Hiding Design 
The Line Store that is implicitly bundled with the Input Data is a 
proto-module that is a prime target for modularization: many 
other parameters depend on it and vice versa.  Splitting the Line 
Store from the Input and giving each its own interface as a design 
rule is a typical design step for resolving such a problem.  An 
alternative might be to merely put an interface on the pair and 
keep them as a single module.  However, this DSM does not 
show that the Line Store is doing double-duty as a buffer for the 
Input Algorithm as well as serving downstream clients.  Thus, it 



is more appropriate to split the two. The other proto-modules are 
modularized by establishing interface design rules for them.  The 
resulting DSM is shown in Figure 7. It is notable that this 
design has more hidden information (parameters O down to L in 
the figure) than the earlier designs.  We will see that under our 
model, this permits more complex innovation on each of the 
major system components, increasing the net options value of the 
design. 

N A D G J O P B C E F H I K L M

N - Line Type .
A - In Type .
D - Circ Type .
G - Alph Type .
J - Out Type .

O - Line Data X . X
P - Line Alg X X .

B - In Data X . X
C  - In Alg X X X .

E - Circ Data X X . X
F - Circ Alg X X X .

H - Alph Data X X . X
I - Alph Alg X X X .

K - Out Data X . X
L - Out Alg X X X .
M - Master X X X X X .  

Figure 7: DSM for information hiding modularization   

5.4 Introducing Environment Parameters 
We can now evaluate the adequacy of DSM’s to represent the 
information needed to reason about modular design in the style 
of Parnas.  We find the DSM to be in part incomplete.   

In particular, to make informed decisions about the choice of 
design rules and clustering of design parameters, we found we 
needed to know how changes in the environment would affect 
them.  For example, we can perceive the value of splitting apart 
the Line Store and the Input design parameters by perceiving 
how they are independently affected by different parameters in 
the environment.  For instance, Input is affected by the operating 
system, but the line store is affected by the size of the corpus.  
Indeed, the fitness functions found in evolutionary theories of 
complex adaptive systems, of which Baldwin and Clark’s theory 
is an instance, are parameterized by the environment.   

Not surprisingly perhaps, we were also finding it difficult to 
estimate Baldwin and Clark’s technical potential term in the 
NOV formula, which models the likelihood that changing a 
module will generate value.  This, too, is dependent on 
environmental conditions (e.g., might a change be required). 

In this paper we address this lack with an extension to the DSM 
framework.  We introduce environment parameters (EP) to 
model environments. The key property of an EP as distinct from 
a DP is that the designer does not control the EP. (Designers 
might be able influence EP’s, however.) We call our extended 
models environment and design structure matrices (EDSM’s).  
Figure 8 presents an EDSM for the strawman KWIC design. 

X Y Z A D G J B E H K C F I L M

X - Computer .

Y - Corpus X . X

Z - User X .

A - In Type .

D - Circ Type .

G - Alph Type .

J - Out Type .
B -In Data X X . X X
E - Circ Data X X X . X
H - Alph Data X X X X .
K - Out Data X X .
C  - In Alg X X X X .
F - Circ Alg X X X X X .
I - Alph Alg X X X X X X X .
L - Out Alg X X X X X X .
M - Master X X X X X .  

Figure 8: EDSM for strawman modularization 

The rows and columns of an EDSM are indexed by both EP’s 
and DP’s, with the EP’s first by convention.  The upper left 
block of an EDSM thus models interactions among EP’s; the 
middle left block, the impact of EP’s on the design rules; the 
lower left block, their impact on the hidden DPs. The lower right 
block is the basic DSM, partitioned as before to highlight DR’s; 
and the upper right block models the feedback influence of 
design decisions (DP’s) on the environment (EP’s).   

Applying the EDSM concept to Parnas’s example reveals that the 
EDSM provides a clear visual representation of genuine 
information hiding.  In particular, the sub-block of an EDSM 
where the EP’s intersect with the DR’s should be blank, 
indicating that the design rules are invariant with respect to 
changes in the environment: only the decisions hidden within 
modules have to change when EP’s change, not the design 
rules—the “load bearing walls” of the system.  We can now 
make these ideas more concrete in the context of the KWIC case 
study. 

Parnas implicitly valued his KWIC designs in an environment 
that made it likely that certain design changes would be needed.  
He noted several decisions “are questionable and likely to change 
under many circumstances [p. 305]” such as input format, 
character representation, whether the circular shifter should 
precompute shifts or compute them on the fly, and similar 
considerations for alphabetization.  Most of these changes are 
said to depend on a dramatic change in the input size or a 
dramatic change in the amount of memory.  What remains 
unclear in Parnas’s analysis is what forces would lead to such 
changes in use or the computing infrastructure.  We also do not 
know what other possible changes were ruled out as likely or 
why.  At the time, these programs were written in assembler.  
Should Parnas have been concerned that a new computer with a 
new instruction set would render his program inoperable?  A 
dramatic change in input size or memory size could certainly be 
accompanied by such a change. 



