
Function-Driven Scheduling: A General Framework
for Expression and Analysis of Scheduling

W. Timothy Strayer

Computer Science Report No. TR-92-12
May 14, 1992

This work is supported in part by the U. S. Naval Ocean Systems
Center and the Office of Naval Research under contract number
N00014-91-J-1514.



A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Function-Driven Scheduling: A General Framework
for Expression and Analysis of Scheduling

W. Timothy Strayer

May 1992



ii

Abstract

Scheduling theory maintains that there are fundamental similarities in problems of

sequence that transcend the characteristics of the particular tasks to be ordered or the

resources to be used. Traditionally, scheduling policies are implemented using algorithms;

we study scheduling algorithms to discover the various properties of the schedules they

produce. To facilitate analysis the policies are typically limited to homogeneous task sets

(e.g., all periodic tasks) and consider only one or very few task attributes. In some cases the

results are so attractive that the task sets of systems are made to fit the algorithm rather than

using a policy more appropriate to the system. We therefore make the following

observation: if scheduling policies are driven by how well they can be expressed and

analyzed, then we need a more general framework for expressing scheduling policies.

We introduce theImportance Abstraction as a general scheduling framework. The

scheduling algorithm is invariant: choose the most important task at every point in time.

Each task is described by a function, called animportance function, that profiles the task’s

importance to the system over time. The importance abstraction can express not only the

traditional scheduling policies but a wide range of new policies based on how important

individual tasks are to the system. Since the scheduling policy is described using functions

rather than a single algorithm we can exploit the maturity of mathematical proof techniques

when analyzing the schedule produced by the policy. Since this abstraction is applicable to

any system of tasks and processors, we examine the communication subsystem as an

example, and find that importance functions facilitate the expression of message

discrimination policies as well as help unify scheduling across the operating system/

communication subsystem domain boundary.



iii

Table of Contents

Chapter 1 Introduction ............................................................................... 7
1.1. Function-Driven Scheduling ..................................................................... 8
1.2. Issues ......................................................................................................... 9
1.3. The Goal of this Research ....................................................................... 11
1.4. Motivation ............................................................................................... 11
1.5. Contribution ............................................................................................ 14
1.6. Thesis Overview ..................................................................................... 16

Chapter 2 Scheduling Theory .................................................................. 17
2.1. The Scheduling Problem ......................................................................... 19
2.2. System Model ......................................................................................... 20

2.2.1. Tasks .............................................................................................. 21
2.2.1.1. Task Attributes ...................................................................... 22
2.2.1.2. Task Constraints ................................................................... 23
2.2.1.3. Operations ............................................................................. 24
2.2.1.4. Task Sets ............................................................................... 25
2.2.1.5. Task Arrivals ......................................................................... 25

2.2.2. Scheduler ....................................................................................... 27
2.2.2.1. When to Schedule ................................................................. 27
2.2.2.2. How Often to Schedule ......................................................... 28
2.2.2.3. Complexity of Scheduling .................................................... 30

2.2.3. Resources ....................................................................................... 32

Chapter 3 Survey of Scheduling Techniques .......................................... 35
3.1. Rate Monotonic Theory .......................................................................... 35

3.1.1. Period Transformation ................................................................... 37
3.1.2. Priority Inheritance and Priority Ceiling Protocols ....................... 38
3.1.3. Deferrable Server ........................................................................... 39

3.2. Survey of Function-Based Scheduling Techniques ................................ 40
3.2.1. Policy Functions ............................................................................ 40
3.2.2. Time-Driven Scheduling ................................................................ 43

Chapter 4 Importance Abstraction ......................................................... 47
4.1. System Model ......................................................................................... 47
4.2. Importance Functions ............................................................................. 50

4.2.1. Sets of Importance Functions ........................................................ 50



iv

4.2.2. The Defining Property of an Importance Function Set .................. 51
4.3. The Scheduler ......................................................................................... 52

Chapter 5 Expressiveness of the Importance Abstraction ....................  55
5.1. Emulation of Traditional Scheduling Policies ........................................ 56
5.2. Families of Importance Functions .......................................................... 61
5.3. Novel Policies using Importance Functions ........................................... 62

Chapter 6 Analyzability of the Importance Abstraction .......................  67
6.1. Policies with Statics Rankings ................................................................ 68

6.1.1. Determining Completion Time ...................................................... 69
6.1.2. Meeting Deadlines ......................................................................... 71
6.1.3. Meeting Deadlines with Arbitrary Arrivals ................................... 74
6.1.4. Meeting Critical Deadlines, with Arbitrary Arrivals ..................... 76
6.1.5. Heterogeneous Task Set ................................................................. 80
6.1.6. Heterogeneous Task Sets with Critical Deadlines

and Arbitrary Arrivals ............................................................ 82
6.2. Projections .............................................................................................. 84

Chapter 7 Implementing the Importance Abstraction Efficiently .......  87
7.1. Discrete Evaluation Points ...................................................................... 87
7.2. Approximations ...................................................................................... 89

Chapter 8 The Communication Subsystem ............................................  91
8.1. Discrimination Techniques ..................................................................... 92

8.1.1. Priorities ......................................................................................... 92
8.1.2. Levels of Service ........................................................................... 95

8.2. The ISO Reference Model ...................................................................... 97
8.2.1. Media Access Control Layer ......................................................... 99
8.2.2. Network Layer ............................................................................. 101
8.2.3. Transport Layer ............................................................................ 104
8.2.4. Summary of Issues ....................................................................... 105

8.3. Using Importance Functions ................................................................. 106
8.3.1. Messages and Importance Functions ........................................... 107
8.3.2. Packets and Importance Functions .............................................. 109
8.3.3. Stations and Importance Functions .............................................. 111
8.3.4. Decision Points ............................................................................ 112
8.3.5. Other Uses for Importance Functions .......................................... 112
8.3.6. Importance Functions and Levels of Service ............................... 114
8.3.7. Analysis ....................................................................................... 115

