
Prefix Scan and Minimum Spanning Tree with OpenCL

U. VIRGINIA DEPT. OF COMP. SCI TECH. REPORT CS-2013-02

Yixin Sun and Kevin Skadron

Dept. of Computer Science, University of Virginia

ys3kz@virginia.edu, skadron@cs.virginia.edu

Abstract

GPUs have been widely used to achieve wide data-parallelism to facilitate the execution of
concurrent computations for performance and efficiency. A lot of prior work have been
done for CUDA, while OpenCL, as an open standard with the advantage of being able to
run across multiple GPU platforms, still lacks development and efficient data primitives in
its open standard libraries. This report discusses our work on constructing an efficient
OpenCL implementation for parallel prefix scan and its improved performance over the
scan primitive in the OpenCL standard library CLPP. The report also discusses our work
on implementing the minimum spanning tree algorithm in OpenCL using our parallel
segmented scan primitive and its improved performance over the original sequential
execution.

1

1 Introduction

GPUs are designed for high data-parallel computations. They were initially used for graphics
rendering applications, which involve applying the same operation to many pieces of data,
which can be executed independently. The massive data parallelism that GPUs provide
can greatly improve the aggregate throughput. Lots of recent interest in using GPUs has
been on running non-graphics applications (GPGPU). CUDA has been a popular GPU pro-
gramming model for many years, which is designed to run general-purpose applications on
NVIDIA GPUs. Another popular GPU framework is OpenCL. Unlike CUDA, which is de-
signed for and restricted to run on NVIDIA GPUs, OpenCL has the flexibility to run across
many platforms, including Nvidia, AMD, Intel, etc.. The drawback is that it is harder to
design algorithms that are optimized across different platforms for OpenCL. However, as
OpenCL is being developed further with its cross-platform advantage, we think it is impor-
tant and useful to develop more efficient algorithms for data-processing primitives and graph
algorithms with OpenCL. This work contributes to a faster implementation of prefix scan
compared to the scan primitive in the CLPP open library, and a parallel implementation of
the minimum spanning tree (Boruvka’s algorithm [1]) using the segmented scan primitive (a
variation of the prefix scan) in OpenCL.

The GPU data-parallel model favors kernel design with minimal dependency across threads,
more explicitly, each thread outputs to a location that is statically determined by its thread
identifier (i.e. thread t2 outputs to dest2). Heavy input dependency can result in massive
threads co-operations and excessive kernel calls, which will negatively impact the overall
GPU performance. Thus, it is tricky to design parallel algorithms for data with high de-
pendency. Many useful and important data-processing primitives have this characteristic of
high data dependency (i.e. prefix scan). Such data primitives are important building blocks
for various graph algorithms, e.g. prefix scan and radix sort have been used in breadth-first
search (BFS) [2]. Even though given the data-dependency nature of the data primitives,
we can still develop high-efficiency parallel algorithms that are suitable for such primitives,
which will give us nice GPU speedup over single-threaded CPU. Merrill has the fastest prefix
scan implementation by far with CUDA [3]. We implement the prefix scan with OpenCL
using similar algorithm described by Merrill, and compare its performance against the scan
primitive in the CLPP open library on Nvidia and AMD platforms. We achieve 3.1x overall
speedup on Nvidia GeForce GTX 460 over single-threaded CPU (compared to 1.4x overall
speedup with the CLPP library implementation) for 512MB input data size, and 1.7x overall
speedup on AMD Tahiti over single-threaded CPU (compared to 2.7x slowdown with the
CLPP library implementation) for 512MB input data size. The prefix scan primitive can be a
useful building block for faster parallel implementation of many important graph algorithms,
i.e., the minimum spanning tree (MST), which has various real world applications whenever
there is a need to connect a set of nodes (cities, electrical terminals) by edges (roads, wires)
which have different weights (length, costs). We use our own segmented scan implementation
(the same approach as we implement the prefix scan) as a basic building block to implement
a parallel version of the minimum spanning tree (using Boruvka’s algorithm) with OpenCL.
On Nvidia GeForce GTX 460, we achieve 1.26x total time speedup for dense graph with
128M edges, and 1.28x total time speedup for sparse graph with 128M edges.

