
Implementation of the
ADAMS Database System

John L. Pfaltz, James C French
Andrew Grimshaw, Sang H. Son

Paul Baron, Stanley Janet
Yi lin, Lindsay Loyd,

Rod McElrath

IPC-TR-89-010
December 4, 1989

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by JPL under contract
#957721 and DOE Grant #DE-FG05-88ER25063.

IPC Technical Report 89-010

Implementation of the
ADAMS Database System

John L. Pfaltz, James C. French
Andrew Grimshaw, Sang H. Son

Paul Baron, Stanley Janet
Yi Lin, Lindsay Loyd,

Rod McElrath

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract:
ADAMS provides a mechanism for applications programs, written in many
languages, to define and access common persistent databases. The basic con-
structs are element, class, set, map, attribute, and codomain. From these the
user may define new data structures and new data classes belonging to a se-
mantic hierarchy that supports multiple inheritance.

This report describes the prototype implementation of ADAMS. Several
features of interest include: the way a shared persistent name space has been
captured in a dictionary structure, the implementation of a preprocessor which
embeds runtime C++ proceses into host application programs written in stan-
dard C, the implementation of an object based uniqueid for all ADAMS ele-
ments, a single functional O-tree operator to represent sets, maps, and attri-
butes, and a low-level storage operator to distribute data items to multiple
storage devices.

This research was supported in part by DOE Grant #DE-FG05-88ER25063 and
JPL Contract #957721

1. Overview, Philosophy
The goal of ADAMS (Advanced DAta Management System) is to create a large virtual per-

sistent memory which processes can use to store and access items of data in much the same way
that programming languages now allow the storage and access of data in volatile memory.
Approaches to accomplish this kind of data management have been proposed in Persistent Algol
[BuA86] and ODE [AgG89]. Three differences which characterize the ADAMS approach are
that, (1) the virtual persistent memory can be shared between distinct users if desired; (2) it is not
language specific—the programmer may code in any of the standard programming languages,
such as C, Pascal, Ada, or Fortran; and (3) it is specifically designed for, although not limited to,
parallel applications.

The fundamental concept of the ADAMS approach is that of an element. An element is not
an item of data. Rather it should be viewed as a place holder with which data values can be asso-
ciated. The concept of an element is not unlike that of a storage location in traditional memory
management, or an object in object-object oriented languages. Like objects (or volatile memory
locations) elements must belong to a class, that is the nature of the element must be well-defined.
These classes are programmer defined and can be hierarchical. Elements are uniquely identified.
Regarding elements as if they were objects can be helpful to those readers who are familiar with
object-oriented programming; indeed, the runtime ADAMS system has been implemented in C++
to take advantage of many of its object-oriented constructs. But, in reality elements are not
objects.

Other basic ADAMS constructs are: sets, (one frequently deals with sets of elements, rather
than the individual elements themselves); attributes, (which associate data values with an ele-
ment); and maps (which associate elements with each other). Finally, there is the concept of a
codomain, (which conceptually defines a class of data values) and a subscript pool, (which
enumerates a particular sequence of codomain values that can be used to subscript identifiers).
The syntax of ADAMS, which governs how these preceding constructs are formally related to
each other, is completely described in [PFG89]. The reader is referred to this report for these
syntactic details. In this report we concentrate solely on our mechanisms for implementing these
constructs, and of the ADAMS language as a whole.

In Figure 1.1 we illustrate our conception of ADAMS. One, or more, processes are running
on distinct processors (which we have illustrated as a tightly coupled 8 node hypercube, although
any distributed set of processors could be used). ADAMS statements are embedded in the code
of these processes and provide for the definition, access, and storage of items in virtual persistent
storage, which is represented in the figure by the two disk units. From the programmers point of
view, this code is interacting directly with this persistent storage via the ADAMS interface. In
fact, the interface is accomplished by the ADAMS run-time system which we have represented as
the small 4 node hypercube in to the right in the figure. User processes make requests to
ADAMS procedures of the run-time system (in the figure proc 3 is schematically connected to
adams2 and proc 6 is connected to adams0) which are directly connected to the disk representa-
tions. In the figure, the ADAMS run-time system is represented as existing on a separate hyper-
cube. This might be a desirable configuration. Alternatively, certain portions of the ADAMS
run-time system might be executing as co-processes on the individual user’s nodes in order to
minimize message transmission.

A different schematic is shown in Figure 1.2. In this figure, we indicate that a "host" pro-
gram (here host denotes the language such as C or Pascal, not a host node as in hypercube termi-
nology) is first translated by the ADAMS preprocessor into pure host language code without
embedded ADAMS statements. Such source code with embedded ADAMS statements must be
designated with a .src suffix, as in <filename>.src The preprocessed source program without
ADAMS statements will suffixed with .c or .p or .f depending on the host language used. For
example, preprocessing a C program testprog.src will generate a new file testprog.c. This version

2

proc 0

proc 1

proc 2

proc 3

proc 4

proc 5

proc 6

proc 7

Virtual Persistent Storage

Disk 1 Disk 2

ADAMS subcube

adams0

adams1

adams2

adams3

Figure 1.1
Virtual ADAMS Environment

of the source program is then compiled in the usual manner by the host language compiler, as
shown in the figure, to obtain an executable program.

The executable program, when run, invokes the runtime ADAMS system as necessary.
This runtime system invokes the persistent dictionary and various attribute, map, and set
representations. Although discussed separately in sections 7, 8, and 9 because originally we
envisioned the implementation of maps, sets, and attributes as distinct system components, these
have be unified by a single functional concept pfaltz french implementing subscripted scientific
1990 , pfaltz functional approach aggregation SIGMOD 1990 .] which is symbolized by the
right-most box in the figure. The box lablelled "runtime ADAMS system" thus serves primarily
to interface these functional representations with the persistent dictionary and the users applica-
tion program as indicated. Its central routines are covered primarily in section 7.

An important characteristic of Figure 1.2 is the dashed line through the UNIQUE_ID con-
struct box. All interface with persistent items stored by the ADAMS database manager is in
terms of these unique id’s. Every ADAMS element is assigned a unique_id on creation (instan-
tiation). It never changes for the lifetime of the element. These unique id’s, which are invisible
to the user (programmer), are the only means by which ADAMS references its elements. All
literal identifiers (names) are bound to unique id’s, either at preprocessing time, or when abso-
lutely required, at run time. The closest analogy is to the binding of variable and procedure

3

host program with
ADAMS statements

ADAMS
preprocessor

program without
ADAMS statements

host language
compiler

executable host
language code

runtime
ADAMS system

UNIQUE_ID
construct

transaction
manager

physical storage
bags

ATTRIBUTE, MAP
SET representations

persistent
dictionary

Figure 1.2
Overall ADAMS Structure

identifiers (names) of a traditional programming language to relocatable storage locations at com-
pile time. The transaction manager uses these unique id’s to access items in physical storage.
We call such physical storage a bag to avoid confusion with a more traditional file concept. A
bag of ADAMS items may reside on any storage device.

4

2. The Run-Time System

2.1. Directory Layout
The directory layouts for both the prototype version on atlas, a VAX 8600, and ice, an

INTEL iPSC-2, are described below.

The initial prototype version has been implemented on atlas. It resides in the common
directory /at0/adams. This directory consists of the 8 subdirectories listed below.

TEST (A prototypical environment)

bin

include

lib

obj

src (ADAMS source code)
cc.d
dict.d (dictionary source)
parse.d (preprocessor source)
sets.d (set representation source)
uids.d (unique_id, ADAMS element source)

Server (bag code)

Client "

2.1.1. TEST
The TEST directory represents a prototypical environment—that is, it includes the ADAMS

dictionary, and "user" directories which oontains ADAMS source (.src) programs to compile and
run.

The structure of TEST is as follows:

adamsdict (common, shared ADAMS dictionary)

pkb4h (This individual’s test programs)

jlp " "

. " "

. " "

. " "

In effect this is a small completely contained user environment. More realistically, the
adamsdict would reside in some known system location.

The adamsdict has the structure shown below. Note that currently all users operate under
the task t123 by default.

5

adamsdict (common, shared adams dictionary)
cl (SYSTEM classes)
co (" codomains)
hd (" headers)
in (" instances)
sp (" subscript pools)
t123 (Task 123 -- current default)

cl (TASK classes)
co (" codomains)
hd (" headers)
in (" instances)
sp (" subscript pools)
u567 (imaginary user)

cl (USER classes)
co (" codomains)
hd (" headers)
in (" instances)
sp (" subscript pools)

u853 (pkb4h -- Paul’s user dictionary)
cl
co
hd
in
sp

.

.

.
t500 (Task 500)
.
.
.

2.1.2. include
The include directory contains the following header files.

C headers:

bag_cc.h Declaration of bag operations; used by the actual bag implementation.

dict_cc.h C version of dictionary function declarations; included by user programs (include
statement inserted by preprocessor).

indexglue.h C "glue" to C++ runtime code for tables and sets. Included by user programs (by
preprocessor).

indexman.h C calls to the index manager, a runtime structure that maintains open indexes and
sets. Included by user programs (by preprocessor).

symbol.h Declaration of table used by preprocessor to look up symbols and their values.

uid_cc.h C version of _A_uid declaration; included by user programs (include statement
inserted by preprocessor).

6

C++ headers:

bag.h C++ interface to bags.
Included by: uidmgr.h

defs.h Commonly used defines and constants (e.g., _A_BOOLEAN)
Included by: attr.c, fwdattr.c, fwdmap.c,

index.c, indexman.c, indexglue.c,
invatt.c, invmap.c, key.c,
map.c, set.c, uid.c

dict.h Dictionary functions.
Classes: _A_METHOD

_A_M_ITERATOR
_A_CLAS
_A_C_ITERATOR
_A_ASSO_SET
_A_A_ITERATOR
_A_SUBVALUE
_A_S_ITERATOR
_A_ENTRYDEF
_A_CO_DEF
_A_CLASS_DEF
_A_SUB_DEF
_A_INST_DEF
_A_LIST_CHUNK
_A_REF_REC
_A_SUBDICT

Included by: All dictionary source files.

extern.h Commonly used objects. (So far, just _A_NULLUID and _A_NULLKEY: used
for comparison of _A_uid and _A_key return values.)
Included by: attr.c, fwdattr.c, fwdmap.c,

index.c, indexman.c, indexglue.c,
invatt.c, invmap.c, key.c,
map.c, set.c, uid.c

hdrs.h Simplified, independent versions of _A_uid and some uidmgr structures. Needed
by code that initializes a bag server and sets up the uniqueid tables. (Not used by
runtime system.)

indexes.h Basic classes of tables (currently implemented using collections).
Includes: key.h
Classes: _A_index

_A_fwd_map (from _A_index)
_A_fwd_attr (from _A_index)
_A_set (from _A_index)
_A_inv_map (from _A_index)
_A_inv_attr (from _A_index)

Included by: attr.c, fwdattr.c, fwdmap.c,
index.c, indexman.c, indexglue.c,
invatt.c, invmap.c, key.c,
map.c, set.c, uid.c

key.h Class declarations for search keys.
Classes: _A_key

7

Included by: indexes.h

mapattr.h Maps and generalized attributes.
Classes: _A_attr (uses _A_fwd_attr, _A_inv_attr)

_A_map (uses _A_fwd_map, _A_inv_map)
Included by: attr.c, indexglue.c, indexman.c, map.c

uid.h Uniqueid class declaration.
Classes: _A_uid
Included by: indexman.c, indexglue.c

Runtime system source programs
for tables, sets, and dictionary.

uidmgr.h Uniqueid tables.
Includes: bag.h
Classes: _A_uidmgr (from _A_index)
Included by: uid.c, uidmgr.c

2.2. System Interface
In the prototype version we have a number of paths hardwired. Two, in particular, you

must include in your operating environment by modifying your .login or .profile file. Add

BAGID=/at0/adams/Server
BAGSOCKET=/at0/adams/Server/_SOCKET_

export BAGID BAGSOCKET

You should also add /at0/adams/bin and /at0/adams/TEST/bin to your PATH variable.

Since, ostensibly, the TEST directory represents the complete prototype environment, we
expect you to create your own directory under TEST and run test cases there. However, this is
not required.

Finally, you must create a user dictionary, by executing the command

create <unix_id>

If you do not know your <unix_id>, grep the /etc/passwd file using your login id.

8

3. Preprocessing, Translating ADAMS Statements
Here we include just a summary overview. More complete details can be found in [Bar89].

Assume that you have created a source program consisting of mixed C code and ADAMS
statements in a file <prog_name>.src. The .src suffix is required, since the ADAMS preprocessor
will look for it. The command

adams <prog_name>

will translate this source program and produce a new source program consisting of only C state-
ments called <prog_name>.c. Notice that this has the customary .c suffix.

