
1 | P a g e

February 3, 2016

IT: Machine Independent Programming on

Hierarchically Nested Machines

Muhammad N. Yanhaona & Andrew S. Grimshaw

Contents
Introduction ... 3

Related Work .. 5

Parallel Programming on Multicore .. 5

Parallel Programming for Distributed Memory .. 5

Co-processor Languages ... 6

Type Architecture Based Languages .. 6

Domain Specific Parallel Languages .. 6

PCubeS + IT Programming Paradigm .. 7

The PCubeS Type Architecture .. 9

IT Parallel Programming Language .. 10

Data Structures .. 11

The Coordinator Program & Task Execution ... 12

File I/O .. 13

IT Tasks .. 14

Logical Processing Spaces and Units .. 14

Execution .. 15

Task Definition: .. 17

Define Section ... 17

Environment Section ... 17

Initialize Section ... 18

Stages Section ... 18

A Note on the Declarative Syntax ... 19

Computation Section ... 20

Partition Section .. 21

Mapping Logical Spaces to Physical Spaces .. 23

Degrees of Parallelism in an IT Program .. 24

2 | P a g e

February 3, 2016

IT Compilers ... 25

Compiler for Multicore CPUs ... 25

Compiler for Distributed + Shared Memory Hybrid Machines .. 25

Conclusion .. 26

Appendix A: IT Grammar –Version 1 .. 27

Program Definition ... 27

Class Definition .. 27

Task Definition ... 27

Define Section ... 27

Environment Section ... 28

Initialize Section ... 28

Stages Section ... 28

Computation Section ... 28

Partition Section .. 28

Expressions & Statements ... 29

Coordinator Program Definition ... 29

Function Definition ... 29

Appendix B: IT Data File Formats ... 30

Appendix C: Program Examples... 30

LU Factorization ... 30

Iterative Stencil ... 33

Radix Sort ... 35

Bibliography ... 37

3 | P a g e

February 3, 2016

Introduction
Andrews in his “Concurrent Programming: Principles and Practice” expresses that “concurrent programs are to

sequential programs what chess is to checkers” [1]. We believe people experienced in both kinds of programming

will largely agree to his statements. But what makes parallel programming so difficult? Although there are

differences of opinions, none blames the difficulty of devising a parallel algorithm, as opposed to a sequential

algorithm, as the core problem.

It is true that construing a parallel algorithm sometimes requires considerably more ingenuity compared to its

sequential counterpart, but one can expect that a programmer who is knowledgeable about his problem can come up

with a parallel algorithm (or get help from his community) to solve it. Rather, most problems occur in the process of

translating the parallel algorithm into a program, as deftly described by Snyder in his seminal work “Type

Architectures, Shared Memory, and the Corollary of Modest Potential” [25].

Correctly implementing interactions between parallel pieces of the program can be difficult. So much so that

sometimes the original algorithm gets lost in the plethora of interaction primitives. The biggest problem is, however,

extracting good performance from a parallel machine. Features like memory organization, cache hierarchies,

interconnection network structure, speed and bandwidth of memory access and data transfers that are orthogonal to

the algorithm by and large determine the performance of its program implementation. The influence of hardware in

the performance of a parallel program is so profound and universally agreed that that the present trend in parallel

computing is to devise algorithms specific to hardware architectures, e.g., MAGMA for GPUs [28] or MKL for Intel

processors.

The original Von Neumann architecture that portrays a computer with a flat memory and a fetch/execute

computation cycle works well for most forms of sequential programming. That architecture is, however, inadequate

for parallel programming for the same reason it is so successful for sequential computing: it relieves the programmer

from reasoning about hardware features. Further, it is inappropriate to treat a parallel machine as a uniform

collection of Von Neumann machines given that contemporary execution platforms have shared memories with deep

cache hierarchies, distributed shared memories, distributed machines with one or more co-processors, and so on.

Exploiting all these features appropriately is essential for good performance of a parallel program.

An accelerated demand for better performance on compute intensive problems compounded by a consistent trend

towards increasing hardware complexity leads to the situation where many researchers concluded that “developing

programming models that productively enable development of highly efficient implementations of parallel

applications is the biggest challenge facing the deployment of future many-core systems [2].” This is a monumental

shift from the era when Gelernter & Carriero‟s statement that “the real world programmer has better things to do

than writing/rewriting programs in a new parallel language [17]” could be debated upon.

Although hardware‟s importance in shaping the performance of a parallel program has been unanimously admitted,

the approaches taken to address this issue widely differ in various programming models. The currently dominant

parallel programming strategy is to extend some conventional sequential programming language (in particular C and

Fortran) with parallelization primitives as done in MPI [29] for distributed memory machines, CUDA [21] for

GPCPUs, and Pthreads [7] for multi-core CPUs. These tools and primitives may be perfect in their designated

environments, but with the advent of hybrid and hierarchical architectures they fall short of utilizing many important

hardware features. For example, neither MPI nor Pthreads addresses cache hierarchies. Combining these primitives

in a program for hybrid platforms – though feasible -- is often difficult for an average programmer. Further, there is

a long-standing complaint about the programming difficulty when using these primitives.

The strategy taken by some high-level programming language initiatives such as Co-array Fortran [22], UPC [15],

X10 [12], Chapel [10], or Fortress [26] is to fix a model of the target execution platform (in these cases the

partitioned global address space (PGAS) model [14]) and provide primitives to use features of the model that are

4 | P a g e

February 3, 2016

implemented with appropriate low level primitives available in the platform. Consequently the programmer is

relieved from the specific details of a particular hardware platform. This strategy reduces the programming

complexity, but the limitation of the machine model has become a barrier for these initiatives to achieve good

performance in hardware architectures with complex memory hierarchies and hybrid execution units. Recent efforts

to extend PGAS for hybrid and hierarchical architectures [5] [16] show some promise, but do not develop a coherent

architectural model and associated programming paradigm.

We are developing the IT programming language for high-performance, mostly data parallel programming (IT

supports other forms of parallelism but the focus is on data parallelism) as an alternative to both low-level parallel

tools and contemporary high-level parallel languages discussed above [31]. At its core, IT has a new type

architecture, called PCubeS [30] that describes a parallel execution platform as a hierarchy of processing spaces

each capable of doing computation and holding data. A PCubeS description not only captures the processing

hierarchy of spaces but also important programming attributes such as SIMD capacity, memory access bandwidth,

and data transfer latency between spaces. Thus PCubeS provides a highly detailed and performance oriented

representation of parallel architectures that is applicable to most machines used in parallel computing at the present.

In an IT program, computations take place in corresponding hierarchy of logical processing spaces each of which

may impose a different partitioning for a data structure. To generate an executable the programmer needs to

explicitly map these logical spaces to physical spaces of PCubeS. Efficient partitioning and mapping is critical for

the good performance of a program. The implementation of computation and communication that is determined by

the compiler depends on the features of the physical spaces computations have been mapped to.

On the surface, IT may appear as another high-level programming language just like X10 or Chapel – and several IT

constructs have semantic analogs in those languages – but key difference lies in the treatment of these features. An

IT program looks like a parallel pseudo-code with space markers controlling flow of data and computations and their

inter-dependency, data partition specification remains separate from the algorithmic logic, and mapping is not even a

part of the source program. This gives great flexibilities for tuning individual pieces of a program based on the

PCubeS description of the target hardware. Separation of concerns makes it easy to write the program and enhances

its readability. Finally, great emphasis has been given to avoid any compiler introduced non-deterministic overhead

in the program. The expectation is that, an IT programmer should be able to predict, debug, and analyze the

suitability of a program and its runtime performance on a specific platform just by comparing the source code with

the PCubeS description of the hardware.

To summarize, IT forces the programmer to be cognizant of the features of target architectures when developing an

algorithm as in low-level programming, but allows him to express the program over a broadly applicable and

portable hardware abstraction as in the high-level programming, and encourages him to learn how to exploit

hardware features by establishing a clear relationship between the source code and its runtime performance.

IT‟s contribution is in its 1) explicit program mapping to multilayered and hybrid physical architectures that we

believe will scale to deeper and deeper architectures, and 2) a clear separation of concerns between describing the

computation and describing how the data will be decomposed and scattered across architectural components, while

3) leaving the required complex communication and synchronization up to the compiler and run-time system.

Before we dive into the detail of the programming paradigm, and the syntax and features set of the language, we

discuss some contemporary related work on parallel programming techniques to provide some context.

5 | P a g e

February 3, 2016

Related Work

Parallel Programming on Multicore

Intel‟s Cilk Plus [6] is a C/C++ extension supporting fork-join task parallelism and vector operations on multicore

CPUs. It was originally designed for high-performance computing then later became a more general purpose

language. The programmer is responsible for identifying and exploiting parallelism in the code using features like

spawn, sync, parallel loop, array extensions; and the runtime engine decides how to distribute parallel tasks into

processors and vectorize array operations.

A popular library extension on C and Fortran for task level parallelism is POSIX threads or Pthreads [7]. Pthreads

has thread creation, join, termination routines and the support for different forms of explicit synchronization of those

threads. Performance of a Pthreads program can be fine-tuned using programmatic thread affinity management,

combining NUMA memory allocation libraries in NUMA architectures and so on. Pthreads is a very low level but

flexible primitive.

OpenMP [13], an extremely popular parallelization technique in multicore, takes a very different route for

parallelization from Cilk and Pthreads. In OpenMP, a sequential C or Fortran program is parallelized using OpenMP

pragma constructs. There are parallel pragmas for loops, code blocks, and reductions with few attributes controlling

their execution; but for the most part the underlying parallel execution is controlled by the OpenMP runtime that

implements a thread-based parallelism. The types of parallelism that can be expressed using OpenMP are limited,

but it remains immensely popular because of its flexibility and simplicity. Achieving good portable performance can

be quite a challenge with OpenMP though unless the programmer explicitly tunes the code to the underlying

physical architecture. In our experience, particularly with students, getting the parallel code to run is easy; getting it

to run quickly is the trick.

Although programs using these tools and languages often achieve significant performance boost up over their

sequential bases through concurrency and vectorization, there is a lack of exposure of memory/cache hierarchies that

we believe may limit their efficiency, in particular, given the trends toward more cache levels and larger cache

capacities in modern multicore CPUs.

Parallel languages and tools for multicore often focus less on extracting the best performance from a machine and

more on enabling interesting concurrent paradigms; Scala [23] and Erlang [9] are two good examples of the latter.

Scala combined java with functional parallelism. In Scala functions are first-class language objects. Scala supports

actor based concurrency, parallel collections, and asynchronous programming using features such as future and

promise. The philosophy is to support a variety of sequential and parallel primitives to enable a wide variety of

applications.

Like Scala, Erlang is a functional programming language. Its focus is fault-tolerance and real-time execution. An

Erlang program is written as a collection of processes (that are not operating system threads or processes but

something in between those two) that communicate using message passing.

Parallel Programming for Distributed Memory

The Message Passing Interface (MPI) [29] has been the standard for parallel programming in distributed memory for

almost two decades. MPI is an implementation of the communicating sequential processes [18] over C and Fortran.

