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Abstract— In the past decade, extending the keyword search
paradigm to relational data has been an active area of research
within the database and information retrieval (IR) community.
A large number of approaches have been proposed and im-
plemented, but despite numerous publications, there remains a
severe lack of standardization for system evaluations. This lack
of standardization has resulted in contradictory results from
different evaluations, and the numerous discrepancies muddle
what advantages are proffered by different approaches. In this
paper, we present a thorough empirical performance evaluation
of relational keyword search systems. Our results indicate that
many existing search techniques do not provide acceptable
performance for realistic retrieval tasks. In particular, memory
consumption precludes many search techniques from scaling
beyond small datasets with tens of thousands of vertices. We
also explore the relationship between execution time and factors
varied in previous evaluations; our analysis indicates that these
factors have relatively little impact on performance. In summary,
our work confirms previous claims regarding the unacceptable
performance of these systems and underscores the need for
standardization—as exemplified by the IR community—when
evaluating these retrieval systems.

I. INTRODUCTION

The ubiquitous search text box has transformed the way
people interact with information. Nearly half of all Internet
users use a search engine daily [10], performing in excess
of 4 billion searches [11]. The success of keyword search
stems from what it does not require—namely, a specialized
query language or knowledge of the underlying structure of
the data. Internet users increasingly demand keyword search
interfaces for accessing information, and it is natural to
extend this paradigm to relational data. This extension has
been an active area of research throughout the past decade.
However, we are not aware of any research projects that
have transitioned from proof-of-concept implementations to
deployed systems. We posit that the existing, ad hoc evaluations
performed by researchers are not indicative of these systems’
real-world performance, a claim that has surfaced recently in
the literature [1], [5], [33].

Despite the significant number of research papers being
published in this area, existing empirical evaluations ignore or

only partially address many important issues related to search
performance. Baid et al. [1] assert that existing systems have
unpredictable performance, which undermines their usefulness
for real-world retrieval tasks. This claim has little support
in the existing literature, but the failure for these systems to
gain a foothold implies that robust, independent evaluation
is necessary. In part, existing performance problems may
be obscured by experimental design decisions such as the
choice of datasets or the construction of query workloads.
Consequently, we conduct an independent, empirical evaluation
of existing relational keyword search techniques using a
publicly available benchmark to ascertain their real-world
performance for realistic query workloads.

A. Overview of Relational Keyword Search

Keyword search on semi-structured data (e.g., XML) and
relational data differs considerably from traditional IR.1 A
discrepancy exists between the data’s physical storage and
a logical view of the information. Relational databases are
normalized to eliminate redundancy, and foreign keys identify
related information. Search queries frequently cross these
relationships (i.e., a subset of search terms is present in one
tuple and the remaining terms are found in related tuples),
which forces relational keyword search systems to recover
a logical view of the information. The implicit assumption
of keyword search—that is, the search terms are related—
complicates the search process because typically there are many
possible relationships between two search terms. It is almost
always possible to include another occurrence of a search term
by adding tuples to an existing result. This realization leads
to tension between the compactness and coverage of search
results.

Figure 1 provides an example of keyword search in relational
data. Consider the query “Switzerland Germany” where the user
wants to know how the two countries are related. The borders
relation indicates that the two countries are adjacent. However,

1In this paper, we focus on keyword search techniques for relational data,
and we do not discuss approaches designed for XML.



Country

Code Name Capital

A Austria Vienna
CH Switzerland Bern
D Germany Berlin
F France Paris

FL Liechtenstein Vaduz
I Italy Rome

Borders

C1 C2 Length

A D 784
A I 430

CH A 164
CH D 334
CH F 573
CH I 740
F D 451

FL A 37
FL CH 41

Query: “Switzerland Germany”

Results:
1 Switzerland ← [borders] → Germany
2 Switzerland ← [borders] → Austria ← [borders] → Germany
2 Switzerland ← [borders] → France ← [borders] → Germany
4 Switzerland ← [borders] → Italy ← [borders] → Austria ← [borders] →

Germany
4 Switzerland ← [borders] → Italy ← [borders] → France ← [borders] →

Germany
4 Switzerland ← [borders] → Liechtenstein ← [borders] → Austria ←

[borders] → Germany
7 Switzerland ← [borders] → Austria ← [borders] → Italy ← [borders] →

France ← [borders] → Germany

Fig. 1. Example relational data from the MONDIAL database (left) and search results (right). The search results are ranked by size (number of tuples), which
accounts for the ties in the list.

Switzerland also borders Austria, which borders Germany;
Switzerland borders France, which borders Germany; etc. As
shown on the right in the figure, we can continue to construct
results by adding intermediary countries, and we are only
considering two relations and a handful of tuples from a much
larger database!

Creating coherent search results from discrete tuples is the
primary reason that searching relational data is significantly
more complex than searching unstructured text. Unstructured
text allows indexing information at the same granularity as
the desired results (e.g., by documents or sections within
documents). This task is impractical for relational data because
an index over logical (or materialized) views is considerably
larger than the original data [1], [31].

B. Contributions and Outline

As we discuss later in this paper, many relational keyword
search systems approximate solutions to intractable prob-
lems. Researchers consequently rely on empirical evaluation
to validate their heuristics. We continue this tradition by
evaluating these systems using a benchmark designed for
relational keyword search. Our holistic view of the retrieval
process exposes the real-world tradeoffs made in the design
of many of these systems. For example, some systems use
alternative semantics to improve performance while others
incorporate more sophisticated scoring functions to improve
search effectiveness. These tradeoffs have not been the focus
of prior evaluations.

The major contributions of this paper are as follows:
• We conduct an independent, empirical performance eval-

uation of 7 relational keyword search techniques, which
doubles the number of comparisons as previous work.

• Our results do not substantiate previous claims regarding
the scalability and performance of relational keyword
search techniques. Existing search techniques perform
poorly for datasets exceeding tens of thousands of vertices.