To compile the resulting C code in <prog_name>.c execute the command

cci <prog_name>

Note, cci is a shell script in /at0/adams/TEST/bin (as is adams) which simply imvokes the stan-
dard cc compiler, but also includes the necessary glue routines to interface the C code generated
by the ADAMS preprocessor with the C++ routines of the run-time system. cci will generate an
executable file <prog_name> with no suffix. <prog_name> should now be executable.

Should the preprocessing step fail, check that you have created a user dictionary as
described in section 2.3.1.

9

4. Persistent Names, the Dictionary
The basic way by which host language programs reference elements in the persistent data

space managed by ADAMS is by "name". Attributes, maps, and classes are named. Many sets
(which are analogous to files in more conventional systems) are named. Any ADAMS element
may be named, including individual instantiations within sets. Of couse, many interesting data
retrievals employ constructs other than names alone; for example, one may retrieve a set of ele-
ments satisfying some specified properties. But, still the concept of literal names used in a host
language program to identify specific elements (or unique_id’s) is central.

Since the elements so identified are persistent, the name space used to identify them must
also be persistent. In this section, we explore the concept of the ADAMS name space, and the
dictionary concept which is used to record information about certain kinds of named elements
and to establish the correspondence between literal names and the unique_id of the element so
identified.

4.1. Overview of the ADAMS Name Space
ADAMS has a persistent name space. All classes, codomains and subscript pools must be

named. Instances may have names. This name space is organized in a hierarchical structure.
The levels of the hierarchy are

SYSTEM
TASK
USER
LOCAL

Every user has his own persistent dictionary which contains all the names that are defined
and used only by himself. This dictionary is at the USER level. The LOCAL level dictionary
contains the names that are created and used only during the execution of a single program.
When the program terminates, this dictionary no longer exists. Several users can form a task so
that they can have common names shared only by themselves. All their common names are in
the TASK level dictionary which is the parent of their USER dictionaries. Note that every user

LOCAL

USER

TASK

SYSTEM system

user_1

proc_y

user_88 user_398

task_32task_993

user_1

proc_x proc_w

user_7

proc_z

task_1

Figure 4.1 Hierarchically Structured Name Space

10

must belong to at least one task. A user can be in more than one task at the same time. In such a
case he will have different USER dictionaries for each of the tasks. In Figure 4.1, user_1 is in
both task_1 and task_993. From the dictionary point of view, these user dictionaries are not
related to each other although they are used by the same human user. The SYSTEM level dic-
tionary contains all the names that can be used by everyone. There is only one such dictionary
for the whole system.

A human user of ADAMS always works in an environment in which the user ID and task
ID are specified. This means he can only "see" the SYSTEM dictionary, the TASK dictionary of
that task ID, the USER dictionary of his user ID under that task and the LOCAL dictionary for
the program he is running.

When an ADAMS name is created, its scope is specified so that it can be entered into the
correct level. Normally, when a name is encountered in an ADAMS statement, its meaning is
first sought in the LOCAL dictionary, then the USER, TASK, and SYSTEM dictionaries in that
order. We use the word sub-dictionary to denote a particular dictionary of some level. For exam-
ple, the SYSTEM dictionary itself is a sub-dictionary. The dictionary for a particular task or a
particular user of a task is a sub-dictionary.

The ADAMS name space is dynamic. New names will be created. Old names may be
deleted or rescoped from one level to another level. In doing these, some consistency rules
should be followed. The fundamental rules are:

a) A name can be inserted or rescoped to a sub-dictionary, only if it does not mask another
entry with the same name.

For example, if there is a name a_class in the SYSTEM sub-dictionary and it is the
super-class of an instance a_inst in the USER sub-dictionary of task_a, user_88, we can-
not enter another class with the same name a_class into the TASK sub-dictionary of
task_a because this new class will mask the one in the SYSTEM sub-dictionary.

b) A name can be erased from a sub-dictionary, only if it is not referenced by any other dic-
tionary entries or ADAMS elements.

c) A name can be rescoped away from a sub-dictionary, only if it will still be visible to all
the names that reference it

d) A name can be rescoped upward only if all the other names that it references will still be
visible to it; i.e. it will not reference any names that are below the target level.

4.2. What Does the Dictionary Do?
The basic function of the ADAMS dictionary is to provide a definition for a given name.

Every name in the dictionary has an entry and a unique ID. A dictionary entry can be considered
as a data structure. There are four types of entries:

codomain entries,
class entries,
subscript pool entries, and
instance entries.

For example, a codomain entry contains the definition of the named codomain. We separate each
entry into three parts: the name part, which contains the name string and unique ID of that entry,
the definition part, which contains the definition of that name, and the reference record part,
which keeps the reference counts for all those tasks and users that are referencing it. (This part is
not implemented yet.)

The definition formats of these four types of entries are as follows:

codomain:

11

validating method (name string of the validating method)
fetch method (name string of the fetch method)
store method (name string of the store method)
other methods (a list of name strings of other methods)
undefined value (undefined value string)
unknown value (unknown value string)

class:
super classes (a list of super class unique ID’s)
element class (set element class, only for a set class)
image (image unique ID, only for attribute class or map class)
associated attribute sets (a list of set instance unique ID’s, possibly with synonyms)
associated map sets (same as above)
boolean method (name string of the boolean method for restriction)

subscript pool:
codomain (unique ID of the value codomain)
values (a list of subscript value strings)

instance:
super classes (a list of super class unique ID’s)

What the dictionary basically does is to provide a mechanism so that when a new name is
defined, a dictionary entry can be filled out and inserted into the dictionary; when the definition of
a name is needed, that corresponding entry can be accessed to retrieve its definition. Of course,
we also provide the mechanism for deletion and rescoping.

The dictionary is used both at pre-processing time and at run time. At pre-processing time,
the pre-processor gets the definitions of all literal names it encounters, performs static type check-
ing and replaces them with unique ID’s in its generated code. It performs the same operations on
the dictionary as at run time, but these operations are not actually performed on the persistent dic-
tionary. No changes are written back to the persistent dictionary. It is only at run time that the
dictionary is really changed. New entries are inserted and old ones may be rescoped or deleted.

Unlike all other sub-dictionaries, when the SYSTEM sub-dictionary is first created, it is not
empty. There are six predefined classes in it, ie CLASS, ATTRIBUTE, MAP, SET, ATTRSET
(attribute set), and MAPSET(map set).

4.3. Dictionary Interface and Glue Routines
The dictionary interface is composed of two types of data structures, a dictionary entries

and an iterators, which the user (i.e. ADAMS routines such as the preprocessor, or runtime pro-
cedures) manipulates by a set of dictionary routines.

4.3.1. Dictionary Entry
The most important data structure in the dictionary interface is the dictionary entry struc-

ture. Since we have four different types of entries and since we want our dictionary interface rou-
tines to be polymorphic, the way we adopted is to define a generic entry structure which is solely
used for interfacing purpose. This structure is called _A_ENTRYDEF. It is used in two ways:

(1) When a new name is defined, an _A_ENTRYDEF object is filled out with the definition
of the name and then it is inserted into the dictionary.

12

(2) When the definition of a name is needed, that name is looked up and its definition is
copied to an _A_ENTRYDEF object. Then different fields of the definition can be
extracted.

Before an _A_ENTRYDEF object can be filled out with the definition of a new name, it
must be first set to the correct entry type, ie. codomain, class, subscript pool or instance entry.
When an _A_ENTRYDEF object is used to get a definition from the dictionary, it can contain
anything before the look-up; the old stuff will be overwritten if the name is found. (If it is not
found, the look-up routine will return some integer value indicating the failure. So the content of
the object is irrelevant.)

Three distinct kinds of operations can be applied to _A_ENTRYDEF objects:

– setting the type of the entry
– filling out entry fields
– extracting data from entry fields

4.3.2. Iterators
Many fields of dictionary entries are lists of unique ID’s or method names, such as lists of

super classes and associated sets. To extract these fields from an _A_ENTRYDEF object, we use
several kinds of iterators. An iterator can extract such a list from the entry object, then present
the elements in the list one by one as the result of a "get_next" operation on it. We have four
kinds of such iterators:

method iterator (_A_M_ITERATOR, for other-method list of codomain)
class iterator (_A_C_ITERATOR, for super class list of class and instance)
associated set iterator (_A_A_ITERATOR, for associated set list of class)
subscript pool value iterator (_A_S_ITERATOR, for subscript pool value list)

4.3.3. Dictionary Routines
So far we have introduced two kinds of data structures, i.e. _A_ENTRYDEF and iterator,

that are used independently in the access of the dictionary. The major work is actually done by
the dictionary routines in conjunction with these two data structures. All these dictionary rou-
tines are explained in the following summary of the dictionary interface. Note that only the pre-
processor will make full use of the interface. In the run-time code generated by the pre-processor,
only a sub-set of the interface is needed because some work is done only at pre-processing time.

Types and Constants:
enum _A_BOOLEAN { _A_FALSE, _A_TRUE };
enum _A_ENTRYTYPE { _A_CO, _A_CLASS, _A_SUB, _A_INST, _A_HDR, _A_DEF,

_A_REF, _A_NTYPE };
const _A_DEFTYPE _A_CODEF = 0x00; // COdomain DEFinition
const _A_DEFTYPE _A_CLASSDEF = 0x01; // CLASS DEFinition
const _A_DEFTYPE _A_SUBDEF = 0x02; // SUBscript pool DEFinition
const _A_DEFTYPE _A_INSTDEF = 0x03; // INSTance DEFinition
const _A_DEFTYPE _A_NDEF = 0x04; // No DEFinition

const _A_D_LEVEL _A_SYSTEM = 3;
const _A_D_LEVEL _A_TASK = 2;
const _A_D_LEVEL _A_USER = 1;
const _A_D_LEVEL _A_LOCAL = 0;
const _A_D_LEVEL _A_NLEVEL = -1;

const _A_CLSTYPE _A_SUPER = 0x01; // SUPER bit (SUBCLS or SUBSET)

13

const _A_CLSTYPE _A_CLS = 0x02; // CLASS
const _A_CLSTYPE _A_SUBCLS = 0x03; // SUBCLaSs
const _A_CLSTYPE _A_MAP = 0x04; // MAP class
const _A_CLSTYPE _A_ATTR = 0x08; // ATTRibute class
const _A_CLSTYPE _A_SETCLS = 0x10; // SET CLaSs
const _A_CLSTYPE _A_SUBSET = 0x11; // SUB-SET class
const _A_CLSTYPE _A_ATTRSET = 0x30; // ATTRibute SET class
const _A_CLSTYPE _A_MAPSET = 0x50; // MAP SET class
const _A_CLSTYPE _A_NCTYPE = 0x00; // Not Class TYPE

Dictionary Entry Declarations:

class _A_ENTRYDEF
{

public:
_A_ENTRYDEF (_A_DEFTYPE d_type = _A_NDEF);
˜_A_ENTRYDEF(){ clear(); }
void set_type (_A_DEFTYPE);

// An object must be set to the proper type,
// ie. _A_CO_DEF, _A_CLASS_DEF etc. before it can
// be used to define a new definition

void operator = (_A_ENTRYDEF&);
// Assignment Operation

// CO-DOMAIN DEFINITION OPERATIONS

// The following functions add different kinds of
// methods to the definition. The parameters are
// character strings which are supposed to be the
// method name.

void add_validm (const char *valid_m);
void add_fetchm (const char *fetch_m);
void add_storem (const char *store_m);
void add_otherm (const char *other_m);

void add_udf (const char *udfstr);
// Add the undefined value to the definition.

void add_ukn (const char *uknstr);
// Add the unknown value to the definition.

// The following functions get the names of
// codomain methods.

_A_BOOLEAN get_validm (char *valid_m);
_A_BOOLEAN get_fetchm (char *fetch_m);
_A_BOOLEAN get_storem (char *store_m);
void get_otherm (_A_M_ITERATOR& iterator);

_A_BOOLEAN get_udf (char *udfstr);
// Get the undefined value string.

_A_BOOLEAN get_ukn (char *uknstr);
// Get the unknown value string.

14

// CLASS DEFINITION OPERATIONS

void add_superclass (const char *c_name, _A_D_LEVEL scope);
// Add super classes to a class definition.
// ’Scope’ is the scope of the class being defined.

void add_elementclass (const char *classname, _A_D_LEVEL scope);
// Add the element class to a set class definition.

void add_image (const char *imagename, _A_D_LEVEL scope);
// Add the image to an attribute or map class definition.

void add_attrset (const char *setname, _A_uniqueid& setid,
_A_D_LEVEL lv, const char *synonym = NULL);

// Add associated attribute sets to a class definition.
// ’setname’: the name of the set if it has one
// ’setid’ : the unique id of the set
// ’lv’ : the scope of the class definition
// ’synonym’: the synonym of the associated set, if it
// has one

void add_mapset (const char *setname, _A_uniqueid& setid,
_A_D_LEVEL lv, const char *synonym = NULL);

// Add associated map sets to a class definition.

void add_booleanm (const char *boolean_m);
// Add the boolean method name to the class definition.

