
The Structure and Value of Modularity in Software Design
Kevin Sullivan, Yuanfang Cai, Ben Hallen

Dept. of Computer Science
University of Virginia P.O.Box 400740

Charlottesville, VA 22904-4740
Tel: +1 (804) 982-2206

{sullivan,yc7a,bh5z}@cs.virginia.edu

William G. Griswold
Dept. of Computer Science and Engineering

University of California, San Diego
 San Diego, CA 92093-0114

Tel: +1 (858) 534-6898

wgg@cs.ucsd.edu

ABSTRACT
The concept of information hiding modularity is a cornerstone of
modern software design thought, but its formulation remains
casual and its emphasis on changeability is imperfectly related to
the goal of creating value in a given context. We need better
models of the structure and value of information hiding, for both
their explanatory power and prescriptive utility. We evaluate the
potential of a new theory—developed to account for the influence
of modularity on the evolution of the computer industry—to
inform software design. The theory uses design structure
matrices to model designs and real options techniques to value
them. To test the potential utility of the theory for software we
represent a model software system in its terms—Parnas’s
KWIC—and evaluate the results. We contribute an extension to
design structure matrices and show that the options results are
consistent with Parnas’s conclusions. Our results suggest that
such a theory does have potential to help inform software design.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies,
representation.

General Terms
Software Engineering, Economics

Keywords
Strategic software design, design structure matrix, design rules.

1. INTRODUCTION
In 1972 Parnas introduced information hiding as an approach to
devising modular structures for software designs [8]. The
approach promised to dramatically improve the adaptability of
software. The idea is to decouple design decisions that are likely
to change so that they can be changed independently. Parnas
supported his claim that information hiding produces better
designs with a case study comparing the changeability of two
versions of KWIC (Key Words in Context), one modularized
around processing steps, the other using information hiding.

This idea has been broadly influential, catalyzing the
development of abstract data type programming languages,
object-oriented design and programming, and the discipline of
software architecture. Through all these developments, Parnas’s
formulation has been adopted largely without change.

We identify an issue for software designers that neither Parnas’s
formulation nor subsequent developments based on it adequately
address. A designer is responsible for producing the greatest
benefit for any given investment of time, talent, money, and other
resources. Modularization decisions have a tremendous impact
in this dimension. However, the information-hiding decision
process does not account explicitly for the costs and benefits of
modularization, so it does not help designers to design most
effectively for value added.

In particular, the current formulation does not address two key
questions from a value-maximization perspective: (1) which of
the available modularizations is best; (2) at what point should
one be selected in the face of uncertainty about the first question?
Today, designers are encouraged to make modularization
decisions at the earliest stages of design. Yet, at these stages they
are often unsure of which decisions are likely to change and of
the dependencies among them. Moreover, the information-
hiding criterion is a qualitative process of modularization against
a set of design decisions. The principle way to evaluate such a
modularization is to test whether it hides the information it was
meant to hide (which is self-referential). We lack precise,
quantitative models of the value of proposed modularizations. In
particular, we lack models for assessing the relative value of
proposed modularizations for the same system.

In this paper we introduce an approach to modeling software
designs that addresses these problems, with an emphasis on the
question of relative valuation. In particular, the approach allows
us to value modular structures relative to inferred non-modular
designs, and thus against each other. The approach follows the
theory that Baldwin and Clark developed to account for the
influence of modularity on the evolution of computer system
designs and the structure of the industry that creates them [1][2].

A key idea in this work is that modularity in design creates value
in the form of options to improve a system by experimenting
with new implementations and substituting superior ones. The
value of such options is modeled quantitatively. This idea, which
is consistent with our work on the options value of flexibility in
software [4][11][12], promises to help link structural aspects of
design to value as an objective. Parnas’s ideas influenced
Baldwin and Clark’s theory, but our adaptation of the theory to
software design appears to be novel.

To test of the potential of the theory to value modularization
decisions in software we reformulate Parnas’s KWIC analysis in
terms of the theory. Two hypotheses underlie this approach.

First, Parnas’s example can be mapped in terms of theory.
Second, the resulting mapping will produce valuation results
consistent with Parnas’s widely accepted conclusions.

Mapping the example did reveal one gap in the theory. It lacked
the means to represent how the environment in which software is
deployed affects the value of its design. We extended the model
to represent the environment. The extended theory helped in
turn to clarify the information hiding idea, not in terms of
decisions that are likely to change, but rather in terms of the
invariance of visible decisions under changes in the environment.

With the extended theory we were able to value each of the two
modularizations against a common ancestral pre-modular design
of KWIC. Both modularizations are derived from that design by
application of the splitting operator of the theory’s design
evolution framework. We found the extended theory to predict
that the information hiding KWIC modularization is significantly
better than the strawman design. Our results provide an early
data point suggesting that the extended theory has the potential
to advance the development of precise models that have
descriptive and prescriptive power for value-maximizing
software design.

The next two sections provide the background material for our
analysis and discussion of KWIC, which follows in the three
subsequent sections.

2. BACKGROUND
Baldwin and Clark’s theory is based on the idea that modularity
adds value in the form of real options (options). An option
provides the right to make an investment in the future, without a
symmetric obligation to make that investment. Because an
option can have a positive payoff but need never have a negative
one, an option has a present value. It is like a lottery ticket.