All process-to-process interactions in MPI happen through pair-to-pair or collective communication. There is

virtually no supercomputer and compute cluster that does not support MPI now. Programming using MPI is,

however, consistently been accused for being difficult and error-prone. Nevertheless, MPI remains popular because

of its ability to provide good performance on pure distributed machines. The advent of multicore CPUs and

accelerators in supercomputers and compute cluster limits MPI‟s supremacy. MPI‟s treatment of the execution

environment as a flat collection of processes with uniform characteristics no longer holds. To overcome the

6 | P a g e

February 3, 2016

shortcoming MPI has been combined with OpenMP, Pthreads, and other multicore parallelization tools [8].

Unfortunately, this hybrid strategy makes programming even harder and more error-prone.

The DARPA high productivity languages X10 [12] and Chapel [10]; or PGAS languages such as Co-array Fortran

[22], UPC [15], and Titanium [32] can be viewed as efforts to find an alternative to MPI for flexible and expressive

parallel programming paradigm without losing performance. All these languages have a notion of local and remote

memories and support operations over data structures residing on any of them. Both X10 and Chapel have numerous

parallelization constructs over this basic foundation of a partitioned global address space.

These languages suffer from the same performance problem in hierarchical and hybrid architectures as MPI does

because their flat partitioning of the memory. Given that they are not clear winners against MPI on Non-uniform

Cluster Computers where PGAS [12] is applicable, their future success in machines with deep memory hierarchies

and non-uniform compute capacities is uncertain.

Co-processor Languages

CUDA [21] is the programming tool used for NVIDIA GPGPUS. Initially it was deemed to be difficult, but

GPGPUs popularity in high performance computing gave it a rapid surge in acceptance. CUDA follows the

footsteps of earlier SIMD/SPMD languages (C*, pC++, C**, DataParallel C) with additional features to manipulate

memory unique to NVIDIA architectures. A CUDA program is a C or Fortran program with functions to be

offloaded to the accelerators and additional instructions for data transfers between a CPU host and accompanying

accelerators. The programmer needs to understand the inner working of the accelerator threads and details of

memory access to make his offloading functions to behave correctly and efficiently.

The OpenCL [27] standard has strong CUDA heritage and was originally targeted for accelerators. Recently, it has

become more of a standard for parallel programming for multicore CPUs and GPUs alike. In our opinion, taking a

special purpose model and applying it to general purpose computing has its limitations. It will be either too complex

to allow all special purpose attributes to retain efficiency in accelerators that are hardly useful in general purpose

architectures; or the model has to shed off its key special purpose attributes and become inefficient. Therefore, we

are doubtful about OpenCL‟s future success beyond its use in accelerators and embedded applications. Further, the

OpenCL model is inappropriate for distributed machines.

Type Architecture Based Languages

There are few recent languages that focus on a type architecture foundation as IT does. Among them ZPL [11] and

Legion [4] are mentionable. ZPL uses Snyder‟s original CTA type architecture [25] and found to perform well on

Cray machines. In our opinion, CTA is unsuitable for most hybrid and hierarchical parallel machines as it describes

a parallel architecture as a connected network of uniform processors without further characterizing them.

Legion [4] is a functional language follow-on of Sequoia [3] that uses a type architecture called Parallel Memory

Hierarchy. Surprisingly, the type architecture aspect is not highlighted in Legion. Similar to IT, Legion supports

hierarchical partitioning and programmer controlled mapping of those partitions to different layers of a hardware.

We suspect its fully-flexible nature of partitions and list-based language model is inappropriate for common high-

performance computing problems that thrive on regularity and replete in data parallelism. The central problem is

multi-dimensional arrays are much better suited for representing data structures in these problems than lists.

Representing arrays as lists is possible but that compromises both program‟s performance and its readability.

Domain Specific Parallel Languages

Finally, developing domain specific languages (DSL) and toolkits is an emerging trend in high performance parallel

programming [19]. A DSL grows from a general purpose language providing efficient application specific

abstractions for common data structures and problem patterns. There are frameworks to develop DSL over low-level

primitives such as MPI and threads [24], and the performance of DSL programs are often competitive to general

7 | P a g e

February 3, 2016

purpose language implementations. Nevertheless, as their nature suggests, they cannot be the solution for high

performance parallel computing in general.

PCubeS + IT Programming Paradigm
The PCubeS + IT programming paradigm asks a programmer to break a program in a top-down manner into

cooperating tasks, then individual tasks into one or more sequences of data parallel computation stages

(computations are similar to procedures in conventional programming languages). The execution order of tasks is

determined by their data dependencies and availability of physical resources in the target platform. The execution

platform and the data structures located in it constitute a program‟s environment. The execution of a task changes

the environment by updating existing data structures and adding new structures that will be needed at later time for

subsequent tasks. By-products of tasks that are not finally written to external files are automatically garbage

collected. An example of IT task breakdown can be a conjugate gradient program where matrix-vector

multiplication, vector dot-products and so on are the individual tasks. The granularity of the individual tasks is

subjective, but the guideline is to restrict tasks to independent program units that use a particular arrangement of

data.

Beneath the task level parallelism resides the data parallelism of computation stages within a task. A task specifies

the logic of the parallel algorithm as a sequence of computation stages executing in one or more Logical Processing

Spaces (LPS) within a Computation Section. The relationship between these logical spaces and how data structures

are partitioned within each space are specified in an accompanying Partition Section. The partition specification

dictates the number of groups of data structure pieces or partitions – we call them Logical Processing Units (LPU) -

- in each logical space. Each group runs independently in data parallel fashion. Inter-LPU interaction is governed by

LPUs‟ data dependencies and the compiler takes care of the underlying synchronization and data transfer required

for that. The programmer controls the degree of parallelism by specifying the mapping of logical spaces to Physical

Processing Spaces (PPS) and runtime parameters of the Partition Section.

Finally, the calculation inside a compute stage is written using a declarative syntax supporting parallel loops,

reductions, and conventional arithmetic and logical operators. When writing a compute stage, the programmer

assumes the locality of any data structure used within and is encouraged to focus on identifying instruction level

parallelisms through the declarative parallel constructs. Depending on the support available in the target platform

these parallel constructs may get translated into vectorized or SIMD instructions or just execute sequentially. Again,

the nature of the translation, consequently its efficiency, depends on the mapping of LPSes to PPSes which is under

programmer‟s control. The declarative pseudo-code like syntax (we discuss it later) is essential for IT‟s portability

across diverse platforms.

Listing 1 presents an example IT single-task program as an illustration of the aforementioned concepts.

Although the details will only become clear once we discuss the component features, the systematic structure of the

IT program should be recognized even from a cursory inspection. The basic idea is a single space task

Block_Matrix_Multiply. The heart of the computation is the multiplyMatricies stage defined in the Stages Section.

The code does exactly what you expect: a set of vector dot products. multiplyMatricies is called repeatedly and in

parallel within Space-A in the Computation section: once for each sub-partition of Space-A data structures. The sub-

partitions are defined in the partition section.

More formerly, the computation flow (Line 27 to 34) specifies that within the confinement of Space-A partition the

compute stage multiplyMatrices should execute in each of its sub-partitions one after another. The partition section

(Line 35 to 46) dictates that each independent Space-A partition will have a k-by-l blocks of c, k rows of a and l

columns of b. Then within a partition, q columns of a and q rows of b will be operated at once for that k rows and l

columns respectively.

8 | P a g e

February 3, 2016

Listing 1: An IT Block Matrix-Matrix Multiplication Program

For example, if the sole space of Listing 1 is mapped to the symmetric multiprocessor (SMs) of a GPGPU then the

degree of parallelism will be equal to the number of SMs in the hardware and the Space-A LPUs will be multiplexed

on them to be executed one after another. The threads of an SM will execute the compute stage in SIMD fashion

over data loaded on SM‟s shared memory. The partition arguments k, l, and q should be chosen so that data for a

sub-partition can be held within the limited shared memory.

On the other hand, if Space-A is mapped to the cores of a multicore CPU then the degree of parallelism will be equal

to the number of cores and each core will execute the instructions of multiplyMatrices stage sequentially. Then a

different setting for the partition arguments, based on cache capacities, may be appropriate.

To summarize, IT asks a programmer to design programs in a declarative manner with flexible breakdowns of

computations and associated data structures that can be efficiently tuned to the features of a specific execution

platform if he knows how to exploit those features.

The problem is it is too much to expect from an average programmer to be able to make sense of various features of

contemporary parallel architectures that are widely different. Exploiting those features is feasible only after a proper

understanding of the hardware.

9 | P a g e

February 3, 2016

This is where the PCubeS type architecture comes into play. It provides a uniform standard to conveniently describe

salient programming features of most parallel architectures, as we discuss in the next section.

The PCubeS Type Architecture
The formal description of the Partitioned Parallel Processing Spaces (PCubeS) type architecture is as follows.

PCubeS is a finite hierarchy of parallel processing spaces (PPSes) each having fixed, possibly zero, compute and

memory capacities and containing a finite set of uniform, independent sub-spaces (PPUs) that can exchange

information with one another and move data to and from their parent.

PCubeS measures the compute capacity of a PPS as the number of concurrent floating point operations it can do.

Transfer of data between PPSes as well as memory accesses within a single PPS are expressed in terms of the

number of concurrent transactions. A transaction is characterized by the volume of data it carries (its width) and its

latency. The memory capacity of a PPS is the size of its physical memory along with the memory transaction

characteristics. Finally, note that PPUs are uniform within a single PPS – not necessarily across multiple PPSes.

The philosophy behind PCubeS, detailed discussion of its individual attributes, and how it can describe a wide

variety of parallel architectures are available here [30]. Here we will discuss the PCubeS description of a single

multicore cluster that we frequently use as an IT target platform.

The cluster is called Hermes. It has 4 64-core nodes connected by a 10-GB Ethernet interconnect. Each node is

composed of 4 16-core AMD Opteron 6276 server CPUs plugged in 4 sockets of a Dell 0W13NR motherboard.

RAM per CPU is 64 GB. Figure 1 depicts a candidate PCubeS description of the system (Only one PPU has been

expanded at each PPS in the above figure, but the PPUs are uniform).

Figure 1: A PCubeS Description of the Hermes Cluster

10 | P a g e

February 3, 2016

There are 6 levels/PPSes in the PCubeS hierarchy of Hermes. Since PCubeS treats caches as memories, there are

four levels from CPU to Core. Further notice that the breakdown assigns the non-zero processing capacity to the

Core-Pair level. This is done because within a CPU a pair of cores shares a single floating point unit. As one goes up

from Core to Cluster level, both the latency and width of transaction generally increases. Finally there is no memory

beyond the CPU level.

Two important characteristics of the PCubeS description are evident in Figure 1. First, PCubeS eliminates the

distinction between shared and distributed memories by describing data storage and transfer attributes in terms of

transactions. Second, every level of the deeply hierarchical machine is exposed for programmer‟s exploitation.

To give an example of how to reason about the execution platform when mapping LPSes of an IT program to PPSes

of the hardware, consider the matrix-matrix multiplication example of Listing 1 to be executed in Hermes. The

programmer can quickly determine that mapping the sole LPS (Space-A) of the program at the Core-Pair level will

maximize concurrency. Going to one level below to Cores will not increase parallel processing power – as there is

no processing capacity at the lowest level – but may bring advantage in load/store because of the fast 16 k local

memory. That to be true, the size of the partitions should be chosen in a way that the data can fit within that

memory.