Chapter 9 Extended Example ................................................................  121
9.1. Task Definitions .................................................................................... 122



v

9.2. Task Level Scheduling .......................................................................... 126
9.3. Message Level Scheduling ................................................................... 132
9.4. Packet Level Scheduling ....................................................................... 133

Chapter 10 Conclusions .......................................................................... 137
10.1. Summary of Work .............................................................................. 138
10.2. Contributions ...................................................................................... 139
10.3. Future Research .................................................................................. 141



vi

List of Figures

Chapter  2
Figure 2.1 — General System Model............................................................ 20
Figure 2.2  — General Model for Scheduling............................................... 22

Chapter  3
Figure 3.1 —Value Function Shapes............................................................. 45

Chapter  4
Figure 4.1 — The System Model................................................................... 48
Figure 4.2 — Network Interface Unit and Network “Systems”.................... 48
Figure 4.3 — Communication “Subsystem” within a Distributed “System” 49

Chapter  5
Figure 5.1 — Importance Function Values for FCFS Policy........................ 57
Figure 5.2 — Importance Function for an Nearest Deadline Task................ 59
Figure 5.3 — Importance Function Values for Round Robin Policy............ 61
Figure 5.4 — Valve Configuration for a Process Control Example.............. 63

Chapter  8
Figure 8.1 — Taxonomy of Discrimination Techniques............................... 93
Figure 8.2 — The OSI Reference Model....................................................... 98
Figure 8.3 — Medium Access Control.......................................................... 99
Figure 8.4 — An Internetwork: Stations, Routers, and Network Segments 103

Chapter  9
Figure 9.1  Thefile_server Task Definition....................................... 123
Figure 9.2  Thevideo_transfer Task Definition................................ 124
Figure 9.3  Thesend_alarm Task Definition.......................................... 125



vii



8

1 Introduction

Scheduling theory maintains that there are fundamental similarities in task

sequencing problems which transcend the characteristics of the particular tasks to be

ordered or the resources to be used. Tasks arrive, require some amount of resources, and

depart. The act of choosing which of the tasks receive attention, and the amount of

resources granted, is calledscheduling. Scheduling theory gives us a framework within

which questions may be asked about schedules, such as, “Can this task set be scheduled

such that some criteria is met?” and “Which tasks will be served under certain conditions,

such as overload?” The thesis of this work is to examine a new method to derive answers

to such questions.

A scheduler chooses which of the tasks currently contending for service will be

granted service, yet the scheduler must be told how to make this decision, and how often.

The scheduler has two primary sources of information: the attributes of and constraints on

the tasks, and the characteristics of the system within which the tasks and the resources

reside. The set of rules which instruct the schedulerwhen to make a decision andhow to

rank the tasks for the decision is called ascheduling algorithm.

There are two notable observations common to the use of scheduling algorithms:

(1) scheduling algorithms tend to rely on one or a few specific task attributes or system

characteristics for establishing a ranking criteria, and (2) all tasks are ranked according to

this criteria. For example, the rate monotonic scheduling algorithm [LIU73] uses theperiod

of each task to determine the task’s ranking, whether or not this is appropriate for each



9

individual task or for the system as its behavior evolves over time. The result is that

schedules may not follow naturally from the task attributes and system characteristics.

1.1. Function-Driven Scheduling

Consider a model for scheduling tasks where each task is preemptable and has an

associated function that profiles the task’s importance over time. Assume that all of these

functions are normalized so that comparing the values of any two tasks’ functions at a

particular point in time would indicate which of the two tasks is more important to the

system. At any point in time the tasks in the system can be ranked according to the values

of their functions, and thus according to their importance to the system at that moment in

time.

If tasks were assigned functions that profiled how important they were to meeting

the system goal, and the system ensured that at every point in time the most important task

in the system was receiving service, then the resulting schedule of the tasks would be the

optimal schedule with respect to meeting the system goal. Stated alternatively, the system

would always be doing the best it possibly could under the circumstances. Note that this

does not imply that the schedule will provide all of the work required by all of the tasks, or

that the schedule will necessarily meet the goal of the system; however, it does state that if

the goal can be met, this schedule will meet it. These functions associated with each task

we termimportance functions, and the scheduling model within which these functions

serve we term theimportance abstraction.

There is a spectrum of forms of expressing scheduling policies. Traditionally the

scheduling policies are expressed using algorithms. Function-driven scheduling using the

importance abstraction represents another point in this spectrum, where expressiveness

derives from using functions to describe particular scheduling policies. Importance



10

functions are particularly expressive since each task is described by a function tailored to

that task. These functions include as parameters those attributes and characteristics upon

which the task’s importance to the system is based. Consequently, schedules are produced

by considering what conditions make an individual task important rather than by trying to

find an algorithm that fits all criteria for a given task set. Since the principle component of

the importance abstraction is a set of functions rather than an algorithm, the analysis of the

scheduling of tasks benefits from the maturity of the analysis of functions.

1.2. Issues

There are three issues to be addressed concerning the usefulness of the importance

abstraction: (1) how expressive the abstraction is, (2) how easily questions can be posed

and answered once the scheduling policy is expressed within the abstraction, and (3) can

policies expressed within the abstraction be implemented in an efficient manner.