The important idea in this paper is that a module creates an
opportunity to invest in a search for a superior replacement.
Such an investment buys the designer an option to replace the
current module with the best alternative, or to keep the current
one, if it is still the best. Intuitively, the value of such an option
is the value added by the optimal experiment-and-replace policy.
Knowing this value can help a designer to reason about both the
initial investment in modularity, and how much effort to expend
searching for alternatives.

The idea that real options ideas can help us to analyze core issues
in software design and engineering is not new. Sullivan [12]
suggested that such an analysis can provide insights concerning
modularity, phased project structures, delaying of decisions and
other dynamic design strategies. Sullivan, Chalasani, Jha and
Sazawal [11] formalized that options-based analysis, focusing in
particular on the value of the flexibility to delay decision making.

Withey [14] applied a related analysis to reasoning about the
flexibility value of software product line architectures. He did
not appeal to real options concepts explicitly in his analysis.

Favaro [6] developed an options-based approach to investment
analysis for software reuse infrastructures. The options approach
was used to value the flexibility provided by reuse infrastructures
to adapt in the face of uncertain conditions. The approach uses a
Black/Scholes (arbitrage-based) valuation model. Using such a

model is technically valid only if market-traded assets are
identified that track the risks in the option being priced. Favaro
assumed this condition to hold, but there are many cases in
design where there will be no such tracking assets. Beck [3] is
popularizing intuitions emerging from options-based analyses.

Baldwin and Clark appear to have been the first to observe that
the value of modularity in design (of computer systems) can be
modeled as options. They do not to assume that tracking assets
exist. Rather, they make a statistical assumption: that the values
of independently developed alternatives to an existing module
are normally distributed about its value. We discuss these ideas
in more detail in the following section.

3. BALDWIN AND CLARK’S MODEL
The parts Baldwin and Clark’s theory that are most relevant to
this paper are the representation of designs by design structure
matrices (DSM) [10] [5]; the characteristics of modular designs;
design evolution under modular operators; and the net options
value (NOV) of modularity.

3.1 Design Structure Matrix
A DSM represents dependencies amongst the design parameters
of a design. A design parameter represents the range of choices
that can be made about an aspect of a design. Typical software
design parameters include data structures, algorithms, procedure
and type signatures. Others might include graphical interface
look-and-feel, interoperability, and performance characteristics.

The rows and columns of a DSM are labeled by the design
parameters. A dependence between two parameters is
represented by a mark (X). A mark in row B, column A means
that an efficacious choice for B depends on the choice for A.
Parameters that require mutual consistency—algorithm and data
structures go hand-in-hand, for example—are interdependent,
resulting in symmetric (A,B) and (B,A) marks. When one
parameter naturally precedes the other—there is no GUI look-
and-feel unless there is a GUI—the parameters are called
hierarchically dependent. Finally, independent design parameters
may be determined and changed individually.

Choosing the design parameters to model and the values they
finally take on is the task of the designer. In exploring the value
of a design, the marks in a DSM represent the believed
likelihood of deriving a benefit from recognizing and allowing
parameter dependencies. DSM’s are typically derived from
experience with prior versions of the product or similar products.
In early versions of a product, there may be relatively few marks
in the matrix, capturing little more than the dependencies
necessary to deploy a correctly functioning product. A DSM for
a subsequent version might include marks for subtle but
powerful dependencies that were discovered through use of the
product, additions to knowledge, and innovation. Likewise, new
design parameters will be recognized and added to the DSM over
time. In these respects a DSM represents not just abstract design
dependencies, but concrete requirements for communication
amongst designers.

3.2 Design Rules and the Evolution of Designs
The dependence and interdependence of design parameters
present challenges in design, because the designers managing the
parameters have to communicate to achieve an optimal design. If

a parameter such as A in Figure 1 is changed, then the decisions
for parameter B may need to be changed, hence propagating to C,
and perhaps back to B again. Such dependencies require
communication and constrain the ability of designers to work
independently. These problems can be addressed by first
clustering design parameters into (typically interdependent)
proto-modules and then applying an operator called splitting.

A B C

A .

B X . X

C X .

Figure 1: An elementary DSM with three design parameters.

Groups of interdependent design parameters are clustered into a
proto-module to show that the decisions are managed collectively
as a single design task (See Figure 2; the dark lines denote the
desired proto-module clusters). In essence, such a proto-module
is a composite design parameter. To be a true module, in the
lexicon of Baldwin and Clark, there can be no marks in the rows
or columns outside the bounding box of its cluster connecting it
to other modules or proto-modules in the system.

A-I B-C D-I A B-C D B C

A interface .

B-C D interface .

A X .

B-C data struct. X .

B X X .

C X .

Figure 2: A modular DSM resulting from splitting, adding
design rules, and clustering.

Merely clustering cannot convert a monolithic design comprising
one large, tightly coupled proto-module into a modular design.
Interdependent parameter cycles must be broken to define
modules of reasonable size and complexity. Breaking a cycle
between two interdependent parameters like B and C requires an
additional step called splitting.

The first step in splitting identifies the cause of the cycle—say, a
shared data structure definition—and splits it out as its own
design parameter (D). B and C no longer cyclically depend on
each other, instead taking on a simple hierarchical dependence
on D. However, B and C must still wait for the completion of
D's design process in order to undertake their own.