The expectation in the IT + PCubeS paradigm is that once a programmer learns to read PCubeS descriptions of

machines, he should be able to assess the possible impact of the nature of computation, memory access, and data

transfer of his program as deterministic functions of hardware attributes. This knowledge will guide him to learn to

write programs in a flexible way that can be tuned for specific target architecture.

This is a hardware conscious paradigm for parallel programming, but not hardware specific. The actual

implementations of compute stages, synchronization, and communications are determined by the compiler once the

LPS-to-PPS mapping is known, but the programmer is oblivious of that: he understands the costs of hardware

features not their implementation.

Next we investigate the features of the IT language to understand the semantics of this new type-architecture based

programming paradigm.

IT Parallel Programming Language
Following things can be said about the IT language overall to put it in the context of related work discussed before.

 IT is a language intended for high performance parallel programming

 IT is mostly a data parallel language with support for course-grained task parallelism.

 Parallelism in IT scales proportional to the number of parallel physical processing resources in the target

execution platform.

 The language imposes no specific model for parallel execution (e.g., bulk synchronous) and

synchronization and communication are implicit. The compiler for a target back-end chooses the execution

and parallelism model deems appropriate.

 IT is portable across all PCubeS type hardware architectures.

 IT employs a declarative pseudo-code like syntax that highlights separation of programming concerns.

Let us new examine individual elements of the language. The current version of IT grammar is given at the end of

this article.

11 | P a g e

February 3, 2016

Data Structures

The basic primitive types in IT are integer, single and double precision real numbers, character, Boolean values, and

fixed-length strings. The two collection types are list and array. There is no notion of pointers in IT, so

multidimensional arrays are supported but not arrays of arrays.

User defined types are supported; which resemble C structures. A user defined data type can have other custom data

types, primitive types, and fixed length arrays as properties, but not lists or dynamic arrays.

A variable declaration takes the following form “Variable-name: Type” as shown in the following examples.

average: Real double-precision

matrix: 2d Array of Integer

coordinate: List of Point

In the above, matrix is a dynamic array as its dimensionality but not lengths of individual dimensions are known

from the declaration. The dimension lengths are specified using an ${array-name}.dimension attribute and must be

set before data can be read or written to and from the array. Below is an example of a user defined type.

Class Room {

 size: Integer[3]

 material: String

 owner: Person

 rent: Real single-precision

}

Here the size attribute is a fixed length array of 3 integers. The attributes of a user defined object type are accessed

using the ${object-name}.${attribute-name} syntax.

Both arrays and lists can hold objects of user defined types. A list in IT is a dimension-less sequence of elements of

the same type. A list can hold arrays as elements and vice versa, but the elements of the nested collections cannot

themselves be collections. Array elements are accessed using their indexes as shown below.

a, b, c: 2d Array of Real single-precision

i, j: Integer

c[i][j] = a[i][j] * b[i][j]

An entire section of an array can be accessed and assigned to other arrays using a sub-range expression as shown

below.

a, b: 2d Array of Real single-precision

c: 1d Array of Real single-precision

i, j, k: Integer

b = a[i…j]

c = b[…][k]

In the above, b gets all the elements of a from rows i to j and c gets the kth column of b.

List elements are, however, only accessed and manipulated sequentially from beginning to end using built-in list

functions. The get_cursor function returns a cursor at the beginning of the list; the value function returns the element

at the cursor location; the advance function moves the cursor one step forward and returns a Boolean value

indicating if stepping was successful. The following code snippet illustrates the use of different list functions.

12 | P a g e

February 3, 2016

 polynomial: List of Coefficient

point: Point

result: Real double-precision

cursor = get_cursor(polynomial)

result = 0.0

do {

 result = result + evaluate(point, value(cursor))

} while (advance(cursor))

Unlike arrays whose dimensions get fixed once being set, lists can grow and shrink on-demand. A new element can

be added at the current cursor location using the insert_at function and the existing element at the current location

can be removed using the remove_at function. A list however cannot grow beyond a predefined maximum capacity

which is defined using the set_capacity function. These three functions have the following signatures.

insert_at(list, cursor, element)

remove_at(list, cursor)

 set_capacity(list, capacity)

The result of concurrent updates on a list is undefined.

Finally, IT is a strongly and statically typed language that uses type inference to deduce types of local variables

found within the coordinator program, function bodies, and tasks‟ compute-stages that are not explicitly declared.

The Coordinator Program & Task Execution

As discussed before, an IT program is a collection of parallelizable tasks invoked and coordinated by a central

controller. A task invocation in the program controller takes the following form

execute(task: task-name;

environment: environment-reference;

initialize: comma separated initialization-parameters;

partition: comma separated integer partition parameters)

Here the Initialize and Partition parameters are optional but must be supplied for tasks needing them. Note that the

execute statement in a program is expected to be non-blocking. Further, the invocation of the execute command does

not necessarily launch the task immediately – rather it schedules the task for execution. The task can start only after

all previous tasks, if any, manipulating its environmental data structures finish executing.

There is no name for the program controller and its syntax is.

Program (argument-name) {

<statement-sequence>+

}

The sole argument of the program controller holds all command line arguments passed at the beginning. The

command line arguments are passed as key, value pairs in the form „key=value.‟ A task‟s environment contains the

set of data structures that establishes a task‟s relationship with other tasks and external input/outputs. The controller

for block LU factorization program of Listing 2 illustrates the role a task‟s environment plays.

The LU factorization program consists of three tasks. First it executes the Initiate LU task (Line 7) to initiate upper

and lower triangular matrices from elements of the argument matrix that is read from an external file (Line 4). Then

the outputs of the first task are assigned to the environment of the second, LU Factorization, task (Line 14 and 15)

that executes repeatedly inside a loop. After the completion of one round of the LU Factorization task, a SAXPY task

(Line 37) updates portion of the upper triangular matrix using another portion of the same matrix and a portion of

the lower triangular matrix. Since there are environmental dependencies between the LU Factorization and SAXPY

13 | P a g e

February 3, 2016

tasks, the latter cannot start before the former finish. For the same reason, the next iteration of the loop cannot re-

launch the former until the latter finishes for the previous iteration.

Listing 2: The Coordinator Program for Block LU Factorization

Relating tasks through their environments provide two primary benefits. First, tasks can share as many data

structures as deemed appropriate for the logic of the program. Second -- and more importantly – this allows a the

compiler to generate code to directly use the data distribution of preceding tasks in subsequent tasks whenever

applicable. Even when data reordering is beneficial that can be done within individual tasks in parallel. In other

word, there is no need for accumulating intermediate results in a central place.

File I/O

Just like computation, the principal mechanism for file I/O in IT is parallel. The coordinator program only specifies

the external input/output files – we call this action binding – and the actual read/write happens in parallel inside the

individual tasks. For example, the bind_input command at Line 4 only attaches appropriate instruction to the Initiate

LU task that causes the argument matrix to be read when that task starts execution. Similarly, the three bind_output

commands of Line 10 to 12 results in the outputs of the LU factorization task to be written to files in parallel at the

end of the program. The bind_input and bind_output commands are sensitive to the type of the data structure and

read/write data accordingly. The file format must be appropriate for bind_input‟s correct behavior though. The

format for different kinds of data files are given at the end of this document.

If a program requires file read/write to be done in the coordinator then the alternative commands for that are load

and store. The latter two commands result in sequential file read/write as opposed to parallel as in the former two.

The syntax for all four commands is as follows.

14 | P a g e

February 3, 2016

bind_input(environment-reference, object-name, input-file-name)

bind_output(environment-reference, object-name, output-file-name)

load(object-reference, input-file-name)

store(object-reference, output-file-name)

Note that none of the file I/O commands can be used inside the compute-stages of a task. That is, their usage is

restricted as statements in the program controller. This restriction is important as the PPS that may be assigned to

execute a compute-stage having I/O instructions may not have the hardware features to carry out those instructions.

IT Tasks

A task in IT consists of six sections: a Define section where variables (scalars, structures, lists, and arrays) are

defined, an Environment section where some locally defined variables are bound to the task environment, an

Initialize section that defines how unbound variables or their properties should be initialized, a Stages section where

parallel procedures (called compute-stages in IT) are defined, a Computation section that expresses the underlying

algorithm a task implements as a flow of compute-stages in logical spaces (LPSes), and finally a Partition section

that defines how parts of variables are distributed and replicated to LPUs of LPSes.

The notion of LPS and LPUs are central to IT programming and its most innovative feature. So we discuss these

concepts in detail before we proceed to discussing the individual sections of a task.

Logical Processing Spaces and Units

A Logical Processing Space (LPS), as its name suggests, is an entity where computations can be done over data

structures. It is not directly associated with the computations or the data structures; rather both are assigned to it. The

best way to understand an LPS is how variables and instructions are treated in a traditional Von Neumann

programming language.

In a traditional Von Neumann machine, there is a memory and instructions. Instructions are fetched from the

memory and executed. When an instruction executes it may load and store variables in the memory. The entire

memory is visible to each instruction - whether a variable is in the scope of the current programming context or not,

or whether it is a local variable or a global.

Figure 2 illustrates this concept. The address space of the Von Neumann computer is shown as a slate. Within the

memory three variables a, b, and c have been defined. Instructions operating in the Von Neumann machine can load

and store variables in the address space. In essence all instructions can access all memory, this makes the Von

Neumann model a single-space model.

Figure 2: A Von Neumann Space

IT supports multiple spaces in a program where both variables and computations can be assigned (notice the

distinction between definition and assignment). Figure 3 depicts a scenario with two spaces. Here the variables

average, median, and earning_list are defined externally; the first two reside in Space-A and the second two in

 Variable Definitions: Instructions Stream:

 a: Integer …

 b: Integer …

 c: Real single-precision c = a / b

15 | P a g e

February 3, 2016

Space-B. Therefore the earning_list is shared between the two spaces. The update done on the earning_list in Space-

A is visible in Space-B, but the variable average is not accessible from the latter by any instruction.

Figure 3: Demonstration of a 2 Space Model

There are further additions to the notion of a space in IT. First, an IT space or LPS has a dimensionality attribute.

That is an LPS is not a characterless vacuum, rather it is more like a geometric coordinate space. Second, an LPS

can be partitioned into independent units called Logical Processing Units (LPU). The same instructions stream

executes in all LPUs but on different parts of data structures. A group of LPUs may, however, share a particular part

of a data structure. Then only one can update that part at a time and afterwards the remaining LPUs receive the

update.

Execution

In the absence of data dependencies on shared/overlapped parts instruction streams in individual LPUs execute

independently. Figure 4 depicts the breakup of a single LPS for the matrix-matrix multiplication task of Listing 1.

Figure 4: An Illustration of Space Partitioning for a Small Matrix-Matrix Multiply Problem. A block of rows of a, a block

of columns of b, and a block of c are contained in the LPU corresponding to partition (2, 2).