• We show that the parameters varied in existing evaluations
are at best loosely related to performance, which is likely
due to experiments not using representative datasets or
query workloads.

• Our work is the first to combine performance and search
effectiveness in the evaluation of such a large number of

systems. Considering these two issues in conjunction pro-
vides better understanding of these two critical tradeoffs
among competing system designs.

The remainder of this paper is organized as follows. In
Section II, we motivate this work by describing existing
evaluations and why an independent evaluation of these systems
is warranted. Section III formally defines the problem of
keyword search in relational data graphs and describes the
systems included in our evaluation. Section IV describes our
experimental setup, including our evaluation benchmark and
metrics. In Section V, we describe our experimental results,
including possible threats to validity. We review related work
in Section VI and provide our conclusions in Section VII.

II. MOTIVATION FOR INDEPENDENT EVALUATION

Most evaluations in the literature disagree about the perfor-
mance of various search techniques, but significant experimen-
tal design differences may account for these discrepancies. We
discuss three such differences in this section.

A. Datasets

Table I summarizes the datasets and the number of queries
used in previous evaluations.2 Although this table suggests
some uniformity in evaluation datasets, their content varies
dramatically. Consider the evaluations of BANKS-II [17],
BLINKS [13], and STAR [18]. Only BANKS-II’s evaluation
includes the entire Digital Bibliography & Library Project
(DBLP)3 and the Internet Movie Database (IMDb) dataset. Both
BLINKS and STAR use smaller subsets to facilitate comparison
with systems that assume the data graph fits entirely within main
memory. The literature does not address the representativeness
of database subsets, which is a serious threat because the choice
of a subset has a profound effect on the experimental results.
For example, a subset containing 1% of the original data is two
orders of magnitude easier to search than the original database
due to fewer tuples containing search terms.

2Omitted table entries indicate that the information was not provided in the
description of the evaluation.

3http://dblp.uni-trier.de/



TABLE I
STATISTICS FROM PREVIOUS EVALUATIONS

System Dataset |V | |E| |Q|

BANKS [2] bibliographic 100K 300K 7
DISCOVER [15] TPC-H 200

DISCOVER-II [14] DBLP 100
BANKS-II [17] DBLP 2M 9M 200

IMDb 2M 9M
Liu et al. [21] lyrics 196K 192K 50

DPBF [8] DBLP 7.9M 500
MovieLens 1M 1M 600

BLINKS [13] DBLP 409K 591K 60
IMDb 68K 248K 40

SPARK [22] DBLP 882K 1.2M 18
IMDb 9.8M 14.8M 22
MONDIAL 10K 35

EASE [20] DBLife 10K 5
DBLP 12M 5
MovieLens 1M 5
previous 3 5

Golenberg et al. [12] MONDIAL 36
BANKS-III [6] DBLP 1.8M 8.5M 8

IMDb 1.7M 1.9M 4
STAR [18] DBLP 15K 150K 180

IMDb 30K 80K 180
YAGO 1.7M 14M 120

Legend
|V | number of nodes (tuples)
|E| number of edges in data graph

|Q| number of queries
in workload

B. Query Workloads

The query workload is another critical factor in the evaluation
of these systems. The trend is for researchers either to create
their own queries or to create queries from terms selected
randomly from the corpus. The latter strategy is particularly
poor because queries created from randomly-selected terms
are unlikely to resemble real user queries [23]. The number
of queries used to evaluate these systems is also insufficient.
The traditional minimum for evaluating retrieval systems is
50 queries [32] and significantly more may be required to
achieve statistical significance [34]. Only two evaluations that
use relatistic query workloads meet this minimum number of
information needs.

C. Experimental Discrepancies

Discrepancies among existing evaluations are prevalent.
Table II lists the mean execution times of systems from three
evaluations that use DBLP and IMDb databases. The table rows
are search techniques; the columns are different evaluations
of these techniques. Empty cells indicate that the system
was not included in that evaluation. According to its authors,
BANKS-II “significantly outperforms” [17] BANKS, which
is supported by BANKS-II’s evaluation, but the most recent
evaluation contradicts this claim especially on DBLP. Likewise,
BLINKS claims to outperform BANKS-II “by at least an order
of magnitude in most cases” [13], but when evaluated by other
researchers, this statement does not hold.

We use Table II to motivate two concerns that we have re-
garding existing evaluations. First, the difference in the relative
performance of each system is startling. We do not expect the

TABLE II
EXAMPLE OF CONTRADICTORY RESULTS IN THE LITERATURE

execution time (s) E
valuation

DBLP IMDb

System [17] [13] [18] [17] [13] [18]

BANKS [2] 14.8 5.9 5.0 10.6
BANKS-II [17] 0.7 44.7 7.9 0.6 5.9 6.6

BLINKS [13] 1.2 19.1 0.2 2.8
STAR [18] 1.2 1.6

most recent evaluation to downgrade the orders of magnitude
performance improvements to performance degradations, which
is the certainly the case on the DBLP dataset. Second, the
absolute execution times for the search techniques vary widely
across different evaluations. The original evaluation of each
system claims to provide “interactive” response times (on the
order of a few seconds),4 but other evaluations strongly refute
this claim.

III. RELATIONAL KEYWORD SEARCH SYSTEMS

Given our focus on empirical evaluation, we adopt a general
model of keyword search over data graphs. This section presents
the search techniques included in our evaluation; other relational
keyword search techniques are mentioned in Section VI.

Problem definition: We model a relational database as a
graph G = (V,E). Each vertex v ∈ V corresponds to a tuple
in the relational database. An edge (u, v) ∈ E represents each
relationship (i.e., foreign key) in the relational database. Each
vertex is decorated with the set of terms it contains. A query
Q comprises a list of terms. A result for Q is a tree T that
is reduced with respect to Q′ ⊆ Q; that is, T contains all the
terms of Q′ but no proper subtree that also contains all of
them.5 Results are ranked in decreasing order of their estimated
relevance to the information need expressed by Q.