The first issue considers the expressiveness of the importance abstraction. The

importance abstraction can emulate the “traditional” scheduling algorithms by creating

functions such that the schedule for a given task set produced by the importance abstraction

is identical to that produced by the algorithm (see Section 5.1.). Consider the nearest

deadline first algorithm, for example. For any two tasks i and j active at time t, with

deadlines di and dj, the importance functions Ii(t) and Ij(t) are constructed such that, for all t,

(Eq 1.1)

Since algorithms choose tasks according to specific conditions, we may, in general,

construct a set of importance functions for a given task set such that a task within that set

will become most important precisely when the algorithm would choose that task for

service.

di dj< Ii t( ) Ij t( )>⇒



11

The concept of profiling a task’s importance over time is intuitive, and using

functions to express this importance seems more “natural” than using equivalent

algorithms. By using functions we can easily encompass a wide range of scheduling

parameters, and we can easily tailor importance profiles to individual tasks. It may be

possible to express the same scheduling policy in an algorithmic domain, but designing an

algorithm to achieve this generality would prove more cumbersome than a function-based

approach.

The second issue considers the analyzability of the importance abstraction. By

expressing the scheduling problem in a functional domain rather than an algorithmic one

we gain the use of tools supplied by mathematics. We may invoke proof techniques that are

more extensive than those used in proving properties of algorithms. If we can phrase our

scheduling questions in terms of functional mathematics, then we may apply the machinery

of the mathematics to help answer these questions. Very complex and subtle scheduling

problems can be expressed using importance functions and, since we are dealing with

functions, functional mathematics can be applied to help provide analysis.

The third issue considers the implementability of such a framework within a real

system. Clearly it is impossible to evaluate each task’s function at every moment in time to

ensure that the most important task is always identified. However, it is sufficient to ensure

that the most important task is known at every point in time; the importance functions

require evaluation only when a new most important task must be chosen. If it is possible to

identify when the evaluations must take place, it may be possible to implement this scheme

in a cost-efficient manner. It may be the case that some restrictions must be placed on the

functions so that the scheduling policy may be implemented efficiently. If this is so, it is

essential to discover how such restrictions affect the expressiveness of the importance

abstraction.



12

1.3. The Goal of this Research

We start with a system model wherein there is an identifiable and enumerable set of

preemptable tasks. Initially these tasks are the “possible” tasks, but as the system runs,

these possible tasks will become forms for their instantiated counterparts, the “active”

tasks. Given a set of (possible) tasks, there exists an infinite number of sets of importance

functions; that is, there is auniverse of importance function sets that can profile the

importance of the task set. When the system goal is stated, this universe of sets is

partitioned into those that guarantee that the schedule they impose will meet the goal, and

those sets that cannot make that guarantee. The set of importance function sets which

guarantee to meet the system goal forms an equivalence class for that system’s

characteristics. We seek the set of properties which uniquely defines this equivalence class

so that, given a set of importance functions, we can apply the properties to determine if the

set belongs in the equivalence class. The goal of this research is to set forth a method for

determining this set of properties, if not in the general case, then for several example

scheduling policies. Along the way we will

• describe and develop the importance abstraction as a model for expressing
scheduling policies, both traditional and novel

• develop the analysis for a traditional scheduling policy using the importance
abstraction

• describe a framework within which function-based scheduling is effective and
efficient

• apply this abstraction to an application, namely a communication subsystem within
a distributed system

1.4. Motivation

There are many scheduling algorithms whose properties are studied for complexity,

schedulability, and solvability; three of the most common arepriority-driven, rate

monotonic, and deadline-driven. The highest-priority-next scheduling policy ensures a

queueing discipline where the highest priority tasks enjoy first come, first served service



13

although no guarantees can be made regarding the remainder of the priority values. A

priority value is associated with a task when the task becomes active, and remains the task’s

measure of importance throughout the lifetime of the task. Priority scheduling is

particularly prolific in communication subsystems where priority is often used to access the

common medium. In general, the schedules produced have only the property that the

highest priority task will eventually receive some service. Choosing a single priority value

to reflect the task’s importance over its lifetime implies either that all of the task’s attributes

and system characteristics that could contribute to the task’s importance are reduced to a

single value, or that a task maintains the same ranking relative to all other tasks over that

task’s lifetime. Consequently, static priority-driven scheduling policies cannot easily adapt

to changes in the system.

Rate monotonic theory provides a means of statically assigning priorities to tasks

while retaining certain properties of the schedule produced. If all tasks are periodic, ranking

tasks by the inverse of their periods will produce a schedule where no tasks will ever miss

a periodic deadline if the task set meets certain loading conditions. This has been a

landmark result, especially in real-time scheduling. Unfortunately, this theory applies only

to periodic tasks; aperiodic (sporadic) tasks must be “fit” into a periodic server so that all

tasks appear to the scheduler as periodic. The ranking of tasks by period works well when

loading conditions are met, but a task set is rarely static, and as tasks enter and depart the

system, transient overloads may occur. In rate monotonic theory, these overloads cause

tasks with the longest periods to be shed first, a consequence that has no relationship to how

critical the task may be to the system. Period transformation techniques have emerged to

superimpose a criticality ranking on the task set by artificially splitting the critical long-

period tasks into what appears to be many smaller periodic tasks. Such measures as a



14

sporadic task server and the period transformation techniques “bend” rate monotonic

theory to include these cases.

Deadline-driven scheduling, including most prominently the nearest deadline first

policy, uses the deadline of a task as the sole task attribute in scheduling a task set. Nearest

deadline first guarantees that all tasks will meet their deadlines if the task set is schedulable.

Unlike rate monotonic theory, there is no requirement that the tasks be periodic. However,

the task set must be homogeneous in that all tasks must have a deadline, all tasks are

required to meet their deadline with equal necessity, and no other conditions or attributes

need be used to rank these tasks. Again, the criticality of a task is tied to an attribute that

does not have anything to do with how critical the task is to the system.