2

2 Prefix Scan

Prefix Scan takes an n-element list [a0, a1, ..., an−1] and a binary associative operator
⊕

as
input, and produces an output list [b0, b1, ..., bn−1] of size n. Example of an exclusive scan:

b0 = id⊕
b1 = a0
b2 = a0

⊕
a1

...
bi =

⊕
0≤j≤i−1

aj

...
bn =

⊕
0≤j≤n−1

an

Note: the id⊕ is the associated identity element for the
⊕

operator, such that id⊕⊕
ai = ai.

E.g., id⊕ = 0 for addition, id⊕ = 1 for multiplication. Inclusive scan is similar to exclusive

scan except that bi also includes ai in the operations, e.g., bi =
⊕
0≤j≤i

aj.

Prefix scan is a useful primitive in designing parallel algorithms. For example, in radix
sort, prefix sum can be used to allocate space for buckets in an array [4], and in breadth-
first search, prefix sum can be used to compute and distribute workload among threads [2].
However, the dependency nature of prefix scan creates potential challenges for running it
in parallel. Besides the sequential implementation of prefix scan (which involves O(n) steps
and O(n) worksize), there are three other common parallel implementations of prefix scan:
Brent-Kung [5], Sklansky [6], and Kogge-Stone [7].

Figure 1: Brent-Kung Figure 2: Sklansky
Figure 3: Kogge-Stone

All three have O(log n) steps. Brent-Kung has O(n) worksize, while Sklansky and Kogge-
Stone have O(n log n) worksize. Our implementation incorporates both the sequential sub-
routine and the Kogge-Stone subrountine within threadblocks, as will be desribed below.

If the input data size is bigger than what a single thread block can handle, then we need
to use multiple thread blocks. This involves storing intermediate results back to the global
memory and launching multiple kernel calls in order to scan the intermediate results and do
the whole reduction. The two common ways to process the intermediate work for multiple
thread blocks are: scan-then-propagate and reduce-then-scan.

3

Scan-then-propogate: in the upsweep phase, each thread block produces b partial reduction
results from the b-element block it processes, and then the accumulated partial reduction
results are sent to the next upper level and keep being accumulated until finally reaching
the root. Since each level accumulates n/b results to its next upper level from its original
n input elements, so the total number of kernel calls (correponding to the number of levels
needed) for the upsweep phase is logb n. In the downsweep phase, the reduction results are
propogated down level-by-level, where in each level, each thread is accumulating the original
partial results with the new propogated reduction results. Similar to the upsweep phase, the
downsweep phase also has logb n levels and thus requires logb n kernel calls. The advantage of
this approach is the work-efficiency, since the intermediate reduction results are saved during
the upsweep phase at each level, so in the downsweep phase, no redundant work is needed
to recalculate the partial intermediate results. The Thrust standard library for CUDA [8]
and the CLPP standard library for OpenCL [9] both employ this approach.
Reduce-then-scan: it is similar to the scan-then-propogate approach in that it also requires
logb n kernel calls for both the upsweep and downsweep phase. But instead of saving all b
intermediate partial reduction results at each level, each thread block only saves one single
intermediate results back to global memory. As a result, in the downsweep phase, redundant
work is needed to recalculate the partial results and then accumulate them with the reduction
results from its upper level. This approach is not work-efficient as the scan-then-propogate
approach since it requires redundant work at each level in the downsweep phase, however,
the advantage is that it avoids writing partial reduction results during the upsweep phase to
the global memory, and thus greatly reduces memory access time.