A. Schema-based Systems

Schema-based approaches support keyword search over
relational databases via direct execution of SQL commands.
These techniques model the relational schema as a graph where
edges denote relationships between tables. The database’s full
text indices identify all tuples that contain search terms, and a
join expression is created for each possible relationship between
these tuples.

DISCOVER [15] creates a set of tuples for each subset of
search terms in the database relations. A candidate network is a
tree of tuple sets where edges correspond to relationships in the
database schema. DISCOVER enumerates candidate networks
using a breadth-first algorithm but limits the maximum size
to ensure efficient enumeration. A smaller size improves
performance but risks missing results. DISCOVER creates
a join expression for each candidate network, executes the join

4BANKS claims that most queries “take about a second to a few seconds”
the execute against a bibliographic database [2].

5Alternative semantics are also possible—e.g., defining a result as a
graph [19], [20], [28].



expression against the underlying database to identify results,
and ranks these results by the number of joins.

Hristidis et al. [14] refined DISCOVER by adopting pivoted
normalization scoring [30] to rank results:∑

t∈Q

1 + ln(1 + ln tf)

1− s+ s · dl
avgdl

· qtf · ln
(
N + 1

df

)
(1)

where t is a query term, (q)tf is the frequency of the (query)
term, s is a constant (usually 0.2), dl is the document length,
avgdl is the mean document length, N is the number of
documents, and df is the number of documents that contain
t. The score of each attribute (i.e., a document) in the tree
of tuples is summed to obtain the total score. To improve
scalability, DISCOVER-II creates only a single tuple set for
each database relation and supports top-k query processing
because users typically view only the highest ranked search
results.

B. Graph-based Systems

The objective of proximity search is to minimize the weight
of result trees. This task is a formulation of the group Steiner
tree problem [9], which is known to be NP-complete [29].
Graph-based search techniques are more general than schema-
based approaches, for relational databases, XML, and the
Internet can all be modeled as graphs.

BANKS [2] enumerates results by searching the graph
backwards from vertices that contain query keywords. The
backward search heuristic concurrently executes copies of
Dijkstra’s shortest path algorithm [7], one from each vertex
that contains a search term. When a vertex has been labeled
with its distance to each search term, that vertex is the root of
a directed tree that is a result to the query.

BANKS-II [17] augments the backward search heuristic [2]
by searching the graph forwards from potential root nodes.
This strategy has an advantage when the query contains a
common term or when a copy of Dijkstra’s shortest path
algorithm reaches a vertex with a large number of incoming
edges. Spreading activation prioritizes the search but may cause
the bidirectional search heuristic to identify shorter paths after
creating partial results. When a shorter path is found, the
existing results must be updated recursively, which potentially
increases the total execution time.

Although finding the optimal group Steiner tree is NP-
complete, there are efficient algorithms to find the optimal tree
for a fixed number of terminals (i.e., search terms). DPBF [8]
is a dynamic programming algorithm for the optimal solution
but remains exponential in the number of search terms. The
algorithm enumerates additional results in approximate order.

He et al. [13] propose a bi-level index to improve the
performance of bidirectional search [17]. BLINKS partitions
the graph into blocks and constructs a block index and intra-
block index. These two indices provide a lower bound on the
shortest distance to keywords, which dramatically prunes the
search space.

STAR [18] is a pseudopolynomial-time algorithm for the
Steiner tree problem. It computes an initial solution quickly

TABLE III
CHARACTERISTICS OF THE EVALUATION DATASETS

Dataset |V | |E| |T |

MONDIAL 17 56 12
IMDb 1673 6075 1748

Wikipedia 206 785 750

Legend, all values are in thousands
|V | number of nodes (tuples)
|E| number of edges in data graph

|T | number of unique
terms

and then improves this result iteratively. Although STAR
approximates the optimal solution, its approximation ratio is
significantly better than previous heuristics.

IV. EVALUATION FRAMEWORK

In this section, we present our evaluation framework. We
start by describing the benchmark [5] that we use to evaluate
the various keyword search techniques. We then describe the
metrics we report for our experiments and our experimental
setup.

A. Benchmark Overview

Our evaluation benchmark includes the three datasets shown
in Table III: MONDIAL [24], IMDb, and Wikipedia. Two
datasets (IMDb and Wikipedia) are extracted from popular
websites. As shown in Table III, the size of the datasets varies
widely: MONDIAL is more than two orders of magnitude
smaller than the IMDb dataset, and Wikipedia lies in between.
In addition, the schemas and content also differ considerably.
MONDIAL has a complex schema with almost 30 relations
while the IMDb subset has only 6. Wikipedia also has few
relations, but it contains the full text of articles, which
emphasizes more complex ranking schemes for results. Our
datasets roughly span the range of dataset sizes that have been
used in other evaluations (compare Tables I and III).

The benchmark’s query workload was constructed by re-
searchers and comprises 50 information needs for each dataset.
The query workload does not use real user queries extracted
from a search engine log for three reasons. First, Internet
search engine logs do not contain queries for datasets not
derived from websites. Second, many queries are inherently
ambiguous and knowing the user’s original information need
is essential for accurate relevance assessments. Third, many
queries in Internet search engine logs will reflect the limitations
of existing search engines—that is, web search engines are
not designed to connect disparate pieces of information. Users
implicitly adapt to this limitation by submitting few (Nandi
and Jagadish [25] report less than 2%) queries that reference
multiple database entities.

Table IV provides the statistics of the query workload and
relevant results for each dataset. Five IMDb queries are outliers
because they include an exact quote from a movie. Omitting
these queries reduces the maximum number of terms in any
query to 7 and the mean number of terms per query to 2.91.
The statistics for our queries are similar to those reported for



TABLE IV
QUERY AND RESULT STATISTICS

Search log [26] Synthesized Results

Dataset JqK |Q| JqK JqK JRK JRK

MONDIAL 50 1–5 2.04 1–35 5.90
IMDb 2.71 50 1–26 3.88 1–35 4.32
Wikipedia 2.87 50 1–6 2.66 1–13 3.26

Overall 2.37 150 1–26 2.86 1–35 4.49

Legend
|Q| total number of queries
JqK range in number of query terms
JqK mean number of terms per query

JRK range in number of relevant results per query
JRK mean number of relevant results per query

web queries [16] and our independent analysis of query lengths
from a commercial search engine log [26], which suggest that
the queries are similar to real user queries. Example queries
for each dataset are shown in Table V.

