Microcosms: A Web Server in Every Software Component

Kevin Suilivan
Department of Computer Science
Thornton Hall University of Virginia
Charlottesville VA 22903 USA.
Tel: +1 (804) 982 2206, FAX: +1 (804) 982 2214

sullivan @virginia.edu

ABSTRACT

We present a new dimension in software architecture: the
systematic embedding of web servers into runtime software
componenis to provide a highly leveraged, scalable, secure
mechanism for accessing, monitoring and controlling
systems through their runtime architectores. Applications
could inchude remote debugging; distributed management;
spider indexing of computations to aid understanding and
evolution; survivability control; runfime analysis using
web-encoded metadata; web-based open implementations;
and aspect-oriented runtime architectures. A simple system
suffices to show the feasibility of and to illustrate this idea.

Keywords .
Software, architecture, internet, embedded web server

I INTRODUCTION

We demonstrate that it is possible to open the architectures
of running computations to internet-based access by
embedding web servers info runtime software components.
This idea appears to create interesting new possibilities for
software design. The power of the approach springs from
at least three fundamental sources,

First, the method immediately permits the enormous power
of internet technologies 1o be vsed to create rich web-based
interfaces to access, monitor, control and augment running
computations at the architectural level. Second, the
embedding is orthogonal to other aspects of design, which
means that it can be applied to many kinds of components.
Third, the approach follows the information hiding design
principle: server design decisions are hidden within the
modules to which they pertain. We have just begun to
explore applications. This paper introduces the idea and a
simple system that shows that it is feasible, and that gives a
flavor of the rather ynusual opportunities that it creates,

Avneesh Saxena
Department of Computer Science
Thornton Hall University of Virginia,
Charlottesville VA 22903, USA.

Tel: +1 (804) 982 2048, FAX: +1 (804) 982 2214

avneesh@cs.virginia.edu

The rest of this report is organized as follows. Section 2
describes our test-bed system. Section 3 describes how we
implemented the approach in our test-bed. Section 4
discusses several web-based interfaces in more detail.
Section 5 discusses additional possibilities; and Section 6,
related work, Section 7 addresses implementation issues
and limitations of our prototype. Section 8 concludes,

2 'TESTBED APPLICATION

Our test-bed is a program called SwitchSer. It is written in
Java [26] and runs under Microsoft Windows NT 4 [18]. A
SwiltchSet computation maintains a set of Swifch objects. A
Switch maintains a single bit that is either on or off;

SwitchSet is based on a Java object of class SwitchSef. The
SwitchSet class defines two important operations in its
primary interface: Add and Delete. Add takes a reference to
a Switch and adds it to the set unless it is already a member,
in which case the operation has no effect. Delete takes a
Switch and deletes it if it is a member, and otherwise has no
effect. A Switch is implemented by a Java object of class
Switch having three key operations, TurnOn, TurnOff and
GetState. They act as thefr names suggest.

To enable interactive manipulation of the set of switches,
the SwitchSet application presents a graphical interface, as
depicted in Figure 1. The Create bution creates a new
Switch and calls Add to add it to the set. The list-box
displays an entry for each Switch in the set. The user can
select an entry and choose operations to perform on it by
“right clicking,” If an entry is selected and the Delete
button is pushed, the Switch is deleted from the set. If the
TurnOn button is pushed, the selected Switch is turned on.
If TurnOJf is pushed, the selected Switch is turned off. Show
State displays the state of the selected Switch.

The SwitchSer system abstracts any modular computation
and thus provides a good vehicle for testing the feasibility
of our approach and for exploring its uses. The highly
abstract nature of this system ensares no loss of generality,

R

#%;
%

; G
.
o

s M 3
o o

o o ;,0’ S
s

Figure 1 User interface to the SwitchSet application

3 SOFTWARE EMBEDDING OF THE INTERNET
We did succeed in weaving the internet into our test-bed
system. In this section, we explain how. In the next
section, we discuss some capabilities that we have
demonstrated based on this novel embedding.

In a nutshell, we add an instance variable of a WebServer
type to any arbitrary class, At object creation time, we
initialize such embedded servers. iIn our implementation,
the server initialization routines requires references to their
encapsulating objects, domain names, and the names of
several directories. We create domain names dynamically
by concatenating host names and free TCP port mumbers,
The servers are initialized to listen for HTTP requests on
these ports. The encapsulating objects implement general
callback interfaces that servers use to implement their
operations {(e.g., Get). See Figure 2. These callbacks can
petform arbitrary functions, such as the dynamic generation
of HTMI. pages to be returned to web clients,

In our system, the main SwitchSet object and each Swifch
object has its own server. When started, the SwitchSet
application prints the domain name of the server on the
standard output. The user can then access the server using
a web client such as Microsoft’s Internet Explorer {6] or
Netscape [20]. Among other things, the SwitchSet server
can generate HTML pages containing hyperlinks to HTML
pages served by the servers within the Switch objects.