To counter this, a design as represented by a DSM can be further
modularized during the process of splitting by the introduction of
design rules. Design rules are additional design parameters that
decouple otherwise linked parameters by asserting "global" rules
that the rest of the design parameters must follow. Thus, design
rules are de facto hierarchical parameters with respect to the
other parameters in a DSM. The most prevalent kind of design
rule in software is a module interface. For example, for the
DSM in Figure 2, an "A interface" rule could be added that
asserts that the implementation of B can only access the
implementation of A through an interface defined for A. Thus, A
could change details of its implementation freely without
affecting B, as long as A's interface did not have to be changed as

well. The effects of splitting B and C and adding design rules to
break the non-modular dependences is shown in Figure 3.

A B C

A .

B X . X

C X .

Figure 3: A modular DSM resulting from splitting, adding
design rules, and clustering.

In Baldwin and Clark’s terminology, a design rule is a (or part of
a) visible module, and any module that depends only on design
rules is a hidden module. A hidden module can be adapted or
improved without affecting other modules by the application of a
second operator called substitution.

The splitting and substitution operations are examples of six
atomic modular operators that Baldwin and Clark introduced to
parsimoniously and intuitively describe the operations by which
modular designs evolve. The others are augmentation, which
adds a module to a system, exclusion, which removes a module,
inversion, which standardizes a common design element, and
porting, which transports a module for use in another system.
We do not address these other operators any further in this paper.

3.3 Net Options Value of a Modular Design
Not all modularizations are equally good. Thus, in evolving a
design, it is useful to be able to evaluate alternative paths based
on quantitative models of value. Such models need not be
perfect. What is essential is that they capture the most important
terms and that their assumptions and operation be known and
understood so that analysts can evaluate their predictions.

3.3.1 Introduction to Real Options Concepts
Baldwin and Clark’s theory is based on the idea that modularity
in design multiplies and decentralizes real options that increase
the value of a design. A monolithic system can be replaced only
as a whole. There is only one option to replace, and exercising it
requires that both the good and the bad parts of the new system
be accepted. In a sense, the designer has one option on a
portfolio of assets. A system that has two modules, by contrast,
can be kept as is, or either or both of the new modules can be
accepted, for a total of four options. The designer can accept only
the good new modules. By contrast, this designer has a portfolio
of options on the modules of the system. A key result in modern
finance shows that all else remaining equal, a portfolio of options
is worth more than an option on a portfolio.

Baldwin and Clark’s theory defines a model for reasoning about
the value added to a base system by modularity. They formalize
the options value of each modular operator: How much is it
worth to be able to substitute modules, augment, etc.

3.3.2 The Net Options Value of a Modular Design
In this paper, we address only substitution options. Splitting a
design into n modules increases its base value S0 by a fraction
that is obtained by summing the net option values (NOVi) of the
resulting options:

V = S0 + NOV1 + NOV2 + … + NOVn (1)

NOV is the benefit gained by exercising an option optimally
accounting for both payoffs and exercise costs.

Baldwin and Clark present a model for calculating NOV. A
module creates an opportunity to invest in k experiments to (a)
create candidate replacements, (b) each at a cost related to the
complexity of the module, and, (c) if any of the results are better
than the existing choice, to substitute in the best of them, (d) at a
cost that related to the visibility of the module to other modules
in the system:

NOVi = maxki {σini
1/2Q(ki) – Ci(ni)ki - Zi } (2)

First, for module i, σini
1/2Q(ki) is the expected benefit by the best

of ki independently developed candidate replacements under
certain assumptions about the distribution of such values.
Ci(ni)ki is the cost to run ki experiments as a function Ci of the
module complexity ni. Zi = Σj-sees-icinj is the cost to replace the
module given the number of other modules in the system that
directly depend on it, the complexity ni of each, and the cost to
redesign each of its parameters. The max picks the number of
experiments ki that maximizes the gain from module i.

Figure 4 presents a typical scenario: module value-added
increass in the number of experiments (better candidates found)
until experiment costs meet diminishing returns. The max is the
peak. In this case, six experiments maximizes the net gain and is
expected to add about 41% value over the existing module.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

Number of Experiments

Figure 4. The value added by k experiments.

The NOVi formula assumes that the value added by a candidate
replacement is a random variable normally distributed about the
value of the existing module choice (normalized to zero), with a
variance σi

2ni that reflects the technical potential σi
 of the module

(the standard deviation on its returns) and the complexity ni of
the module. The assumption of a normal distribution is
consistent with the empirical observation that high and low
outcomes are rare, with middle outcomes more common. The
Q(k) represents the expected value of the best of k independent
draws from a standard normal distribution, assuming they are
positive, and is the maximum order statistic of a sample of size k.

4. OVERVIEW OF ANALYSIS APPROACH
As an initial test of the potential for DSM’s and NOV to improve
software design, we apply the ideas to a reformulation of
Parnas’s comparative analysis of modularizations of KWIC (a
program to compute permuted indices) [1]. The use of KWIC as a

benchmark for assessing concepts in software design is well
established [7][9].

Parnas presents two modularizations: a traditional “strawman”
based on the sequence of abstract steps in converting the input to
the output, and a new one based on information hiding. The new
design used abstract data type interfaces to decouple key design
decisions involving data structure and algorithm choices so that
they could be changed without unduly expensive ripple effects.

Parnas then presents a comparative analysis of the changeability
of the two designs. He postulates changes and assesses how well
each modularization can accommodate them, measured by the
number of modules that would have to be redesigned for each
change. He finds that the information-hiding modularization is
better. He concludes that designers should prefer to use an
information hiding design process: begin the design by
identifying decisions that are likely to change; then define a
module to hide each such decision.