Algorithm 1 Two-level Reduce-then-scan Upsweep Phase Pseudocode

1: for each tile number in alltiles(block id)
2: shared mem1[thread id] = localreduction(tile number,thread id)
3: barrier
4: shared mem2[tile number] = sharedreduction(shared mem1)
5: global mem[block id] = sharedreduction(shared mem2)

Algorithm 2 Two-level Reduce-then-scan Spine Phase Pseudocode

1: shared mem[thread id] = global mem[thread id]
2: sharedreduction(shared mem)
3: global mem[thread id] = shared mem[thread id]

Our implementation employs the two-level reduce-then-scan approach (Figure 4), proposed
by Merrill [2]. Similar to the reduce-then-scan approach, each thread block writes only one
intermediate reduction result to global memory for each data block it processes, however, in-
tead of having each thread block process only one data block, the thread blocks are ”reused”
to process multiple data blocks in sequential. Suppose we have T thread blocks, n total in-
put elements, and each data block contains b elements. Then each thread block will process
n
bT

data blocks in sequential, and after processing all the data blocks, the thread block will
reduce the n

bT
number of reduction results to a single intermediate value and write it back

4

Algorithm 3 Two-level Reduce-then-scan Downsweep Phase Pseudocode

1: accum result = global mem[block id];
2: for each tile number in alltiles(block id)
3: shared mem[thread id] = localreduction(tile number,thread id)
4: barrier
5: reduction result = sharedreduction(shared mem)
6: global mem[thread id] = localaggregation(shared mem[thread id]) + accum result
7: accum result += reduction result

to global memory. Thus, we need only one kernel call for the upsweep phase, one kernel call
to process the T intermediate results from the upsweep phase (called the spine phase), and
one kernel call for the downsweep phase (similar to the upsweep phase, each thread block
processes n

bT
data blocks in sequential). Therefore, instead of having O(logb n) total kernel

calls, this approach only needs three kernel calls. As input data size increases, the sequential
work will increase for each thread block, while the number of kernel calls and global memory
writes remain the same.

Figure 4: Two-level Reduce-then-Scan

Within each data block, we first do the reduction in sequential using the local registers in
each thread, and use the Kogge-Stone warp scan approach to accumulate the results and
place it into shared memory. After the thread block has processed all its data blocks, we use
the Kogge-Stone warp scan approach again to accumulate the partial results in the shared
memory, and finally write the one single intermediate result back to global memory. In the
spine phase, we use Kogge-Stone approach to aggregate the intermediate results produced
by each thread blocks from the upsweep phase. In the downsweep phase, as a reverse from
the upsweep phase, each thread block loads the reduction result from the spine phase, and
accumulates it with the each data element as the thread block processes sequentially through
all the data blocks.

Although the two-level scan-then-propogate approach involves more sequential work than

5

the other two approaches, it greatly reduces the number of kernel calls and global memory
accesses, which typically incur a lot of overhead in GPU programming. Also, instead of
increasing the number of thread blocks as data size increases, we increase the sequential
work of each thread block while keeping the number of thread blocks a constant number.
The time saved by limiting the number of kernel calls turns out to significantly outweigh the
time incurred by adding sequential work, as the data size grows bigger.

3 Prefix Scan Performance Analysis

We compare the performance of exclusive prefix sum of our improved implementation and
the CLPP standard library for OpenCL [9] against sinlge-threaded CPU on both the Nvidia
GeForce GTX 460 and AMD Tahiti GPU (based on average time of 50 consecutive runs of
data type unsigned integer). We also measure the performance of Merrill’s prefix sum (im-
plemented in CUDA) [3] on Nvidia GeForce GTX 460 (note that the CUDA implementation
can only handle data size up to 256MB, as will be discussed in detail later). We compare
both the total time speedup (including data transfer time between CPU and GPU) and the
kernel time speedup over single-threaded CPU (Intel Core i7).

We first measure the GPU kernel time (using the profiling tool) and its speedup over the
CPU time. The x-axis represents the input data size in megabytes, and the y-axis is the
time in milliseconds.