In more detail, we implemented Switch as a Java class that
conforins to Microsoft’s Component Object Model (COM)
standard [10]. Figure 3 presents part of the type definition.
Switch implements the WebServerEventHandlers interface

public interface WebServerBventHandlers

{
pablic void onGet(Chject, GetBvent);

public void

onAuthenticate{Object, Authenticatelvent);
public void onHead (Object, HeadEvent);
public void onPost(Cbiect, PostEvent);
public void onPut{Chiject, PutBvent);
public void
onRequest (Object, RequestEvent) ;

public void

onSessionEnd(Chject, SessiongEndBvent);
public void

onSeszionInit (Object, SessionInitEvent);

}

Figure 2 WebServerEventHandlers Tnterface

to define server callbacks. These callbacks, or event
handlers, provide object-specific implementations for
HTTP and other events. In our case, these handiers allow
Switch objects 1o create responses and 10 serve up static and
dynamic web pages and to take other actions,

The rootDir and logDir instance variables are the directory
names used to initialize the embedded server, Here they
refer to physical directories. Object-specific virtual
directories would be better in some cases. The SourceCode
instance variable is used by one of the callbacks to create
an HTML. page that presents the source code for the Swirch.
The webServer variable is the embedded web server itself.
State maintains the Boolean Switch state. The clientApplets
variable is used to implement a notification service for
applets that are uploaded from the Switch to client browsers
{discussed later). The Form {a dummy object} is needed
because the WebServer is based on Microsoft’s ActiveX®,
and every ActiveX® object needs a parent Form, It is not
used. The auxPortNumber variable stores the TCP port
number that is used to create the unique domain name for
the object-specific embedded server.

public ¢lass Switch implements
WebServerEventHandlers {

8tring roothir =
"oNAewltch\\switchPages\\web"®;
String SourceCode = *..\\switch";
gtring logbhir =

", Avswitch\\switchLogs";

private WebServer webServer;
private int State;

private Hashtable clientApplets;

private Form form;
private int auxPortNumber;

Figure 3 State variables for a Switch

vackage dartwebserver;

// Dual interface IWebServer

/** Qcom.interface(i1d4=E0E04097-ACKS-
11D3~9114~C0L05BALTB608, thread=AUTOC,
tvpe=DUAL} */

public interface IWebServer extends
IUnknown
{
/** @com.method(vtoffset=4,
dispid=1l, type=PROPGET,
name="ClientAuthentication",
name2="getClientAuthentication",
addFlagsVtable=4}
@oom, parameters ({ type=BOOLEAN]
return) */
public boolean getClientAuthentication{};

Figare 4 Delegating interface for PowerTCP® web server

Our WebServer type is implemented on Dart Technology’s
library for web development: the PowerTCP® Internet
Components [7]. PowerTCP® components are ActiveX®
enabled and support the HTTP and secure HTTP (HTTPS)
protocols, WebServer objects are essentially just wrappers
that initialize PowerTCP® server objects. To enable secure
communications, the name of the certificate to be used
when authenticating can be given. On creation, a
WebServer instantiates a PowerTCP® server and chooses
certificates for authentication,

Accessing member functions of the PowerTCP® web
server requires referencing the underlying ActiveX®
object, which is implemented as a dynamic link library
(DLL). Visual Java provides wizards {17} that allow
automatic creation of delegating classes with functions that
make native calls to the DLL. See Figure 4. Delegating
classes can be used transparently in Java Code to access
functions provided by DLLs, avoiding the complexity of
writing Component Object Model (COM) code.

An object that exposes a web interface in our style actually
implements four interfaces: native, server management,
server callback, and web. We make this idea concrete by
explaining how it pertains to the Switch type:

+ Native interfaces (in our application based on COM)
define “normal’” component functions;

a) void turnOn (): tumn the Switch on;
b} void turnOff (). turn the Switch off;
¢) String getState (). get the state of Switch.

+ Server management interfaces defines functions that
can be used to manipulate the embedded web servers!

a) String getURL (): get the embedded server URL;
b) void shutDown (): shut down the web server.