_A_CLSTYPE get_classtype ();
// Get the type of the class, eg. a sub-class, an
// attribute, a map, or a set.

void get_superclass (_A_C_ITERATOR& iterator);
// Get all the super classes of a class.

_A_uniqueid get_elementclass ();
// Get the set element class.

_A_uniqueid get_image ();
// Get the image uniqueid of an attribute or a map.

void get_attrset (_A_A_ITERATOR& iterator);
// Get all the associated attribute sets (unique id’s).

void get_mapset (_A_A_ITERATOR& iterator);
// Get all the associated map sets (unique id’s).

_A_BOOLEAN get_booleanm (char *boolean_m);
// Get the boolean method name.

// SUBSCRIPT POOL DEFINITION OPERATIONS

void set_codomain (const char *co_name, _A_D_LEVEL scope);
// Set the codomain of a subscript pool.

void add_subvalue (const char *valstr);

15

// Add a subscript pool value (a character string).

_A_uniqueid get_codomain ();
// Get the codomain id of a subscript pool.

void get_subvalue (_A_S_ITERATOR& iterator);
// Get all the value strings of a subscript pool.

// INSTANCE DEFINITION OPERATIONS

void add_instclass (const char *class_name, _A_D_LEVEL scope);
// Add a super class to the instance definition.

void get_instclass (_A_C_ITERATOR& iterator);
// Get all the super classes of the instance
// definition.

} ;

Iterator Declarations:

class _A_M_ITERATOR // _A_METHOD iterator
{

public:
_A_M_ITERATOR ();
_A_BOOLEAN next (char *);
} ;

class _A_C_ITERATOR // class iterator
{

public:
_A_C_ITERATOR ();
_A_BOOLEAN next (_A_uniqueid&);
} ;

class _A_A_ITERATOR // _A_ASSO_SETS iterator
{

public:
_A_A_ITERATOR ();
_A_BOOLEAN next (_A_uniqueid&, char * = NULL);
};

class _A_S_ITERATOR // _A_SUBVALUE iterator
{

public:
_A_S_ITERATOR ();
_A_BOOLEAN next (char *);
} ;

To show how the iterators work, in the following example we extract all the super classes of
an instance using an _A_C_ITERATOR object.

_A_ENTRYDEF def;
_A_C_ITERATOR iter;
_A_uniqueid id;
...

16

def.get_instclass(iter); // Set the iterator object to the super
// class list of the instance whose
// definition is already in "def" after
// a look-up.

while (iter.next(id)) // Extract unique ID’s of super classes
// into "id" one after another
// until 0 (_A_FALSE) is returned.

{
// A super class has been extracted and its unique ID is
// the current value of "id".

...
}
// Now every super class has been extracted.

Dictionary Functions:

int _A_attach_dict (unsigned tid, unsigned uid, char *file_name,
char *directory, _A_BOOLEAN pre_pro)

// Attach the SYSTEM, "tid"-TASK, "uid"-USER subdictionaries
// to this process.
// "file_name" is usually the name of the user program file.
// "directory" is the dictionary directory.
// "pre_processor" indicates if this function is called by
// the pre_processor or by the user program.

_A_BOOLEAN _A_add_entry (char *name, _A_uniqueid& id,
_A_ENTRYDEF& def, _A_ENTRYTYPE type, _A_D_LEVEL scope)

// Add an entry with the given "name", "id", and
// "definition" (created previously) of "type" to the
// dictionary at the level "scope". After completion,
// "def" will be empty, ie. it becomes of _A_NDEF.
// An add operation can fail if it violates dictionary
// consistency rules. If it is successful, _A_TRUE is
// returned, otherwise _A_FALSE is returned.

_A_BOOLEAN _A_delete_entry (char *name, _A_uniqueid& id,
_A_ENTRYTYPE type, _A_D_LEVEL& scope)

// Delete an entry with the given "name", of "type" in
// the dictionary at the level "scope".
// If "name" is NULL or empty string, "id" is used for search.
// A delete operation can fail if it violates dictionary
// consistency rules. If it is successful, _A_TRUE is
// returned, otherwise _A_FALSE is returned.
// After completion, "scope" has the value of the actual
// level in which the entry is deleted.

_A_BOOLEAN _A_lookup (char *name, _A_uniqueid& id, _A_ENTRYTYPE type,
_A_D_LEVEL& scope, _A_ENTRYDEF& def)

// Given the "name", OR a unique "id" (while "name" is
// NULL or an empty string"), and its "type", this function
// finds the corresponding entry beginning its search in

17

// the "scope" sub_dictionary.
//
// This function returns the corresponding "id" or "name",
// entry "definition" and "scope" at which it was found.
// (i.e. if the "name" is not found in the "scope"
// sub-dictionary, it searches in all sub-dictionaries up to
// and including the SYSTEM sub-dictionary.)
//
// If "name" is NULL or an empty string, "id" is used as the
// search key.
// "def" can be anything before look-up, and after look-up
// succeeds, the old definition is overwritten by the new one.
// _A_TRUE is returned for success, and _A_FALSE for failure.
//
// Lookup will fail if it is a predefined class, eg. CLASS,
// MAP, since there is no definition for them.

_A_BOOLEAN _A_check (char *name, _A_uniqueid& id, _A_ENTRYTYPE type,
_A_D_LEVEL& scope)

// The difference between this function and _A_lookup() is
// that the definition is not passed back. For pre-defined
// classes, not like _A_lookup(), _A_TRUE will be returned.

_A_CLSTYPE _A_classtype (char* name, _A_uniqueid& id,
_A_D_LEVEL& scope)

// This function can find the class type of an instance.
// One of the values _A_CLS, _A_ATTR, _A_MAP ,_A_SETCLS
// and _A_NCTYPE is returned. _A_NCTYPE always indicates
// something is not found in the dictionary and usually is
// not supposed to be returned.

_A_BOOLEAN _A_rescope (char *name, _A_uniqueid& id, _A_ENTRYTYPE type,
_A_D_LEVEL oldscope, _A_D_LEVEL newscope)

// rescope the dictionary entry of "type" with "name", from
// its "oldscope" to "newscope". "oldscope" is only the
// starting scope for searching.
// If "name" is NULL or empty, "id" is used for search.
// Readily, a rescope operation can fail if it violates
// dictionary consistency rules. If so, _A_FALSE is returned,
// otherwise, _A_TRUE is returned.

_A_release_dict ()
// Release the local copy of the dictionary. All changes to
// the dictionary are written back if necessary.
// Note that "attach_dict" and "release_dict" effectively
// define a transaction. "release_dict" can fail if it
// violates the concurrency control associated with the
// dictionary.

_A_uniqueid _A_const_uid (_A_CLSTYPE type)
// Get the unique id’s for those pre-defined classes.

18

// "Type" can be _A_CLS, _A_SETCLS, _A_ATTR, _A_MAP,
// _A_ATTRSET or _A_MAPSET.

4.3.4. Glue Routines
The interface described above is in C++. The ADAMS run-time system and the pre-

processor can use this interface because they are (or can be) implemented in C++. However, it
can not be used directly by the run-time C code generated by the pre-processor. Therefore the
dictionary needs a C version interface for the run-time C code to call. We use "glue routines".
These glue routines can be called in C code and they in turn call the C++ routines that actually do
the work. Also the two kinds of data structures, i.e. _A_ENTRYDEF and iterators, which are
implemented as C++ classes, are defined as C structures in the C version interface. These can be
found in a C version header file dict_cc.h. Since not everything in the C++ interface is needed at
run-time, we only provide the C interface for those routines that we currently think will be
needed at run-time.

The following is the summary of the C interface we provide at present: † Note that to save
space no descriptions have been provided for these interface procedures. Each corresponds to a
matching dictionary method in the preceding section. Here we have used the naming convention
that _A_<method> denotes a C callable procedure to perform the indicated <method>.

int _A_set_deftype (def, type)
_A_ENTRYDEF *def;
_A_DEFTYPE type;

int _A_add_validm (def, mname)
_A_ENTRYDEF *def;
char *mname;

int _A_add_fetchm (def, mname)
_A_ENTRYDEF *def;
char *mname;

int _A_add_storem (def, mname)
_A_ENTRYDEF *def;
char *mname;

int _A_add_otherm (def, mname)
_A_ENTRYDEF *def;
char *mname;

int _A_add_udf (def, udfstr)
_A_ENTRYDEF *def;
char *udfstr;

int _A_add_ukn (def, uknstr)
_A_ENTRYDEF *def;
char *uknstr;

int _A_add_superclass (def, name_str, level)
_A_ENTRYDEF *def;

���

† All type definitions are in the C interface header file dict_cc.h.

19

char *name_str;
_A_D_LEVEL level;

int _A_add_elementclass (def, name_str, level)
_A_ENTRYDEF *def;
char *name_str;
_A_D_LEVEL level;

int _A_add_image (def, name_str, level)
_A_ENTRYDEF *def;
char *name_str;
_A_D_LEVEL level;

int _A_add_attrset (def, setname, id, lv, syn)
_A_ENTRYDEF *def;
char *setname;
char *id;
_A_D_LEVEL lv;
char *syn;

int _A_add_mapset (def, setname, id lv, syn)
_A_ENTRYDEF *def;
char *setname;
char *id;
_A_D_LEVEL lv;
char *syn;

int _A_add_booleanm (def, mname)
_A_ENTRYDEF *def;
char *mname;

int _A_set_codomain (def, name_str, level)
_A_ENTRYDEF *def;
char *name_str;
_A_D_LEVEL level;

int _A_add_subvalue (def, mname)
_A_ENTRYDEF *def;
char *mname;

int _A_add_instclass (def, name_str, level)
_A_ENTRYDEF *def;
char *name_str;
_A_D_LEVEL level;

int _A_attach_dict (tid, uid, file_name, pre_processor)
unsigned tid, uid;
char *file_name;
int pre_processor;

int _A_c_add_entry (name, id, def, type, scope)
char *name;
char *id;
_A_ENTRYDEF *def;
_A_ENTRYTYPE type;
_A_D_LEVEL scope;

20

int _A_c_delete_entry (name, id, type, scope)
char *name;
char *id;
_A_ENTRYTYPE type;
_A_D_LEVEL *scope;

int _A_c_lookup (name, id, type, scope, def)
char *name;
char *id;
_A_ENTRYTYPE type;
_A_D_LEVEL *scope;
_A_ENTRYDEF *def;

int _A_c_check (name, id, type, scope)
char *name;
char *id;
_A_ENTRYTYPE type;
_A_D_LEVEL *scope;

int _A_c_rescope (name, id, type, oldscope, newscope)
char *name;
char *id;
_A_ENTRYTYPE type;
_A_D_LEVEL oldscope;
_A_D_LEVEL newscope;

int _A_release_dict ()

int _A_c_const_uid (id, classtype)
char *id;
_A_CLSTYPE classtype;

4.3.5. An Example
Below is an ADAMS program that exercises many of the dictionary features. In it we fol-

low the convention of capitalizing class names and using lower case for instance names. How-
ever nothing in the ADAMS language, preprocessor or dictionary is case dependent.