B. Metrics

We use two metrics to measure system performance. The
first is execution time, which is the time elapsed from issuing
the query until the system terminates. Because there are a large
number of potential results for each query, systems typically
return only the top-k results where k specifies the desired
retrieval depth. Our second metric is response time, which we
define as the time elapsed from issuing the query until i results
have been returned by the system (where i ≤ k). Because this
definition is not well-defined when fewer than k results are
retrieved by a system, we define it for j, where i < j ≤ k
and i is the number of results retrieved (and k is the desired
retrieval depth), as the system’s execution time.

System performance should not be measured without also
accounting for search effectiveness due to tradeoffs between
runtime and the quality of search results. Precision is the ratio
of relevant results retrieved to the total number of retrieved
results. This metric is important because not every result is

TABLE V
EXAMPLE QUERIES

Dataset Query |R| JrK

MONDIAL city Granada 1 1
Nigeria GDP 1 2
Panama Oman 23 5

IMDb Tom Hanks 1 1
Brent Spiner Star Trek 5 3
Audrey Hepburn 1951 6 3

Wikipedia 1755 Lisbon earthquake 1 1
dam Lake Mead 4 1,3
Exxon Valdez oil spill 6 1,3

Legend
|R| number of relevant results
JrK size of relevant results (number of tuples)

actually relevant to the query’s underlying information need.
Precision @ k (P@k) is the mean precision across multiple
queries where the retrieval depth is limited to k results. If
fewer than k results are retrieved by a system, we calculate the
precision value at the last result. We also use mean average
precision (MAP) to measure retrieval effectiveness at greater
retrieval depths.

C. Experimental Setup

Of the search tecniques described in Section III, we reimple-
mented BANKS, DISCOVER, and DISCOVER-II and obtained
implementations of BANKS-II, DPBF, BLINKS, and STAR.
We corrected a host of flaws in the specifications of these search
techniques and the implementation defects that we discovered.
With the exception of DPBF, which is written in C++, all the
systems were implemented in Java.

The implementation of BANKS adheres to its original
description except that it queries the database dynamically
to identify nodes (tuples) that contain query keywords. Our
implementation of DISCOVER borrows its successor’s query
processing techniques. Both DISCOVER and DISCOVER-II
are executed with the sparse algorithm, which provides the best
performance for queries with AND semantics [14]. BLINKS’s
block index was created using breadth-first partitioning and
contains 50 nodes per block.6 STAR uses the edge weighting
scheme proposed by Ding et al. [8] for undirected graphs.

For our experiments, we executed the Java implementations
on a Linux machine running Ubuntu 10.04 with dual 1.6
GHz AMD Opteron 242 processors and 3 GB of RAM. We
compiled each system using javac version 1.6 and ran the
implementations with the Java HotSpot 64-bit server VM.
DPBF was written in Visual C++ with Windows bindings
and was compiled with Microsoft Visual C++ 2008. Due to
its Windows bindings, DPBF could not be run on the same
machines as the Java implementations. Instead, DPBF was run
on a 2.4 GHz Intel Core 2 quad-core processor with 4 GB
of RAM running Windows XP. We used PostgreSQL as our
database management system.

For all the systems, we limit the size of results to 5 nodes
(tuples) and impose a maximum execution time of 1 hour.
If the system has not terminated after this time limit, we
stop its execution and denote it as a timeout exception. This
threshold seems more than adequate for capturing executions
that would complete within a reasonable amount of time. Unless
otherwise noted, we allow ≈ 2 GB of virtual memory to keep
the experimental setups as similar as possible. If a system
exhausts the total amount of virtual memory, we mark it as
failing due to excessive memory requirements.

V. EXPERIMENTS

Table VI lists the number of queries executed successfully
by each system for our datasets and also the number and types
of exceptions we encountered. Of interest is the number of
queries that either did not complete execution within 1 hour

6Memory overhead increases when the index stores more nodes per block,
and BLINKS’s memory consumption is already considerable.
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Fig. 2. Execution times for a subset of the MONDIAL queries. Note that the y-axis has a log scale and lower is better. The errors bars provide 95% confidence
intervals for the mean. Systems are ordered by publication date and the retrieval depth was 100 results.

TABLE VI
SUMMARIES OF QUERIES COMPLETED AND EXCEPTIONS

System X � � exec. time (s) MAP

BANKS 30 18 2 1886.1 0.287
DISCOVER 50 — — 5.5 0.640

DISCOVER-II 50 — — 5.6 0.511
BANKS-II 50 — — 282.1 0.736

DPBF 50 — — 0.1 0.821
BLINKS 15 — 35 237.7 0.839

STAR 50 — — 0.4 0.597

(a) MONDIAL

System X � � exec. time (s) MAP

BANKS — — 50 — —
DISCOVER 50 — — 220.6 0.097

DISCOVER-II 50 — — 195.0 0.143
BANKS-II — — 50 — —

DPBF — — 50 — —
BLINKS — — 50 — —

STAR — — 50 — —

(b) IMDb

System X � � exec. time (s) MAP

BANKS 6 43 1 3174.3 0.000
DISCOVER 50 — — 32.9 0.335

DISCOVER-II 50 — — 31.8 0.405
BANKS-II 9 40 1 3202.7 0.098

DPBF 50 — — 6.5 0.088
BLINKS — — 50 — —

STAR — — 50 — —

(c) Wikipedia

Legend
X Queries completed successfully (out of 50)
� Timeout exceptions (> 1 hour execution time)
� Memory exceptions (exhausted virtual memory)

exec. mean execution time (in seconds) across all queries

or exhausted the total amount of virtual memory. Most search
techniques complete all the MONDIAL queries with mean
execution times ranging from less than a second to several
hundred seconds. Results for IMDb and Wikipedia are more
troubling. Only DISCOVER and DISCOVER-II complete any
IMDb queries, and their mean execution time is several minutes.
DPBF joins these two systems by completing all the Wikipedia
queries, but all three systems’ mean execution times are less
than ideal, ranging from 6–30 seconds.