Common problems with these and other well-known and traditional scheduling

algorithms are that they typically do not naturally include the attributes and system

characteristics which cause a task to be “important.” Scheduling decisions usually focus on

a small number of attributes, while in general the importance of a task is conditioned on

what is happening within the system at that particular time as well as the constraints of the

task. When a scheduling policy like nearest deadline first is modified to include even a

criticality ranking, the guarantees derived from analysis are no longer necessarily valid.

The analysis of scheduling algorithms is also a difficult problem. In highly

constrained systems, such as real-time systems, where lives and money depend on the

correct operation of the system, system designers typically attempt to analyze the system

statically, prior to turning on the system. Often this is the only time when the system can be

analyzed. Yet such systems are so complex that a complete static analysis, or proof of

correct operation, is impossible. In scheduling theory, analyzing task sets quickly becomes

complex. Many of the interesting scheduling problems are NP-complete, and those that are



15

not suffer from oversimplification of the problem. As a consequence, scheduling

algorithms are typically chosen based on which can best be analyzed.

In accordance with our research goals, we seek a framework wherein the task’s

importance to the system is easily expressible, the questions regarding the schedules

produced can be analyzed in a straightforward manner, and the framework is

implementable in an efficient manner. A solution of this problem is the dissertation’s

contribution to the field.

1.5. Contribution

This dissertation contributes to the field of scheduling theory by

• the development of a function-based scheduling framework, namely the importance
abstraction

• the exploration of several issues, in particular, the expressiveness of the importance
abstraction, the analyzability of scheduling policies within the importance
abstraction, and the efficient implementation of the importance abstraction

• the application of the importance abstraction to a real system, namely a
communication subsystem

This dissertation introduces the importance abstraction as a framework for

implementing scheduling policies. The importance abstraction is novel in that it uses a

function-driven approach for describing the scheduling policy. There have been previous

function-driven approaches, in particular those of [BERN71], [RUSC77], and [JENS85]; the

importance abstraction is unique in its use of functions to describe how important a task is

to the attainment of the system goal, and its use of these descriptions to perform analysis of

the schedules produced.

The scheduler within the importance abstraction is simple and universal. The

scheduler ensures that at every point in time the most important task, according to the

importance functions, is being serviced. Since the scheduler is universal, various

scheduling policies can be implemented within the abstraction simply by using different



16

sets of importance functions. Thus the importance abstraction is a framework within which

a wide range of scheduling policies can be implemented and analyzed.

This dissertation explores three issues concerning the importance abstraction—how

expressive the abstraction is, how conducive to analysis it is, and how the abstraction can

be implemented efficiently. First, the use of a function to profile a task’s importance

emphasizes the conditions under which the task becomes important. Since a function is

associated with each task, these conditions can be individualized. By properly choosing the

set of importance functions for a system, traditional scheduling algorithms can be

emulated. Whereas algorithms generally consider a task set with homogeneous constraints

to determine which task to schedule, the importance abstraction allows scheduling policies

such that the conditions which make a task important are tailored to the task.

Second, since the importance abstraction shifts the description of the scheduling

policy to a set of functions rather than a single algorithm, we can use the rich techniques of

mathematics to examine scheduling policies rather than using algorithmic techniques.

Third, this dissertation also examines issues concerning the efficient

implementation of the importance abstraction. In its general form, the importance

abstraction assumes that each importance function is evaluated at every point in time.

Practical systems cannot meet this assumption. We explore several methods for relaxing

this assumption so that the abstraction can be implemented.

We show the application of the importance abstraction to a communication

subsystem. Scheduling theory revolves mainly around the task scheduling within the

operating system. The importance abstraction is a general framework, therefore the results

apply to any system, including a communications subsystem.



17

1.6. Thesis Overview

This dissertation is organized as follows.

Chapter 2 offers a review of fundamental scheduling theory.

Chapter 3 provides the background survey of scheduling theory results, specifically

those approaches which use functions to help perform scheduling.

Chapter 4 introduces the importance abstraction and the system model assumed.

Chapter 5 examines the expressiveness of the importance abstraction, providing

examples of how traditional scheduling algorithms can be emulated within the abstraction,

and showing how novel scheduling policies can be constructed.

Chapter 6 demonstrates the abstraction’s usefulness for performing analysis of

scheduling policies implemented within the importance abstraction.

Chapter 7 explores the issues involved in efficiently implementing the importance

abstraction.

Chapter 8 describes an application of the importance abstraction to a system,

namely a communication subsystem.

Chapter 9 is an extended example. This example includes tasks that employ a

communication subsystem.

Chapter 10 offers conclusions drawn from this research, and offers avenues for

future work.



18

2 Scheduling Theory

Scheduling is the act of sequencing tasks. It involves arranging, coordinating, and

planning the use of resources to achieve some goal. More simply, it relates to the ordering

of getting things done.

 Scheduling theory maintains that there are fundamental similarities in problems of

sequence which transcend the characteristics of the particular tasks to be ordered or the

resources to be used. It is an abstraction of real-world tasks and resources into an

optimization problem of the following form: given a collection of tasks to be performed

within some system, where the tasks are subject to various constraints on when and how

they may be performed, find a viable sequence of these tasks such that this sequence meets

some objective better than any other sequence could.

Ordering everyday events to make more efficient use of the resources available or

the time available to do things is a common occurrence. Yet, it was not until the Industrial

Revolution of the 1900’s that the first rudimentary scheduling techniques were employed

to aid production. During the First World War, Henry Gantt developed the most recognized

graphic representation of scheduling, the Gantt Chart, for organizing cargo on Allied ships.

Then in the Second World War the British government called upon its national scientific

trust to study the problem of allocating the country’s dwindling resources. In the post war

era, the United States’ industries began in earnest to use these more formal techniques to

make production more efficient. The science that grew out of the formalization of the

techniques for allocating scarce resources is called Scheduling Theory, a branch of

Operations Research.