#include <stdio.h> main ()
{
<< open_adams 3 >>

<< X isa MAP with image Y, scope is task >>
<< x_inst instantiates_a X >>

<< A isa Class , having {attr1_inst} >>
<< a_inst instantiates_a A >>

<< C isa A and B, having x = {attr1_inst} , scope is system >>

<< D isa attribute, with image FOO having {y} >>
<< d instantiates_a D >>

<< S isa set of FOO elements, scope is user >>
<< s_inst instantiates_a S >>

21

<< Z isa CODOMAIN, consisting of #a-zA-Z# , scope is TASK >>

<< close_adams 3 >>
}

The following is the code generated by the preprocessor for run-time
execution:

_A_attach_dict(task_id, user_id, "tests", 0);
{
char _A_id[9];
_A_ENTRYDEF _A_def;
_A_def.type = _A_NDEF; /* For each _A_ENTRYDEF variable, this */

/* must be done before they can be used. */
/* This is one of the differences */
/* between C and C++. */

<< X isa MAP with image Y, scope is task >>
/* Recognize "isa MAP" */

_A_set_deftype(&_A_def, _A_CLASSDEF);
_A_add_superclass(&_A_def, "MAP", _A_TASK);

/* Recognize "with image Y" */
_A_add_image(&_A_def, "Y", _A_TASK);

..... /* get a new uniqueid for this map class */
/* and put it in "_A_id" */

if (_A_add_entry("X", _A_id, &_A_def, _A_CLASS, _A_TASK))
{ /* Try to add to dictionary */

/* Successful dictionary entry */
......
}

else
{ /* Entry could not be made */
......
}

<< x_inst instantiates_a X >>
_A_set_deftype(&_A_def, _A_INSTDEF);
_A_add_instclass(&_A_def, "X", _A_USER);

..... /* get a new uniqueid for this instance */
/* and put it in "_A_id" */

if (_A_add_entry("x_inst", _A_id, &_A_def, _A_INST, _A_USER))
{
......
}

else
{
......
}

<< A isa Class , having { attr1_inst } >>
_A_set_deftype(&_A_def, _A_CLASSDEF);
_A_add_superclass(&_A_def, "CLASS", _A_USER);

/* suppose {attr1_inst} is an attribute set that has */

22

/* already been made up by the preprocessor. */
/* Its uniqueid is set_id. */

_A_add_attrset(&_A_def, NULL, set_id, _A_USER, NULL);

..... /* get a new uniqueid for this class */
/* and put it in "_A_id" */

if (_A_add_entry("A", _A_id, &_A_def, _A_CLASS, _A_USER))
{
......
}

else
{
......
}

<< a_inst instantiates_a A >>
_A_set_deftype(&_A_def, _A_INSTDEF);
_A_add_instclass(&_A_def, "A", _A_USER);

..... /* get a new uniqueid for this instance */
/* and put it in "_A_id" */

if (_A_add_entry("a_inst", _A_id, &_A_def, _A_INST, _A_USER))
{
......
}

else
{
......
}

<< C isa A and B, having x = {attr1_inst} , scope is system >>
_A_set_deftype(&_A_def, _A_CLASSDEF);
_A_add_superclass(&_A_def, "A", _A_SYSTEM);
_A_add_superclass(&_A_def, "B", _A_SYSTEM);
_A_add_attrset(&_A_def, NULL, set_id, _A_SYSTEM, NULL);

/* set_id is the unique id of {attr1_inst} */

..... /* get a new uniqueid for this class */
/* and put it in "_A_id" */

if (_A_add_entry("C", _A_id, &_A_def, _A_CLASS, _A_SYSTEM))
{
......
}

else
{
......
}

<< D isa attribute, with image FOO having {y} >>
_A_set_deftype(&_A_def, _A_CLASSDEF);
_A_add_superclass(&_A_def, "ATTRIBUTE", _A_USER);
_A_add_image(&_A_def, "FOO", _A_USER);

/* suppose {y} is an attribute set that has */
/* already made up by the preprocessor. */
/* Its uniqueid is set_id. */

_A_add_attrset(&_A_def, NULL, set_id, _A_USER, NULL);

23

..... /* get a new uniqueid for this attribute class */
/* and put it in "_A_id" */

if (_A_add_entry("D", _A_id, &_A_def, _A_CLASS, _A_USER))
{
......
}

else
{
......
}

<< d instantiates_a D >>
_A_set_deftype(&_A_def, _A_INSTDEF);
_A_add_instclass(&_A_def, "D", _A_USER);

..... /* get a new uniqueid for this instance */
/* and put it in "_A_id" */

if (_A_add_entry("d", _A_id, &_A_def, _A_INST, _A_USER))
{
......
}

else
{
......
}

<< S isa set of FOO elements, scope is user >>
_A_set_deftype(&_A_def, _A_CLASSDEF);
_A_add_superclass(&_A_def, "SET", _A_USER);
_A_add_elementclass(&_A_def, "FOO", _A_USER);

..... /* get a new uniqueid for this set class */
/* and put it in "_A_id" */

if (_A_add_entry("S", _A_id, &_A_def, _A_CLASS, _A_USER))
{
......
}

else
{
......
}

<< s_inst instantiates_a S >>
_A_set_deftype(&_A_def, _A_INSTDEF);
_A_add_instclass(&_A_def, "S", _A_USER);

..... /* get a new uniqueid for this instance */
/* and put it in "_A_id" */

if (_A_add_entry("s_inst", _A_id, &_A_def, _A_INST, _A_USER))
{
......
}

else
{

24

......
}

<< Z isa CODOMAIN, consisting of #a-zA-Z# , scope is TASK >>

_A_set_deftype(&_A_def, _A_CODEF);
_A_add_validm (&_A_def, "...."); /* #[a-zA-Z0-9]# */

..... /* get a new uniqueid for this codomain */
/* and put it in "_A_id" */

if (_A_add_entry("Z", _A_id, &_A_def, _A_CO, _A_TASK))
{
......
}

else
{
......
}

set_deftype(&_A_def, _A_NDEF); /* this must be done before */
/* leaving the scope of "def" */

}

4.4. Dictionary Implementation
The current ADAMS dictionary is implemented upon the unique ID module of the ADAMS

system, and the only part of the unique ID module interface the dictionary uses is the unique ID
storage routines. That is because everything in ADAMS is stored through the unique ID storage
mechanism.

4.4.1. Representation of the Dictionary in Memory
Figure 4.2 shows the logical structure of a sub-dictionary. This is the dictionary representa-

tion in memory. Every sub-dictionary has a level flag indicating its level, ie. SYSTEM, TASK,
USER or LOCAL, a header and some pointers to some entry lists. The four types of entries are
put in four separate lists. These lists contain only the name parts of entries as well as minimal
bookkeeping information. Therefore they are called name-lists. The elements in the name-lists
are blocks (or "chunks") called list-chunks, each of which contains a header, an entry array, and
one corresponding pointer arrays. Each element in the entry array contains the name part of an
entry and bookkeeping information about that entry. The pointer array is a definition pointer
array. Each element in this array is a pointer to the definition part. Of course not all the
definitions need be in memory for any simple program. Therefore some of the pointers can be
null. Only when needed, will a definition part be fetched into memory and the corresponding
pointer is set to it.

4.4.2. Persistent Storage of Name Parts
Now we know that the name parts of all entries are put into some chunks and these chunks

are linked together to form the basic structure of a sub-dictionary. Since the dictionary is per-
sistent, we have to store sub-dictionaries into disk. To do this, we first set up a Unix directory
under which the dictionary is to be stored. The sub-directories in this directory have the structure
shown in Figure 4.3.

We can see that each persistent sub-dictionary has five files: hd (header), co (codomain), cl
(class), sp (subscript pool) and in (instance). The sub-dictionary header is saved in the first file.
The other four files contain the list-chunks of the four types. Since we assign every chunk a

25

entry

header
list-chunk

.

entry

entry

.

entry entry

.

header
list-chunk

.

entry

entry

.

.

.

level
flag header

entry

header
list-chunk

.

.

.

.

.

.

.

entry

entry

entry

header
list-chunk

header
list-chunk

entry
header

list-chunk

entry

sub-dictionary

entry

.

.

.

.

entry
entry

.

.

.

entry
entry

.

.

.

. . .

.

list
codomain

list
subscript
pool list

instance
list

class

definition
entry

part

.

header
list-chunk

entry

.

.

.

entry

entry
entry

.

.

.

entry
entry

.

list-chunk
header

Figure 4.2 Sub-dictionary Structure

26

u1u398u1

t1

co spcl inhdco spcl inhd

co spcl inhd

co spcl inhd co spcl inhd

co spcl inhd

directorydictionary
ADAMS

t23

Figure 4.3 Structure of ADAMS Dictionary Directory

number when we create them, all the chunks are stored in increasing order in the files they belong
to. In the hd file of the SYSTEM sub-dictionary, besides the header, the unique ID’s of the six
pre-defined classes are also stored at the end of the file. They are obtained when the SYSTEM
sub-dictionary is created and are never changed.

4.4.3. Representation and Storage of Definition Parts
The four types of entry definitions are defined as four C++ classes. When a new definition

is to be created, an _A_ENTRYDEF object is first filled out. After this is finished, the definition
data is added into the dictionary.

We know that in a class definition there may be a list of super class unique ID’s and lists of
associated sets. Also in an instance definition there may be a list of super class unique ID’s.
When an entry is being defined, ie. an _A_ENTRYDEF object is being filled out, the number of
elements in these lists are unknown until the process is completed. So we have to put them in
some temporary lists. But once the entry is defined, these lists will never be changed. Therefore
when the entry is added to the dictionary, these fields are copied from the temporary lists into
some dynamic arrays which are of the exact sizes to hold the the data. This saves space since no
pointer is needed to link them. This is done by the two member functions of _A_ENTRYDEF,
i.e. _A_ENTRYDEF::move_classes() and _A_ENTRYDEF::move_assocsets().

Unlike the list-chunks, the definition part of each entry is not saved in dictionary files.
Since every entry has a unique ID, and in our implementation unique ID’s are objects and have
disk space allocated for them, we use the ADAMS unique ID storage mechanism to store the
definition part of entries. (Eventually the list-chunks can also have unique ID’s and be stored in
this way. Therefore in a later implementation the dictionary files co, cl, sp and in may disappear.
We will talk about this more later in our discussion of further work.)

Before a definition is to be saved in the disk, it must first be put into an internal buffer in
some format and then all the bytes are flushed into disk by invoking the unique ID store function.
When a definition is fetched into memory, we first get it into an internal buffer by calling the
unique ID load function. Then, since we know the format in which we stored it, we can convert
these bytes of data into a run-time structure. Doing so, we need to know the number of bytes

27

needed to store a definition. This number is kept in the _A_ENTRYDEF object when it is being
filled out. Then it is written into the name part of the entry in list-chunk. The formats we use for
the four types of definitions are as follows. Compare these to the corresponding logical lists in
Section 4.2.

Codomain definition:
validating method (null character terminated string)
fetch method (null character terminated string)
store method (null character terminated string)
number of other methods (1 byte)
other methods (null character terminated strings)
undefined value (null character terminated string)
unknown value (null character terminated string)

Class definition:
number of super classes (1 byte)
super class unique ID’s
attribute or map image unique ID
set element class unique ID
number of associated attribute sets
associated attribute set unique ID
associated attribute set synonym (null character terminated string)
associated attribute set unique ID
associated attribute set synonym (null character terminated string)
...
number of associated map sets
associated map set unique ID
associated map set synonym (null character terminated string)
associated map set unique ID
associated map set synonym (null character terminated string)
...
boolean method (null character terminated string)

Subscript Pool:
codomain unique ID
number of values (1 byte)
pool values (null character terminated strings)

Instance:
number of super classes (1 byte)
super class unique ID’s

4.4.4. Implementation
Before the dictionary can be used, it should be "attached" to first by calling the routine

_A_attach_dict(). What is actually done is that first some global variables are set. One of them is
the flag indicating if the pre-processor or a user program is running. Then several run-time sub-
dictionary structures are created and the sub-dictionaries of all the three persistent levels are
loaded into memory. In the current implementation, all the list-chunks are loaded. If it is the
pre-processor that is running, a set of shadow sub-dictionaries are also created. So when new

28

entries are added into the dictionary, they will actually be added into the shadow sub-dictionaries
to keep the dictionary unchanged at pre-processing time.

When a program is done with the dictionary, the dictionary should be released by calling
_A_release_dict(). If the pre-processor is running, all to be done is just releasing the memory
space allocated for the dictionary. Otherwise, all changes to the dictionary should be written
back to the permanent storage first.

When an entry is added to the dictionary (only _A_ENTRYDEF objects can be used to add
an entry), some consistency conditions should be examined first. In the current implementation,
we only check to make sure that there is not another entry of the same type with the same name at
the same or higher level. If an empty slot in the sub-dictionary is found, the new entry is added
there; otherwise, a new list-chunk is created and the new entry is inserted there.

An entry can be deleted only if it is not being referenced by any other entries. In the current
implementation, every entry has a reference count which keeps the number of entries that are
referencing it. We can delete an entry as long as its reference count is zero. While deleting an
entry, we should also decrease the reference counts of all the entries to which this entry has a
reference.

For rescoping an entry, only upward rescoping is allowed in current implementation and an
entry can be rescoped to a higher level only if there is not another entry of the same type with the
same name in a higher level than the old scope and all the entries referenced by this entry are still
visible, ie. inclusively above the new scope.

4.5. Programs for Creating and Removing a Dictionary
When the system is first set up, we need commands to create an empty SYSTEM sub-

dictionary. Later as new tasks and new users come in, we also need to create empty sub-
subdictionaries for them. When tasks are canceled or users go away, their sub-dictionaries should
be removed. To do all this, we have two command programs to create and remove sub-
dictionaries.