We designed our native and server management interfaces
as COM interfaces, for use by the SwitchSet application.
The Switch class is packaged as a DLL using the Visunal
Java wizards [17] so that any client able to use COM
objects can access it. The use of COM is not essential, of
course, We could embed servers in C++ or Java objects, in
CORBA obijects or in many other kinds of components,

o We already described the server callback interface,

o Finally, web interfaces define functions exposed to
internet-based clients by embedded web servers.

An important aspect of our approach is that web interfaces
are orthogonal to native interfaces. This is the source of its
generality; it enables the orthogonal embedding of the
Internet info arbitrary software architectures. We designed
the web interfaces of our experimental system to show
some of the opportunities that our approach creates. We
now discuss our specific web interfaces in more detail,

4 PROGRAMMING THE WEB INTERFACE

Our approach cnables the exposure of arbitrary web
interfaces by runtime components. The approach provides
great leverage becanse it admits the full power of existing
and emerging internet technology imto virtually any
component. We present a few simple examples. We
programmed our Switch component 1o allow authenticated
users to securely

ay inspect the runtime state of a Switch;

b} use its native interface to change its state;

¢) view its source code implementation; and

d} view its native and server management interfaces.

To ensure security we made the web interface of Switch
components accessible only through HTTPS. We left the
SwitchSet web interface insecure. We implemented security
using existing public-key infrastructure, We created our
own certificate authority (CA) and configured the servers
within our Switch components to accept certificates from
this CA. Every connecting client is required to authenticate
itself to the Switch and can in turn ask for authentication
from the Switch. To demonstrate the creation of fine-
grained security domains, we created three classes of users:

a) Administrators have full access to the functions that
are exposed through the Switch web interface;

b) Developers may not modify the state of a Switch;

¢} Guests may not modify the state and are prevented
from viewing the source code for the Switch.

e
... .
o

.
W- ey : . ,-. '.{. %/ .:v"{—'/
.
- o

Figure 5 Secure access to a Switch within the SwitchSet.

Each component has to create its own domain to allow the

embedded web server o bind o that particular domain.
Dynamic creation and destruction of URLs for servers as
enclosing components are created and destroyed supports
the creation of unique domains for components,

The Web Interface

The web interfaces of Switch and SwitchSef support serving
of static and dynamic HTML from the embedded servers.
QOur approach thus creates a mechanism for secure exposure
of arbitrary component meta-data on the global internet.
This data could include runtime state; specifications in
various forms, such as source code; control interfaces; etc.

The SwitchSet interface provides services similar 1o those
of a Switch. It also provides access to hyper-links to pages
served by Switch objects, See Figure 5. These hyper-links
can be used to connect to the domains of Switch
components, We thus have a powerful mechanism for
browsing running computations at the architectural level.

Moreover, such browsing is authenticated and secure. Our
Switch uses a password-based authentication scheme
rumning on HTTPS for access control. Clients authenticate
themselves by presenting correct certificates. They are then
required to enter valid login-name/password combinations
before access to the web interfaces is given. See Figuze 5.

Figure ¢ Web-based control Panel for Switch

The main web page of a Switch component allows access 10
services based on the identity of the user as specified by the
lTogin name. We have implemented a prototype interface
that allows users to access or modify the state of the Switch,
as depicted in Figure 6.

This inferface also allows a user to observe changes in the
state of the Switch as they occur. The interface receives
secure notifications from the Swifch as its state changes. In
response, the light bulb icon is set to light or dark. Here
again we exploit existing Internet technology to implement
a sophisticated Internet-based function at a fairly low cost.

This notification service is implemented on the server
(Switch) side by having each Swifch maintain a list of
clients that are accessing its web interface, The client
(browser) side also implements a secure server that listens
for notifications. This server is implemented as a custom
ActiveX® component that displays the bulb icons. The
other part of the client-side interface is a Java applet that is
used to make conmections with the parent Switch for
modifying its state through the Toggle button, The applet is
uploaded from the Switch after the ActiveX® component is
uploaded. The applet is given the URL of the server
runming in the Switch component as a parameter, On being
loaded, the applet contacts the Swirch and subscribes for
notifications, Communication between the applet and the
client-side ActiveX® component is implemented using
VBScript®. This primitive notification service allows allt
clients to be made aware of any state changes in the Swirch.
Furthermore, all such communication is authenticated and
cryptographically secure.

We have also implemented services that allow clients to
view the Switch class source code, and to view the COM-
interfaces of the Switch and Switch documentation. These
services are implemented by serving static HTML pages.