19

Operations Research (OR) applications attempt to get the best practical result for a

problem posed under certain constraints. It is a scientific method for providing a

quantitative basis for decision making. The techniques of OR give a logical and systematic

way of formulating a problem so that the tools of mathematics can be applied to find a

solution. Linear programming is one such formulation.

In the 1950’s computers were used to implement the logic of formal allocation and

scheduling techniques. Although the computer was a powerful tool for finding solutions to

linear programming problems, the allocation of the processing service within the computer

was still done by humans. Today, a large segment of research within Operations Research

studies the problem of task scheduling within computers for better utilization.

Computers were also used to monitor and control processes external to the

computers themselves. Sensors placed within the external environment, such as within a

chemical reaction chamber, relay the changes within that environment to the computer. The

computer analyzes these changes and correspondingly modifies the process. Since the

activity of the computer happens concurrently with the dynamics of the environment, the

computer is said to be acting in real-time. Real-time systems are characterized by time-

constrained processing. Much of the recent work in scheduling has focused on the

utilization of processors such that the most important activities are accomplished within

their time constraints.

This chapter is a brief introduction to the theory of scheduling to lay the foundation

for exploring previous work in scheduling. It introduces scheduling and scheduling

problems. It offers a model of an abstract system in which scheduling occurs to match

resources with requests for service. The problem is also viewed from both the perspective

of algorithms and queueing theory. The algorithmic interest is in the inherent complexity

of scheduling problems and how they relate to other complex problems. Queueing theory



20

looks to derive closed forms models of systems where things are caused to wait. Finally it

is suggested that, although related to both of these areas, scheduling theory is motivated by

a different objective, and scheduling theory offers insights in addition to those possible by

either algorithms or queueing theory.

2.1. The Scheduling Problem

The general problem of scheduling is to determine for a given set of tasks whether

a sequence exists for performing the tasks such that the constraints on the tasks are met, and

to produce the optimal sequence if one exists. There are really three problems: a decision

problem, a construction problem, and an optimization problem.

It is first a decision problem in the algorithmic sense, requiring some machine to

take as inputs the set of tasks and their constraints, and answer yes or no to the question,

“Does there exist a sequence such that all tasks are satisfied and their constraints met?” The

second problem is closely related: if a sequence exists, produce it. If the sequence does

exist, then the answer to the first problem is yes since the second problem produced the

proof by construction. Although there exist simple algorithms which can find solutions to

scheduling problems with certain restricted constraints, in general the interesting problems

have no such efficient algorithms.

When a scheduling algorithm can meet the constraints of every task, then the

schedule produced is optimal with respect to the constraints of the tasks. However, the

scheduler may use some objective when choosing tasks so that the tasks that are chosen will

help meet the objective. An optimal schedule is one which meets the objective (optimizes

an objective function) better than any other schedule, even if not all of the constraints of the

tasks are met. An optimal scheduling algorithm is a machine which will always produce

such an optimal schedule with respect to the objective function. If we can find such a



21

machine, then we can always find the third part of the scheduling problem: the optimal

solution.

If finding the optimal schedule requires more time and effort than is justified by the

particular application at hand, and it often does, then approximate schedules can be found

by constructing machines which sacrifice the exactness of the solution for more efficiency

in finding some close solution. These approximation algorithms still seek to optimize the

objective; the difference is that they use less comprehensive methods to do so.

Consequently, the optimization part of the scheduling problem is still a valid pursuit even

when the scheduler is almost certain of not finding the optimal solution.

2.2. System Model

Given a specific scheduling problem instance we can apply formal or even ad hoc

techniques to find a solution that best meets the problem requirements. However, in order

to generalize the scheduling problem and the techniques used to find solutions, we must

define a model which embodies essential characteristics without being specific to any

particular instance of the problem. In this section we offer a general system model, shown

pictorially in Figure 2.1.

Tasks

Resources

System

outputs
inputs

Figure 2.1 — General System Model



22

A system is a finite state automata which progresses from state to state by

“processing” operations contained within a set of tasks. A system has an identifiable goal

which drives each state transition. The set of tasks within the system represents the division

of the system goal into many subgoals, where each task is responsible for accomplishing

some part of the system goal. External events are communicated to the system via inputs,

and external events are affected by the system via outputs. There is a set of internal

resources for which tasks may compete and with which tasks may be processed. When the

system is processing its tasks the system is said to be running.

In order to accomplish the system goal there must be some mapping, or schedule,

of tasks onto resources over the time that the system is running. There are three required

entities for scheduling: a set of tasks, a set of resources being requested to perform or aid

in performing the tasks, and the scheduler. Figure 2.2 shows the relationship between the

three entities. The tasks are kept in a task set keep of unspecified order until the scheduler

is invoked, at which time some subset of the tasks is chosen according to task constraints

and the state of the environment at that moment in time. The set of tasks currently being

serviced at the set of resources is exchanged for the set of new tasks which will gain service.

Some tasks may belong to both sets, some may have completed service and thus may leave

the system, and some may be partially complete and must return to the keep for

consideration in subsequent invocations of the scheduler.

2.2.1. Tasks

In practice we usually identify a task by what must be done. When performed, a task

accomplishes some minor goal en route to some much larger goal. In scheduling, however,

we use the term task as a shell to hold various attributes and conditions about what work

must be done without necessarily identifying the work specifically. In this manner a task in

scheduling is an abstraction for the specification of requested work.