X Y Z A B C D E F G H I J K L M

X - Computer .

Y - Corpus X . X

Z - User X .

A - Input Type . X

B - Input Data X X X . X X X X X X
C - Input Alg X X X X .

D - Circ Type . X

E - Circ Data X X X X . X X X
F - Circ Alg X X X X X .

G - Alph Type . X
H - Alph Data X X X X X . X X
I   - Alph Alg X X X X X X X .

J - Out Type . X

K - Out Data X X X . X
L - Out Alg X X X X X X .

M - Master X X X X X .  

Figure 9: EDSM for inferred proto-modular design 

 

X Y Z N A D G J O P B C E F H I K L M

X - Computer .

Y - Corpus X . X

Z - User X .

N - Line Type .
A - In Type .
D - Circ Type .
G - Alph Type .
J - Out Type .

O - Line Data X X X . X
P - Line Alg X X X X .

B - Input Data X X X . X
C  - Input Alg X X X X X .

E - Circ Data X X X X . X
F - Circ Alg X X X X X .

H - Alph Data X X X X . X
I - Alph Alg X X X X X X .

K - Out Data X X X . X
L - Out Alg X X X X X .
M - Master X X X X X X .

 Figure 10: EDSM for information hiding Modularization 

 

By focusing on whether internal design decisions are 
questionable rather than on the external forces that would bring 
them into question, the scope of considerations is kept artificially 
narrow.  Not long ago, using ASCII for text would be 
unquestionable. Today internationalization makes that not so. By 
turning from design decisions to explicit EP’s, such issues can 
perhaps be discovered and accounted for to produce more 
effective information-hiding designs.   

To make this idea concrete, we illustrate it by extending our 
DSM’s for KWIC. We begin by hypothesizing three EP’s that 
Parnas might have selected, and which appear to be implied in 
his analysis: computer configuration (e.g., device capacity, 

speed); corpus properties (input size, language—e.g., Japanese); 
and user profile (e.g., computer savvy or not, interactive or 
offline). Figure 8, 9, and 10 are EDSM’s for the strawman, pre-
modular, and information hiding designs, respectively. 

The key characteristic of the strawman EDSM is that the DR’s 
are not invariant under the EP’s.  We now make a key 
observation: The strawman is an information-hiding 
modularization in the sense of Baldwin and Clark: designers can 
change non-DR DP’s (algorithms) independently; but it is not an 
information-hiding design in the sense of Parnas.  Basic DSM’s 
alone are insufficient to represent Parnas’s idea.  We could have 
annotated the DP’s with change probabilities, but we would still 
miss the essence: the load-bearing walls of an information hiding 
design (DR’s) should be invariant with respect to changes in the 
environment.  Our EDSM notation expresses this idea clearly. 

Figure 9 is the EDSM for the pre-modular design in which the 
data structures are not locked down as DR’s.  The remaining 
DR’s (the procedure type signatures) are invariant with the EP’s, 
but the extensive dependencies between proto-module DR’s 
suggest that changes in EP’s will have costly ripple effects.  The 
design evolution challenge that this EDSM presents is to split the 
proto-modules in a way that does not create new EP-dependent 
DR’s.  Figure 10 models the result: Parnas’s information hiding 
design.  The EDSM highlights the invariance of the DRs under 
the Eps in the sector where the EPs meet the DRs. 

6. NOV-BASED ANALYSIS OF KWIC 
We can now apply the NOV model to model how much the 
flexibility is worth in both Parnas designs as a fraction of the 
value of the base system, taking Parnas’s notion of information 
hiding into account.  This analysis is illustrative, of course, and 
the outputs are a function of the inputs.  We justify our estimates 
of the model parameters using the EDSM’s and reasonable back-
of-the-envelope assumptions.  A benefit of the mathematical 
model is that it supports rigorous sensitivity analysis.  Such an 
analysis is beyond the scope of this paper; but we will pursue 
this issue in the future.  We make the following assumptions and 
use the following notations in our analysis: 

• N is the number of design parameters in a given design.  
For the proto-modular and strawman modularizations, 
N = 13.  In the information hiding design N = 16. 

• Given a module of p parameters, its complexity is n = 
p/N. 

• The value of one experiment on an unmodularized 
design, σN1/2Q(1)= 1, is the value of the original 
system. 

• The design cost c=1/N of each design parameter is the 
same, and the cost to redesign the whole system is cN 
= 1. 