The command program to create a sub-dictionary is createdict. The information needed to
create a sub-dictionary includes the dictionary directory, the level of the sub-dictionary to be
created and the necessary task ID number and user ID number. The dictionary directory can be
specified by a command line option. If no option is given, the dictionary directory is obtained
from the environment variable DICTDIR in the user’s .profile file. The other information is
given as command line arguments. In addition, the necessary dictionary sub-directories must first
exist before the sub-dictionary can be created. For example, suppose our dictionary directory is
/at0/adams/TEST. To create up the SYSTEM sub-dictionary, the directory /at0/adams/TEST
must first exist. Then we give the command:

$ createdict s # create system dictionary files
DICTDIR=/at0/adams/TEST

or
$ createdict -d/at0/adams/TEST s

Now if we want to create a sub-dictionary for a new task with ID number 123, the directory
/at0/adams/TEST/t123 is first created using the command:

$ createdict t 123
or

$ createdict -d/at0/adams/TEST t 123

To set up the sub-dictionary for a new user with user ID 567 in task 123, we must also create the
directory /at0/adams/TEST/t123/u567. The command to create this user sub-dictionary is:

29

$ createdict u 123 567
or

$ createdict -d/at0/adams/TEST u 123 567

To remove the dictionary, run the program removedict. The command line arguments are exactly
the same as for createdict, e.g.

$ remove -d/at0/adams/TEST u 123 567

4.5.1. Implementation of createdict and removedict
Before a sub-dictionary is created, createdict first checks to make sure that the specified

sub-dictionary already exists. If so, nothing is done; otherwise, SUBDICT::set_storage() is called
to create the sub-dictionary files, ie. hd, co, cl, sp and in. The header of the empty sub-dictionary
is written into hd. If it is the SYSTEM sub-dictionary, the unique ID routine is called to get six
unique ID’s for the six pre-defined classes and they are also written into hd. These unique ID’s
will never be assigned to any other objects and they always represent the pre-defined classes.

To remove a sub-dictionary, the name-lists are first loaded into memory so that the unique
ID’s of each entry could be used to release the permanent storage for definitions, because the
definition of each entry is stored by unique ID store routine. After that, all the sub-dictionary
files are removed.

4.6. Interactive Dictionary Test Program
An interactive dictionary test program was created to validate various dictionary functions.

It currently has the capability to insert, delete, look up, and rescope dictionary entries, print out
sub-dictionaries, and give the upper most super class of an instance, i.e. one of the six pre-defined
classes. By modifying the code future extensions can be similarly tested without affecting the
existing ADAMS system. This program is in the file test1. To run it, just type the command

$ test1 -d/at0/adams/TEST -t111 -u222

All the command line arguments can be omitted. The default tid is 123 and uid 567. The default
dictionary directory is read from the environment variable DICTDIR in the user’s .profile file.
No order is enforced for these arguments. Here is an example of running the program (user
responses are denoted in italics):

$ test1
program name > my_program
pre_processor(y/n)> n
Enter function: Insert Rescope Delete Print Lookup Classtype Quit> i
Enter level System, Task, User, Local, quit > t
Enter type Domain, Class, Subscript, Instance > d
Enter name > our_codomain
Enter validating method name > its_valm
Enter fetch method name > its_fetm
Enter store method name > its_stom
Enter other method name > its_othm
Enter other method name > another_othm
Enter other method name >
Enter udf > its_udf
Enter ukn > its_ukn
Enter name >
Enter function: Insert Rescope Delete Print Lookup Classtype Quit> q
$

30

The program first asks for your program name. It is not actually used in the current imple-
mentation, so you can enter anything you want. Then it asks if it should run as if the pre-
processor or the user program were having access to the dictionary. Here we answered n, which
means all changes will be written to the permanent dictionary just as if the user program were
running. Then a top level function list is given. To select one of them, only the first character is
needed. We selected insert. Then the level at which the new name is to be inserted is asked. We
gave task. Then what kind of name? Ours is a codomain. The codomain name is our_codomain.
Then all its method names are entered. The program will keep on asking for next "other method"
until an empty string is entered. After this codomain is defined, it is inserted into the dictionary
and the program goes on to ask for another codomain until an empty line is entered. Then the
codomain insertion is finished and the top level function list is displayed again.

Now we want to look up this codomain:

$ test1
program name > another_prog
pre_processor(y/n)> y
Enter function: Insert Rescope Delete Print Lookup Classtype Quit> l
Enter type Domain, Class, Subscript, Instance) > d
Enter lookup name > our_codomain
Enter level of search System, Task, User, Local, quit > l
lookup 0-type, starting level-0, entry_str = our_codomain

FOUND at TASK level
validating method: its_valm
fetch method: its_fetm
store method: its_stom
other method(s): another_othm

its_othm

udf: its_udf
ukn: its_ukn
Enter function: Insert Rescope Delete Print Lookup Classtype Quit> q
$

Note that in the above example, we responded with search level local although
our_codomain is at the TASK level. This means the search will begin from LOCAL and go
upwards.

The process to run other functions is quite similar and the program is quite self-explanatory.

4.7. Suggestions for Further Work
(1) In the current implementation, all the list-chunks are in the memory. This can be

improved if we have two lookup tables for each sub-dictionary. Every list-chunk can be
given a unique ID. One of the tables converts the name of an entry to the list-chunk ID in
which it resides. The other table converts the unique ID of an entry to the corresponding
list-chunk ID. By these two tables, given either a name or a unique ID, we can find the
list-chunk ID in which this entry resides. These two tables can be implemented as O-
trees. Then not all the list-chunks have to be in memory. Only when a name is looked
up and it is not found in memory, will its list-chunk be loaded into memory. When a new
entry is inserted into dictionary, it will be inserted into those list-chunks that are already
in memory if they have an empty slot; otherwise, a new list-chunk is created and the
name is inserted there.

(2) The subscripted name feature is not implemented yet. If a name has a subscript, it will be
denoted by, besides its unique ID, a number which is calculated from its subscript. So

31

given a subscripted name, the task for the dictionary is to find its unique ID and calculate
this number from the subscripts.

(3) The parameterized class has to be implemented.

(4) The rescoping mechanism has not been implemented completely. The key issue is to
keep reference counts. An entry in SYSTEM or TASK level need multiple reference
counts, one for each task or user who uses this entry. To represent and store these refer-
ence counts efficiently is what we need to solve. This is essentially a searching problem.
Given a user ID, or a task ID, or both, we should be able to find the corresponding refer-
ence count for that entry. Different approaches can be examined, such as balanced binary
tree etc.

(5) A robust error handler has to be developed. Currently our error routine just prints out the
error message to the standard output. A robust handler should meet the needs of the pre-
processor. This could be achieved while the pre-processor is developed further.

32

5. Low-Level Representations

5.1. Uniqueid Identifier Representation
Uniqueids are central to the implementation of ADAMS. From the end-user’s viewpoint,

they identify every ADAMS element; from the implementer’s viewpoint, they identify every
individual piece of low-level storage. Because of this pervasiveness, uniqueids form the natural
medium for the interfaces between the user’s codes and the run-time system, and between the
run-time system and the Transaction Manager and low-level storage.

5.1.1. User Interface to Uniqueids
The end-user sees a very simplified and restricted view of uniqueids. The definition that he

uses is simply a null-terminated character string of eight printable characters:

typedef char _A_uid_string[9]

The only operations available to the end-user are the following:

_A_uniqueid_getuid (_A_uid_string uid)
// Sets ’uid’ to a new uniqueid value.

_A_uniqueid_instant (_A_uid_string uid, _A_uid_string dict_entry)
// Instantiates ’uid’, initializing its link count and
// retaining ’dict_entry’ as a pointer back to the
// CLASS of ’uid.’

These functions are not called directly by the end user, but are instead inserted by the
preprocessor. The preprocessor also uses uniqueids as handles to the attributes, maps, and sets
that are maintained by the Index Manager.

5.1.2. Run-time Uniqueids
Virtually all actions taken by the run-time system involve uniqueids. The run-time

representation of uniqueids is defined by the C++ class _A_uid. The only physical structure asso-
ciated with an object of this class is an eight-character array; underlying the _A_uids, however,
there is a uniqueid manager, the _A_uidmgr class, which interfaces with the Transaction Manager
and low-level storage.

The run-time system views uniqueids in two different ways: as identifiers of ADAMS ele-
ments, and as identifiers of storage locations. In either case, there are some basic operations on
uniqueids that are included as member functions of the class _A_uid:

_A_uniqueid ()
// This constructor creates a uniqueid and sets it equal to
// the constant _A_NULLUID, an empty string.

_A_uniqueid (const &_A_uniqueid)
// This constructor creates a new uniqueid and sets it equal
// to its argument uniqueid.

_A_uniqueid (char*)
// Given a character string, this constructor creates a new
// uniqueid and initializes it to the argument string.
// This cis used mainly for debugging programs and is not
// for use by the actual ADAMS run-time system.

void disp ()
// This function is used by debug statements to display the

33

// contents of a uniqueid.

void uidcopy ()
// This function copies a null-terminated uniqueid to a string.
// It is used by some of the glue routines.

Comparison Operators: Uniqueids can be lexicographically compared to each other using the
overloaded comparison operators ==, != and >. Comparisons return _A_TRUE or _A_FALSE.

5.1.2.1. Element Identifiers
For every ADAMS element, the run-time system must maintain an instance record, consist-

ing of at least a link counter and an indicator of the element’s CLASS. In order to achieve this,
the system maintains the aidmgr, a large index that maps _A_uids to the location of the instance
record. _A_uid member functions associated solely with this view of uniqueids are:

void instantiate (_A_uniqueid& dict_entry)
// Instantiates an ADAMS element by creating storage for
// its link count and the uniqueid of its dictionary class.
// Inserts an entry in the aidmgr mapping the instantiated
// uniqueid to the new storage location.

void inc_link_count ()
// Accesses the aidmgr and increments link count of the uniqueid.

void dec_link_count ()
// Accesses the aidmgr and decrements link count of the uniqueid.

_A_BOOLEAN element_exists ()
// Accesses the aidmgr and returns _A_TRUE if an instance
// record for the uniqueid is found;
// otherwise, it returns _A_FALSE.

5.1.2.2. Storage Location Identifiers
In implementing ADAMS, uniqueids were used to refer to numerous pieces of storage that

are invisible to the end-user, such as (element uniqueid, codomain value) pairs, index blocks, and
dictionary entries. In many cases, the most convenient uniqueid to use for this identification hap-
pened to also be an ADAMS element identifier. The best example of this is a set, which is an
ADAMS element that must have some extra storage—an index—associated with it. In order to
keep the set index separate from the instance information a separate storage manager was created.

The storage manager, or sidmgr, maps uniqueids to storage locations associated with
ADAMS elements’ data. These locations store the (element uniqueid, codomain value) pairs
pointed to by indexes used to implement maps, attributes, and sets, and pieces of the indexes
themselves.

In the case of maps and attributes, the dictionary also needs to store some information con-
cerning the uniqueid. In order to allow the dictionary to also store data under the uniqueid, and to
prevent any clashes, the dictionary has its own storage manager, the didmgr. It is identical to the
sidmgr, except that the locations it points to are used to store information for the dictionary alone.
_A_uid member functions related to storage are

_A_BOOLEAN storage_exists ()
// Accesses the sidmgr and returns _A_TRUE if a storage
// location is found for the uniqueid;
// otherwise, it returns _A_FALSE.

34

int fetch (_A_STORE_TYPE mgr, char* buffer, int buf_length)
// Accesses either the didmgr or sidmgr, depending upon the
// value of ’mgr,’ and fetches the data stored at the
// uniqueid, writing it into ’buffer’.
// Returns the actual number of bytes fetched.

int store (_A_STORE_TYPE mgr, char* buffer, int buf_length)
// Updates the didmgr or sidmgr, as indicated by the
// value of ’mgr,’ and stores the contents of ’buffer’
// under the uniqueid.
// Returns the number of bytes stored.

void unstore (_A_STORE_TYPE mgr)
// Frees memory associated with an entry in either the
// didmgr or sidmgr, as indicated.
// Also removes the uniqueid from the table.

This section describes our current implementation of the uid concept. As we have
discovered, we can eliminate any direct representatin of them and treat uid’s as virtual tokens
with their reference counters and class pointers functionally treated as attributes and maps respec-
tively.

5.2. Storage
One goal of ADAMS has been to eliminate the traditional file/record structures as the para-

digm of persistent data storage. Programmers have historically accessed persistent data through
filenames and relative locations such as a byte offsets or record numbers. An unfortunate conse-
quence of this approach is that migration of data either greatly sacrifices efficiency or is alto-
gether unworkable; processes that need to access the data cannot keep track of its location. In
addition, programmers must handle the low-level file I/O necessary to operate on the object, con-
current access to data cannot be supported without great care and operating system support.
These weaknesses can largely be overcome by the client-server model, where by a client we mean
any process which uses bags to store and access persistent data. These client processes will
invariably be ADAMS preprocessing or run-time procedures since bags are invisible to applica-
tions programs.