23

2.2.1.1. Task Attributes

A task has twoinherent attributes: the amount of time this work will take, and the

earliest time that this work can commence. The amount of work required by the task is

called the tasklength. It is not always possible to know exactly what length a task will have

since the work that must be done by the task may vary with the conditions within the

system. It is possible that the task may never finish. If a task is expected to finish, but there

is variability in the finish time of the task, the length may be given as the worst-case for

performing that task. Furthermore, there may be a different length (if it is possible to know

it) for each different capacity within a set of processors. However, a task must always have

a length, even if the length is unbounded, unknown, or indeterminate.

The earliest starting time is called theready time of the task. This time is also known

as arelease time or anarrival time. It represents unambiguously the earliest time that the

task may be performed. It is independent of, but may reflect, what other tasks have been

performed and what resources or processors are available. Every task has this attribute,

although it may not be known until the task actually is ready.

Task Set
Keep Scheduler

Resource
Set

Environment

Partially
Completed
Tasks

Completed
Tasks

Figure 2.2  — General Model for Scheduling



24

A task may have other attributes, such as a period, but these attributes do not

necessarily apply to all tasks in the task set.

2.2.1.2. Task Constraints

Task constraints are conditions under which the task is to be performed. These

conditions may include such constraints as timeliness constraints (when the work must be

completed), precedence constraints (what work must precede this work), processing

constraints (where this work is to be done), and resource constraints (what set of resources

will be required for this work), or any combination of these.

Timeliness constraints specify the period of time during which the task is valid.

When a task becomes ready it remains ready until a timeliness constraint specifies that it is

no longer valid to perform this task. When this time of invalidity can be identified as a

single instant in time, it is referred to as a deadline. Timeliness constraints also include such

information as an optimal target completion time, which differs from the deadline in that a

task may remain valid after this point in time. The most general specification of timeliness

constraints is given by providing a function which specifies the value or criticality of the

task as a function of time.

Precedence constraints establish a partial ordering on the set of tasks in a way that

specifies that one or more tasks must be completed before a particular task can be started.

These conditions can be represented by a directed acyclic graph where the nodes are the

tasks and the arcs are the precedence relations.

The processor is the resource which can actually perform the task. Processor

constraints dictate which processor or processors (commonly, but not necessarily, a central

processing unit of a computer) must perform the task. If there is only one processor in the

system then the constraint is trivial. The task may specify that one of several identical



25

processors may perform it, in which case the constraint is the specification of which group

is appropriate. Dissimilarities in the processors may further constrain where a task can be

performed. Such dissimilarities include but are not limited to processor capacity or speed,

location, connectivity, or processing functionality.

Resource constraints dictate which of the various resources within the resource set

are required by the tasks, and when they are required. These resources may be required by

the task so that the task may be performed, and differ from the processors in that they are

passive as far as performing the task is concerned. A task may have a list of resources which

must be secured before or during the processing of the task. Resource constraints are trivial

if no two tasks will ever require the same resource at the same time. Examples of resources

within a computer include buffer space, disk access, and the communications subsystem.

Members of the task set are not required to have a common set of constraints. In

general, a scheduler must weigh all of the constraints and all of the environment parameters

when making scheduling decisions.

2.2.1.3. Operations

A task is comprised of the concatenation of one or more atomic units of action

calledoperations [CONW67]. Since flow of control, which normally proceeds from one

operation to the next concatenated operation, may be altered with conditional branching,

there may be a large number of possible orderings of the operations. The actual ordering of

the operations may, in general, not be known until runtime; hence the length of the task,

which depends on the number and length of the operations within the task, may not be

known until runtime as well. Thus the length of a task, although an inherent attribute of the

task, may remain unknown until the task is actually completed.



26

An operation is indivisible but it may be arbitrarily small. Preemption, if allowed,

cannot occur during the middle of an operation; rather it must wait until the operation is

complete. Preemption can be instantaneous only in the theoretical sense that would imply

that the length of an operation must approach arbitrarily close to zero.

2.2.1.4. Task Sets

A system has a finite set of tasks which belong to the set of possible tasks within the

system. This set of possible tasks may be derived by inspection of the system. A member

of this set of possible tasks may become instantiated, which is to say that an instance of the

task is given an arrival time. When a possible task is instantiated, but before it arrives, that

task is termed inactive, and belongs to the set of inactive tasks. Since a possible task may

have an infinite number of instantiations (e.g., if the possible task is a periodic task) the

inactive task set may have an infinite number of members. When the inactive task arrives,

it becomes active, and joins the set of active tasks. At any point in time during the running

of the system there is a finite number of tasks in the active task set.

2.2.1.5. Task Arrivals

There are three classifications of task arrivals: deterministic arrivals, stochastic

arrivals, and random arrivals. The deterministic arrival class is a proper subset of

stochastic arrival class, which is a proper subset of random arrival class.

Deterministic arrivals have several subclasses. The first is when all tasks

simultaneously arrive prior to the start of the system. Scheduling problems of this type have

a finite number of tasks, all with arrival time 0. Schedulers can statically consider and serve

all tasks until no task remains to be served. Although this subclass is the most restrictive

with regard to arrivals, and perhaps the most unrealistic, still there are relatively few

problem specifications for which there are known efficient algorithms.



27

Another subclass of the deterministic arrival class represents tasks whose arrival

times are knowa priori but are not necessarily all simultaneously started at time 0. If some

subset of the task set is related by the fact that each task arrival is separated by a constant

interval, then that subset is calledperiodic and the member tasks are calledperiodic tasks.

A periodic task subset has a period, a start time, and possibly an ending time. If there is no

ending time, the periodic task subset, and consequently the entire task set, is an infinite set.

The stochastic arrival class also describes infinite task sets, but the arrival of an

individual task cannot be known exactly. Rather, it is only known when the task actually

arrives. However, the collection of arrivals of a subset of tasks may be related by a

probability that there is some fixed amount of time between the arrivals. This is called the

interarrival time distribution, and is given by

(Eq 2.1)

 wheret is some fixed time interval.