Variable Definitions:

average, median: Real double-precision

earning_list: List of Integer

 Variable Assignments: Instructions Stream:

 average, earning_lis earning_list = compute_earnings()

 average = get_avg(earning_list)

Variable Assignments: Instructions Stream:

 median, earning_lis …

 median = get_median(earning_list)

Space A

Space B

a

b

c
2D Space A

Partition No (2, 2)

multiplyMatrices stage

executes on the selected

parts of a, b, and c inside

partition (2, 2)

16 | P a g e

February 3, 2016

Further, IT allows the data to be used inside an LPU to be loaded incrementally as opposed to all at once. This

facility comes in handy when the computation for the LPU needs to be done in a memory constrained physical

processor (PPU). Incremental loading and unloading allows virtually limitless amount of data to be processed in a

small PPU.

For example, this facility can be used to convert a traditional matrix-matrix multiplication program into a block

matrix-matrix multiplication program as done in Listing 1. Programmatically this is achieved using the Sub-

partition construct (Line 43 to 45 of Listing 1). Figure 5 below illustrates the effect of sub-partitioning for the

discussed problem.

Finally, the power of LPS goes further in IT with the support of LPS hierarchies. In IT each LPU can be treated as

an LPS and can be further partitioned into lower level LPUs. In fact, there may be multiple lower level LPSes for an

upper level LPU that may differ in their dimensionality and partition counts. Figure 6 illustrates the idea of the LPS

hierarchy for a Monte-Carlo area estimation program.

A block of c gets loaded once and stays

Blocks of columns from the

selected sequence of rows of a

enter and leave the LPU in

sequence

Blocks of rows from the

selected sequence of

columns of b enter and

leave the LPU in

sequence

Figure 5: Incremental Data Loading in an LPU

A Space A LPU

Top Level LPS: Un-partitioned

Middle Level LPS: 2D

Bottom Level LPS: 1D

The LPS

 Accumulates sub-area estimates

from the next level

 Calculates total area

Each LPU

 Accumulates point placement

results from the next level

 Makes an estimate of the area under

the curve in a grid block

Each LPU

 Generates a series of points in a

vertical area stripe

 Calculates the number of points

inside and outside the curve

Figure 6: a Three Space Breakdown of a Monte-Carlo Area Estimation Problem

17 | P a g e

February 3, 2016

Regardless of how many LPSes share a single data structure and what the relationships among those LPSes are, IT

ensures that the update in any data part is exclusive and all instruction streams operate over the most up-to-date data.

It is the responsibility of the IT compiler to establish strong data consistency through whatever mechanism

appropriate in the target execution platform. The programmer is only responsible for applying appropriate conditions

in the code to ensure that only one LPU updates the shared data part at a time.

Let us now discuss the individual sections of an IT task in more detail.

Task Definition:
An IT task is defined in terms of six distinct sections as follows.

Task “Name of the Task”:

 Define:

 // list of variable definitions

Environment:

 // instructions regarding how environmental variables of the task are related to rest of the program

Initialize <(optional initialization parameters)>:

 // variable initialization instructions

Stages:

 // list of parallel procedures needed for the logic of the algorithm the task implements

Computation:

 // a flow of computation stages in LPSes representing the computation

Partition <(optional partition parameters)> :

 // specification of LPSes, their relationship, and distribution of data structures in them

This sequence has to be maintained for a task definition to be valid. The Initialize Section, however, can be skipped

if the task does not require it. Note that IT only supports C-style single line comments. As in C, a comment in IT

starts with „//‟ and includes the rest of the line it is placed in. In addition, note that IT uses newlines as statements

separator. If the programmer needs to break a long statement into multiple lines then he or she should place a „\‟ at

the end of each line except the last to indicate a statement continuation.

Define Section

Variables for the task are defined in this section using the following syntax

<comma separated variable names: common Type name>+

Variables defined in this section persist for the lifetime of the task. In IT terminology, these variables are called task-

global variables. Local variables used inside compute-stages need not and should not be defined here. It is the

compiler‟s responsibility to generate code that ensures that any read on a task-global variable reads its most up-to-

date value.

Environment Section

Only the task-global variables listed in the Environment section outlive the execution of a task – all other variables

are automatically garbage collected as the task finishes execution. There are three ways an environmental variable

can be associated to a task. Below are examples of each of these.

a: link

b: create

c: link-or-create

In the above, the variable a must be already present in the program environment for the task to start executing. This

can happen in two ways: a is an environmental variable of another task that has already completed or a has an input

18 | P a g e

February 3, 2016

binding instruction and would be read from a file. On the contrary, b will be created and added to the environment as

a bi-product of current task execution. If b already exists before the task starts executing then the older copy of it

will be replaced by the newer one. The variable c on the other hand, is first searched in the environment for

existence and gets created only if it is not there already.

It is important to understand that the three variables above will survive after the completion of the underlying task in

the manner it left them. To give an example, assume a finite difference stencil code estimating heat propagation

within a plate variable on a cluster of GPGPUs. Then after the task ends, each participating GPU will retain the part

of the plate assigned to them for computation. The parts will be accumulated to a central location or re-distributed

only if deemed appropriate for the subsequent logic of the program.

Initialize Section

The optional Initialize section is for setting up task global variables for subsequent parallel execution. The syntax for

this section is as follows.

Initialize <(comma separated parameter names)>:

 statements+

If the Initialize Section has parameters then only parameter names are needed – not their types. Types of the

parameters are inferred from their use in the statements inside. Further, if the name of a parameter matches a task-

global variable then the former is directly assigned to the latter. Thus no explicit assignment statement is needed.

The Initialize section executes sequentially at the beginning of a task. The most common use of the Initialize section

is to set up the dimension ranges of dynamic arrays and capacities of task-global lists, as done in Listing 1. Except

for linked environmental arrays and lists, that information is unknown at task launch for all lists and dynamic arrays.

Setting up dimensions is important for arrays in particular as without the dimension ranges, the task launcher cannot

determine what array part should go where. If any array dimension or list capacity is undefined after the execution

of the Initialize section then the program fails with a runtime exception.

Note that IT arrays, like Fortran arrays, can have a non-zero starting index for any dimension. Furthermore, a

dimension range can be inverted. That is, it can decrease from a max to a min index as opposed to increase from a

min to max index.

Stages Section

The list of parallel procedures – called compute-stages in IT terminology – needed to implement the logic of a task

is defined in this section. The syntax for a compute-stage definition is as follows.

stage_name (comma separated parameter names) {

 statements+

 }

Similar to the Initialize Section, only the name of the stage parameters, not their types, are given. The difference is

that a compute-stage must have at least one parameter. All stage parameters are passed by reference and only task-

global variables or constants can be supplied as arguments for them during a stage invocation in the subsequent

Computation section. The types of parameters and any local variable used inside a stage is inferred from the

invocation context. This technique allows the stages to be type-polymorphic just like C++ template functions.

Listing 3 shows four compute stages taken from an LU factorization task. Note that the do {…} for loops in different

stages of Listing 3 are all parallel for loops. If a stage requires a sequential loop then the following alternative syntax

can be used.

do in sequence {statement+} for $index in Range-Expression step Step-Expression

do in sequence {statement+} while Boolean-Expression

19 | P a g e

February 3, 2016

Listing 3: Core Computation Stages of an IT LU Factorization Task

A Note on the Declarative Syntax

IT uses declarative syntax for both the compute-stages and the flow definition in the Computation section (will be

described shortly after). The syntax is declarative as it instructs what computation to be done but not how to do it.

For example, the do…for loop of the updateUpper stage in Listing 3 iterates over two indices i, j. This should result

in a doubly nested loop in conventional imperative programming languages. In IT, however, the ordering of two

index traversals is left for the compiler to decide. For the flow definition, this philosophy extends further at a coarser

level where requirements for synchronization and communication in-between compute-stages‟ transitions are

determined based on the context in the flow.

This choice of declarative syntax is of paramount importance in enabling full exploitation of features of a target

execution platform. Regarding the flexibility in the implementation choice for communication and synchronization,

the need for a declarative syntax may be quite apparent; but the need is there, and no less intense, for translation of

the compute-stages also.

Most modern architectures have vector or SIMD instruction units, memory banks, etc. whose effective usage is

essential for good performance in the respective hardware. Indeed PCubeS exposes many of these features in terms

of parallel transaction and computation capacities of the PPSes. Ordering instructions and memory operations to

exploit these capacities, in particular across architectures, is difficult for an average programmer to master

nevertheless. Furthermore, the architectural differences in different target platforms may render a highly efficient

code in one platform to perform poorly in another when order-sensitive instructions and memory operations are

used.

Thus IT adopts a declarative syntax to let the compiler for a specific platform to deal with the specifics of its target.

The programmer only enables utmost compiler level optimizations by choosing size of data partitions properly and

specifying the calculation over them in a declarative manner.

In addition, a declarative syntax simplifies static analysis of the source code, which an IT compiler heavily depends

on for proper code generation. Moreover, in some situations, a declarative syntax makes it easy to express a parallel

algorithm that would be difficult to express otherwise. For example, Listing 4 shows a compute stage from an

iterative stencil computation that uses Jacobi iterations to calculate the next state of a heated plate based on the

current state. Without the declarative syntax for calculating the current plate cell values from previous values of

neighboring cells, this parallel code would be difficult to express cleanly. The problem with an imperative syntax is

that sometimes the difficulty in expression leads to the choice of a sequential algorithm as opposed to a parallel one.

20 | P a g e

February 3, 2016

Listing 4: A Compute Stage for an Iterative Refinement Stencil Task (note the use of at (current) and at (current-1))

Computation Section

The Compute Section describes the logic of the task as a flow of compute-stages in LPSes. Listing 5 depicts the

computation section of a block LU factorization task. (Ideally block LU factorization in IT should rather be

implemented using multiple tasks, as the coordinator program of Listing 2 shows, to minimize data movements.)

Listing 5: Computation Section of a Block LU Factorization Task

For the computation of Listing 5, the flow of control operates entirely in the confinement of Space-A. Within it, the

control first enters Space-B to prepare l and u from the argument matrix a. Then it comes out of Space-B and repeats

the rest of the flow for block_size sequence of rows in a. The current row_range is determined first for each upper

level iteration. Then a lower level repeat loop executes stages of classic LU factorization such as selectPivot,

interchangeRows, and updateLower. Only a block of rows and columns of u get updated within the nested repeat

loop. After the flow of control exits the first nested repeat loop, it enters a second loop to update the rest of u using a

SAXPY operation. The final computation happens in Space-C. Note that an LPS can be placed inside another LPS in

the flow definition (as done for Space-B within Space-A and Space-C within Space-B) when the former divides

LPUs from the latter. This hierarchy of LPSes is defined in the Partition Section.

21 | P a g e

February 3, 2016

LU factorization of Listing 5 involves several updates of shared variables inside compute-stages. For example, the

pivot that is selected in the selectPivot stage (Line 9) is needed during execution of storePivot (Line 11) and

interchangeRows (Line 14). The programmer ensures that only one LPU of Space-B update the pivot in an iteration

of the repeat loop of Line 7 to Line 24 using the Where condition for the selectPivot’s invocation. The selectPivot

stage executes only on the LPU that has the associated condition true. Notice the use of the keyword local in the

Where condition. It indicates that the associate range to be compared is for the part of the array an LPU has – not for

the entire array. The compiler injects appropriate synchronization/communication in between the transition from

selectPivot to subsequent stages to ensure that the up-to-date value of the pivot is available wherever needed.