Figure 5: GPU Kernel Time

As showed in Figure 5 and Figure 6, our improved implementation has significant kernel time

6

Figure 6: GPU Kernel Speedup

speedup compared to CLPP on both Nvidia and AMD GPU. For 512MB input data size, we
achieve 21.7x speedup on Nvidia GeForce GTX 460 (compared to 2.1x speedup with CLPP)
and 82.7x on AMD Tahiti (compared to 2.2x slowdown with CLPP). We notice that our
implementation has better kernel performance on AMD than on Nvidia (about 3.8x faster
for 512MB data size), while the CLPP implementation has better kernel performance on
Nvidia than on AMD. Overall, our implementation beats the performance of CLPP on both
Nvidia and AMD GPU. Compared to Merrill’s CUDA implementation, our implementation
has faster kernel time on AMD Tahiti (2x faster for 256MB data size), while slower on Nvidia
GeForce GTX 460 (2x slower for 256MB data size). Merrill’s CUDA implementation also
has better kernel performance on handling small data sizes.

Next, we measure the GPU total time (including the data transfer time from CPU to GPU
and from GPU back to CPU) and its speedup over the CPU time.

As we take into consideration the data transfer time, which accounts for around 86% of
total time on Nvidia and 95% of total time on AMD for 512MB data size with our im-
plementation, it amortizes the kernel time speedup. We can see from Figure 7 and Figure
8 (compared to Figure 5 and Figure 6), that Nvidia has better data transfer performance
(3.3GB/s) than AMD (2GB/s). Figure 9 gives a straightforward comparision between the
Nvidia and AMD data transfer time on different data sizes (measured on isolated program
under identical system configurations). Nvidia is 2x faster than AMD transfering data from
CPU to GPU (Host→Device), while about the same performance transfering data from GPU
back to CPU (Device→Host, and AMD is even a little bit faster). The difference in data
transfer time may due to the different ways that Nvidia and AMD handle data buffer al-
location. Nvidia directly allocates and transfers data from CPU memory to GPU memory

7

Figure 7: GPU Total Time

Figure 8: GPU Total Time Speedup

8

Figure 9: GPU Data Transfer Time

when clCreateBuffer is being called, while AMD does not decide whether the data will be
used for GPU or not when calling clCreateBuffer, so it copies the data to another place in
CPU memory temporarily, and waits until the kernel is called to do the actual data transfer
from CPU to GPU. Thus, AMD indeed does two data transfers of the problem size in the
process, which accounts for its 2x slower than Nvidia transfering data from CPU to GPU.
On the other hand, there is no such ”trick” going on when transfering data from GPU back
to CPU, so they have about the same performance. Overall, on Nvidia GeForce GTX 460,
our implementation achieves 3.1x speedup for 512MB data size (compared to 1.4x speedup
with CLPP), and on AMD Tahiti, our implementation achieves 1.7x speedup for 512MB
data size (compared to 2.7x slowdown with CLPP).

Merrill’s CUDA implementation has slower total time compared to our implementation (for
256MB data size, its 1.2x total time speedup compared to ours 3x on Nvidia and 1.7x on
AMD). However, recall from figure 5 and figure 6 that Merrill’s implementation has better
kernel time performance than ours. This can be explained by the different ways that we
handle data input. Merrill’s implementation allocates two data buffers of the input problem
size, source buffer and destination buffer, where the kernel reads from the source buffer
and writes to the destination buffer. On the contrary, our implementaion only allocates one
data buffer, which is the source buffer, and the scan results are written back to the same
source buffer. Allocating large-size buffers is an expansive operation on GPUs, so that is
why Merrill’s implementation has slower total time. This also explains why Merrill’s im-
plementaion cannot run 512MB data input, since it needs two buffers totaling 1GB global
memory, which exceeds the memory limit on Nvidia GeForce GTX 460. In terms of Merrill’s
faster kernel time, our implementation does not incorporate all the kernel optimizations that

9

are in Merrill’s implementation, i.e., avoiding shared memory bank conflict, as well as other
possible compiler optimizations. The different ways that we handle global memory buffer
can also be a reason, since reading and writing to the same memory space can potentially
slow down the memory access.