Stochastic arrivals are most useful when considering the system as a flow system

where tasks enter and leave and queues are formed at the server set. Queueing theory

analyzes such stochastic flow systems and seeks mathematical expressions for several

measures of interest. Such analysis includes answering questions like: (1) how long may a

task expect to wait before being served, (2) how many tasks will be serviced before a newly

arrived task is served, (3) what fraction of some time interval will the server set be busy or

idle, and (4) how long will the intervals of continual busy work extend [KLEI75].

Random arrivals are not classified by identifying a period or an interarrival time,

although it is possible that some tasks could have such a relationship. Whereas

deterministic arrivals are required for static scheduling, in general the arrival of a task is not

known until the task actually arrives. Scheduling such a task set requires on-the-fly

A t( ) Prob interarrival�time t≤[ ]=



28

decisions since the composition of the active task set is dynamic. The scheduler must

therefore make decisions in concert with the operation of the system, and the cost of such

decisions is incorporated into the overhead of running the system. Whereas in static

scheduling time and energy are not as critical when computing a solution to the problem at

hand, the efficiency of the scheduling algorithm is the key to dynamic scheduling. It is in

precisely this situation that optimal solutions may need to be abandoned for more efficient

heuristics to reduce the impact of scheduling overhead.

2.2.2. Scheduler

The scheduler is responsible for surveying the set of active tasks and choosing

certain of those tasks to receive service from the processor such that the constraints within

the task are met and some objective function is optimized. The scheduler follows rules

when making a scheduling decision; the collection of these rules is called a scheduling

algorithm. How often the scheduler is invoked to allocate service is a function of how often

the requests are generated, the nature of the constraints within the requests, the physical

characteristics of the scheduler, and the nature of the resources. Theoretically, only a

scheduler which can consider all requests at every moment in time and has no

computational overhead when choosing the requests to receive service can provide an

optimal schedule under all circumstances.

2.2.2.1. When to Schedule

A scheduler may be implemented to make all of the decisions prior to the actual

running of the system. This is called static scheduling. It requires that the schedule have

complete and prior knowledge of the task set, and that the scheduler makes assumptions

about the environment, either dismissing as negligible or compensating for any changes

which may occur during the run of the system. The result is a list of (time, task, duration)



29

triples for each resource which completely determines when and for how long a task may

be serviced. If all of the tasks can be known a priori, and the assumption on the

environment can be made with confidence, then static scheduling provides a scheduling

solution with very low run-time costs and a high degree of predictability. This is especially

attractive for hard real-time systems where variability in scheduling overhead can cause

tasks to miss timing constraints.

Dynamic schedulers examine the task set and the state of the system while the

system is running. At each decision time the scheduler can more accurately account for the

changes occurring within the environment, and can consequently make the decisions based

on more available information. In particular, the scheduler does not need to know the entire

task set prior to run-time; transient load conditions are more easily handled than in the static

scheduler. However, the overhead incurred for the calculation of the schedule at run-time

becomes an important component of the service time for the tasks. As the scheduling

algorithm becomes more complicated, the time it takes to make the scheduling decision

increases. For example, choosing a task from a task set on a first come, first served basis is

a trivial scheduling algorithm, and thus requires very little overhead to implement.

Choosing tasks from a task set such that all of the tasks will meet their individual deadlines,

however, is computationally more difficult. It is a grave error to have a scheduling

algorithm which requires an excessive amount of computation to schedule tasks with time

constraints. Consequently, many scheduling algorithms use a set of simple heuristics to

approximate optimal scheduling algorithms in an effort to lower run-time scheduling

overhead.

2.2.2.2. How Often to Schedule

Another aspect of scheduling is how often to invoke the scheduler so that the current

set of tasks being serviced may change. The period of time during which a decision is made



30

and a set of tasks is processed is called a decision epoch. The duration of decision epochs

is independent of the scheduling algorithm; however, certain scheduling algorithms may

imply certain decision frequencies. For example, scheduling by first come, first served

would imply that decisions are most appropriately made only when the current task has

been completely serviced or when a newly arriving task finds the server empty. A scheduler

implementing a first come, first served algorithm may make decisions continuously, but this

would be unnecessary.

Ruschitzka and Fabry [RUSC77] identify four decision modes which characterize

when a new decision may be made. Each decision mode is progressively more general than

the last, and each previous mode is a proper subset of the next. The four modes are

nonpreemptive, quantum-oriented, preemptive, and processor sharing.

The nonpreemptive mode allows decisions only after the task currently being

serviced is complete or when an arriving task finds the server empty. It is interesting to note

that the scheduling algorithm may do its best to provide service to the highest priority task

when the decision epoch arrives, but there is nothing that the algorithm can do to provide

service to a newly arriving higher priority task if the server is currently busy until the

current task has completed. (Priority inversion [GOOD88] is the term used to describe a

system which allows high priority tasks to wait while lower priority tasks are being

serviced.)

The quantum-oriented decision mode makes decisions every fixed quantum of time

unless a task completes or a newly arriving task finds the server empty before the next

decision epoch. If the quantum is infinitely long, then the quantum-oriented mode reverts

to the nonpreemptive mode.

If decisions are also made when any new task arrives, regardless of whether the

server is busy, then the decision mode is preemptive. If the relative priority of the tasks does



31

not change over time, then this decision mode avoids priority inversion. However, if tasks’

priorities can change at different rates, then priority inversion is still possible since the

change of priority does not itself invoke the scheduler.

Allowing the quantum size to become zero, and hence ensure that decisions are

made continuously, defines the decision mode called processor sharing. Processor sharing

is the most general decision mode, encompassing each of the other decision modes. The

instant one task becomes higher priority than a task being serviced, the new higher priority

task takes its place in the server. This mode is called processor sharing since the group of

highest priority tasks, while they all remain highest priority, will effectively share the server

(processor) even if there are more tasks to service than the server can handle; each task is

receiving service concurrently with all other equally highest priority tasks.