5 SOFTWARE-EMBEDDING OF THE INTERNET

Our society already relies on complex, distributed software
systems. Today, they run everything from automobiles to
critical infrastructures: banking and finance; transportation,;
energy production, transmission and disteibution; etc. It
has become clear that the software element of many of
these systems is close to being out of control. The design,
deployment, mapping, analysis, monitoring, control,
adaptation and evolution of such software present huge
risks and enormous inteliectual and technical challenges.
As we move into & world of ubiquitous, component-based
and invisible computing, these problems wili only grow.

Regaining some measure of intellectual control over large
and complex software systers requires mew concepts in
software architecture. We hypothesize that our approach,
based on the idea of architectural embedding of the internet
into runming computation as a means to open them up to
secure architecture-level monitoring and control from
anywhere on the infernet, has the potential to contribute to
ameliorating some of these difficulties. In this section, we
survey some ways in which our approach might help.

¢ Runtime component indexing, search & retrieval
One of the problems that we face is to know precisely what
components are present in a running system. This problem
is likely to worsen as sysiems of systems grow in size and
complexity, and as they evolve through module-level
replacement initiated by diverse and uncoordinated third
party providers. We need powerful, scalable methods to
map large, complex, distributed running computations. Qur
approach allows the use of such things as web crawlers to
create architectural maps of ranning computations.

To validate this concept, we obtained an evaluation copy of
the Ultraseek [30] web crawler and applied it to a running
SwitchSer application. Ultraseek can spider a network at
configurable intervals starting at any URL, It builds a
database of accessible URLs. Queries can be made to this
database. The evaluation version doesn’t permit access to
sites rumning HT'TPS, so we could not index the web pages
of contained Swifch components. Figure 7 illustrates the
results of our experiment: a web page containing links to
“live” pages served by components of the running system.

This technique can be applied to mapping global state, The
traditional approach to global state acquisition uses ad-hoc
technigues. We can now use web crawlers or robots to
collect and search state with standard technology. State
information served in XML form can support rich global
dynamic analysis. Such information might be utilized to
detect, debug or prevent deadlocks; to log state transitions,
intrusion attempts, load information; etc.

o
e

S

: W?-k"‘?’:??‘%fjff/”;;gg{:%

o
e

Figure 7 Searching for SwitchSet application web pages

A drawback of this approach is its inability to provide
globally consistent information about ail component states.
Bowever, the approach can clearly scale to huge numbers
of distributed components. We suspect that information
search and retrieval for components of large distributed
compuiations, even without consistency, can provide
valuable information and system management capabilities.

¢ Distributed Debugging

Designing and debugging distributed computations is hard,
in part because of synchronization issues, Components are
often developed and debugged locally and then deployed as
parts of a distributed system. However, latent faults can
manifest themselves in new execution environments. Thus,
components for use in distributed systems should be
developed in distributed environments. Many distributed
debugging algorithms have been designed to deiect stable
[31 or unstable properties [5] that depend on local variables
[28].

We hypothesize that embedded servers that expose server-
side debugging functions can ease the implementation of
such atgorithims: remote debugging can increase the chance
of catching obscure bugs. A familiar web-based interface
can also save learning time. Embedded debugging permits
component to be used in diverse systems in tool- and
language-independent ways. Control over deployed
components might also aliow changing of state variables
and, hence, some kinds of fault recovery.

Embedded debuggers can be limited 10 inspecting and
modifying local state. Distributed computations, in general,
require tools to view and modify consistent, global state,
which is known to be NP-complete [4]. We hypothesize
that even such limited functionality can be useful for
debugging distributed systems that can’t be handled by
current tools because of the complexity of debugging
algorithms. We will develop this idea in future work.

¢ Reflection and Introspection

Reflective [16] systems can process their own state at a
meta-level and take corresponding actions, Disiributed
systems can use reflection to modify their own behavior at
the functional level. Modifications can vary from migrating
components between machines for Ioad balancing to the
dynamic replacement of component implementations for
on-the-fly performance improvement,

Our architectural framework can be used to implement the
convenient exposure of rich component data to support
computational refiection. XML, in particular, is emerging
as a dominant standard for component commeunication, A
uniform framework to expose functional-level information
to the meta-layer provides easy integration and reuse of
meta-level components, Self-describing XML encoding of
state can present such a uniform framework. One potential
application is for components to carry their own code and
for embedded debuggers to act as introspective interpreters.