The above discussion exposes another importance of breaking down the logic of the task into compute-stages. Once

inside a compute stage, an LPU executes oblivious of other LPUs and any sharing of data part the former may have

with the latter. The compiler ensures that data shared among LPUs being synchronized only at the compute-stage

boundaries. In the absence of data dependencies, LPUs execute independently. Therefore, if the logic of a task

supports it, different LPUs may be at completely different stages and iterations of the task‟s computation flow.

To lay out the flow of the task, three flow control instructions can be placed in the Compute Blocks. These are as

follows.

Repeat Boolean-expression { nested sub-flow }

Where Boolean-expression { nested sub-flow }

Epoch {nested stages accessing version dependent data structures }

The Repeat instruction results in the nested sub-flow to iterate for the time-being the associated condition remains

valid. The Where condition restricts the execution of the nested sub-flow in the LPUs the associated condition

evaluates to true. The Epoch boundary is used to dictate when the version number of any version-dependent data

structure should be updated. For example, the stencil computation of Listing 4 needs the computation to be done on

the updated version after each invocation of the refineEstimate stage. Hence, the corresponding flow definition

should put the stage within an Epoch block.

Partition Section

The Partition Section specifies the configuration of the LPSes used in the computation flow, their relationships, and

how data structure parts are distributed among LPUs of an LPS. The grammar for the Partition Section is as follows.

partition := Partition <([arguments,]+)>?: space-config+

space-config := Space id <dimensionality> <parent>? <attribute>* { var-list-config+ sub-partition-config? }

dimensionality := un-partitioned | [1-9]+d

parent := divides Space Id partition-type

partition-type := partitions | sub-partitions

attribute := dynamic

sub-partition-config := Sub-partition <dimensionality> <order> { var-list-config+ }

var-list-config := [Variable_Name,]+ | var-list-partition-config

var-list-parition-config := [name-with-dimension,]+ : [partition-instruction,]+

name-with-dimension := Variable_Name<[dim[0-9]+,]+> | Variable_Name

partition-instruction: partition-function([argument,]*) <padding-instruction>? | replicated

padding-instruction := padding([argument,]+)

Id := [A-Z]

argument := Variable_Name

order := increasing | decreasing | unordered

Listing 6 illustrates the Partition Section for the block LU factorization task of Listing 5. Here, the upper-most LPS,

Space-A, is un-partitioned; Space-B is 1 dimensional and divides Space-A; Space-C further divides Space-B and

furthermore contains a sub-partition configuration.

22 | P a g e

February 3, 2016

Listing 6: Partition Section of a Block LU Factorization Task

The array p keeping track of pivot row indexes from different iterations only exists in Space-A. So there will be a

single undivided copy of it for the entire task and, hence, storePivot stage of Listing 5 (Line 11) that updates the

array has been placed to execute in Space-A. The number of LPUs in Space-B, on the other hand, will depend on the

number of strided blocks of a, u, l generated at task launch time. That is, the Space-B LPUs count depends on the

input size and the partition parameter b. Some other data structures such as l_row will be shared among all those

LPUs. Any of the replicated data structures can be updated by one Space-B LPU at a time only. Therefore, stages

that update those structures are constrained with a Where condition in Listing 5. Finally, Space-C is 2d and it uses

block_size partition function to further divide the structures of Space-B into 2d blocks. It also uses a sub-partition

configuration to ensure incremental access to sub-sections of u_block and l_block during the execution of saxpy

computation-stage (Listing 5, Line 28 to 30). Note that scalar variables and lists need not be specified in the

Partition Section of a task – only array partitions should and must be specified. Scalars and lists are replicated in all

LPSes they are found in invoked compute-stages.

The LPSes of a task have a partial ordering. Therefore, in the general case, the LPS hierarchy may look like a tree

rather than a path as in Listing 6. There is an implicit default LPS, called the Root, that is the top-most LPS in a

task‟s partition. If the same data structure is present in independent LPSes then a complete reordering/copying of

data may ensue during a transition from one LPS to another LPS in the computation flow. The compiler and runtime

system takes care of such data movements as in all other cases.

Furthermore, IT supports overlapping of boundary regions between data parts in the form of padding, as shown in

Listing 7 in the partition configuration of a 2-Space iterative stencil computation. This form of sharing is frequently

used for iterative refinements and multi-grid methods.

Listing 7: Partition Section of a 2-Space Iterative Stencil Task

In the partition configuration of Listing 7, each k-by-l size plate partition of Space-A is padded in all sides by p1

rows or columns: („plate: block_size(k, l) padding(p1)‟ is only a syntactic sugar for „plate<dim1, dim2>:

block_size(k) padding(p1), block_size(l) padding(p1)‟). Each of those partitions is then divided in Space-B into

smaller m-by-n blocks that are also padded, by p2 rows or columns. When a boundary overlapping is present in a

23 | P a g e

February 3, 2016

task‟s partition, the compiler synchronizes the overlapped regions each time the computation flow exits the

underlying LPS.

Currently, IT provides four standard partitioning functions as library support. These are as follows.

block_size(s): divides an array dimension into partitions of size s

block_count(c): divides an array dimension into c parts

stride(): distributes the indices of a dimension into processing units using strides of size 1

block_stride(s): distributes the indices of a dimension into processing units using blocked strides of size s

There is a future plan for incorporating user-defined partition functions too. Note that, the latter two partition

functions in the above reorder the indices of a dimension but the former two do not. Regardless of the choice of the

partition function, the definition of compute-stages and their subsequent usage in the computation flow of a task do

not change. It is the responsibility of the compiler to generate appropriate back-end code based on the partition

specification in the source code. This is another reason a declarative syntax was needed for the compute-stages.

Finally, note that the arguments of the Partition Section, if they exist, can be used in the Initialize and Computation

sections using the partition.${argument-name} syntax.

Mapping Logical Spaces to Physical Spaces
Mapping of LPSes of an IT program to PPSes of the target backend is straightforward. Each LPS of each task of the

program needs to be mapped separately to the PPSes the programmer deems appropriate. The mapping

configuration is passed as an additional input file to the compiler along with the source program and has the

following syntax.

mapping := task-mapping+

task-mapping := “Task-Name” { lps-mapping+ }

lps-mapping := Space Id : pps-no

Id := [A-Z] | Root

pps-no := [0-9]+

For example, a mapping file for the block LU factorization program of Listing 2 to run it on the Hermes cluster of

Figure 1 may be as follows.

Listing 8: A Mapping File for the Block LU Factorization Program

Note that in Listing 8 above, the LPS-PPS mappings of individual tasks are independent of one another. For

example, Space-A in the three tasks might have different data structures, or different partitioning for some common

data structures, or even the exact same data partitions despite the LPS being mapped to the same PPS in all three

cases. What happens to data organization as the program makes transition from one task to the other, as instructed in

Listing 2, depends upon the actual runtime relationship between these tasks‟ partition hierarchies. The compiler is

responsible for generating appropriate data movement instructions, if need may be, by comparing task partition

hierarchies and tasks‟ LPS-PPS mappings.

24 | P a g e

February 3, 2016

The only restriction in the LPS-PPS mapping is that the partial ordering of LPSes in a task‟s partition hierarchy must

be respected when mapping them to PPSes. To elaborate, if Space-A is an ancestor of Space-B in a task‟s partition

then the latter cannot be mapped to a PPS situated higher than that the former has been mapped to. Both LPSes can

be mapped to the same PPS though.

Degrees of Parallelism in an IT Program

The degree of parallelism in IT varies with tasks and within a task in execution of compute-stages assigned to

different LPSes. When an LPS is mapped to a PPS of the target hardware, the LPUs correspond to that LPS get

multiplexed to the PPUs of that PPS. Consider the mapping for LU Factorization task in Listing 8. Space-A has been

mapped to Space-6 of the Hermes cluster. There is only one PPU in Space-6 in that machine, as apparent from the

PCubeS description of Figure 1. Thus LU Factorization compute-stages that are assigned to Space-A will all execute

in that single PPU. This raises the associated question how a code can execute in Space-6, which according to Figure

1 has no compute and memory capacity.

When an LPS is assigned to a PPS lacking compute/memory capacity, the PPUs of the latter execute the LPUs of the

former using the compute/memory capacity of the closest ancestor/descendant PPS according to the following rule.

1. If an LPS is assigned to a PPS having no compute capacity then computation for all LPUs of that LPS is

done by a single PPU in the nearest lower/upper level PPS capable of computation.

2. If a PPU has insufficient memory to hold the data for LPUs it operates on then it will use the memory of

the nearest ancestor PPU that can hold that data and stage data in/out as needed.

3. Reduction operations assigned to any higher level PPU are collectively carried out by all PPUs in the sub-

tree rooted at the former PPU in machine‟s PCubeS hierarchy.

In the LU Factorization example, space-B has been mapped to Space-3 of Hermes cluster. An inspection of Figure 1

reveals that there are total 32 Space-3 PPUs in the cluster (1 PPU for each NUMA node, 8 NUMA nodes per CPU,

and 4 CPUs in the cluster). Therefore, Space-B compute-stages will execute independently in parallel in 32 PPUs.

Note that the multiplexing of LPUs to PPUs respects logical hierarchies of LPSes in the source task. Assume for

example, Space-B divides Space-A in the SAXPY task of Listing 8. According to the mapping specification, Space-

A LPUs will be multiplexed to the NUMA nodes. Then Space-B LPUs that divides a particular Space-A LPU

assigned to a specific NUMA node will be multiplexed within the core-pairs of that NUMA node only.

The programmer can restrict the execution of a task to be confined within a smaller section of the target machine

instead of consuming it entirely by specifying a mapping for the special Root LPS. Consider the single space Matrix-

Matrix Multiplication task of Listing 1 and assume that the programmer wants to map Space-A to the cores of

Hermes but intends to use only one Hermes node from the cluster. Then the mapping file for the program will be as

follows.

Listing 9: Mapping File for Block Matrix-Matrix Multiplication

Space-Root is by-default un-partitioned and all LPSes of a task descends from it. Therefore according to the

mapping of Listing 9, only one Hermes node will be utilized for the task and the overall degree of parallelism for the

sole Space-A compute-stage will be 64.

25 | P a g e

February 3, 2016

IT Compilers
At the time of this writing, two IT compilers have been developed for two backend architecture types. The first

compiler is for multicore CPUs, and the second is for cluster of multicore CPUs or distributed memory

supercomputers built from multicore CPU building blocks. Executables generated by the second compiler can run in

hybrid supercomputers that have both accelerators and CPUs in their nodes but then the computing power of the

accelerators will remain un-utilized. This paper is about the language – not the compilation process – regardless this

section gives a broad overview of the working of these compilers and the nature of executable they generate to

illustrate how the concepts of the proposed programming paradigm work in practice. (Details of these two compilers

are the subject of two upcoming papers.)