To summarize these results, existing search techniques
provide reasonable performance only on the smallest dataset
(MONDIAL). Performance degrades significantly when we
consider a dataset with hundreds of thousands of tuples
(Wikipedia) and becomes unacceptable for millions of tuples
(IMDb). The memory consumption for these algorithms is
considerably higher than reported, preventing most search
techniques from searching IMDb.

In terms of overall search effectiveness (MAP in Table VI),
the various search techniques vary widely. Not surprisingly,
effectiveness is highest for our smallest dataset. The best
systems, DPBF and BLINKS, perform exceedingly well. We
note that these scores are considerably higher than those that
appear in IR venues (e.g., the Text REtreival Conference
(TREC)), which likely reflects the small size of the MONDIAL
database. If we accept DISCOVER and DISCOVER-II’s trend
as representative, we would expect search effectiveness to fall
when we consider larger datasets. Unlike performance, which
is generally consistent among systems, search effectiveness
differs considerably. For examples, DISCOVER-II performs
poorly (relative to the other ranking schemes) for MONDIAL,
but DISCOVER-II proffers the greatest search effectiveness
on IMDb and Wikipedia. Ranking schemes that perform well
for MONDIAL queries are not necessarily good for Wikipedia
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Fig. 3. Boxplots of the execution times of the systems for all the MONDIAL
queries’ execution times (lower is better). Note that the y-axis has a log scale.
Systems are ordered by publication date and the retrieval depth was 100 results.

queries. Hence it is important to balance performance concerns
with a consideration of search effectiveness.

Given the few systems that complete the queries for IMDb
and Wikipedia, we focus on results for the MONDIAL dataset
in the remainder of this section.

A. Execution Time

Figure 2 displays the total execution time for each system on
a selection of MONDIAL queries, and Figure 3 shows boxplots
of the execution times for all queries on the MONDIAL dataset.
Bars are omitted for queries that a system failed to complete
(due to either timing out or exhausting memory). As indicated
by the error bars in the graph, our execution times are repeatable
and consistent. Figures 2 and 3 confirm the performance trends
in Table VI but also illustrate the variation in execution time
among different queries. In particular, the range in evaluation
time for a search technique can be several orders of magnitude.
Most search techniques also have outliers in their execution
times; these outliers indicate that the performance of these
search heuristics varies considerably due to characteristics of
the dataset or queries.

1) Number of search terms: A number of evaluations [8],
[14], [15], [17] report mean execution time for queries that
contain different numbers of search terms to show that
performance remains acceptable even when queries contain
more keywords. Figure 4 graphs these values for the different
systems. Note that some systems fail to complete some queries,
which accounts for the omissions in the graph. As evidenced by
the graph, queries that contain more search terms require more
time to execute on average than queries than contain fewer
search terms. The relative performance among the different
systems is unchanged from Figure 2.

These results are similar to those published in previous
evaluations. Using Figure 4 as evidence for the efficiency of
a particular search technique can be misleading. In Figure 5,
we show box plots of the execution times of BANKS and
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Fig. 4. Mean execution time vs. query length; lower execution times are
better. Note that the y-axis has a log scale. The retrieval depth was 100 results.

DISCOVER-II to illustrate the range in execution times
encountered across the various queries. As evidenced by these
graphs, several queries have execution times much higher than
the rest. These queries give the system the appearance of
unpredictable performance, especially when the query is similar
to another one that completes quickly.

For example, the query “Uzbek Asia” for BANKS has
an execution time three times greater than the query “Hutu
Africa.” DISCOVER-II has similar outliers; the query “Panama
Oman” requires 3.5 seconds to complete even though the
query “Libya Australia” completes in less than half that time.
From a user’s perspective, these queries would be expected to
have similar execution times. These outliers (which are even
more pronounced for the other datasets) suggest that simply
looking at mean execution time for different numbers of query
keywords does not reveal the complete performance profile of
these systems. Moreover, existing work does not adequately
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Fig. 5. Box plots of execution times for BANKS (left) and DISCOVER-II
(right) at a retrieval depth of 100. The width of the box reflects the number
of queries in each sample.
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explain the existence of these outliers and how to improve the
performance of these queries.

2) Collection frequency: In an effort to better understand
another factor that is commonly cited as having a performance
impact, we consider mean execution time and the frequency
of search terms in the database (Figure 6). The results are
surprising: execution time appears relatively uncorrelated with
the number of tuples containing search terms. This result is
counter-intuitive, as one expects the time to increase when more
nodes (and all their relationships) must be considered. One
possible explanation for this phenomenon is that the search
space in the interior of the data graph (i.e., the number of
nodes that must be explored when searching) is not correlated
with the frequency of the keywords in the database. He et
al. [13] imply the opposite; we believe additional experiments
are warranted as part of future work.