Client processes refer to persistent data through some form of storage-independent handles,
while a server is responsible for mapping handles to actual disk locations. Because an item’s
handle is invariant over its lifetime, the server can move data arbitrarily so long as its mapping
rules are revised appropriately.

The ADAMS Storage Management System is based on this model. Clients are provided
with an interface that allows only high-level operations which we describe in this section, while
the server performs all low-level I/O in response to client requests. (Details of server implemen-
tation can be found in [Jan89].) This approach provides client processes with a small set of func-
tions that support an abstract data type called a bag, a persistent collection of variable-length or
fixed-size objects. Individual bags are not bound to any storage device. While this implementa-
tion of the Storage Manager does not concern itself with migration, we will that show the
approach used is easily extensible to provide this capability.

Client requests are received by a server, which utilizes a group of I/O-dedicated processes
to perform the actual I/O, as shown in Figure 5.1. The server operates as a daemon that can mul-
tiplex many clients.

Under this system, a client uniquely identifies a data item by a (bag_number, item_number)
pair. The latter is simply a secondary tag that uniquely identifies this particular element in the
bag, but not its location on a storage device. A client can store an item by creating a bag and then

35

Schematic of bag storage management.
Figure 5.1

inserting the item into it. Those operations return a bag number and an item number respectively;
the client can later access the item by these values. Other functions allow retrieval, modification
and deletion of items, and deletion of bags.

A client is any process which accesses data represented in bags. Clients view bag opera-
tions as function calls. The function calls mask the underlying system calls required to imple-
ment the client-server interprocess communication (IPC). We use long integer bag and item
identifiers, which we type as BAGNO and ITEMNO.

There are six functions provided to clients to operate on bags and items. The declarations
and semantics of the functions are listed below. All functions return negative values on error.
Error conditions are listed in Appendix A of [Jan89].

BAGNO create_bag (long length)
/*
** Creates a new bag and returns its bag number.
** If length is positive, the bag may contain
** only items of this specified number of bytes.
** A non-positive value specifies that the bag

36

** may contain variable-length items.
*/

ITEMNO insert_item (BAGNO b, char *s, long length)
/*
** Inserts the sequence of length bytes beginning at address s
** into bag b, and returns the item number assigned
** to the stored bytes. If the bag was created for fixed-length
** items, the length must match the value originally
** passed to create_bag().
*/

long retrieve_item (BAGNO b, ITEMNO i, char *s, long length)
/*
** Retrieves the bytes stored as item i in bag b.
** Copies at most length bytes to the buffer beginning at
** address s. Returns the actual size of the item in bytes.
*/

long modify_item (BAGNO b, ITEMNO i, char *s, long length)
/*
** Replaces item i in bag b with the sequence of
** length bytes beginning at address s. If the bag was created
** for fixed-length items, length must match the value
** originally passed to create_bag().
*/

long delete_item (BAGNO b, ITEMNO i)
/*
** Deletes item i from bag b.
** The item number can later be reassigned by the server
** when another item is inserted into bag b
** via insert_item().
*/

long delete_bag (BAGNO b)
/*
** Deletes bag b.
** There is no requirement that the bag be empty.
** The bag number can later be reassigned by the server
** when another bag created via create_bag().
*/

Two functions are provided to allow the client to arbitrarily open and close a connection
with the server. This ability provides significant flexibility to programmers concerned with
robustness. For example, if the server crashes and is then rebooted, clients that were not con-
nected over this period will be unaffected.

As with the bag functions, these connection functions return negative values if they fail.

int open_connection ()
/*
** Opens a communication channel between client and the server.
*/

int close_connection ()
/*
** Closes the communication channel between client and the server.

37

*/

Another function allows the client to determine if the connection is open or closed. While
the state can also be determined by the return values of the open_connection() and
close_connection() functions, this function provides a convenient mechanism for code with mul-
tiple entry points, such as signal handlers, to test connection status:

int connected ()
/*
** Returns a nonzero if the communication channel between the
** client and server is open, and zero otherwise.
*/

When any of the functions fail, the external variable errno is set to the error number. A
mechanism exists so the user can access a string that describes the error:

char *errstr ()
/*
** Returns a pointer to a string describing a client error.
*/

Most UNIX system calls can alter the value of errno, so this function should be invoked immedi-
ately after a Storage Manager function fails, as in the following code fragment:

if (open_connection() < 0)
{
fprintf (stderr, "Open_connection failed: %s\n", errstr());
exit (1);
}

A process may have no more than one connection to the server open at a given time. A call
to open the connection when it is already open, or to close the connection when it isn’t open will
fail. A process with the connection open can exit without calling close_connection() — the ker-
nel will close the client’s side of the connection when cleaning up the process’ open file table.
Since file descriptors are shared over a fork() system call, a client program that forks while con-
nected should close the connection in either the parent or child. Since file descriptors are inher-
ited over exec() system calls, a client should always close the connection before an exec().

Client processes have full control to decide when bags should be created and what is to be
inserted into them. The intention is that each bag should contain related items likely to be
accessed sequentially, and different bags should be used for collections of data that are likely to
be accessed in parallel. Later versions of the ADAMS Storage Manager will be optimized for
those circumstances. Clearly, the determination of relatedness, while varying for different client
applications, is better decided at a higher level.

Client processes also have full control over when the communication channel to the server
is opened. A client process that infrequently needs access to data managed by the server should
open the connection only when necessary. The maximum number of connections that the server
can have open is finite, though large enough to handle many clients simultaneously.

This storage management module was written in C. The C++ user simply links his object
file(s) with the object file containing the connection and bag-related functions. A file containing
the type definitions for BAGNO and ITEMNO and the declarations of the functions and their
arguments must be included into any client source files that call the functions to satisfy the strict
type-checking requirements of cfront, the C++ syntax and type-checker. The C user can link with
the same object file, but a C-style include file must be used instead of the C++-style file.

38

6. Codomains
In this implementation, all codomains are represented as ASCII strings that are coerced into

appropriate host language types by methods attached to the fetch and store operators. More gen-
eral codomains will be implemented in the next version.

39

7. Indexes — Functions and Aggregate Structures
Many relationships between associated elements of a database must be maintained by the

database manager. In a general mathematical sense, all such relationships can be regarded as a
collection of ordered pairs (elementA, elementB) , indicating that elementA (of type A) is related to
elementk (of type B) by the relation R(A,B) defined on the classes (types) A and B. Such a gen-
eral relationship can be implemented as a simple table of the form

(elemA1
, elemB1

)
(elemA1

, elemBj
)

. .

. .
(elemAi

, elemBj
)

(elemAi
, elemBk

)
. .
. .

(elemAm
, elemBn

)

Such a structure can be thought of as an "associative table," meaning that conceptual retrieval can
be based on a specified value in either the left-hand or right-hand column, and that the retrieval
may yield multiple values from either column.

If the values in the left-hand column are unique, then the relation is functional. These gen-
eral relationships are represented by pairs of indexes, one index mapping the left-hand column of
elements to the right, and a second index mapping the right column of elements back to the left.
By design, virtually all relationships in ADAMS—notably attributes and maps—are functional.
Because the underlying relationship is thereby known to be functional, retrievals based on a sin-
gle key using the left-to-right index always return a single value; the right-to-left index must, in
general, return sets of values on a single-key retrieval. This section describes the way that these
indexes are managed. The actual structure of an index is irrelevant. One may, for example, use
B-trees to implement key directed lookup in the table. ADAMS employs a variant of B-trees
known as O-trees [Orl89].

7.1. Basic Structures
All indexes used to implement attributes, maps, and sets inherit their structure from the

basic class _A_index, which maps keys to uniqueids. The keys are defined by the class _A_key,
which provides constructors for automatic conversion of strings and uniqueids to keys.

Indexes were designed to take advantage of the object-oriented properties of C++. The
basic operations on this class include:

void insert (_A_key&, _A_uid)
// Inserts a (key, uniqueid) tuple into the index.

void chg_val (_A_key&, _A_uid)
// Changes the uniqueid associated with the key.

void remove (_A_key&, _A_uid)
// Removes the designated tuple from the index.
// For indexes that require keys to be unique, the uniqueid
// is left as a null value (using the constant _A_NULLUID).

_A_uid get_val (_A_key&, _A_ACCESS)
// Returns the uniqueid associated with a unique key.
// The _A_ACCESS currently has no function, but may later be
// used with the transaction manager.

40

int nbr_tuples ()
// Returns the number of tuples in the index.

_A_uid save ()
// Makes an index persistent, returning the uniqueid to be
// associated with that index. Once an index is persistent,
// the destructor ˜_A_index() will automatically save any
// changes every time that an index goes out of scope.

7.2. Maps
Maps are implemented using the _A_map class, which accepts tuples of the form

(<source_uid>, <target_uid>). Each tuple is stored under a storage uniqueid, which is then refer-
enced in two types of indexes, both maintained by this class:

_A_fwd_map
// This is the forward map index, which maps the sources to
// the storage uniqueids.
// This class is derived from the _A_index class, and its
// member functions are identical, with the exception that
// they take _A_uid’s instead of _A_key’s as the first
// elements of their tuples.

_A_inv_map
// This is the inverse map index, which maps the targets to
// the storage uniqueids.
// It is also derived from the _A_assoc_tbl class, but differs
// in that it allows non-unique keys.

Besides insert() and remove(), member functions for this class include:

void chg_key (_A_uid& old_key, _A_uid& new_key, _A_uid& elem_uid)
// This function removes the tuple
// (source uid old_key, storage uid elem_uid)
// and replaces it with
// (source uid new_key, storage uid elem_uid).

_A_set* get_vals (_A_uid&, _A_ACCESS)
// This function takes a target uniqueid and returns a
// pointer to a set that contains all the source uniqueids
// mapping to the target.

7.3. Attribute Functions
Attribute functions are implemented using the _A_attr class, which accepts tuples of the

form (source uniqueid, attribute value). Each tuple is stored under a storage uniqueid, which is
again referenced in two indexes:

_A_fwd_attr
// This index is derived from _A_index and accepts
// (source uniqueid, storage uniqueid) pairs.
// The only difference between the member functions for this
// class and for its ancestor are that it uses _A_uid’s
// instead of _A_key’s.

_A_inv_attr
// This index is also derived from _A_index, but it accepts
// (attribute string value, storage uniqueid) pairs.

41

Its member functions include:

void chg_val (char* old_key, char* new_key, _A_uid& elem_uid)
// This removes the tuple
// (string value old_key, storage uniqueid duid)
// and inserts the tuple
// (string value new_key, storage uniqueid elem_uid).

_A_set* get_vals (char*, _A_ACCESS)
// This function takes an attribute value as an argument and
// returns a pointer to a set containing the source element
// uniqueids that map to that value.

_A_set* get_range_vals (char* lo_key, char* hi_key, _A_ACCESS)
// This function returns a pointer to the set of all source
// element uniqueids that map to attribute values that fall
// within the specified range.

7.4. Index Manager
Virtually, any executable ADAMS program must access at least one index to do any useful

work. Currently these indexes are implemented as objects belonging to a number of C++ classes.
These classes have constructors for loading a persistent image, destructors for closing persistent
images, and methods which may be performed on objects to do work. The preprocessor must
generate code to access and manipulate these indexes. To perform operations on an index, the
persistent image is loaded into memory resident data structures with C++ constructors. This
could be done by declaring an object of the appropriate index class and passing as a parameter the
uniqueid of the required index.

_A_set aset ([uniqueid of the index]);

This gives the executing program a handle, aset, by which operations may be performed on the
index. By handles we mean the storage location of an actual memory resident data structure that
represents a set, map or attribute. Conceptually, the executable ADAMS program could access
these indexes, opening, closing and performing operations on them via C++ constructors, destruc-
tors and methods. However, this presents a number of problems.

First, ADAMS is an embedded language. The concept being that it may be embedded in
languages like C, FORTRAN, Pascal and Ada. Code generation from the preprocessors
viewpoint is a complex task. The generated code must have a method to access the C++ objects
(data structures), which are implemented with C structs, and methods which make up the
ADAMS run time system. Embeddability presents problems, in that it is necessary to restrict
interaction between ADAMS and a host language, while maintaining a flexible, powerful inter-
face to the ADAMS run time system. This interaction must be well defined. For example, in the
code generated by the preprocessor the actual data structure (C struct) that is a set object would
need to be declared before being used in the program. Also, if this set were persistent and already
contained elements the C function that is the C++ constructor would have to be explicitly called
to load the set into memory. Likewise, the destructor would have to be called when the set is no
longer needed. These declarations and explicit function calls are messy. Further, if the generated
code is forced to make declarations of objects to be used before their use and clean them up when
no longer needed, certain host language characteristics may effect the semantics of ADAMS pro-
grams.