• The visibility cost of a module i of size n is Zi = Σj sees 

icn.  

• One experiment on an unmodularized system breaks 
even: σN1/2Q(1) –cN = 0. 

Balwin and Clark make the break-even assumption for an 
example in their book [1].  For a given system size, it implies a 
choice of technical potential for an unmodularized design:  in our 



case, σ = 2.5.  We take this as the maximum technical potential 
of any module in a modularized version. This assumption for the 
unmodularized KWIC is a modeling assumption, not a precisely 
justified estimate.  In practice, a designer would have to justify 
the choices of parameter values.   

The model of Baldwin and Clark in quite sensitive to technical 
potential, but they give little guidance in how to estimate it.  We 
have observed that the environment is what determines whether 
variants on a design are likely to have added value.  If there is 
little added value to be gained by replacing a module in a given 
environment, no matter how complex it is, that means the 
module has low technical potential.   

We chose to estimate the technical potential of each module as 
the system technical potential scaled by the fraction of the EP’s 
relevant to the module.  We further scaled the technical potential 
of the modules in the strawman design by 0.5, for two reasons.  
First, about half of the interactions of the EPs with the strawman 
design are with the design rules (but as we will see, their 
visibility makes the cost to change them prohibitive).  Second—
and more of a judgment call—the hidden modules in this design 
(algorithms) are tightly constrained by the design rules (data 
structures that are assumed not to change).  There would appear 
to be little to be gained by varying the algorithm 
implementations, alone.  Figure 11 shows our assumptions about 
the technical potential of the modules in the strawman and 
information-hiding designs. 

Strawman Info Hiding
Module Name sigma Z sigma Z
Design Rules 2.5 1 0 1

Line Storage NA NA 1.6 0
Input 1.25 0 2.5 0

Circular Shift 1.25 0 2.5 0

Alphabetizing 1.25 0 2.5 0

Output 0.8 0 1.6 0
Master Control 0.4 0 0.8 0  

Figure 11. Assumed Technical Potential and Visibility 

Figures 12 present the NOV data per module and Figure 13 the 
corresponding plots for the information hiding design.  Figure 13 
presents the plots for the strawman. The option value of each 
module is the value at the peak.  We omit this disaggregated data 
for the strawman design. What matters is the bottom line. 
Summing the module NOV’s gives that the system NOV is 0.26 
for the strawman design but 1.56 for the information-hiding 
design.  These numbers are percentages of the value of the non-
modularized system, which has base value 1. 

Thus the value of the system with the information-hiding design 
is 2.6 times that of the system with the unmodularized design, 
and the strawman’s is worth only 1.26 times as much.  Thus, the 
information-hiding version of the system is twice as valuable as 
the strawman.  Ignoring the base value and focusing just on 
modularity, we observe that the information-hiding design 
provides 6 times more value in the form of modularity than the 
strawman’s design.   

Baldwin and Clark acknowledge that designing modularizations 
is not free; but, once done, the costs are amortized over future 
evolution; so the NOV model ignores those costs.  Accounting for 
them is important, but not included in our model.  It is doubtful 
they are anywhere near 150% of the system value.  On the other 
hand, they would come much closer to 26%, which would tend to 
further reduce the value added by the strawman modularization. 

k 0 1 2 3 4 5 6 7 8 9 10 Max 

Q(k) 0 0.4 0.68 0.89 1.05 1.17 1.27 1.35 1.42 1.49 1.54 NOV 

Design Rules 0 -1.3 -1.6 -1.9 -2.25 -2.56 -2.88 -3.2 -3.5 -3.81 -4.1 0

LineStore 0 0.1 0.14 0.13 0.09 0.04 -0.03 -0.1 -0.19 -0.28 -0.4 0.14

Input 0 0.23 0.35 0.41 0.42 0.41 0.37 0.32 0.26 0.19 0.11 0.42

CirShift 0 0.23 0.35 0.41 0.42 0.41 0.37 0.32 0.26 0.19 0.11 0.42

Alpha 0 0.23 0.35 0.41 0.42 0.41 0.37 0.32 0.26 0.19 0.11 0.42

Output 0 0.1 0.14 0.13 0.09 0.04 -0.03 -0.1 -0.19 -0.28 -0.4 0.14

MsCon. 0 0.02 0.01 -0 -0.04 -0.08 -0.12 -0.2 -0.22 -0.27 -0.3 0.02

Fig 12. Option Values for Information Hiding Design 
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Figure 13: Options Values for Information Hiding Design 
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Figure 14: Options Values for Strawman Design 



7. DISCUSSION AND CONCLUSION 
Parnas’s information-hiding criterion for modularity has been 
enormously influential in computer science. Because it is a 
qualitative method lacking an independent evaluation criterion, it 
is not possible to perform a precise comparison of differing 
designs deriving from the same desiderata.  