Compiler for Multicore CPUs
The backend compiler for multicore CPUs generates C++ code parallelized with POSIX Threads (Pthreads) from IT

source code. There is one thread for each execution core, unless the number of threads is further restricted by the

specification in the mapping file. A thread‟s affinity to a core does not change throughout the execution of a task and

each task in the program generates and cleans up its own set of threads.

Each thread works as a composite PPU controller and gets assigned PPU IDs for different PPSes depending its

location. For example, the thread handling the first core of a NUMA node of a Hermes node (Figure 1) gets a valid

Space-3 ID as well as a valid Space-1 ID. The remaining seven threads in that NUMA node get valid Space-1 ID but

no Space-3 ID. They are in the former‟s Space-3 group and maintain a Group ID for that.

At the task launch, each thread is given the same computation flow template generated by the compiler and the

thread executes or skips part of it depending on its PPU and Group IDs. The flow template embodies the

programmer specified compute-stages coupled with compiler stages for data movements and synchronization

instructions. The execution of a thread happens independently of the other threads unless there is some

synchronization where multiple threads of a group need to participate.

This multicore compiler allocates contiguous memory for entire arrays. Different threads operate on different parts

of the allocation depending on what LPUs they execute. Un-partitioned scalar variables are also maintained as

properties of a single data structure shared among all threads. Therefore, LPU-LPU data dependency resolution, in

most cases, can be done at the PPU-PPU level through Pthread synchronization primitives.

One limitation exists in the current compiler regarding memory management. PCubeS treats caches as memory.

Further, the programming model of IT demands precise control over the movement of data in and out of caches.

Programmatic control of the caches, however, has not been implemented yet in the compiler‟s LPU management

libraries. Rather the compiler relies on the hardware‟s default caching machinery to do the compiler‟s job. This lack

of control over the caches sometimes skews the performance of the executable.

An elaborate memory management scheme with programmatic cache control will be addressed in the next version of

the compiler.

Compiler for Distributed + Shared Memory Hybrid Machines
This compiler generates MPI + Pthreads hybrid C++ code. There is one MPI process (called a segment controller in

IT terminology) per multicore CPU that controls all the threads that operate on its different cores. That is, the MPI

layer works as an overlay for the threads that do the actual computations.

Data dependencies between the threads of a segment controller are resolved using Pthreads synchronizations as done

in code generated by the multicore compiler. Cross-CPU data dependencies, on the other hand, are resolved using

MPI communications. Note that data movement among MPI processes is not hierarchical. Rather, the shared data

26 | P a g e

February 3, 2016

directly goes from the sources of update to the destinations where the data is needed next. Furthermore, each process

receives exactly the amount of data it needs, nothing more nothing less.

Unlike in the case of the previous compiler, memory allocation for arrays in this compiler happens as part-by-part

basis. A segment controller allocates and maintains all data parts needed for LPU computations done by various

threads it contains. Similar to memory, I/O handling is also done at the segment controller level with the MPI

process loading/storing only the portion of data relevant to its threads.

Note that there is a one-to-one correspondence between different kinds of data dependencies possible within an IT

task and different modes of MPI communications. For example, a data dependency from a list of lower space LPUs

to a higher space LPU is equivalent to an MPI gather. The compiler exploits these kinds of similarities to generate

executable that uses the pair-to-pair or collective MPI communication that is most efficient in a particular context.

Conclusion
The need for programming languages that map efficiently to contemporary parallel hardware is more important than

ever. Modern machines are increasingly heterogeneous and have ever deeper memory & communication hierarchies.

Papering over the gaps between our programming language models and the underlying machines is difficult and

error prone already - continuing failure to align the programming models and the machines will lead to increasingly

complex and non-portable applications.

IT, and the associated PCubeS type architecture, directly address the disconnect between machine architectures and

language. We believe strongly in Synder's – “the medium is the message” - that the community badly needs

languages in which they can efficiently express their algorithms on diverse, heterogeneous, and very deep

architectures.

Firstly, IT Logical Processing Spaces map to PCubeS spaces, which in turn correspond to the layers in the physical

machine. Data partitioning to ensure data locality for computation is under the control of the programmer who

understands the algorithm. The complexity of actually partitioning the data and moving the data between stages is

not the programmer‟s responsibility; rather it is the compiler and run-time systems responsibility. The cost of

restructuring and moving data is made clear in the language constructs: within a stage data access is local, but stage

boundaries may incur significant cost when data re-partitioning is required.

Second, IT clearly separates the specification of the computation, the “what I want to compute,” from the

specification of how the computation will be performed, how the data will be partitioned, and how the resulting

partitions (LPUs) will be mapped to the physical resources of the machine. This leads to portable codes – it is not

the computation after all that needs to change when moving between machines - it is the implementation of the

computation that needs to change.

IT is not a design study or vapor-ware. Two IT compilers and their associated run-time systems have been

developed: the first for multi-core architectures and the second for distributed memory machines in which the nodes

may be multi-core nodes. Preliminary results on a 64-core AMD-based multi-core machine (from the Hermes cluster

described in Figure 1) and a cluster having Cray Cluster Solutions nodes connected by FDR Infiniband are available

at [web site]. In these preliminary results, we compare IT implementations of matrix multiply, LU factorization,

conjugant gradient, and integer sort against hand coded sequential C, hand coded OpenMP/C, hand-coded MPI/C.

The results are quite promising.

We are continuing our evaluation of IT in three dimensions. First, we are developing a larger set of application

kernels and beginning to develop real applications. These will be used on a larger variety of machines to test

portability, and on larger machines to test scalability. Second, we are continuing to optimize the generated code.

27 | P a g e

February 3, 2016

During the early compiler development we were using the “get it right, then make it fast” philosophy. Now it is time

to make it fast. Third, we are working on extending the compilers to support other PCubeS physical layers.

Specifically, we intend to target NVIDEA GPUs next. Once complete, IT applications will be able to address large

scale heterogeneous machines available today.

Appendix A: IT Grammar –Version 1

Program Definition

program := component+

component := class | task | function | coordinator

Class Definition

class := Class Type_Name ':' element_def+

Type_Name := [A-Z]+([a-z][A-Z][0-9]_)+

element_def := names ':' static_type

names := Variable_Name | names ',' Variable_Name

Variable_Name := [a-z]+([a-z][A-Z][0-9]_)*

static_type := scalar_type | static_array

scalar_type := Integer

 | Real single'-'precison

 | Real double'-'precision

 | Character

 | Boolean

 | String

 | Type_Name

static_array := T_Array static_dim+ of scalar_type

static_dim := '[' [0-9]+ ']'

Task Definition

task := Task Task_Name ':' define environment initialize? stages computation partition

Task_Name := String

Define Section

define := Define ':' definition+

definition := names ':' type

type := static_type | dynamic_type

dynamic_type := list | dynamic_array

list := List of type

dynamic_array := dimensionality Array of type

dimensionality := [0-9]+d

28 | P a g e

February 3, 2016

Environment Section

environment := Environment ':' linkage+

linkage := names ':' mode

mode := link | create | link_or_create

Initialize Section

initialize := Initialize arguments ':' code

arguments := | '(' names ')'

Stages Section

stages := Stages ':' stage+

stage := Stage_Name '(' names ')' '{' code '}'

Stage_Name := Variable_Name

Computation Section

computation := Computation ':' flow_def+

flow_def := space_contr '{' flow_def+ '}' | exec_contr '{' flow_def+ '}' | stage_invoke

space_contr := Space Space_Id

Space_Id := [A-Z]

exec_contr := repeat | epoch | where

repeat := Repeat for range_expr | Repeat foreach sub-partition

range_expr := Variable_Name in range

range := Variable_Name | property | '[' expr "..." expr ']'

where := Where bool_expr

epoch := Epoch

stage_invoke := Stage_Name '(' args ')'

args := arg | args ',' arg

arg := expr

Partition Section

partition := Partition <([arguments,]+)>?: space-config+

space-config := Space Space_Id <dimensionality>

 <parent>? <attribute>* { var-list-config+ } sub-partition-config

dimensionality := un-partitioned | [1-9]+d

parent := divides Space Space_Id partition-type

partition-type := partitions | sub-partitions

attribute := dynamic

sub-partition-config := Sub-partition <dimensionality> <order> { var-list-config+ }

var-list-config := [Variable_Name,]+ | var-list-partition-config

var-list-parition-config := [name-with-dimension,]+ : [partition-instruction,]+

name-with-dimension := Variable_Name<[dim[0-9]+,]+> | Variable_Name

partition-instruction := partition-function([argument,]*) <padding-instruction>? | replicated

29 | P a g e

February 3, 2016

padding-instruction := padding([argument,]+)

argument := Variable_Name

order := increasing | decreasing | unordered

Expressions & Statements

code := stmt+

stmt := parallel_loop | sequencial_loop | if_else_block | expr

parallel_loop := do '{' stmt+ '}' for index_ranges

sequencial_loop := do in sequence '{' stmt+ '}' for Variable_Name in expr step_expr

 | do in sequence '{' stmt+ '}' while expr

index_ranges := index_range | index_ranges ';' index_range

index_range := names in Variable_Name restrictions

 | names in Variable_Name '.' Dimension_No restrictions

Dimension_No := "dimension"[0-9]+

restrictions := | and expr

if_else_block := if '(' expr ')' '{' stmt+ '}' else_block

else_block := | else | else_if else_block

else := else '{' stmt+ '}'

else_if := else if '(' expr ')' '{' stmt+ '}'

step_expr := | step expr | restrictions

expr := arithmatic_expr | logical_expr | epoch_expr

 | reduction_expr | field_access | array_access

 | function_call | constant | assignment_expr

epoch_expr := expr at (current lag)

lag := | „-„ [0-9]+

reduction_expr := reduce '(' Reduction_Fn ',' expr ')'

Reduction_Fn := Variable_Name

function_call := Variable_Name '(' args ')'

Coordinator Program Definition

coordinator := Program '(' Variable_Name ')' '{' meta_code '}'

meta_code := meta_stmt+

meta_stmt := stmt | special_stmt

special_stmt := create_obj | task_invoke

create_obj := new dynamic_type | New static_type '(' obj_args ')'

obj_args := | obj_arg | obj_args ',' obj_arg

obj_arg := Variable_Name ':' expr

task_invoke := execute '(' task „:‟ Task_Name ';' environment „:‟ env optional_secs)

env := Variable_Name

optional_secs := | ';' optional_sec | ';' optional_sec ';' optional_sec

optional_sec := section ':' args

section := initialize | partition

Function Definition

function := Function Variable_Name ':' in_out function_body

30 | P a g e

February 3, 2016

in_out := output | input output

input := Arguments ':' definitions

output := Results ':' definitions

function_body := Compute ':' code

Appendix B: IT Data File Formats
Currently IT supports both binary and text data files for input/output of lists and arrays. Layout of content in both

file formats is the same. The only difference is data items are separated by a space in a text file while they do not

have any gaps in-between in a binary file. The metadata describing the content layout and other information lies at

the end of the file after the content – except for the collection type, which is specified at the beginning. Therefore,

the general structure of an input/output file is as follows.

Collection Type

Text or binary content

Metadata describing the content

A file‟s format is distinguished by its extension. A binary file ends with the „.bin‟ and a text file with the „.txt‟

extensions. The content is laid out in the row major order in both cases.