* Runtime aspect modules

Aspect-oriented programming (AQP) [13] is based on the
idea that in general there is no modularization of the source
code of a software system that isolates all important
concerns: any modularization will be cross-cut by some
concerns. The problem is that cross-cutting distributes and
thus obscures and demodularizes key abstractions, making
it harder to design, reason about and change programs,

The problem is inherent in any view of source code as a
linear text. The problem can be reformulated by stating
that there is no linear ordering of important concerns in a
complex software system. The approaches to the aspect
problem being taken today [15] are based on the idea of
representing programs as (what we will call) mulri-fexts. A
multi-text is a collection of texts that meet not just at
external boundaries but that inter-penetrate each other. A
weaver tool takes such texts as inpul and integrates them
into linear, and thus tangled, forms. The benefit is that the
approach restores a semblance of modularity in design. A
system is again presented as a set of text modules: some
traditional (e.g., functional modules), others, aspects, that
inter-penetrate the linear texts (e.g., concurrency control).
The extent to which aspect modules can be understood or
implemented independently is unclear. At the heart of this
difficulty is the subtle shift from text to multi-text as a
medium for writing source code modules. How does one
read a multi-text?

Our approach suggests a new perspective. The idea that we
share with AOP is that, in any modular system, important
concemns will cross-cut the dominant modularization. Our
perspective departs from current views of AOP in two
ways. First, it pertains not to source code but to runtime
computations. Second, it is based not on multi-text but on
hypertext, and web mechanisms more generally, for
integrating physically dispersed but conceptually coherent
cross-cutting information back into pseudo-localized forms.

We represent cross-cutting concems in running systems as
runtime aspect modules whose embedded web servers use
web mechanisms to integrate information that is otherwise
distributed over multiple runtime system modules. Figure
5 presents a simple example: an integrated (aspect) view
provides access to all of the switches in the system. A
more sophisticated example might present all of the
performance tming or intrusion or fault detection interfaces
of all system components in a unified, web-based interface.

We do not yet fully understand the relations between multi-
text and the web as media for representing agpects, The
power of the web lies largely in its ability 10 represent
atbitrary non-linear views of a text. The modules of a
multi-text are hard-wired to represent a single linear form.
Combining the aspect idea with the choice of the web and
the embedded web server mechanism has attraction as an
technology to aid in managing distributed and component-
based systems. We will explore this idea in future work.

6 RELATED WORK
We now situate our work in the context of related efforts,

Component models for distributed systems

Several major architectures now suppott component-based
distributed system development. CORBA {21] and DCOM
{29] are two that have gained wide acceptance. Both are
meant to give operating system and programming language
independence, allowing separately implemented systems to
tnteroperate. However, one of the important issues that they
don’t address is providing a management framework. Qur
approach is orthogonal to such architectures and thus can
be used to extend their capabilities. CQur approach can be
viewed as a dimension of an architectural style [8] that is
largely orthogonal to existing component architectures.

Web-based management

As the Interpet continues to expand, the need for standards
for managing network elements has become necessary.
SNMP [2] is a standard that bas been widely accepted and
deployed by the industry. An important feature of SNMP is
simplicity. However, while vendors have embedded SNMP
support in network devices, there has been no uniform way
to access, manage and present this information to the user
{network administrator). Web-based service [22] and
network management [11}[14] mechanisms provide
ntuitive, web-based interfaces to services such as SNPM o
alleviate the difficulty of using disparate, unfamiliar tools,

To date, this approach has been limited to managing
internet infrastructure and some specific services. There
have been related efforts to develop analogous management
information bases (MIB) for web servers, E-commerce
services eic, and some widely distributed web servers do
have web-based interfaces to support server configuration,
Our approach is more general; to support web-based access
to arbitrary software components. Our approach does not
assume any standard underlying management infrastructure
like SNMP, but it could use any that emerge. Instead, ours
is a general architectural dimension for software design.

Embedded and lightweight web servers

Embedded systems have limited resources. A new approach
for managing varied hardware devices has been to embed
web-servers in them. Many research teams in both industry
and academia are developing lightweight bardware servers
that can be embedded at low cost. However, the work has
concentrated on hardware servers for hardware devices,

One result of such research has been the development of
tow-cost web servers and protocol implementations with
low memory and physical space requirements. Increasingly,
such servers are being used to provide powerful web-based
management interfaces, e.g., for modems. Our approach is
similar in philosophy. The fundamental difference, and our
key insight, is that we seek to embed software web servers
systematically into the sofiware components of distributed
and other software systems, not just into hardware devices.

Web server compenents that can be embedded in software
are already available in market (e.g., by Dart Technology),
However, to the best of our knowledge their use has been
limited to single servers used in to expose application-level
information, such as configuration functions and, mainly,
on-line documentation. Moreover, the idea of exploiting the
systematic embedding of web services into software
systemns at the architectural level does not seem to have
appeared previously in the open literature.