4 Minimum Spanning Tree

Given a connected, undirected graph, in which each edge has an associated weight, a span-
ning tree of that graph is a subgraph that all the vertices are connected without cycles.
Each spanning tree has a weight, which is the sum of the weight of all its edges. A minimum
spanning tree is a spanning tree such that its weight is less than or equal to the weight
of every other spanning tree. Minimum spanning tree has many applications in network
designs, and it is also closely related to other problems such as travelling salesman problem,
max flow/min cut, etc..

There are three common algorithms for finding a minimum spanning tree, Boruvka’s al-
gorithm [1], Prim’s algorithm [10], and Kruskal’s algorithm [11]. Prim’s algorithm starts by
picking an arbitrary vertex from the graph as the root of the tree, and keeps adding minimum-
weight edge leaving the tree, until all vertices in the graph are in the tree. Kruskal’s algorithm
starts with all vertices in the graph, each as a separate tree, and then keeps removing the
minmum-weight edge from the original set of edges and adding that edge to the forest if it
is connecting two trees in the forest, until no more edge is left in the original set of edges or
the forest of trees are all connected. Boruvka’s algorithm works by recursively picking the
minimum-weight edge leaving each vertex and combining all the connected vertices into a
supervertex. Repeat this process until there is only one vertex left.

Algorithm 4 Boruvka G(V,E) Pseudocode

1: T = empty set
2: Add each v in V to T
3: while (T has more than one component) do
4: lst = find-min-edge(C) for each component C
5: remove-cycle(lst)
6: merge-vertices(lst)
7: add-edges-to-new-vertices
8: return T

Prior work of GPU implementation for minimum spanning tree includes CUDA implemen-
tation with Prims’ algorithm [12] and CUDA implementation with Boruvka’s algorithm [13],
both using data primitives from the CUDPP and Thrust standard library. Our work here
employs the efficient scan algorithm we develop using OpenCL (discussed in the above two
sections), together with Boruvka’s algorithm to implement a parallel minimum spanning tree
algorithm in OpenCL.

10

Refer to Boruvka’s algorithm in Algorithm 4, we can see that there are four steps in each
reduction iteration (line 4-7). The find-min-edge operation returns the minimum-weight
edge connected to each vertex. The remove-cycle operation then removes cycles in the min-
weight edge list. (Note that a cycle can only exist within two vertices, i.e., A selects the
edge connected to B and B selects the edge connected to A. It’s impossible that a cycle will
exist among three or more vertices, otherwise at least one of the edges in the cycle must
not be the min-weight edge connected to a vertex.) Next, the merge-vertices operation picks
one vertex from each forest of connected vertices as the supervertex, and build the new list
of vertices from the supervertices. Finally, the add-edges-to-new-vertices operation adds all
edges connecting to other supervertices to the corresponding supervertex edge list.

We find that the find-min-edge operation can take around 45% of total time in a dense
graph, and around 30% of total time in a sparse graph. Thus, we focus on parallelizing the
find-min-edge operation (line 4) in the algorithm. We employ the segmented scan primi-
tive, a generalization of the prefix scan primitive discussed in section 2. Segmented scan
computes prefix scan only within segments of the input sequence, where the start of each
segment is marked by a head flag (i.e. 1). We use the same approach for prefix scan as
described in section 2 for our segmented scan implementation, and take into account the
flag array (represented using 1-byte boolean) that marks the start of each segment. Thus,
we can scan through the input list of edges in parallel and find the min-weight edge for each
vertex (segment).