Since arrays can hold lists and vice versa, there are four possible values for collection types: Array, List, Array of

Lists, and List of Arrays. Note that the type of collection elements is not needed as that is determined from the

context of the program where file reading/writing is done.

For a regular array holding elements of static types, the terminal metadata just gives the dimension lengths in the

format “dimension-0-length*dimension-1-length*dimension-2-length*…” and for a regular list the metadata gives

its length. Thus a 10-by-10 matrix and a list of 100 points should have the following data file structures.

Array List

Text or binary content Text or binary content

10*10 100

For both Array of Lists and List of Arrays, the next to last metadata element holds a directory. Each entry of the

directory provides the length information of the individual elements of the collection and the locations they begin

from in the format „beginning:length.‟ The directory is laid out, again, in the row major order. So a list holding

three matrices and a 2-by-2 matrix holding 4 lists should have the following data layout.

List of Arrays Array of Lists

matrix-0-content matrix-1-content matrix-2-content list-00-content list-01-content list-10-content list-11-content

0:10*10 100:3*3 110:100*5000 0:15 15:100 115:2 117:1000

3 2*2

Appendix C: Program Examples

LU Factorization

The traditional LU Factorization algorithm suffers from bad memory/cache reuse characteristics. It proceeds

diagonally by adding one more column in the lower and one more row in the upper triangular matrices respectively.

At each step of the algorithm, however, the entire remaining portion of the upper triangular matrix needs to be

updated based on the most recently calculated row and column. Updating the remaining part of the upper triangular

matrix is the most time consuming part of the algorithm and dominates its asymptotic running time. Unfortunately,

for bigger matrices this step results in a lot of cache thrashing too.

31 | P a g e

February 3, 2016

The logic behind a better algorithm is that most rows of the remaining part of the upper triangular matrix are not

needed immediately. Therefore, it is wasteful to update them in each step. Rather, only a portion of those rows

should be updated for a certain number of iterations. Then the remaining stale part can be updated using a SAXPY

(c = αc + βa×b) calculation – that has much better memory reuse – from the up-to-date rows. The asymptotic

runtime of both algorithms are the same but the gain through memory reuse is massive in many architectures.

In IT the modified algorithm can be easily represented using two tasks, one for the factorization part and another for

the SAXPY part. A third task is used to initialize the upper and lower triangular matrices from the input argument

matrix.

Program (args) {

 blockSize = args.block_size

 initEnv = new TaskEnvironment(name: "Initiate LU")

 bind_input(initEnv, "a", args.argument_matrix_file)

// a straightforward initializer task prepares the initial state of upper and lower triangular matrix from the argument matrix

 execute(task: "Initiate LU"; environment: initEnv)

 luEnv = new TaskEnvironment(name: "Transposed LU Factorization")

 luEnv.u = initEnv.u

 luEnv.l = initEnv.l

 rows = initEnv.a.dimension1.range

 max1 = rows.max

 max2 = initEnv.a.dimension2.range.max

 do in sequence {

 lastRow = k + blockSize - 1

 if (lastRow > max1) { lastRow = max1 }

 range = new Range(min: k, max: lastRow)

// a modified LU factorization tasks execute all stages of a traditional LU factorization with the exception that instead of

// updating the entire remaining portion of the upper triangular matrix in each iteration of the algorithm it only updates a

// block of rows going to be used in the remaining iterations

 execute(task: "Transposed LU Factorization"; environment: luEnv; initialize: range)

 if (lastRow < max1) {

 saxpyEnv = new TaskEnvironment(name: "SAXPY")

 saxpyEnv.a = luEnv.u[(lastRow + 1)...max1][k...lastRow]

 saxpyEnv.b = luEnv.l[k...lastRow][(lastRow + 1)...max2]

 saxpyEnv.c = luEnv.u[(lastRow + 1)...max1][(lastRow + 1)...max2]

 // after the modified LU factorization finishes a SAXPY task updates the stale contents of the upper triangular

// matrix using the recently updated block of lower and upper triangular matrices

 execute(task: "SAXPY"; environment: saxpyEnv; partition: args.k, args.l, args.q)

 }

 } for k in rows step blockSize

 bind_output(luEnv, "u", args.upper_matrix_file)

 bind_output(luEnv, "l", args.lower_matrix_file)

 bind_output(luEnv, "p", args.pivot_matrix_file)

}

Task "Initiate LU":

 Define:

 a, u, l: 2d Array of Real double-precision

 Environment:

 a: link

 u, l: create

 Initialize:

32 | P a g e

February 3, 2016

 u.dimension1 = l.dimension1 = a.dimension2

 u.dimension2 = l.dimension2 = a.dimension1

 Stages:

 prepare(a, u, l) {

 do { u[j][i] = a[i][j] } for i, j in a

 do { l[i][i] = 1 } for i in l

 }

 Computation:

 Space A { prepare(a, u, l) }

 Partition:

 Space A <1d> { a<dim2>, u<dim1>, l<dim1>: stride() }

Task "Transposed LU Factorization":

 Define:

 u, l: 2d Array of Real double-precision

 p: 1d Array of Integer

 pivot, k: Integer

 l_row, p_column: 1d Array of Real double-precision

 k_range: Range

 Environment:

 u, l: link

 p: link-or-create

 Initialize (k_range):

 p.dimension = p_column.dimension = u.dimension1

 l_row.dimension = l.dimension2

 Stages:

 selectPivot(pivot, u, k) { do { pivot = reduce ("maxEntry", u[k][j]) } for j in u and j >= k }

 storePivot(p, k, pivot) { p[k] = pivot }

 interchangeRows(u, l, pivot, k) {

 do { pivot_entry = u[i][k]

 u[i][k] = u[i][pivot]

 u[i][pivot] = pivot_entry

 } for i in u and i >= k

 do { pivot_entry = l[i][k]

 l[i][k] = l[i][pivot]

 l[i][pivot] = pivot_entry

 } for i in l and i < k

 }

 updateLower(k, u, l, l_row) {

 do { l[k][j] = u[k][j] / u[k][k]

 u[k][j] = 0

 l_row[j] = l[k][j]

 } for j in l and j > k

 }

 updateUpperRows(u, l_row, k, k_range) {

 do { u[i][j] = u[i][j] - l_row[j] * u[i][k] } for i, j in u and i > k and i <= k_range.max and j > k

 }

 retrieveLowerPart(p_column, l, k, k_range) {

 do { p_column[i] = l[i][k] } for i in l and i >= k_range.min and i < k

 }

 updateUpperColumns(u, p_column, k, k_range) {

 do { u[i][k] = u[i][k] - u[i][j] * p_column[j]

 } for i, j in u and i > k_range.max and j >= k_range.min and j < k

 }

 Computation:

 Space A {

 Repeat for k in k_range {

 Space B {

 Where k in u.local.dimension1.range { selectPivot(pivot, u, k) }

 }

 storePivot(p, k, pivot)

33 | P a g e

February 3, 2016

 Space B {

 interchangeRows(u, l, pivot, k)

 Where k in l.local.dimension1.range { updateLower(k, u, l, l_row) }

 updateUpperRows(u, l_row, k, k_range)

 }

 retrieveLowerPart(p_column, l, k, k_range)

 Space B {

 updateUpperColumns(u, p_column, k, k_range)

 }

 }

 }

 Partition:

 Space A <un-partitioned> { p, p_column, l }

 Space B <1d> divides Space A partitions {

 u<dim1>, l<dim1>: stride()

 l_row, p_column: replicated

 }

Task "SAXPY":

 Define:

 a, b, c: 2d Array of Real double-precision

 Environment:

 a, b, c: link

 Stages:

 multiplySubtract(c, a, b) {

 do {

 do { total = reduce ("sum", a[i][k] * b[k][j]) } for k in a

 c[i][j] = c[i][j] - total

 } for i, j in c

 }

 Computation:

 Space A {

 Repeat foreach sub-partition {

 multiplySubtract(c, a, b)

 }

 }

 Partition (k, l, q):

 Space A <2d> {

 c: block_size(k, l)

 a: block_size(k), replicated

 b: replicated, block_size(l)

 Sub-partition <1d> <unordered> {

 a<dim2>, b<dim1>: block_size(q)

 }

 }

Iterative Stencil

In an iterative stencil program, the fixed point state of an object of interest is computed by iteratively updating the

values of its element cells from the values of their neighboring cells. This update is done a maximum number of

times, as done in the algorithm implemented here, or until the state change of the object in successive iterations

becomes negligible. There are several different methods for calculating a cell value from its neighbor. A common

technique is the Jacobi iteration where a cell‟s value for the next iteration is the average of the current values of its

neighbors. This technique is used to compute heat propagation on a 2D heated plate in the IT program given here.

A parallel implementation of the heated plate problem divides the plates into slabs/chunks and let different

processors to update states of individual slabs. The nature of this computation requires that boundary regions of

adjacent slabs overlap; otherwise the boundary cells of each slab cannot be updated properly. Consequently, the slab

boundaries needed to be synchronized every so often, depending on the size of the overlapping.

34 | P a g e

February 3, 2016

The IT implementation presented here uses two levels of partition for the plate. First, the plate is divided into bigger

2D slabs with a larger boundary overlapping among them. Then individual slabs are further divided into smaller 2D

slabs with a relatively smaller boundary overlapping among the latter. This allows to restrict the synchronization of

boundaries within the confinement of each upper level slabs for a certain number of iterations. After that, the upper

level slabs can be synchronized.

This kind of breakdown comes in handy when mapping the task into hierarchical architectures where there are great

differences in the communication overhead at different hardware levels. For example, MPI communication overhead

compared to copying data from one location to another of the memory in a distributed shared memory machine.

Program (args) {

 stencilEnv = new TaskEnvironment(name: "Five Points Stencil")

 bind_input(stencilEnv, "plate", args.input_file)

 bind_output(stencilEnv, "plate", args.output_file)

 iterations = args.iterations

 p = args.p

 k = args.k

 l = args.l

 m = args.m

 n = args.n

 execute(task: "Five Points Stencil"; environment: stencilEnv; initialize: iterations; partition: p, k, l, m, n)

}

Task "Five Points Stencil":

 Define:

 plate: 2d Array of Real single-precision

 max_iterations: Integer

 counter_1, counter_2, counter_3: Integer

 Environment:

 plate: link

 Initialize (max_iterations):

 Stages:

 refineEstimates(plate) {

 localRows = plate.dimension1.range

 localCols = plate.dimension2.range

 do { plate[i][j] at (current) \

 = 1/4 * (plate[i-1][j] \

 + plate[i+1][j] \

 + plate[i][j-1] \

 + plate[i][j+1]) at (current - 1)

 } for i, j in plate \

 and (i > localRows.min and i < localRows.max) \

 and (j > localCols.min and j < localCols.max)

 }

 Computation:

 // the whole computation should iterate for max_iterations number of times

 Repeat for counter_1 in [1...max_iterations] {

 // after partition.p1 / partition.p2 upper level iterations the flow should exit for upper level padding

// synchronization

 Space A {

 Repeat for counter_2 in [1...partition.p1] step partition.p2 {

 // after partition.p2 iterations the flow should exit Space B for lower level

// padding synchronization

 Space B {

 Repeat for counter_3 in [1...partition.p2] {

 // epoch needs to be advanced after each refinement step

 Epoch {

 refineEstimates(plate)

35 | P a g e

February 3, 2016

 }

 }

 }

 }

 }

 }

 Partition (k, l, m, n, p1, p2):

 Space A <2d> {

 plate: block_size(k, l) padding(p1)

 }

 Space B <2d> divides Space A partitions {

 plate: block_size(m, n) padding(p2)

 }

Radix Sort

The parallel radix sort algorithm presented here is a simplified version of efficient GPGPU radix sort described in

[20]. The IT implementation gets rid of GPGPU specific instructions and portrays the core idea behind the

algorithm. In a parallel architecture, a radix sort is preferable to a quick sort due to the former‟s good scaling

characteristics and the algorithm of [20] displays massive performance gain in GPGPU architectures.