Our reformulation of Parnas’s example is given in two basic
steps. First, we develop DSM’s for his two modularizations in
order to answer several questions. Do DSM’s, as presented by
Baldwin and Clark (as well as in the works of Eppinger and
Steward [5][10], who invented DSMs), have the expressive
capacity to capture the relevant information in the Parnas
examples? Do the DSM’s reveal key aspects of the designs? Do
we learn anything about how to use DSM’s to model software?

Second, we apply Baldwin and Clark’s substitution NOV model
to compute quantitative values of the two modularizations, using
parameter values derived from information in the DSM’s
combined with the judgments of a designer. The results are
back-of-the-envelope predictions, not precise market valuations;
yet they are useful and revealing. We answer two questions. Do
the DSM’s contain all of the information that we need to justify
estimates of values of the NOV parameters? Do the results
comport with the accepted conclusions of Parnas?

Our evaluation revealed one shortcoming in the DSM framework
relative to our needs. DSM’s as used by Baldwin and Clark and
in earlier work do not appear to model the environment in which
a design is embedded. Consequently, we were unable to model
the forces that drove the design changes that Parnas hypothesized
for KWIC. Thus, DSM’s, as defined, did not permit suffiently
rich reasoning about change and did not provide enough
information to justify estimates of the environment-dependent
technical potential parameters of the NOV model.

We thus extended the DSM modeling framework to model what
we call environment parameters (EP). We call such models
environment and design structure matrices (EDSM). DP’s are
under the control of the designer. Even design rules can be
changed, albeit possibly at great cost. However, the designer
does not control EP’s. Our extension to the EDSM framework
appears to be both novel and useful. In particular, it captures a
number of important issues in software design and, at least in the
case of the Parnas modularization, it allows us to infer some of
Parnas’s tacit assumptions about change drivers.

The next section presents our DSM’s for Parnas’s KWIC. Next
we present our NOV results. Finally, we close with a discussion.

5. DSM-BASED ANALYSIS OF KWIC
For the first modularization, Parnas describes five modules:
Input, Circular Shift, Alphabetizing, Output, and Master Control.
He concludes, “The defining documents would include a number
of pictures showing core format, pointer conventions, calling
conventions, etc. All of the interfaces between the four modules
must be specified before work could begin….This is a
modularization in the sense meant by all proponents of modular
programming. The system is divided into a number of modules
with well-defined interfaces; each one is small enough and
simple enough to be thoroughly understood and well
programmed [8].”

5.1 A DSM Model of the “Strawman” Design
We surmise Parnas viewed each module interface as comprising
two parts: an exported data structure and a procedure invoked by
Master Control. We thus took the choice of data structures,
procedure declarations, and algorithms as the DP’s of this
design. The resulting DSM is presented in Figure 5. DP’s A, D,
G, and J model the procedure interfaces, as design rules, for
running the input, shift, sort and output algorithms. B, E, H, and
K model the data structure choices as design rules. Parnas states
that agreement on them has to occur before independent module
implementation can begin. C, F, I, L, and M model the
remaining unbound parameters: the choices of algorithms to
manipulate the fixed data structures. The DP dependencies are
derived directly from Parnas’s definitions.

A D G J B E H K C F I L M

A - Input Type .

D - Circ Type .

G - Alph Type .

J - Out Type .

B - In Data . X X

E - Circ Data X . X

H - Alph Data X X .
K - Out Data .

C - Input Alg X X .

F - Circ Alg X X X .

I - Alph Alg X X X X .

L - Out Alg X X X X .

M - Master X X X X .

Figure 5: DSM for strawman modularization

The DSM immediately reveals key properties of the design.
First, the design is a modularization, as Parnas claims: designers
develop their parts independently as revealed by the absence of
unboxed marks in the lower right quadrant of the DSM. Second,
only a small part—the algorithms—is hidden and independently
changeable. Third, the algorithms are tightly constrained by the
data structure design rules. Moreover, the data structures are an
interdependent knot (in the upper left quadrant). The shift data
structure points into the line data structure; the alphabetized
structure is identical to the shifted structure; etc. Change is thus
doubly constrained: Not only are the algorithms constrained by
the data structure rules, but these rules themselves would be hard
to change because of their tight interdependence.

5.2 A DSM Model of a Pre-Modular Design
By declaring the data structures to be design rules, the designer
asserts that there is little to gain by letting them change.
Parnas’s analysis reflects the costly problems that arise when the
designer makes a mistake in prematurely accepting such a
conclusion and basing a modularization on it. Furthermore, we
can see that the design is also flawed because most of the design
parameters are off limits to valuable innovation. The designer
has cut off potentially valuable parts of the design space.

One insight emerging from this work is that there can be value in
declining to modularize until the topography of the value
landscape is understood. This conclusion is consistent with
Baldwin and Clark’s view: “...designers must know about
parameter interdependencies to formulate sensible design rules.
If the requisite knowledge isn’t there, and designers attempt to
modularize anyway, the resulting systems will miss the ‘high
peaks of value,’ and, in the end, may not work at all [p. 260].”