5 MST Performance Analysis

We compare the performance of our segmented min scan against the sequential find-min-edge
operation (on Intel Core i7 CPU) on both the Nvidia GeForce GTX 460 and AMD Tahiti
GPU (based on average time of 50 consecutive runs). We compare both the total time (time
starts after reading in graphs and transferring initial graph data to GPU, and ends after
all iterations are finished when there is only one vertex left) speedup and the find-min-edge
operation speedup for both dense and sparse graphs. Note that in measuring the segmented
min scan time, we process the initial data transfer from CPU to GPU as part of the graph
initiation (reading the input graph into vertex/edge list, etc.), so it is not counted towards
the scan time nor the total time. The segmented min scan time starts before making the
first kernel call and ends after transferring the data from GPU back to CPU. Also, where
comparing dense graphs versus sparse graphs, we keep the number of edges the same (while
number of vertices various), since the input data list size for find-min-edge operation depends
on the number of edges. (Note: we do not find the implementaion code based on prior work
of CUDA implementaion with Boruvka’s algorithm [13], so we do not do the comparison
here.)

We first compare the find-min-edge operation time and speedup. The x-axis represents
the number of edges, and the y-axis is the time in milliseconds.

11

Figure 10: Find-Min-Edge Time

Figure 11: Find-Min-Edge Speedup

12

The GPU is pretty robust with both dense graphs and sparse graphs, while the sequential
execution on CPU has better performance at dense graphs than sparse graphs (given the
same total number of edges in the graph). Figure 11 gives the speedup of Nvidia and AMD

on both dense and sparse graphs. On dense graphs (graph density, defined as D = 2|E|
|V |(|V |−1) ,

close to 1), for 128M number of edges, our implementation achieves 1.92x speedup for find-
min-edge operation on Nvidia GeForce GTX 460, and 1.71x speedup on AMD Tahiti. On
sparse graphs (graph density close to 0, while the graph is connected), for 128M number
of edges, our implementation achieves 4.11x speedup for find-min-edge operation on Nvidia
GeForce GTX 460, and 3.67x speedup on AMD Tahiti.

Figure 12: Total Time for Dense Graph

Figure 12, 13, 14 give the performance and speedup of the total MST time. On Nvidia
Geforce GTX 460, our implementation achieves 1.26x total time speedup for dense graph
with 128M edges, and 1.28x total time speedup for sparse graph with 128M edges. On AMD
Tahiti, our implementation achieves 1.22x total time speedup for dense graph with 128M
edges, and 1.27x total time speedup for sparse graph with 128M edges.

The difference between dense and sparse graphs reflected in the input data list of find-
min-edge operation is the content of the flag list (marking the start of each segment). For
sequential execution on CPU, if each segment is long and thus the number of segment is
small, since it only needs to write the final reduction result at the end of each segment, so
the total write accesses are small; on the other hand, if each segment is short and thus the
number of segment is big, then it needs a lot more write accesses. While on GPU, instead
of doing just reduction, we are using our prefix scan approach to compute the ”prefix min”
for each element position. So the GPU parallelization is actually doing more work than just

13

Figure 13: Total Time for Dense Graph

Figure 14: Total Time Speedup

14

the reduction (which only needs the reduction result at the end of each segment). Since the
GPU is doing the same amount of work regardless of the number of 0s and 1s (representing
the number of vertices), so its performance stays the same across dense and sparse graphs
(given the same number of total edges).

6 Conclusions and Future Work

Even though GPU is designed and most suitable for problems involving minimal depen-

dency across threads, efficient parallel algorithms can still be developed for high-dependency

operations like prefix scan, and achieve nice speedup over sequential execution. Parallel

data primitives like prefix scan can be useful building blocks for graph algorithms such as

minimum spanning tree, which we implement and show its speedup over sequential execution.

As mentioned before in our minimum spanning tree implementation, we use a separate flag

array of 1-byte boolean elements to represent the start of each vertex’s list, but technically,

the ”flag” only needs 1 bit (0 or 1) and can be placed at the highest bit of each data element

instead of being stored in a separate array. By this way, the global memory access time can

be greatly reduced. CUDA supports functions like ballot(), any(), all(), popc() among

warp threads to perform fast bit operations. OpenCL does not support these functions

yet. We may still implement these bit-operation functions as inline functions in OpenCL to

further improve the performance. However, since these are hardware-specific functions, so

different configurations will need to be made depending on the types of GPUs that we are

running. Nvidia GPUs and AMD GPUs can have really different hardware behaviors.