3) Retrieval depth: Table VII considers the scalability of
the various search techniques at different retrieval depths—10
and 100 results. Continuing this analysis to higher retrieval
depths is not particularly useful given the small size of the
MONDIAL database and given that most systems identify all

TABLE VII
PERFORMANCE COMPARISON AT DIFFERENT RETRIEVAL DEPTHS

execution time (s) slowdown

System k = 10 k = 100 ∆ %

BANKS 1883.8 1886.1 2.3 0.1
DISCOVER 5.1 5.5 0.4 7.8

DISCOVER-II 5.4 5.6 0.2 3.7
BANKS-II 176.5 282.1 105.6 59.8

DPBF 0.1 0.1 0.0 0.0
BLINKS 190.3 237.7 47.4 24.9

STAR 0.3 0.4 0.1 33

Legend
k retrieval depth

TABLE VIII
MEAN RESPONSE TIME TO RETRIEVE THE TOP-k QUERY RESULTS

System resp. (s) exec. (s) % P@1

BANKS 1883.2 1886.1 99.8 0.280
DISCOVER 5.5 5.5 100.0 0.647

DISCOVER-II 5.6 5.6 100.0 0.433
BANKS-II 67.4 282.1 23.9 0.700

DPBF 0.1 0.1 100.0 0.740
BLINKS 122.9 237.7 51.7 0.853

STAR 0.4 0.4 100.0 0.720

k = 1

System resp. (s) exec. (s) % P@10

BANKS 1883.7 1886.1 99.9 0.156
DISCOVER 5.5 5.5 100.0 0.363

DISCOVER-II 5.6 5.6 100.0 0.354
BANKS-II 225.7 282.1 80.0 0.422

DPBF 0.1 0.1 100.0 0.426
BLINKS 193.6 237.7 81.4 0.273

STAR 0.4 0.4 100.0 0.591

k = 10

Legend
resp. mean response time (in seconds)
exec. mean total execution time to retrieve 100 results

% percentage of total execution time

the relevant results within the first 100 results that they return.7

As evidenced by the table, both the absolute and the percentage
slowdown vary widely. However, neither of these values is
particularly worrisome: with the exception of BANKS-II, the
slowdown is relatively small, and BANKS-II starts with the
highest execution time. The negligible slowdown suggests that—
with regard to execute time—all the systems will scale easily
to larger retrieval depths (e.g., 1000 results). More importantly,
only half the systems provide reasonable performance (a few
seconds to execute each query) even at a small retrieval depth.

B. Response Time

In addition to overall search time, the response time of a
keyword search system is of critical importance. Systems that
support top-k query processing need not enumerate all possible
results before outputting some to the user. Outputting a small
number of results (e.g., 10) allows the user to examine the
initial results and to refine the query if these results are not
satisfactory.

In Table VIII, we show the mean response time to retrieve
the first and tenth query result. The table also includes P@k, to
show the quality of the results retrieved at that retrieval depth.

Interestingly, the response time for most systems is very
close to the total execution time, particularly for k = 10. The
ratio of response time to the total execution time provided
in the table shows that some scoring functions are not good
at quickly identifying the best search results. For example,
DISCOVER-II identifies the highest ranked search result at the

7Investigating the performance of the systems at greater retrieval depths
(e.g., on the IMDb dataset) would be ideal, but the failures to complete these
queries undermine the value of such experiments.



TABLE IX
COMPARISON OF TOTAL EXECUTION TIME AND RESPONSE TIME

slowdown

System exec. (s) resp. (s) ∆ (s) %

BANKS 1883.8 1883.7 -0.1 -0.0
DISCOVER 5.1 5.5 0.4 7.8

DISCOVER-II 5.4 5.6 0.2 3.7
BANKS-II 176.5 225.7 49.2 21.8

DPBF 0.1 0.1 0.0 0.0
BLINKS 190.3 193.6 3.3 1.7

STAR 0.3 0.4 0.1 33.0

Legend
exec. total execution time when retrieving 10 results
resp. response time to retrieve top-10 of 100 results

same time as it identifies the tenth ranked result because its
bound on the possible score of unseen results falls very rapidly
after enumerating more than k results. In general, the proximity
search systems manage to identify results more incrementally
than the schema-based approaches.8

Another issue of interest is the overhead required to retrieve
additional search results. In other words, how much additional
time is spent maintaining enough state to retrieve 100 results
instead of just 10? Table IX gives the execution time to retrieve
10 results and the response time to retrieve the first 10 results
of 100. With the exception of BANKS-II, the total overhead is
minimal—less than a few seconds. In the case of STAR, the
percentage slowdown is high, but this value is not significant
given that the execution time is so low.

C. Memory consumption

Limiting the graph-based approaches to ≈ 2 GB of virtual
memory might unfairly bias our results toward the schema-
based approaches. The schema-based systems offload much of
their work to the underlying database, which swaps temporary
data (e.g., the results of a join) to disk as needed. Hence,
DISCOVER and DISCOVER-II might also require a significant
amount of memory, and a more fair evaluation would allow the
graph-based techniques to page data to disk. To investigate this
possibility, we ran all the systems9 with ≈ 3 GB of physical
memory and ≈ 5 GB of virtual memory.10 Note that once a
system consumes the available physical memory, the operating
system’s virtual memory manager is responsible for paging
data to and from disk.

Table X contains the results of this experiment. The overall
trends are relatively unchanged from Table VI although
BLINKS does complete all the MONDIAL queries with the help

8DPBF actually identifies results more incrementally than DISCOVER,
DISCOVER-II, and STAR but rounding (to account for timing granularity)
obscures this result.

9DPBF had memory errors when we tried to increase its virtual memory
allocation and static-sizing of structures; both are essential for execution on
the IMDb dataset.

10This was the maximum amount we could consistently allocate on our
machines without triggering Linux’s out-of-memory killer. We also specified
-Xincgc to enable Java’s incremental garbage collector, which was essential
for reasonable performance.