Second, when ADAMS is embedded in a language like FORTRAN which does not support
the concept of a record or a struct, the complexity is multiplied, and strict knowledge of each data
structure is needed by the preprocessor. Since, these objects would exist as declared data

42

structures, then the objects would be governed by the scoping rules of the host language instead
of the scoping rules of the ADAMS language causing possibly different semantics for the same
ADAMS program depending on the host language. This is an unacceptable level of complexity
for the preprocessor.

What is needed is a method for the code generated by the preprocessor to perform opera-
tions on ADAMS indexes, without having to maintain handles to the indexes in any language.
Our solution is to have this task performed by an Index Manager, hereafter referred to as the IM.
The IM along with the glue routines (discussed later) serve as the link between an executing
ADAMS program and the ADAMS run time system. Even though the IM is part of the final exe-
cutable program, conceptually it is very separate. The IM maintains all of the handles to
ADAMS indexes needed by the executing program. The glue routines use these handles to sets,
maps and attributes to perform the operations on them by using the methods defined on these
C++ classes.

The glue routines are a very simple interface to the preprocessor. These routines are used in
the code generated by the preprocessor to perform the semantic actions specified by ADAMS
statements. The glue routines call upon the IM for handles to the objects upon which operations
are to be performed. The IM in turn maintains the objects, returning handles to previously
accessed indexes and opening new ones when needed. Further, the IM may be told when to flush
itself for implementation of transactions.

The preprocessor still needs a way of referring to objects. This is most naturally done by
uniqueid. The concept of the uniqueid for ADAMS elements is fundamental to the language as
well as the implementation of the runtime system. Furthermore, a uniqueid is easily represent-
able in any language. In retrospect, the preprocessor refers to indexes by uniqueid when calling
glue routines. The glue routines perform the function of the C++ class methods. The routines
obtain handles to the index from the IM. With this handle the glue routine may then use the C++
methods defined on that class to perform the operation required. This in conjunction with the IM
and glue routines removes the problem of complex handle maintenance thus making it much
easier to embed ADAMS in almost any language in a timely fashion.

7.5. Index Manager Interface
The idea behind the IM is a simple one. The preprocessor generates the code to perform

ADAMS operations via glue routines. Having removed the responsibility of maintaining handles
from the preprocessor. The preprocessor refers to indexes by uniqueid. To perform an operation
on an index, the preprocessor passes the uniqueid of the index to be used in an operation to the
appropriate glue routine. The glue routines interact with the IM and receive handles (pointers) to
the objects required. These pointers reference the core image of the appropriate C++ object.
Glue routines then utilize the methods defined on these classes to perform the operation returning
values to the executing program when necessary. The overall relationships between the host
language code, the index glue routines, and the index manager is illustrated in Figure 7.1.

7.6. Index Manager Operations
The internal workings of the IM are as simple as the concept. It only has three operations

that may be asked of it:

void* get_index (_A_NDX_TYPE type, _A_uniqueid uid);
void cleanup_indexes ();
void close_indexes ();

Get_index is used exclusively by the glue routines. Cleanup_indexes and close_indexes are used
in code generated by the preprocessor.

43

Figure 7.1

(1) Get_index takes as parameters the type of the index to be opened (set, map, attr) and the
uniqueid of this index. From the view of the glue routines, it does not matter if the index
is open or closed. Get_index returns a handle to it if it is open, opening it if needed.

(2) Cleanup_indexes calls are made at the end of a transactions. The calls are placed by the
preprocessor. A cleanup_indexes call closes all persistent (non-local) indexes, thus free-
ing them for use in other transactions. Non-persistent or local indexes are kept open
since they are not used outside of the scope of the ADAMS program and do not matter
for concurrency considerations. An entire ADAMS program is treated as a default tran-
saction.

(3) Close_indexes is a call made at the end of an ADAMS program. This call closes all
indexes, writing updates to disk and removing the disk images of all non-persistent
(local) indexes.

44

7.7. Index Manager Implementation
The IM performs its task with the use of the constructors and destructors defined on the

C++ objects. These functions take the uniqueids of objects as parameters and load persistent
indexes. The index type is needed so the IM will know which constructor or destructor to call.
All IM indexes are maintained on the heap. The IM currently uses a linked list to store handles
using a Move to the Front (MTF) heuristic to insure a rough ordering by frequency of use. It is
not clear that a tree would be faster but the option should be explored. The MTF heuristic is
optimal for iteration through a set where a handle is requested repeatedly. In this case the access
will be constant time after the first access. Perhaps an optional implementation would be to
maintain a binary tree with a pointer to the last item accessed which would always be checked
first for a hit. A test should be made to determine whether accesses to the MTF list are on aver-
age better than the log n lookup of a tree.

This self organizing list is singly linked and made up of nodes of the following type:

struct _A_indexman_tbl_node
{
_A_uniqueid index_uid;
_A_NDX_TYPE index_type;
_A_BOOLEAN LOCAL;
void* index;
struct _A_indexman_tbl_node* next;
};

When a get_index call is made the IM traverses the linked list searching for a uniqueid
match. If a match is found the node is moved to the head of the list and the pointer is returned. If
no match is found the internal function open_index is called. The appropriate constructor is
called and the index is loaded into memory, and added to the front of the linked list. A pointer is
then returned to get_index and then the calling glue routine in turn.

It is important to note that although an index may exist in the dictionary, placed there at run
time by the code generated by the preprocessor, the index may not have a disk image yet. This
fact is totally transparent to all routines and is managed by the IM. Therefore, before a construc-
tor is called, a uniqueid method, storage_exists(), is called on the uniqueid which is itself a C++
object. This function returns TRUE or FALSE indicating whether or not the object has been
created in the database. If the object has been previously created the constructor is called with
the uniqueid as a parameter thus loading the index into memory. If the index has not been
created (ie. no disk image has been created) the IM creates an image.

Further, a dictionary call (to _A_check) is made to determine the scope of an index
(LOCAL or persistent). In this fashion, the IM knows what can be maintained throughout the
course of transactions and programs. When a new index is instantiated the IM must initialize the
uniqueid of the index object as well as the persistence level. (LOCAL or persistent) The
aforementioned constructor calls on objects are performed via the C++ new function. New
accepts the class of the object as well as any parameters needed by a constructor of that class, or
no parameters for uninstantiated indexes. An example call would look like:

set_pointer = new _A_set(a_uniqueid);

This call opens the persistent set referred to by the uniqueid a_uniqueid.

The IM is not a single entity. Instead, a copy of it exists in every executable ADAMS pro-
gram. The code and data structures it uses, exist in the file indexman.h and indexman.c. The IM
is compiled separately and linked with every ADAMS program. It will be placed in a library for
use when compiling ADAMS programs.

45

An important implementation note is that void* variables (void pointers) are used to main-
tain the handles in the IM. This is done because it is easier to cast where needed in the IM and
glue routines than to worry about adding extra functions and overhead to the IM.

A very important issue that has not been addressed as of yet is what will happen if a pro-
gram crashes, or a fatal system error occurs. If this occurs the close_indexes call will never be
made. This is not a real problem for persistent indexes since all modifications will be write
through, and we will assume the existence of an acceptable roll back mechanism. The problem
arises for nonpersistent (local) indexes, their image may never be removed from disk. This prob-
lem could normally be managed in the index destructors when the call was made to
close_indexes. Also, since local indexes are allowed to remain intact across transactions, it may
be difficult to have the Transaction Manager handle this problem. A solution may be found in the
fact that each ADAMS program is considered a default transaction. In light of this, all writes to
stable storage could be rolled back or in this case removed. Appropriate safe guards must be pro-
vided, as these indexes may very well begin to eat disk space. Further, in the case of sets if link
counts of persistent elements are incremented when these elements are placed in a local set [point
for discussion!], it will fall upon the recovery system to decrement these linkcounts in the event
of a fatal system error.

7.8. Index Glue Routines
The glue routines operate in conjunction with the Index Manager (IM). They are basically a

set of functions which serve as a simple C interface to the runtime system, through which the
preprocessor performs the semantic actions of the ADAMS program. As discussed in the IM sec-
tion, the IM manages handles to the indexes used by an executing program. This creates a stable
interface where all actions are performed by calling a glue routine and specifying the uniqueids of
the objects to be used in the operation. The glue routines make a get_index call to the IM which
returns handles to the required objects. The required operation can then be performed using C++
methods defined on that class of index.

Most of the glue routines are very simple, consisting of perhaps only a few lines of code.
Glue routines have been defined for sets, maps, attributes and uniqueids. The source code for all
of these routines exists in indexglue.c. An important note, is that glue routines are also used for
access to other facilities of the runtime system not just indexes. New uniqueids, for example,
may be gotten and instantiated. The routines are listed below:

Set Manipulation Routines:
void _A_set_insert ();
void _A_set_remove ();
int _A_set_member ();
void _A_set_union ();
void _A_set_intersect ();
void _A_set_complement ();
void _A_set_assign ();
int _A_set_first_element ();
int _A_set_next_element ();

Map Manipulation Routines:
void _A_map_insert ();
void _A_map_remove ();
void _A_map_change ();
void _A_map_get_val ();
void _A_map_get_set ();

Attribute Manipulation Routines:

46

void _A_attr_insert ();
void _A_attr_assign_value ();
void _A_attr_remove ();
int _A_attr_get_val ();
void _A_attr_get_set ();

Uniqueid Manipulation Routines:
void _A_uniqueid_instant ();
void _A_uniqueid_getuid ();

The source code for the routines is relatively simple. Set, map and attribute manipulation
routines use the IM and C++ class methods for performing operations. All of the glue routines
accept string representations of uniqueids rather than uniqueids, where needed. This completely
removes any direct interaction between the code generated by the preprocessor and the C++
classes which make up the run time system. The glue routines take this string representation and
use it in the declaration of a uniqueid auto variable. A constructor defined for uniqueids makes
the conversion from string to uniqueid, so it may be used. Uniqueids for indexes are used in a
function call to get_index (IM), and a local pointer to the appropriate index is declared to hold the
returned handle.

Two particularly note worthy glue routines are: _A_set_union and _A_set_intersect. These
routines are a little tricky. When performing either of the functions the preprocessor does some
packaging before the call. Both functions get a string representation of the uniqueid of the set to
hold the resultant, and an array of string pointers. Each string pointer in the array references the
string representation of the uniqueid of one of the sets to be unioned or intersected. A temporary
set is opened for building the resultant, because the set specified to hold the resultant set may also
be included in the operand list. Then the appropriate augmented assignment operator (+= or *=)
is used on each operand set in turn. The set to hold the resultant is then emptied and an assign-
ment is made. In the future changes may be added to perform some of these operations in paral-
lel.

Here is a brief example a glue routine, this routine is for set manipulation:

void _A_set_insert (char* uidstr, char* setstr)
// function: Performs a set insertion.
// parameters: char* uidstr; string rep of elem uid to be inserted.
// char* setstr; string rep of the set uid.
{

// Get the set.
_A_set* insertset = (_A_set*) _A_get_index(_A_SET, setstr);
_A_uniqueid insertuid (uidstr); // convert string to uniqueid.
insertset->insert(insertuid);
};

Its operation is relatively simple. The character string representations of the uniqueids of the set
and the ADAMS element to be inserted to the set are passed as parameters to the function. The
call to _A_get_index is made with the appropriate index type _A_SET and the uniqueid of the set
as parameters. A handle is returned to the variable insertset which is a pointer to the opened
index. Note, the function _A_get_index requires a uniqueid as a parameter, and the parameter
passed is actually a string. An implicit call is made to the _A_uniqueid class constructor which
converts the string to a uniqueid for use in the call. Similarly, a local variable of type
_A_uniqueid is declared and the string for the uniqueid to be inserted into the set is passes as a
parameter to an explicit call to the same constructor where a conversion takes place. The
returned handle to the set is then used in a call to a set method to perform the insert operation.

47

8. Sets
Sets are fundamental ADAMS structures. Sets may be thought of as simple aggregate

structures with ADAMS elements as members. ADAMS sets are mathematical sets where all ele-
ments in a set must be distinct.

8.1. Set Implementation
Sets, Maps and Attributes are currently implemented on a single underlying structure. In

the C++ hierarchy of defined classes, sets are derived from _A_index class. The _A_index basi-
cally stores tuples of the form (key, value). (The current implementation is a memory resident,
doubly linked, ordered list. Sets use this structure to store (uniqueid, uniqueid) pairs. This has
the consequence that sets must always be totally memory resident. This will change with the
implementation of O-trees, in that sets will no longer be required to exist entirely in memory in
order to perform operations on them.) The ordering of the set is currently performed on the value
of the uniqueid. This ordering is hidden and not part of the semantics exported to the final users
of the ADAMS language.