Further more, since our implementation focuses on the optimization of find-min-edge op-

erations, so there is more potential total time speedup if optimizing the other three opera-

tions (remove-cycle, merge-vertices, add-edges-to-new-vertices). I.e., the add-edges-to-new-

vertices is another expensive operation besides find-min-edge (which also runs in O(E) time,

where E is the number of edges), and it can potentially be parallelized by scanning the edges

and adding each edge to its corresponding vertex in parallel. In addition, it would also be

helpful if Prim’s algorithm [10] can be implemented with OpenCL as well, so we can then

compare the GPU performances of these two different algorithms. More interestingly, GPU

implementation can also be developed for a combination of Prim’s and Boruvka’s algorithm

(i.e., use Boruvka’s algorithm for the first log log V steps, and then use Prim’s algorithm

for the rest), which only has O(E log log V) time complexity in sequential execution (com-

pared to Prim’s and Boruvka’s O(E log V) complexity). Thus, it would be interesting if

15

GPU performance comparisons can be done for Boruvka’s algorithm, Prim’s algorithm and

combine-Prim-Boruvka’s algorithm.

7 Acknowledgements

The authors would like to thank Michael Boyer for his help with OpenCL and Duane Merrill

for providing his prefix scan implementation.

References

[1] Boruvka’s algorithm, cited in Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein,
C., 2009. ”Introduction to Algorithm”. The MIT Press, 3: 641.

[2] Merrill, D., Garland, M., and Grimshaw, A., 2011. ”Scalable GPU graph traversal”.
Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Par-
allel Programming, 117-128.

[3] Merrill, D. and Grimshaw, A., 2009. ”Parallel Scan for Stream Architectures”. Tech-
nical Report CS2009-14, Department of Computer Science, University of Virginia,
https://sites.google.com/site/duanemerrill/ScanTR2.pdf?attredirects=0.

[4] Zagha, M. and Blelloch, G.E., 1991. Radix sort for vector multiprocessors”. Proc.
ACM/IEEE Conference on Supercomputing, 712-721.

[5] Brent, R.P. and Kung, H.T., 1982. ”A Regular Layout for Parallel Adders. Computers”.
IEEE Transactions, 31 (3): 260 -264.

[6] Sklansky, J., 1960. ”Conditional-Sum Addition Logic”. IEEE Transactions on Electronic
Computers, 9 (2): 226-231.

[7] Kogge, P.M. and Stone, H.S., 1973. ”A Parallel Algorithm for the Efficient Solution of
a General Class of Recurrence Equations”. IEEE Transactions on Computers, 22 (8):
786-793.

[8] Thrust - Code at the speed of light: http://code.google.com/p/thrust/.

[9] CLPP - OpenCL Data Parallel Primitives Library: https://code.google.com/p/clpp/.

[10] Prim, R.C., 1957. ”Shortest connection networks and some generalizations”. Bell System
Technical Journal, 36: 1389-1401.

16

[11] Kruskal, Joseph.B., 1956. ”On the Shortest Spanning Subtree of a Graph and the Trav-
eling Salesman Problem”. Proceedings of the American Mathematical Society, 7 (1):
48-50.

[12] Wang, W., Huang, Y. and Guo, S., 2011. ”Design and Implementation of GPU-Based
Prim’s Algorithm”. I.J.Modern Education and Computer Science, 4: 55-62.

[13] Vineet, V., Harish, P., Patidar, S. and Narayanan, P.J., 2009. ”Fast Minimum Spanning
Tree for Large Graphs on the GPU”. Proceedings of the Conference on High Performance
Graphics, 167-171.