SOAP and XMIL-RPC

It is now being realized that current web-infrastructure is
not sufficient to develop and deploy next-generation web
applications. One major limitation is the absence of any
common protocol for communications among web-enabled
applications. Efforts to develop such standards based on the
existing web-infrastructure are underway. SOAP [1] and
XME-RPC [31] are two efforts to define RPC mechanisms
that use XMI.-based messages that are gaining acceptance,

Such standards support interactions between web sites.
These mechanisms really define component models in
which web servers (or at least XML-based RPC stubs) ate
the components and XMIL-based messages encode
procedure calls. These mechanisms enable web servers fo
wrap application modules to expose their functions on the
internet. Owur approach is the inverse: application modules
wrap web setvers. One potential problem with the SOAP

approaches is that it forces the designer to adopt a web
object model at the highest architectural level, which might
be inappropriate. Web communication mechanisms are
often costly and unreliable, for example. A benefit of our
style is that the designer can have a native architecture
appropriate to the task (e.g., DCOM, CORBA, Legion [9])
and yet to benefit from rich component interfaces on the
Internet. Of course, components in our style could use
SOAP to communicate with each other through their web
interfaces; but SOAP need not dominate the architecture.

Open Implementations

Open implemeniations [12] allow clients to modify module
implementations strategies to match performance properties
to client needs. Components using this approach should
preserve black-box implementation as far as possible.
Distributed systems have to service varied clients and are
prime candidates to be implemented in an open manner.
Distributed systems are also reconfigured on account of
component failures, system-load etc. The research
community bas recognized importance of open
implementations and guidelines have been proposed for
developing components in this style.

Our architecture represents a new mechanism to view and
deploy open implementations. An web-opened computation
can expose its implementation and control over it through
its web-interface. Access can be provided and controlled
securely. Such data as predicted and actual performance
characteristics of components could be presented, for
exampie, which could help clients to make choices about
implementation strategy. We are exploring the use of web
interfaces to change implementation strategies dynamically.
Open implementation combined with embedded servers
and on-line, web-based performance analysis mechanisms
could significantly aid distributed system management.

7 IMPLEMENTION LIMITATIONS

Embedding web servers into other software components
can incur unacceptable performance costs. An embedded
device with little memory cannot afford to host components
with large memory footprints. A quick assessment of the
size of the PowerTCP® web server component shows that
each instance has a space cost of about 156,000 bytes.

To date, we have not tried to reduce this cost at all. First,
Moore's Law puts an increasing premiom on finding useful
new ways to use the exploding resources that are becoming
available. Second, web servers developed for embedded
devices already take no more than a few hundred bytes to
implement HITP. In principle, we can trade function (e.g.,
security) for space, getting down to this level of overhead.
We are now considering building small and portable but
extensible componentized web servers to Iet us apply our
approach in a broad range of operating environments,

We also note that embedding web functions in components
can be implemented in several ways, First, all components

on a machine could share a common server. This approach
suffers from security, failure propagation, and information
hiding problems. The information hiding issue is critical,
A single server (including its programmed exiensions) has
to “know about” all objects that it serves and all such
obiects have to know about it, requiring a level of
coordination among component designers that s
mcreasingly untenable. A server in each object achieves
modularity in a way that decouples design decisions for
servers and their programming for different object classes,
Such decoupling will be critical when components are
designed and produced by independent firms.

Second, each component can have a distinct server process
(c.g., Unix process). This approach is costly because
processes still are costly, Third, components can have local
state but share common cede. Our implementation uses
shared code DLLs with per-component data s¢parate.
Fourth, servers can share state. For example, all objects of
the same type can share one copy of its source code,

Ideally, web interfaces can be added tramsparently to
components using our approach. However, such additions
can affect native functional and non-functional properties
adversely if the embedding is not done with care. For
example, executing web-based functions could hurt the
performance or security of functions on native inferfaces.

The web servers in our prototype use the same threads as
their surrounding components. We use the servers in non-
blocking mode and our entire application is event-driven.
Events are generated by user actions on the SerSwitches
graphical user interface or by HITP requests. Qur single
threaded implementation blocks events until the one that is
currently being processed is handied. This can lead to slow
response times and unexpected application behavior. In
particular, it opens our application to web-based denial of
service attacks. Such problems can be resolved to some
extent by threading of event handlers and by the use of
applicable internet tools and methods. Of course, threading
event handlers requires that application objects be designed
to be thread-safe, with appropriate concurrency control.