8.2. Set Methods
A number of basic methods exist for use with sets. These methods are member functions

defined for the C++ class set. Their function is relatively straight forward.

Set Manipulation routines:
void insert (_A_uniqueid& elem_uid);

// insert ’elem_uid’ into the instance set.
void remove (_A_uniqueid& elem_uid);

// remove ’elem_uid’ from the instance set.
void add_elements (_A_set&);

// append all elements of ’arg_set’ to the instance set.
void empty ();

// remove all elements from the instance set.

The functions insert, remove, empty and add_elements are used for building and modifying sets.
Insert and remove take an element uniqueid as parameter, and as their name suggests insert and
remove the specified element respectively. Empty totally removes all elements from a set, and
add_elements places all elements from one set into another set. The latter is used almost
exclusively for a fast shallow copy from one set to an empty set. This is used almost exclusively
in the glue routines where the set the operation is to be performed on is known to be empty. It is
not a true union operator. Consequently, indiscriminate use of this can violate the rule that set
elements are unique within that set because, no check is made to verify that the set upon which
the operation is performed is empty for efficiency reasons.

Set Membership routines:
_A_BOOLEAN member (_A_uniqueid& elem_uid);

// test ’elem_uid’ for membership in the instance set

Set Iteration routines:
_A_uniqueid first_val (_A_ACCESS acc);

// return uniqueid of first element of instance set.
// DEFAULT: ’acc’ code is WRITE.

_A_uniqueid next_val (_A_ACCESS acc);
// return uniqueid of next element of instance set.

The two functions above are used for iterating through the elements of a set. First_val resets an
internal pointer to the first element in a set. Next_val returns element uniqueids one at a time
until the set is exhausted. When this occurs a predefined constant _A_NULLUID is returned.

48

Again an explicit ordering of the set is not part of set semantics exported to ADAMS users. The
only guarantee made is that users may iterate through the contents of a set.

Set Operations:
void operator += (_A_set&);
void operator -= (_A_set&);
void operator *= (_A_set&);
void operator = (_A_set&);
_A_BOOLEAN operator == (_A_set&);

The C++ operators +=, *= and -= are used for set unions, intersections and relative complements
respectively. These are C++ methods on the class set, and are performed on a set with another set
as a parameter. They are unusual in that the resultant of the set operation is placed in the set upon
which the operation is performed. Take as an example, a += b; This operation takes the union
of the sets a and b placing the resultant set in a. The = and == operator are used for a shallow
copy (copy uniqueids only) and a boolean set comparison respectively.

The augmented operators were developed for common set manipulation. This method of
performing set unions, intersections and complements was chosen for a specific reason. The rea-
son being that although the +, * and - operators would be more expressive, their use as binary
operators result in the generation of auto variables. Take as an example the following code frag-
ment:

a = b + c + d;

While this is more expressive than:

a += b;
a += c;
a += d;

the use of binary operators in the first manner generates three auto variables. In other words three
sets are generated and destroyed in the execution of the first expression. The other expression
generates no auto variables. The generation of a simple auto variable such as an integer presents
no problem. Recall, however that sets may contain thousands of elements and will be imple-
mented with possible extensive disk images. The overhead required to generate auto variables of
this magnitude is unacceptable. Further use of the ugmented operators with some temporary sets
immediately suggests how the operation may be parallelized in the case of unions and intersec-
tions over a number of sets.

It is important to note that these set operations and the C++ concepts of classes (not to be
confused with ADAMS classes) and objects are hidden from the viewpoint of the code generated
by the preprocessor. They make up the ADAMS run time system, and are used exclusively by
the run time system and glue routines.

49

9. Retrieval, Inverse Operators
9.1. Basic Structures

All retrieval mechanisms inherit their structure from the basic class _A_index, which maps
keys to storage uniqueids. The keys are defined by the class _A_key, which provides constructors
for automatic conversion of strings and uniqueids to keys. The basic operations on this class
include:

void insert (_A_key&, _A_uniqueid)
// Inserts a (key, storage uniqueid) tuple into the table.

void chg_val (_A_key&, _A_uniqueid)
// Changes the storage uniqueid associated with the key.

void remove (_A_key&, _A_uniqueid)
// Removes the designated tuple from the table.
// For tables that require keys to be unique, the uniqueid is
// left as a null value (using the constant _A_NULLUID).

_A_uniqueid get_val (_A_key&, _A_ACCESS)
// Returns the uniqueid associated with a unique key.
// The access currently has no function, but may later be
// used with the transaction manager.

int nbr_tuples ()
// Returns the number of tuples in the table.

_A_uniqueid save ()
// Makes a table persistent, returning the uniqueid to be
// associated with that table. Once a table has been saved,
// the destructor ˜_A_index() will automataically save any
// changes every time that a table goes out of scope.
// (The index manager achieves this effect by simply setting
// the member variable persistent to _A_TRUE.)

9.2. Maps
Maps are implemented using the _A_map class, which accepts tuples of the form (source

uniqueid, target uniqueid). Each tuple is stored under a storage uniqueid, which is then refer-
enced in two types of tables, both maintained by this class:

_A_fwd_map
// This is the forward map table, which maps the sources to
// the storage uniqueids.
// This class is derived from the _A_index class, and its
// member functions are identical, with the exception that
// they take _A_uniqueid’s instead of _A_key’s as the first
// elements of their tuples.

_A_inv_map
// This is the inverse map table, which maps the targets to
// the storage uniqueids.
// It is also derived from the _A_index class, but differs
// in that it allows non-unique keys.

Besides insert() and remove(), member functions for this class include:

void chg_key (_A_uniqueid& oldkey, _A_uniqueid& newkey,

50

_A_uniqueid& elem_uid)
// This function removes the tuple
// (source uid oldkey, storage uid elem_uid)
// and replaces it with
// (source uid newkey, storage uid elem_uid).

_A_set* get_vals (_A_uniqueid&, _A_ACCESS)
// This function takes a target uniqueid and returns a
// pointer to a set that contains all the source uniqueids
// mapping to the target.

9.3. Attribute Functions
Attribute functions are implemented using the _A_attr class, which accepts tuples of the

form (source uniqueid, attribute value). (The "unk" in the name means "unknown," referring to
this function’s ability to use user-specified functions to convert arbitrary data type values to
strings, which are then used as the keys for ordering the table. The user can also specify a func-
tion for reversing the conversion. This is currently the only way of specifying fetch and store
methods, but it is currently unaccessible from the ADAMS language.) Each tuple is stored under
a storage uniqueid, which is again referenced in two tables:

_A_fwd_attr.
// This table is derived from _A_index and accepts
// (source uniqueid, storage uniqueid) pairs.
// The only difference between the member functions for
// this class and for its ancestor are that it uses
// _A_uniqueid’s instead of _A_key’s.

_A_inv_attr.
// This table is also derived from the _A_index, but it
// accepts (attribute string value, storage uniqueid) pairs.

Its member functions include:

void chg_val (char* oldkey, char* newkey, _A_uniqueid& elem_uid)
// This removes the tuple
// (string value oldkey, storage uniqueid duid)
// and inserts the tuple
// (string value newkey, storage uniqueid elem_uid).

_A_set* get_vals (char*, _A_ACCESS)
// This function takes an attribute value as an argument and
// returns a pointer to a set containing the source element
// uniqueids that map to that value.

_A_set* get_range_vas (char* lokey, char* hikey, _A_ACCESS)
// This function returns a pointer to the set of all source
// element uniqueids that map to attribute values that fall
// within the specified range.

51

10. Issues of Parallelization
The introduction of parallelism into ADAMS raises a number of thorny issues. Foremost

among these is the decision of whether to impose a particular model of computation on users or
not. Because we cannot support an unconstrained shared memory model within the ADAMS
run-time system without considerable reprogramming effort, we will (at least initially) support
only a message passing environment. We need not concern ourselves with the exact particulars
of the environment, but in general, we expect to operate in a single-threaded environment with
disjoint address spaces.

Our natural unit of concurrency is the transaction. Accordingly, we will support parallelism
in the form of concurrent transactions only. ADAMS will make no effort to augment the host
language with extensions intended to facilitate the expression of parallelism. In addition, we will
endeavor to exploit parallelism in the for_each statement by using loop unrolling techniques.
Initially, only ADAMS statements will be examined. This will require some analysis by the com-
piler, perhaps a second pass. The justification here is that we might be able to achieve significant
performance gains by prestaging loop arguments from the persistent store.

Initially, we will not seek a parallel implementation of any aspect of the run-time system.
We should first shake down the transaction mechanism and concurrency control. After we have
gained some confidence in this aspect of ADAMS, we can begin the conversion of the run-time to
MPL (Mentat Programming Language). This conversion may require some architectural changes
to the run-time, but should not present any real problem especially since we are syntactically
compatible with MPL already.

52

11. Unimplemented Features
The following features of the ADAMS syntax are currently unimplemented, and we expect

will remain unimplemented for the forseeable future.
Codomains:

<membership_clause>
<access_method_clause>
<other_codomain_method>
<add_codomain_method>
<undefined_clause>
<unknown_clause>
<subscript_pool_decl_stmt>
<extend_pool_stmt>

Attributes, maps:
<restriction_clause>

Classes:
<clustered_attr_enum>
<predicates>

Sets:
<retrieval_set>

ADAMS names:
<parameterized_names>
<range_subscripts>

12. References

[AgG89] R. Agrawal and N. H. Gehani, ODE (Object Database and Environment): The
Language and the Data Model, Proc. 1989 ACM SIGMOD Conf. 18, 2 (June 1989),
36-45.

[Bar89] P. Baron, The ADAMS Preprocessor, IPC TR-89-009, Institute for Parallel
Computation, Univ. of Virginia, Dec. 1989.

[BuA86] P. Buneman and M. Atkinson, Inheritance and Persistence in Database Programming
Languages, Proc. ACM SIGMOD Conf. 15, 2 (May 1986), 4-15.

[Jan89] S. A. Janet Jr., The ADAMS Storage Management System, IPC TR-89-008, Institute
for Parallel Computation, Univ. of Virginia, Aug. 1989.

[Orl89] R. Orlandic, Design, Analysis and Applications of Compact 0-Complete Trees, PhD
Thesis, Univ. of Virginia, 1989.

[PFG89] J. L. Pfaltz, J. C. French, A. Grimshaw, S. H. Son, P. Baron, S. Janet, A. Kim, C.
Klumpp, Y. Lin and L. Loyd, The ADAMS Database Language, IPC TR-89-002,
Institute for Parallel Computation, Univ. of Virginia, Feb. 1989.

53

Table of Contents
1. Overview, Philosophy ... 2
2. The Run-Time System .. 5

2.1. Directory Layout ... 5
2.1.1. TEST ... 5
2.1.2. include ... 6

2.2. System Interface ... 8
3. Preprocessing, Translating ADAMS Statements .. 9
4. Persistent Names, the Dictionary .. 10

4.1. Overview of the ADAMS Name Space .. 10
4.2. What Does the Dictionary Do? .. 11
4.3. Dictionary Interface and Glue Routines 12

4.3.1. Dictionary Entry ... 12
4.3.2. Iterators ... 13
4.3.3. Dictionary Routines .. 13
4.3.4. Glue Routines ... 19
4.3.5. An Example .. 21

4.4. Dictionary Implementation ... 25
4.4.1. Representation of the Dictionary in Memory 25
4.4.2. Persistent Storage of Name Parts 25
4.4.3. Representation and Storage of Definition Parts 27
4.4.4. Implementation ... 28

4.5. Programs for Creating and Removing a Dictionary 29
4.5.1. Implementation of createdict and removedict 30

4.6. Interactive Dictionary Test Program .. 30
4.7. Suggestions for Further Work ... 31

5. Low-Level Representations .. 33
5.1. Uniqueid Identifier Representation ... 33
5.2. Storage .. 35

6. Codomains .. 39
7. Indexes — Functions and Aggregate Structures ... 40

7.1. Basic Structures .. 40
7.2. Maps .. 41
7.3. Attribute Functions ... 41
7.4. Index Manager .. 42
7.5. Index Manager Interface ... 43
7.6. Index Manager Operations .. 43
7.7. Index Manager Implementation .. 45
7.8. Index Glue Routines ... 46

8. Sets .. 48
8.1. Set Implementation ... 48
8.2. Set Methods .. 48

9. Retrieval, Inverse Operators ... 50

i

9.1. Basic Structures .. 50
9.2. Maps .. 50
9.3. Attribute Functions ... 51

10. Issues of Parallelization .. 52
11. Unimplemented Features .. 53
12. References ... 53

ii