Letting the design rules revert to normal design parameters and
clustering the data structures with their respective algorithms
(because they are interdependent) produces the DSM of Figure
6. This DSM displays the typical diagonal symmetry of outlying
marks indicating a non-modular design. We have not necessarily
changed any code, but the design (and the design process) is
fundamentally different. Rather than a design overconstrained by
Draconian design rules, the sense of a potentially complex design
process with meetings among many designers is apparent.
Innovative or adaptive changes to the circular shifter might have
upstream impacts on the Line Store, for example—a kind of
change that Parnas did not consider in his analysis.

A B C D E F G H I J K L M

A - In Type . X
B - In Data X . X X X X X X
C - In Alg X X .
D - Circ Type . X
E - Circ Data X X . X X X
F - Circ Alg X X X .
G - Alph Type . X
H - Alph Data X X X . X X
I - Alph Alg X X X X .
J - Out Type . X
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X .

Figure 6: DSM for inferred proto-modular design

5.3 DSM for the Information-Hiding Design
The Line Store that is implicitly bundled with the Input Data is a
proto-module that is a prime target for modularization: many
other parameters depend on it and vice versa. Splitting the Line
Store from the Input and giving each its own interface as a design
rule is a typical design step for resolving such a problem. An
alternative might be to merely put an interface on the pair and
keep them as a single module. However, this DSM does not
show that the Line Store is doing double-duty as a buffer for the
Input Algorithm as well as serving downstream clients. Thus, it

is more appropriate to split the two. The other proto-modules are
modularized by establishing interface design rules for them. The
resulting DSM is shown in Figure 7. It is notable that this
design has more hidden information (parameters O down to L in
the figure) than the earlier designs. We will see that under our
model, this permits more complex innovation on each of the
major system components, increasing the net options value of the
design.

N A D G J O P B C E F H I K L M

N - Line Type .
A - In Type .
D - Circ Type .
G - Alph Type .
J - Out Type .

O - Line Data X . X
P - Line Alg X X .

B - In Data X . X
C - In Alg X X X .

E - Circ Data X X . X
F - Circ Alg X X X .

H - Alph Data X X . X
I - Alph Alg X X X .

K - Out Data X . X
L - Out Alg X X X .
M - Master X X X X X .

Figure 7: DSM for information hiding modularization

5.4 Introducing Environment Parameters
We can now evaluate the adequacy of DSM’s to represent the
information needed to reason about modular design in the style
of Parnas. We find the DSM to be in part incomplete.

In particular, to make informed decisions about the choice of
design rules and clustering of design parameters, we found we
needed to know how changes in the environment would affect
them. For example, we can perceive the value of splitting apart
the Line Store and the Input design parameters by perceiving
how they are independently affected by different parameters in
the environment. For instance, Input is affected by the operating
system, but the line store is affected by the size of the corpus.
Indeed, the fitness functions found in evolutionary theories of
complex adaptive systems, of which Baldwin and Clark’s theory
is an instance, are parameterized by the environment.

Not surprisingly perhaps, we were also finding it difficult to
estimate Baldwin and Clark’s technical potential term in the
NOV formula, which models the likelihood that changing a
module will generate value. This, too, is dependent on
environmental conditions (e.g., might a change be required).

In this paper we address this lack with an extension to the DSM
framework. We introduce environment parameters (EP) to
model environments. The key property of an EP as distinct from
a DP is that the designer does not control the EP. (Designers
might be able influence EP’s, however.) We call our extended
models environment and design structure matrices (EDSM’s).
Figure 8 presents an EDSM for the strawman KWIC design.

X Y Z A D G J B E H K C F I L M

X - Computer .

Y - Corpus X . X

Z - User X .

A - In Type .

D - Circ Type .

G - Alph Type .

J - Out Type .
B -In Data X X . X X
E - Circ Data X X X . X
H - Alph Data X X X X .
K - Out Data X X .
C - In Alg X X X X .
F - Circ Alg X X X X X .
I - Alph Alg X X X X X X X .
L - Out Alg X X X X X X .
M - Master X X X X X .

Figure 8: EDSM for strawman modularization

The rows and columns of an EDSM are indexed by both EP’s
and DP’s, with the EP’s first by convention. The upper left
block of an EDSM thus models interactions among EP’s; the
middle left block, the impact of EP’s on the design rules; the
lower left block, their impact on the hidden DPs. The lower right
block is the basic DSM, partitioned as before to highlight DR’s;
and the upper right block models the feedback influence of
design decisions (DP’s) on the environment (EP’s).

Applying the EDSM concept to Parnas’s example reveals that the
EDSM provides a clear visual representation of genuine
information hiding. In particular, the sub-block of an EDSM
where the EP’s intersect with the DR’s should be blank,
indicating that the design rules are invariant with respect to
changes in the environment: only the decisions hidden within
modules have to change when EP’s change, not the design
rules—the “load bearing walls” of the system. We can now
make these ideas more concrete in the context of the KWIC case
study.

Parnas implicitly valued his KWIC designs in an environment
that made it likely that certain design changes would be needed.
He noted several decisions “are questionable and likely to change
under many circumstances [p. 305]” such as input format,
character representation, whether the circular shifter should
precompute shifts or compute them on the fly, and similar
considerations for alphabetization. Most of these changes are
said to depend on a dramatic change in the input size or a
dramatic change in the amount of memory. What remains
unclear in Parnas’s analysis is what forces would lead to such
changes in use or the computing infrastructure. We also do not
know what other possible changes were ruled out as likely or
why. At the time, these programs were written in assembler.
Should Parnas have been concerned that a new computer with a
new instruction set would render his program inoperable? A
dramatic change in input size or memory size could certainly be
accompanied by such a change.