A final limitation of our test-bed program that we want to
mention is that it is is not portable. It is built to COM
specification, and can only be used on Windows platforms.
The Switch component is a DLL that limits its execution to
the Windows environment. The web pages served by
Switch components use VBScript® and object HTML tags
that are specific to Internet Explorer. The Dart Technology
libraries run only under Windows, The lack of portability
of our system and its underlying technology is an issue in
practice, but not in principle. In future work we will
address portability to the extent that it becomes important,

8 CONCLUSION
We have described and demonstrated the feasibility of what
appears to be a simple but novel, orthogonal and potentially

powerful new dimension in software architectural design.
The approach involves the embedding of a web server in
virtually any component of virmally any computation. It
enables computations to be extended with rich data, and it
opens opaqgue, insular computations to access, monitoring,
control from anywhere on the internet. We have shown
that sound access control policies can be implemented
using availabie public key infrastructure; and we discussed
a variety of ways in which the basic idea could be used: to
serve source code, applets for active monitoring, web-based
invocation of component functions; and web crawler
mapping and searching of running computations. The
embedded web server idea appears to create an extremely
broad range of valuable new opportunities, and a new way
thinking about systems, as having “on-lne” architectures.

We will pursue work in several directions. First, we will
continue to explore basic capabilities made available by our
approach, such as runtime analysis based on web-served
component meta-data. Second, we wilt apply the approach
to practical—not just laboratory—applications in order to
better understand its potential wtility., Third, we will
explore wsing embedded web services as sensors and
actuators in survivability control systems [25], in particular.

Finally, we will investigate a major generalization of our
approach. The idea of systematically embedding web
servers in software component rests on two assumptions,
First, computations (rather than, say, source code} are the
real first-class citizens in computing systems, so we should
be able to converse with them in much richer ways than is
possible today. Second, we increasingly find ourselves an
era of untold computational riches. We can aqfford design
strategies that would have been unthinkable even recently.

Making this exploding resources assumption explicit, and
combining it with the view of computations and their
component parts as being primary, suggests a new
question: what eise should we be embedding in runtime
components? A radical answer is everything that’s relevant,
We imagine that there is potential utility in embedding in
running components debuggers; source code and other such
design specifications; specialized virtual machines for
ranning encapsulated implementations; compilers; version
control mechanisms; scaffolding to support evolution, e.g.,
state migration and implementation replacement; whole
software development environments; systems for on-line
interaction with developers, other clients, media sources,
markets for upgrades or substitutes; etc.

This view inverts the traditional, deeply held, assumption
that computations are best left opaque: with internal states
and transitions hidden from clients behind abstract
interfaces, and from developers behind compilers. This
view also changes how we think about components: not as
specialized abstract computing machines, but rather as
secure, on-line software microcosms. The extent to which
such a view is feasible, useful or wise remains to be seen.

ACKNOWLEDGEMENTS
This work was supported by a grant from the National
Science Foundation, number CCR-9804078.

REFERENCES
[1] Box D. SOAP: Simple Object Access Protocol. HITP
Working Group Internet Drajfi, September 1999,

[2] Case ¥, Fedor M, Schoffstall M, Davin C. The Simple
Network Management Protocol (SNMP), RFC-—1157,
May 1990.

[3] Chandy K, Lamport 1. Distributed snapshots:
determining global states of distributed systems, ACM
Transactions on Computer Systems, vol.3, no.l, Feb.
1985, pp.63-75. USA.

{4] Chase C. and Garg VK. On techniques and their
limitations for the global predicate detection problem.
In Proc. of the Workshop on Distributed Algorithms,
pages 303 — 317, France, Sept. 1995,

{5] Chase C, Garg VK. Detection of Global Predicates:
Techniques and their Limitations, Distributed
Computing, (accepted for publication with revisions),

{6} Crawford Caison C Jr. More Web power with VB6 and
IB5. Visual Basic Programmer's Journal, vol.9, no.l,
Jan. 1999, pp.32-4, 36, 38, 41. Publisher; Fawcette
Technical Publications, USA.

{71 Daricom Inc. PowefTCP WebServer Tool. [Online
document], {hitp.Avww.powertcp.com/).

[81 Garlan D, Allen R, Ockerbloom J. Exploiting style in
architeciural design environments. Sigsoft Software
Engineering Notes, vol.19, no.5, Dec. 1994, pp.175-88.
USA,

{971 Grimshaw AS, Wulf WA, Legion - A view from
50,000 feet. Proceedings of the Fifth IEEE
International Symposivm on High Performance
Distributed Computing (Cat. No.TB100069). IEEE
Comput. Soc. Press. 1996, pp.89-99. Los Alamitos,
CA, USA.

[10]1Jones K. The world of COM (Component Object
Model). Enterprise Middleware, Feb. 1999, pp.2-8.
Publisher: Xephon, UK.