TABLE X
VIRTUAL MEMORY EXPERIMENTS

System X � � exec. (s) speedup (%)

BANKS 30 20 — 1817.3 3.7
DISCOVER 50 — — 6.1 -10.9

DISCOVER-II 50 — — 6.3 -12.5
BANKS-II 50 — — 238.7 15.4

BLINKS 50 — — 20.3 91.5
STAR 50 — — 0.3 33

(a) MONDIAL

System X � � exec. (s) speedup (%)

BANKS 3 40 — 3448.8 —
DISCOVER 50 — — 221.6 -0.5

DISCOVER-II 50 — — 195.0 -0.6
BANKS-II — 18 — 3607.0 —

BLINKS — — 50 — —
STAR — — 50 — —

(b) IMDb

System X � � exec. (s) speedup (%)

BANKS 4 46 — 3324.5 -4.7
DISCOVER 50 — — 34.0 -3.3

DISCOVER-II 50 — — 33.1 -4.1
BANKS-II 11 36 — 2909.4 9.2

BLINKS — — 50 — —
STAR — — 50 — —

(c) Wikipedia

Legend
X Queries completed successfully (out of 50)
� Timeout exceptions (> 1 hour execution time)
� Memory exceptions (exhausted virtual memory)

exec. mean execution time (in seconds)

of the additional memory. The precipitous drop in execution
time suggests that Java’s garbage collector was responsible for
the majority of BLINKS’s execution time, and this overhead
was responsible for BLINKS’s poor performance. The other
graph-based systems do not significantly improve from the
additional virtual memory. In most cases, we observed severe
thrashing, which merely transformed memory exceptions into
timeout exceptions.

Initial Memory Consumption: To better understand the
memory utilization of the systems—particularly the overhead of
an in-memory data graph, we measured each system’s memory
footprint immediately prior to executing a query. The results

TABLE XI
INITIAL MEMORY CONSUMPTION (MONDIAL)

Memory (KB)

System Graph Total

BANKS [2] 9,200 9,325
DISCOVER [15] 203 330

DISCOVER-II [14] 203 330
BANKS-II [17] 16,751 21,325

DPBF [8] 24,320
BLINKS [13] 17,502 878,181

STAR [18] 40,593 47,281



are shown in Table XI. The left column of values gives the size
of the graph representation of the database; the right column
of values gives the total size of all data structures used by
the search techniques (e.g., additional index structures). As
evidenced by the table, the schema-based systems consume
very little memory, most of which is used to store the database
schema. In contrast, the graph-based search techniques require
considerably more memory to store their data graph.

When compared to the total amount of virtual memory
available, the size of the MONDIAL data graphs are quite small,
roughly two orders of magnitude smaller than the size of the
heap. Hence, the data graph itself cannot account for the high
memory utilization of the systems; instead, the amount of state
maintained by the algorithms (not shown by the table) must
account for the excessive memory consumption. For example,
BANKS’s worst-case memory consumption is O(|V |2) where
|V | is the number of vertices in the data graph. It is easy to
show that in the worst case BANKS will require in excess of
1 GB of state during a search of the MONDIAL database even
if we ignore the overhead of the requisite data structures (e.g.,
linked lists).

However, we do note that the amount of space required to
store a data graph may prevent these systems from searching
other, larger datasets. For example, BANKS requires ≈ 1 GB
of memory for the data graph of the IMDb subset; this subset
is roughly 40 times smaller than the entire database. When
coupled with the state it maintains during a search, it is easy to
see why BANKS exhausts the available heap space for many
queries on this dataset.

D. Threats to Validity

Our results naturally depend upon our evaluation benchmark.
By using publicly available datasets and query workloads, we
hope to improve the repeatability of these experiments.

In an ideal world, we would reimplement all the techniques
that have been proposed to date in the literature to ensure
the fairest possible comparison. It is our experience—from
implementing multiple systems from scratch—that this task
is much more complex than one might initially expect. In
general, more recent systems tend to have more complex
query processing algorithms, which are more difficult to
implement optimally, and few researchers seem willing to
share their source code (or binaries) to enable more extensive
evaluations. In the following paragraphs, we consider some of
the implementation differences among the systems and how
these differences might affect our results.

The implementation of DPBF that we obtained was in C++
rather than Java. We do not know how much of DPBF’s
performance advantage (if any) is due to the implementation
language, but we have no evidence that the implementation
language plays a significant factor in our results. For example,
STAR provides roughly the same performance as DBPF, and
DPBF’s performance for Wikipedia queries is comparable to
DISCOVER and DISCOVER-II when we ignore the length of
time required to scan the database’s full text indexes instead
of storing the inverted index entirely within main memory (as

a hash table). Simply rewriting DPBF in Java would not nec-
essarily improve the validity of our experiments because other
implementation decisions can also affect results. For example,
a compressed graph representation would allow systems to
scale better but would hurt the performance of systems that
touch more nodes and edges during a traversal [18].

The choice of the graph data structure might significantly
impact the proximity search systems. All the Java implementa-
tions use the JGraphT library,11 which is designed to scale to
millions of vertices and edges. We found that a lower bound
for its memory consumption is 32 · |V |+ 56 · |E| bytes where
|V | is the number of graph vertices and |E| is the number
of graph edges. In practice, its memory consumption can be
significantly higher because it relies on Java’s dynamically-
sized collections for storage. Kacholia et al. [17] state that
the original implementation of BANKS-II requires only 16 ·
|V |+ 8 · |E| bytes for its data graph, making it considerably
more efficient than the general-purpose graph library used for
our evaluation. While an array-based implementation is more
compact and can provide better performance, it does have
downsides when updating the index. Performance issues that
arise when updating the data graph have not been the focus
of previous work and has not been empirically evaluated for
these systems.

While there are other differences between the experimental
setups for different search techniques (e.g., Windows vs. Linux
and Intel vs. AMD CPUs), we believe that these differences are
minor in the scope of the overall evaluation. For example, DPBF
was executed on a quad-core CPU, but the implementation is
not multi-threaded so the additional processor cores are not
significant. When we executed the Java implementations on
the same machine that we used for DPBF (which was possible
for sample queries on our smaller datasets), we did not notice
a significant difference in execution times.12

Our results for MAP (Table VI) differ slightly from previ-
ously published results [5]. Theoretically our results should
be strictly lower for this metric because our retrieval depth is
smaller, but some systems actually improve. The difference
is due to the exceptions—after an exception (e.g., timeout),
we return any results identified by the system, even if we are
uncertain of the results’ final ranking. Hence, the uncertain
ranking is actually better than the final ranking that the system
would enforce if allowed to continue to execute.