X Y Z A B C D E F G H I J K L M

X - Computer .

Y - Corpus X . X

Z - User X .

A - Input Type . X

B - Input Data X X X . X X X X X X
C - Input Alg X X X X .

D - Circ Type . X

E - Circ Data X X X X . X X X
F - Circ Alg X X X X X .

G - Alph Type . X
H - Alph Data X X X X X . X X
I - Alph Alg X X X X X X X .

J - Out Type . X

K - Out Data X X X . X
L - Out Alg X X X X X X .

M - Master X X X X X .

Figure 9: EDSM for inferred proto-modular design

X Y Z N A D G J O P B C E F H I K L M

X - Computer .

Y - Corpus X . X

Z - User X .

N - Line Type .
A - In Type .
D - Circ Type .
G - Alph Type .
J - Out Type .

O - Line Data X X X . X
P - Line Alg X X X X .

B - Input Data X X X . X
C - Input Alg X X X X X .

E - Circ Data X X X X . X
F - Circ Alg X X X X X .

H - Alph Data X X X X . X
I - Alph Alg X X X X X X .

K - Out Data X X X . X
L - Out Alg X X X X X .
M - Master X X X X X X .

 Figure 10: EDSM for information hiding Modularization

By focusing on whether internal design decisions are
questionable rather than on the external forces that would bring
them into question, the scope of considerations is kept artificially
narrow. Not long ago, using ASCII for text would be
unquestionable. Today internationalization makes that not so. By
turning from design decisions to explicit EP’s, such issues can
perhaps be discovered and accounted for to produce more
effective information-hiding designs.

To make this idea concrete, we illustrate it by extending our
DSM’s for KWIC. We begin by hypothesizing three EP’s that
Parnas might have selected, and which appear to be implied in
his analysis: computer configuration (e.g., device capacity,

speed); corpus properties (input size, language—e.g., Japanese);
and user profile (e.g., computer savvy or not, interactive or
offline). Figure 8, 9, and 10 are EDSM’s for the strawman, pre-
modular, and information hiding designs, respectively.

The key characteristic of the strawman EDSM is that the DR’s
are not invariant under the EP’s. We now make a key
observation: The strawman is an information-hiding
modularization in the sense of Baldwin and Clark: designers can
change non-DR DP’s (algorithms) independently; but it is not an
information-hiding design in the sense of Parnas. Basic DSM’s
alone are insufficient to represent Parnas’s idea. We could have
annotated the DP’s with change probabilities, but we would still
miss the essence: the load-bearing walls of an information hiding
design (DR’s) should be invariant with respect to changes in the
environment. Our EDSM notation expresses this idea clearly.

Figure 9 is the EDSM for the pre-modular design in which the
data structures are not locked down as DR’s. The remaining
DR’s (the procedure type signatures) are invariant with the EP’s,
but the extensive dependencies between proto-module DR’s
suggest that changes in EP’s will have costly ripple effects. The
design evolution challenge that this EDSM presents is to split the
proto-modules in a way that does not create new EP-dependent
DR’s. Figure 10 models the result: Parnas’s information hiding
design. The EDSM highlights the invariance of the DRs under
the Eps in the sector where the EPs meet the DRs.

6. NOV-BASED ANALYSIS OF KWIC
We can now apply the NOV model to model how much the
flexibility is worth in both Parnas designs as a fraction of the
value of the base system, taking Parnas’s notion of information
hiding into account. This analysis is illustrative, of course, and
the outputs are a function of the inputs. We justify our estimates
of the model parameters using the EDSM’s and reasonable back-
of-the-envelope assumptions. A benefit of the mathematical
model is that it supports rigorous sensitivity analysis. Such an
analysis is beyond the scope of this paper; but we will pursue
this issue in the future. We make the following assumptions and
use the following notations in our analysis:

• N is the number of design parameters in a given design.
For the proto-modular and strawman modularizations,
N = 13. In the information hiding design N = 16.

• Given a module of p parameters, its complexity is n =
p/N.

• The value of one experiment on an unmodularized
design, σN1/2Q(1)= 1, is the value of the original
system.

• The design cost c=1/N of each design parameter is the
same, and the cost to redesign the whole system is cN
= 1.

• The visibility cost of a module i of size n is Zi = Σj sees

icn.

• One experiment on an unmodularized system breaks
even: σN1/2Q(1) –cN = 0.

Balwin and Clark make the break-even assumption for an
example in their book [1]. For a given system size, it implies a
choice of technical potential for an unmodularized design: in our

case, σ = 2.5. We take this as the maximum technical potential
of any module in a modularized version. This assumption for the
unmodularized KWIC is a modeling assumption, not a precisely
justified estimate. In practice, a designer would have to justify
the choices of parameter values.

The model of Baldwin and Clark in quite sensitive to technical
potential, but they give little guidance in how to estimate it. We
have observed that the environment is what determines whether
variants on a design are likely to have added value. If there is
little added value to be gained by replacing a module in a given
environment, no matter how complex it is, that means the
module has low technical potential.