The algorithm works for different radix values and implements the radix sort algorithm as multiple rounds of

distribution sort. Each round of the distribution sort has three steps. First, each partition calculates the number of

keys it has with different values (0 to radix - 1) at the current digit place of interest. Then those counts get summed

up in a single location that gives the starting indexes for keys in individual partitions. Using that information, each

partition can calculate the exact relocation offset for the keys it has. Finally, the keys are relocated to those offsets.

The algorithm maps quite well in IT model as a dual space computation as given below.

Program (args) {

 rdSortEnv = new TaskEnvironment(name: "Radix Sort")

 bind_input(rdSortEnv, "keys", args.input_file)

 bind_output(rdSortEnv, "keys", args.output_file)

 digits = args.digits

 key_size = args.key_size

 p = args.p

 execute(task: "Radix Sort"; environment: rdSortEnv; initialize: digits, key_size; partition: p)

}

Task "Radix Sort":

 Define:

 keys, scatter_offsets, l: 1d Array of Integer

 f: 1d Array of Boolean

 g: 2d Array of Integer

 radix, digits, round, r: Integer

 sorting_rounds: Range

 Environment:

 keys: link

 Initialize (digits, key_size):

 radix = 2 ** digits

 scatter_offsets.dimension = f.dimension = l.dimension = keys.dimension

 g.dimension1.range.min = 0

 g.dimension1.range.max = partition.p - 1

 g.dimension2.range.min = 0

 g.dimension2.range.max = radix - 1

 sorting_rounds.min = 0

 sorting_rounds.max = key_size / digits - 1

 Stages:

36 | P a g e

February 3, 2016

 digitDecoding(radix, r, keys, flags) {

 max = radix - 1

 ones = max << (round * digits)

 r_value = r << (round * digits)

 do {

 if ((keys[i] & ones) == r_value) { flags[i] = 1 } else { flags[i] = 0 }

 } for i in keys

 }

 reduction(result, flags, operator) {

 do { total = reduce(operator, flags[i]) } for i in flags

 result = total

 }

 multiLevelScan(g) {

 current_sum = 0

 do in sequence {

 do in sequence {

 current_value = g[i][rd]

 g[i][rd] = current_sum

 current_sum = current_sum + current_value

 } for i in g.dimension1.range

 } for rd in g.dimension2.range

 }

 determineScatterOffsets(g, f, scatter_offsets, r) {

 current_sum = g[g.local.dimension1.range.min][r]

 do in sequence {

 if (f[i]) {

 scatter_offsets[i] = current_sum

 current_sum = current_sum + 1

 }

 } for i in f.dimension1.range

 }

 rearrangeKeys(keys, scatter_offsets) {

 do { keys[scatter_offsets[i]] at (current) = keys[i] at (current - 1) } for i in keys

 }

 Computation:

 Space A {

 // repeat from the beginning to have as many rounds of distribution sort as required by the size of the keys

 Repeat for round in sorting_rounds {

 // calculate the number of keys that have different values for the current digit place in each partition

 Space B {

 Repeat for r in g.dimension2.range {

 // determine which keys in the array have r in the current digit place

 digitDecoding(radix, r, keys, l)

 // determine the total number of local keys that have 1 in the current digit

// place for value r

 reduction(g[g.local.dimension.range.min][r], l, "sum")

 }

 }

 // determine the starting offsets for the entries belonging to different partitions for various values for

// the current digit place

 multiLevelScan(g)

 Space B {

 // do the final offset calculation for keys in the current round for all values in the current

// digit place

 Repeat for r in g.dimension2.range {

 // again, determine which keys in the array have r in the current digit place

 digitDecoding(radix, r, keys, f)

 // determine the distribution offsets of keys respective to the first key with r

// at the digit place

determineScatterOffsets(g, f, scatter_offsets, r)

 }

37 | P a g e

February 3, 2016

 }

 // finally shuffle the keys based on the calculated scatter offsets to finish one round of the

// distribution sort

 Epoch {

 rearrangeKeys(keys, scatter_offsets)

 }

 }

 }

 Partition (p):

 Space A <un-partitioned> {

 keys, g, scatter_offsets

 }

 Space B <1D> divides Space A partitions {

 keys, scatter_offsets, f, l: block_count(p)

 g<dim1>: block_size(1)

 }

Bibliography
[1] Gregory R. Andrews. Concurrent Programming: Principles and Practice. Benjamin-Cummings Publishing

Co., Inc., Redwood City, CA, USA, 1991.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt

Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick.

The landscape of parallel computing research: A view from berkeley. Technical report, TECHNICAL REPORT, UC

BERKELEY, 2006.

[3] Michael Bauer, John Clark, Eric Schkufza, and Alex Aiken. Programming the memory hierarchy revisited:

Supporting irregular parallelism in sequoia. SIGPLAN Not., 46(8):13–24, February 2011.

[4] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality and

independence with logical regions. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’12, pages 66:1–66:11, Los Alamitos, CA, USA, 2012. IEEE

Computer Society Press.

[5] Filip Blagojevic, Paul Hargrove, Costin Iancu, and Katherine Yelick. Hybrid pgas runtime support for

multicore nodes. Ín Proceedings of the Fourth Conference on Partitioned Global Address Space Programming

Model, PGAS ’10, pages 3:1–3:10, New York, NY, USA, 2010. ACM.

[6] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and

Yuli Zhou. Cilk: An efficient multithreaded runtime system. SIGPLAN Not., 30(8):207–216, August 1995.

[7] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1997.

[8] Franck Cappello and Daniel Etiemble. Mpi versus mpi+openmp on ibm sp for the nas benchmarks. In

Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Supercomputing ’00, Washington, DC, USA,

2000. IEEE Computer Society.

[9] Francesco Cesarini and Simon Thompson. ERLANG Programming. O’Reilly Media, Inc., 1st edition, 2009.

38 | P a g e

February 3, 2016

[10] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the chapel language. Int. J.

High Perform. Comput. Appl., 21(3):291–312, August 2007.

[11] Bradford L. Chamberlain, Sung-Eun Choi, E. Christopher Lewis, Calvin Lin, Lawrence Snyder, and

W. Derrick Weathersby. Zpl: A machine independent programming language for parallel computers. IEEE Trans.

Softw. Eng., 26(3):197–211, March 2000.

[12] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,

Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to non-uniform cluster computing.

SIGPLAN Not., 40(10):519–538, October 2005.

[13] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.

Computational Science Engineering, IEEE, 5(1):46–55, 1998.

[14] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter. Partitioned

global address space languages. ACM Comput. Surv., 47(4):62:1–62:27, May 2015.

[15] Tarek El-Ghazawi and Lauren Smith. Upc: Unified parallel c. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[16] Karl Furlinger, Colin Glass, Jose Gracia, Andreas Knupfer, Jie Tao, Denis HÃ¼nich, Kamran Idrees, Matthias

Maiterth, Yousri Mhedheb, and Huan Zhou. Dash: Data structures and algorithms with support for hierarchical

locality. In LuÃ­s Lopes, Julius Å½ilinskas, Alexandru Costan, RobertoG. Cascella, Gabor Kecskemeti, Emmanuel

Jeannot, Mario Cannataro, Laura Ricci, Siegfried Benkner, Salvador Petit, Vittorio Scarano, JosÃ© Gracia, Sascha

Hunold, StephenL. Scott, Stefan Lankes, Christian Lengauer, JesÃºs Carretero, Jens Breitbart, and Michael

Alexander, editors, Euro-Par 2014: Parallel Processing Workshops, volume 8806 of Lecture Notes in Computer

Science, pages 542–552. Springer International Publishing, 2014.

[17] David Gelernter and Nicholas Carriero. Coordination languages and their significance. Commun. ACM,

35(2):97–107, February 1992.

[18] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, August 1978.

[19] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles Packer. Paramesh:

A parallel adaptive mesh refinement community toolkit. Computer Physics Communications, 126(3):330 – 354,

2000.

[20] Duane G. Merrill and Andrew S. Grimshaw. Revisiting sorting for gpgpu stream architectures. In

Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques, PACT ’10,

pages 545–546, New York, NY, USA, 2010. ACM.

[21] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with cuda.

Queue, 6(2):40–53, March 2008.

[22] Robert W. Numrich and John Reid. Co-array fortran for parallel programming. SIGPLAN Fortran Forum,

17(2):1–31, August 1998.

[23] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Comprehensive Step-by-step Guide.

Artima Incorporation, USA, 1st edition, 2008.

39 | P a g e

February 3, 2016

[24] Kunle Olukotun. Beyond parallel programming with domain specific languages. SIGPLAN Not., 49(8):179–

180, February 2014.

[25] Lawrence Snyder. Annual review of computer science vol. 1, 1986. chapter Type Architectures, Shared

Memory, and the Corollary of Modest Potential, pages 289–317. Annual Reviews Inc., Palo Alto, CA, USA, 1986.

[26] Jr. Steele, GuyL., Eric Allen, David Chase, Christine Flood, Victor Luchangco, Jan-Willem Maessen, and

Sukyoung Ryu. Fortress (sun hpcs language). In David Padua, editor, Encyclopedia of Parallel Computing, pages

718–735. Springer US, 2011.

[27] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard for

heterogeneous computing systems. Computing in Science & Engineering, 12(3):66–73, 2010.

[28] S. Tomov, J. Dongarra, V. Volkov, and J. Demmel. Magma library version 0.1, 2009.

[29] David W. Walker, David W. Walker, Jack J. Dongarra, and Jack J. Dongarra. Mpi: A standard message

passing interface. Supercomputer, 12:56–68, 1996.

[30] Muhammad N. Yanhaona and Andrew S. Grimshaw. The partitioned parallel processing spaces (pcubes)

type architecture. Technical report, Technical Report, UVA Computer Science, 2014.

[31] Muhammad N. Yanhaona and Andrew S. Grimshaw. A roadmap for a type architecture based parallel

programming language. In Proceedings of the 2015 International Workshop on Code Optimisation for Multi and

Many Cores, COSMIC ’15, pages 7:1–7:10, New York, NY, USA, 2015. ACM.

[32] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krishnamurthy, Paul

Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken. Titanium: A high-performance java dialect. In In

ACM, pages 10–11, 1998.