This paper is a novel application of Baldwin and Clark’s options-
theoretic method of modular design and valuation to the subject 
of information-hiding modularity. Our goal was to lend insight 
into both information-hiding modularity and the ability of options 
theory to capture Parnas’s intent of designing for change.  We 
have provided an early validation of the application of their 
method to software design by reformulating Parnas’s KWIC 
modularizations in the Baldwin and Clark framework. 

Baldwin and Clark’s method has two main components, the 
Design Structure Matrix (DSM) and the Net Option Value 
formula (NOV).  DSM’s provide an intuitive, qualitative 
framework for design.  NOV quantifies the consequences of a 
particular design, thus permitting a precise comparison of 
differing designs of the same system. 

We have shown that these tools provide significant insight into 
the modularity in the design of software. Yet, precisely modeling 
Parnas’s information-hiding criterion requires explicitly 
modeling the environment—the context in which the software is 
intended to be used—in order to capture the notion of design 
stability in the face of change.  We model the environment by 
extending DSM’s to include environment parameters alongside 
the traditional design parameters. The environment parameters 
then inform the estimation of the technical potential in the NOV 
computation.  In the process, we learned that Parnas had largely 
conceived of change in terms of intrinsic properties of the design, 
rather than in terms of the properties of the environment in 
which the software is embedded. 

With these extensions to the Baldwin and Clark model, we were 
able to both model the Parnas designs and quantitatively show—
under a set of assumptions—that the information-hiding design is 
indeed superior, consistent with the accepted results of Parnas.  

This result has value in at least three dimensions. First, it 
provides a quantitative account of the benefits of good design.  
Second, it provides limited but significant evidence that such 
models have the potential to aid technical decision-making in 
design with value added as an explicit objective function.  This 
paper is thus an early result in the emerging area of strategic 
software design [4], which aims for a descriptive and prescriptive 
theoretical account of software design as a value-maximizing 
investment activity.  Third, the result supports further 
investigation of implications that follow from acceptance of such 
a model.  For example, because the value of an option increases 
with technical potential (risk), modularity creates seemingly 
paradoxical incentives to seek risks in software design, provided 
they can be managed by active creation and exploitation of 
options.  The paradox is resolved in large part by the options 
model, which clarifies that one has the right, but not a 
requirement, to exercise an option, thus the downside risk (cost) 
is largely limited to the purchase of the option itself. 

In the introduction, we also raised the question of when is the 
right time to modularize or commit to a software architecture?  

Parnas’s method says to write down the design decisions that are 
likely to change and then design modules to hide them.  This 
implicitly encourages programmers to modularize at the early 
stages of design.  The NOV calculations of the two KWIC 
modularizations make the possible consequences clear: without 
knowledge of the environment parameters, a designer might rush 
in to implement the strawman design, effectively sacrificing the 
opportunity to profit from the superior modularization.  Yet, 
designers often do not have the luxury to wait until there is 
sufficient information to choose the optimal modularization.  It 
may be difficult to precisely estimate how the environment is 
going to change—innovation and competitive marketplaces are 
hard to predict.  Moreover, many of the best ideas come from the 
users of the software, so uncertainty is almost certain until the 
product is released.  New design techniques that create options to 
delay modularizing until sufficient information is available might 
be explored as a possible solution to this conundrum. 

The inclusion of environment parameters in the design process 
has additional implications.  For example, making the most of 
these parameters requires being able to sense when they are 
changing and to influence them (slow their change) when 
possible. Careful design of the coupling between the 
development process and the environment is critical in strategic 
software design.  For example, for parameters whose values are 
subject to change, sensor technologies—perhaps as simple as 
being on the mailing list of a standards-setting committee—can 
help to detect changes and report them to the designers in a 
timely fashion. Conversely, lobbying a standards-setting 
organization to, say, deprecate interfaces rather than change them 
outright can slow environmental change. Thus, accommodating 
environmental change is not limited to just anticipating change, 
as originally stated by Parnas, but includes more generally both 
responsiveness to change and manipulation of change.   

This paper represents a first step in the validation of Baldwin 
and Clark’s option-theoretic approach for quantifying the value 
of modularity in software.  Additional studies are required to 
adequately validate the theory and provide insight into its 
practical application.  Also, in our paper study, we found it 
difficult to estimate the technical potentials of the modules, 
despite the added resolution provided by the environment 
parameters.  Validation in an industrial project would not only 
provide realistic scale, but it would also have considerable 
historical data to draw upon for the computation of NOV. Such 
studies would help move the field of software design further 
down the path to having powerful quantitative models for design. 
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