We chose to estimate the technical potential of each module as
the system technical potential scaled by the fraction of the EP’s
relevant to the module. We further scaled the technical potential
of the modules in the strawman design by 0.5, for two reasons.
First, about half of the interactions of the EPs with the strawman
design are with the design rules (but as we will see, their
visibility makes the cost to change them prohibitive). Second—
and more of a judgment call—the hidden modules in this design
(algorithms) are tightly constrained by the design rules (data
structures that are assumed not to change). There would appear
to be little to be gained by varying the algorithm
implementations, alone. Figure 11 shows our assumptions about
the technical potential of the modules in the strawman and
information-hiding designs.

Strawman Info Hiding
Module Name sigma Z sigma Z
Design Rules 2.5 1 0 1

Line Storage NA NA 1.6 0
Input 1.25 0 2.5 0

Circular Shift 1.25 0 2.5 0

Alphabetizing 1.25 0 2.5 0

Output 0.8 0 1.6 0
Master Control 0.4 0 0.8 0

Figure 11. Assumed Technical Potential and Visibility

Figures 12 present the NOV data per module and Figure 13 the
corresponding plots for the information hiding design. Figure 13
presents the plots for the strawman. The option value of each
module is the value at the peak. We omit this disaggregated data
for the strawman design. What matters is the bottom line.
Summing the module NOV’s gives that the system NOV is 0.26
for the strawman design but 1.56 for the information-hiding
design. These numbers are percentages of the value of the non-
modularized system, which has base value 1.

Thus the value of the system with the information-hiding design
is 2.6 times that of the system with the unmodularized design,
and the strawman’s is worth only 1.26 times as much. Thus, the
information-hiding version of the system is twice as valuable as
the strawman. Ignoring the base value and focusing just on
modularity, we observe that the information-hiding design
provides 6 times more value in the form of modularity than the
strawman’s design.

Baldwin and Clark acknowledge that designing modularizations
is not free; but, once done, the costs are amortized over future
evolution; so the NOV model ignores those costs. Accounting for
them is important, but not included in our model. It is doubtful
they are anywhere near 150% of the system value. On the other
hand, they would come much closer to 26%, which would tend to
further reduce the value added by the strawman modularization.

k 0 1 2 3 4 5 6 7 8 9 10 Max

Q(k) 0 0.4 0.68 0.89 1.05 1.17 1.27 1.35 1.42 1.49 1.54 NOV

Design Rules 0 -1.3 -1.6 -1.9 -2.25 -2.56 -2.88 -3.2 -3.5 -3.81 -4.1 0

LineStore 0 0.1 0.14 0.13 0.09 0.04 -0.03 -0.1 -0.19 -0.28 -0.4 0.14

Input 0 0.23 0.35 0.41 0.42 0.41 0.37 0.32 0.26 0.19 0.11 0.42

CirShift 0 0.23 0.35 0.41 0.42 0.41 0.37 0.32 0.26 0.19 0.11 0.42

Alpha 0 0.23 0.35 0.41 0.42 0.41 0.37 0.32 0.26 0.19 0.11 0.42

Output 0 0.1 0.14 0.13 0.09 0.04 -0.03 -0.1 -0.19 -0.28 -0.4 0.14

MsCon. 0 0.02 0.01 -0 -0.04 -0.08 -0.12 -0.2 -0.22 -0.27 -0.3 0.02

Fig 12. Option Values for Information Hiding Design

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12

Number of Experiments

Line Store Input

CirShift Alpha

Output Master Cont.

Figure 13: Options Values for Information Hiding Design

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5 6 7 8 9 10

Number of Experiments
Input CirShift Alpha

Output MsControl

Figure 14: Options Values for Strawman Design

7. DISCUSSION AND CONCLUSION
Parnas’s information-hiding criterion for modularity has been
enormously influential in computer science. Because it is a
qualitative method lacking an independent evaluation criterion, it
is not possible to perform a precise comparison of differing
designs deriving from the same desiderata.

This paper is a novel application of Baldwin and Clark’s options-
theoretic method of modular design and valuation to the subject
of information-hiding modularity. Our goal was to lend insight
into both information-hiding modularity and the ability of options
theory to capture Parnas’s intent of designing for change. We
have provided an early validation of the application of their
method to software design by reformulating Parnas’s KWIC
modularizations in the Baldwin and Clark framework.

Baldwin and Clark’s method has two main components, the
Design Structure Matrix (DSM) and the Net Option Value
formula (NOV). DSM’s provide an intuitive, qualitative
framework for design. NOV quantifies the consequences of a
particular design, thus permitting a precise comparison of
differing designs of the same system.

We have shown that these tools provide significant insight into
the modularity in the design of software. Yet, precisely modeling
Parnas’s information-hiding criterion requires explicitly
modeling the environment—the context in which the software is
intended to be used—in order to capture the notion of design
stability in the face of change. We model the environment by
extending DSM’s to include environment parameters alongside
the traditional design parameters. The environment parameters
then inform the estimation of the technical potential in the NOV
computation. In the process, we learned that Parnas had largely
conceived of change in terms of intrinsic properties of the design,
rather than in terms of the properties of the environment in
which the software is embedded.

With these extensions to the Baldwin and Clark model, we were
able to both model the Parnas designs and quantitatively show—
under a set of assumptions—that the information-hiding design is
indeed superior, consistent with the accepted results of Parnas.