VI. RELATED WORK

Existing evaluations of relational keyword search systems
are ad hoc with little standardization. Webber [33] summa-
rizes existing evaluations with regards to search effectiveness.
Although Coffman and Weaver [5] developed the benchmark
that we use in this evaluation, their work does not include any
performance evaluation. Baid et al. [1] assert that many existing
keyword search techniques have unpredictable performance

11http://www.jgrapht.org/
12Windows XP could not consistently allocate > 1 GB of memory for

Java’s heap space, which necessitated running the Java implementations on
Linux machines.



due to unacceptable response times or fail to produce results
even after exhausting memory. Our results—particularly the
large memory footprint of the systems—confirm this claim.

A number of relational keyword search systems have been
published beyond those included in our evaluation. Chen et
al. [4] and Chaudhuri and Das [3] both presented tutorials
on keyword search in databases. Yu et al. [35] provides an
excellent overview of relational keyword search techniques.

Liu et al. [21] and SPARK [22] both propose modified
scoring functions for schema-based keyword search. SPARK
also introduces a skyline sweep algorithm to minimize the
total number of database probes during a search. Qin et
al. [27] further this efficient query processing by exploring
semi-joins. Baid et al. [1] suggest terminating the search after
a predetermined period of time and allowing the user to guide
further exploration of the search space.

In the area of graph-based search techniques, EASE [20]
indexes all r-radius Steiner graphs that might form results for
a keyword query. Golenberg et al. [12] provide an algorithm
that enumerates results in approximate order by height with
polynomial delay. Dalvi et al. [6] consider keyword search
on graphs that cannot fit within main memory. CSTree [19]
provides alternative semantics—the compact Steiner tree—to
answer search queries more efficiently.

In general, the evaluations of these systems do not investigate
important issues related to performance (e.g., handling data
graphs that do not fit within main memory). Many evaluations
are also contradictory, for the reported performance of each
system varies greatly between different evaluations. Our
experimental results question the validity of many previous
evaluations, and we believe our benchmark is more robust and
realistic with regards to the retrieval tasks than the workloads
used in other evaluations. Furthermore, because our evaluation
benchmark is available for other researchers to use, we expect
our results to be repeatable.

VII. CONCLUSION AND FUTURE WORK

Unlike many of the evaluations reported in the literature,
ours is designed to investigate not the underlying algorithms but
the overall, end-to-end performance of these retrieval systems.
Hence, we favor a realistic query workload instead of a larger
workload with queries that are unlikely to be representative
(e.g., queries created by randomly selecting terms from the
dataset).

Overall, the performance of existing relational keyword
search systems is somewhat disappointing, particularly with
regard to the number of queries completed successfully in our
query workload (see Table VI). Given previously published
results (Table II), we were especially surprised by the number
of timeout and memory exceptions that we witnessed. Because
our larger execution times might only reflect our choice to use
larger datasets, we focus on two concerns that we have related
to memory utilization.

First, no system admits to having a large memory require-
ment. In fact, memory consumption during a search has not
been the focus of any previous evaluation. To the best of our

knowledge, only two papers [6], [18] have been published
in the literature that make allowances for a data graph that
does not fit entirely within main memory. Given that most
existing evaluations focus on performance, handling large data
graphs (i.e., those that do not fit within main memory) should
be well-studied. Relying on virtual memory and paging is no
panacea to this problem because the operating system’s virtual
memory manager will induce much more I/O than algorithms
designed for large graphs [6] as evidenced by the number of
timeouts when we allowed these systems to page data to disk.
Kasneci et al. [18] show that storing the graph on disk can
also be extremely expensive for algorithms that touch a large
number of nodes and edges.

Second, our results seriously question the scalability of
these search techniques. MONDIAL is a small dataset (see
Table III) that contains fewer than 20K tuples. While its
schema is complex, we were not expecting failures due to
memory consumption. Although we executed our experiments
on machines that have a small amount of memory by today’s
standards, scalability remains a significant concern. If 2 GB
of memory is not sufficient for MONDIAL, searching our
IMDb subset will require ' 200 GB of memory and searching
the entire IMDb database would require ' 5 TB. Without
additional research into high-performance algorithms that
maintain a small memory footprint, these systems will be
unable to search even moderately-sized databases and will
never to suitable for large databases like social networks or
medical health records.

Further research is unquestionably necessary to investigate
the myriad of experimental design decisions that have a
significant impact on the evaluation of relational keyword
search systems. For example, our results indicate that existing
systems would be unable to search the entire IMDb database,
which underscores the need for a progression of datasets that
will allow researchers to make progress toward this objective.
Creating a subset of the original dataset is common, but we
are not aware of any work that identifies how to determine if
a subset is representative of the original dataset. In addition,
different research groups often have different schemas for the
same data (e.g., IMDb), but the effect of different database
schemas on experimental results has also not been studied.

Our results should serve as a challenge to this community
because little previous work has acknowledged these challenges.
Moving forward, we must address several issues. First, we must
design algorithms, data structures, and implementations that
recognize that storing a complete graph representation of a
database within main memory is infeasible for large graphs.
Instead, we should develop techniques that efficiently manage
their memory utilization, swapping data to and from disk as
necessary. Such techniques are unlikely to have performance
characteristics that are similar to existing systems but must
be used if relational keyword search systems are to scale to
large datasets (e.g., hundreds of millions of tuples). Second,
evaluations should reuse datasets and query workloads to
provide greater consistency of results, for even our results
vary widely depending on which dataset is considered. Having



the community coalesce behind reusable test collections would
facilitate better comparison among systems and improve their
overall evaluation [33]. Third, the practice of researchers
reimplementing systems may account for some evaluation
discrepancies. Making the original source code (or a binary
distribution that accepts a database URL and query as input)
available to other researchers would be ideal and greatly reduce
the likelihood that observed differences are implementation
artifacts.
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