{11]Jong-Tae P, Jong-Wook B. Web-based
Intranet/Intemet Service Management with QoS
Support, IEICE Transactions on Communications,
Vol.E82-B, No.11, 1808-1816, November 1999.

(12]Kiczales (G, Lamping J, Lopes CV, Maeda C,
Mendhekar A, Mnarphy G. Open implementation
design guidelines., Proceedings of the 1997
International Conference on Software Engincering,
ICSE 97. ACM. 1997, pp.481-90. New York, NY,
USA.

[13]Kiczales G, Lamping J, Mendbekar A, Maeda C,
Lopes C, Loingtier J-M, Irwin J. Aspect-oriented

programming. ECOOP 97 - Object-Oriented
Programming. Hih European Conference
Proceedings. Springer-Verlag. 1997, pp.220-42.

Berlin, Germany.,

[14}Leidigh C. Web-based Management of Network
devices, Proceedings of the Embedded Systems
Conference (Spring), Miller Freeman, Vol.1, 1998, 1-
17 vol.1. San Francisco, CA, USA.

[15]Lopes C V, Kiczales G. Recent Developments in
AspectI™, ECOOFP'98 Workshop Reader, Springer-
Verlag, LNCS-1543. Copyright 1998 Springer-Verlag.

[16]Maes P. Computational reflection. The Knowledge
Engineering Review, vol.3, no.1, March 1988, pp.1-19.
UK.

[171Microsoft Corp. Building and importing activeX®
controls, Visual J++ Documentation, MSDN
(hitp Hmsdn.microsoft.com/).

{18] Microsoft Corp. Windows NT 4.0. [Online document].
(hitp:/iwww microsoft.com/ntserver).

[19] Murugesan S, Deshpande Y, Hansen S, On Exploiting
the Internet and Web for Software Development and
Disttibution, Proceedings of IEEE International
Conference on Networking India and the World,
Abmedabad, India, December, 1998,

[20] Netscape Communications Corp. Netscape Navigator
{Online document], (attp:/fwww.netscape.com/).

{21] Object Management Group Inc. (OMG). CORBA
2.3.1/TIOP Specifications. [Online document), October
1999.

(hitp/iwww.omg orgftechnology/documenisformal/).

[22]Qinzheng K, Chen G, Hussain R Y, A Management -
framework for Internet Services, IEEE Network
Operations and Management Symposium, Conference
Proceedings, IEEE. Part voL.1, 1998, 21-30 vol.1. New
York, NY, USA.

{23)Shaw M, Oma R, An Approach to Preserving
Sufficient Correctness in Open Resource Coalitions,
Submitted to 10th International Workshop on Software
Specification and Design.

[24)Sobel M, Fiiedman DP, An Introduction to
Reflection-Oriented Programming, Reflection '96, San
Francisco, April 1996.

[25} Sullivan KJ, Knight KC, Du X, Geist S, Information
Survivability Control Systems, Proceedings of the 217
International Conference on Software Engineering,
May 1999, pp. 184---193,

[261Sun Microsystems Inc,, Java Language Specification,
2nd Edition, (htpy:/fiava.sun.com/aboutlava/),

[27] Takagi H, Matsuoka S, Nakada H, Sekiguchi S, Satoh
M, Nagashima U. Ninflet: a migratable parailel objects
framework using Java. Wiley. Concurrency Practice &
Experience, vol10, no.11-13, Sept-Nov. 1998,
pp.1063-78, UK,

{28] Tarafdar A, Garg VK. Debugging in a distributed
world: observation and control. Proceedings. 1998
IEEE Workshop on Application-Specific Software
Engineering and Technology. ASSET-98 (Cat,
No B8EX183). IEEE Comput. Soc. 1998, pp.151-6.
Los Alamitos, CA, USA.

[29] Thompson b, Watkins D. Comparisons between
CORBA and DCOM: architectures for distributed
computing. Proceedings. Technology of Object-
Oriented Languages. TOOLS 24 (Cat.
No.97TB100240). IEEE Comput. Soc. 1998, pp.278-
83. Los Alamitos, CA, USA.

[30} Ultraseek, Ultraseek Server, [Online document],
(hupfwww nltraseek.com).

[31}Usertand Software Inc. XML-RPC Specification.
[Online document). (hip.www. userland com/spec).

[32]Welch B, Uhler 8. Web e¢nabling applications.
Proceedings of the Fifth Annual Tcl/Tk Workshop.
USENIX Assoc, 1997, pp.189-90. Berkeley, CA, USA.

10