This result has value in at least three dimensions. First, it
provides a quantitative account of the benefits of good design.
Second, it provides limited but significant evidence that such
models have the potential to aid technical decision-making in
design with value added as an explicit objective function. This
paper is thus an early result in the emerging area of strategic
software design [4], which aims for a descriptive and prescriptive
theoretical account of software design as a value-maximizing
investment activity. Third, the result supports further
investigation of implications that follow from acceptance of such
a model. For example, because the value of an option increases
with technical potential (risk), modularity creates seemingly
paradoxical incentives to seek risks in software design, provided
they can be managed by active creation and exploitation of
options. The paradox is resolved in large part by the options
model, which clarifies that one has the right, but not a
requirement, to exercise an option, thus the downside risk (cost)
is largely limited to the purchase of the option itself.

In the introduction, we also raised the question of when is the
right time to modularize or commit to a software architecture?

Parnas’s method says to write down the design decisions that are
likely to change and then design modules to hide them. This
implicitly encourages programmers to modularize at the early
stages of design. The NOV calculations of the two KWIC
modularizations make the possible consequences clear: without
knowledge of the environment parameters, a designer might rush
in to implement the strawman design, effectively sacrificing the
opportunity to profit from the superior modularization. Yet,
designers often do not have the luxury to wait until there is
sufficient information to choose the optimal modularization. It
may be difficult to precisely estimate how the environment is
going to change—innovation and competitive marketplaces are
hard to predict. Moreover, many of the best ideas come from the
users of the software, so uncertainty is almost certain until the
product is released. New design techniques that create options to
delay modularizing until sufficient information is available might
be explored as a possible solution to this conundrum.

The inclusion of environment parameters in the design process
has additional implications. For example, making the most of
these parameters requires being able to sense when they are
changing and to influence them (slow their change) when
possible. Careful design of the coupling between the
development process and the environment is critical in strategic
software design. For example, for parameters whose values are
subject to change, sensor technologies—perhaps as simple as
being on the mailing list of a standards-setting committee—can
help to detect changes and report them to the designers in a
timely fashion. Conversely, lobbying a standards-setting
organization to, say, deprecate interfaces rather than change them
outright can slow environmental change. Thus, accommodating
environmental change is not limited to just anticipating change,
as originally stated by Parnas, but includes more generally both
responsiveness to change and manipulation of change.

This paper represents a first step in the validation of Baldwin
and Clark’s option-theoretic approach for quantifying the value
of modularity in software. Additional studies are required to
adequately validate the theory and provide insight into its
practical application. Also, in our paper study, we found it
difficult to estimate the technical potentials of the modules,
despite the added resolution provided by the environment
parameters. Validation in an industrial project would not only
provide realistic scale, but it would also have considerable
historical data to draw upon for the computation of NOV. Such
studies would help move the field of software design further
down the path to having powerful quantitative models for design.

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grants CCR-9804078, CCR-9970985, and ITR-
0086003. Our discussions with graduate students at the
University of Virginia in CS 851, Spring 2001, at the have been
very helpful.

REFERENCES
[1] Baldwin, C. Y. and Clark, K. B. (1999), Design Rules: The

Power of Modularity

[2] Baldwin, C. and K. Clark, “Modularity and Real Options,”
Harvard Business School Working Paper 93-???, 1993.

[3] Beck, K. XP Explained,

[4] B. Boehm and K.J. Sullivan, “Software Economics: A
Roadmap,” in The Future of Software Engineering, 22nd
International Conference on Software Engineering, June,
2000.

[5] Eppinger, S.D. (1997). “A Planning Method for Integration
of Large-Scale Engineering Systems.” Presented at the
International Conference on Engineering Design.

[6] Favaro, J.M., K.R. Favaro and P.F. Favaro (1998), “Value
Based Software Reuse Investment,” Annals of Software
Engineering 5, , pp. 5 – 52.

[7] Garlan, D., Kaiser, G.E., and Notkin, D. Using Tools to
Compose Systems. IEEE Computer, vol. 25, no.6. June
1992.

[8] Parnas, D. L. (1972) On the Criteria to be Used in
Decomposing System into Modules

[9] Shaw, M., Garlan, D., Allen, R., Klein, D., Ockerbloom, J.,
Scott, C. and Schumacher, M. (1995) Candidate Model
Problems in Software Architecture.

[10] Steward, D.V. (1981). “The Design Structure System: A
Method for Managing the Design of Complex Systems.”
IEEE Transactions in Engineering Management 28(3): 71-
84

[11] Sullivan, K.J., P. Chalasani, S. Jha and V. Sazawal,
“Software Design as an Investment Activity: A Real Options
Perspective,” in Real Options and Business Srategy:
Applications to Decision Making, L. Trigeorgis, consulting
editor, Risk Books, 1999. (Previously Sullivan et al.,
“Software Design Decisions as Real Options,” Technical
Report 97-14, University of Virginia Department of
Computer Science, Charlottesville, Virginia, USA, 1997.)

[12] Sullivan, K.J., “Software Design: The Options Approach,”
2nd International Software Architecture Workshop, Joint
Proceedings of the SIGSOFT '96 Workshops, San Francisco,
CA, October, 1996, pp. 15--18.

[13] E.O. Teisberg, “Methods for evaluating capital investment
decisions under uncertainty,” in Real Options in Capital
Investment: Models, Strategies, and Applications, L.
Trigeorgis, ed., (Westport, Connecticut: Praeger), 1995.

[14] Withey, J., “Investment Analysis of Software Assets for
Product Lines,” Software Engineering Institute, Carnegie
Mellon University, Technical Report CMU/SEI-96-TR-10,
1996.