2.2.2.3. Complexity of Scheduling

When a problem is stated and some solution to the problem is sought, the step-by-

step procedure to solving the problem is called an algorithm. There are perhaps infinitely

many algorithms for any one problem specification; what ranks the algorithms is their

relative efficiency. Yet, not all problems have known algorithms which are efficient, and it

is a very famous open problem if an efficient algorithm will ever be found for a certain class

of problems. The theory of NP-completeness provides a straightforward technique for

proving that finding an efficient algorithm for one problem is essentially equivalent to

finding an efficient algorithm for a very large set of problems widely recognized to be

difficult.

Efficiency is largely dependent on the situation at hand, but in the theory of problem

complexity an efficient algorithm is one in which the running time or the space required can

be bounded by a polynomial on the input size. Inefficient algorithms have solutions which



32

are bounded by an exponential on the input size, and are merely variations on exhaustive

search. Polynomial time algorithms, on the other hand, are made possible only through

some deeper insight into the structure of the problem [GARE79]. Undecidable problems are

ones for which no algorithm will ever exist, even an exponential one. NP-complete

problems are problems for which no polynomial time algorithm yet exists, and for which

the discovery of one would imply that many other similarly difficult problems also have

polynomial time algorithms.

Almost every interesting problem in scheduling theory is NP-complete. A few

famous examples, like the rate monotonic algorithm, are exceptions. Usually a scheduling

problem must be so restricted in order to find an efficient algorithm that its solution is

virtually useless in a real-world sense. The following basic scheduling problem illustrates

this point.

The Sequencing on One Processor problem [GARE79] is posed as a set T of tasks

where each task in T has the following characteristics: a length, an arrival time, and a

deadline. Recall that the length and the arrival time are inherent attributes of a task, and that

the specification of a point in time like a deadline is a constraint. The question is whether

there is a schedule that meets all of the deadlines. This is a decision problem; if it can be

solved in polynomial time then the construction problem is guaranteed to be solvable in

polynomial time as well. Unfortunately there is no such known algorithm, and this problem

is NP-complete. In fact, the problem instance must be restricted in at least one of three ways

to solve it in polynomial time: either all tasks have length of one unit, or the tasks may be

preempted during service, or all tasks arrive at the same time, namely time 0. This problem

is perhaps the simplest of the scheduling problems in the sense that all tasks are known a

priori and there is no ordering placed on the tasks based on which are more important.



33

2.2.3. Resources

A resource is an identifiable entity needed for the accomplishment of some task.

Certainly such an entity needed is the processor or set of processors which will perform the

task. The resource set, however, includes anything required such that the task, or any task

in the task set, may be performed.

The task of sweeping out the basement as part of the goal of spring cleaning requires

three resources: the broom, the dustpan, and the person. The person is the “processor” since

it is the resource that actually performs the task. The broom and the dustpan are required to

do the work, but they do not perform the work.

Several more points may be made by continuing this analogy. There may be a set of

two or more processors rather than just one. More than one person may sweep out the

basement in parallel, or one may work until noon and another take over. In the division of

household labor, each member of the family may have specific jobs, the sweeping out of

the basement being assigned to one member in particular. In a more enlighted view, any one

of the family may do this task, and the choice of who does it is simply a matter of who is

available. The point is that the processor set may be specialized or general, and tasks may

have the property that they may be done in parallel by multiple processors or serially by a

set of processors.

Two or more tasks may require the same resources at the same time. One task is

chosen over the others to be performed by supplying that task with all of the resources it

needs until it is done. Then the other tasks may vie for the resources. If both the basement

and the garage need sweeping, but there is only one person, one broom and one dustpan,

then one area is chosen to be swept first while the other waits. Perhaps only one of the

resources is required by two contending tasks. If the resource is sharable up to a certain



34

capacity, then there is no contention until the capacity is exceeded. If the capacity is one,

then the resource cannot be shared; only one person can use the broom at a time.

One task may claim all of the resources it requires and not relinquish them until the

task is completed. However, if resource constraints are examined to determine how the

resources are needed, and when they are required, then the resource set can be “scheduled”

onto the tasks requiring them. Certainly someone else can use the dustpan until the

basement dust is in neat piles ready for collection.



35



36

3 Survey of Scheduling Techniques

Rate monotonic theory provides rich analytical results for scheduling algorithms

designed to meet deadline for a periodic task set. Included in these results are simple tests

for feasibility of a task set based on its aggregate utilization of the processor. Much work

in real-time scheduling centers around this algorithm, both in exploiting the results and in

seeking solutions to the various deficiencies to the basic algorithm. We present a brief

overview, first because rate monotonic theory is pervasive within scheduling theory, and

second because we revisit some of these results in our analysis section.

The importance abstraction has a function-based scheduling framework. We survey

seminal work in using functions to aid in scheduling decisions. Typically the functions

return a value which represents some aspect of the task’s worth, such as priority and value

(the importance functions return values which represent importance of a task). Functions

provide flexibility in expressing this task’s worth over the time that the task is active. The

importance abstraction extends this work by also using the functional representation of the

task’s importance to perform analysis on the nature of the schedules produced.

3.1. Rate Monotonic Theory

In 1973, Liu and Layland introduced rate monotonic scheduling theory [LIU73] as

a method for scheduling many periodic tasks on a single processor such that the scheduling

algorithm used to do this was optimal. Dhall and Liu extended this work into the

multiprocessor environment in [DHAL78]. The following discussion is drawn largely from

Sha and Goodenough [SHA90], who present an excellent overview of the theory and recent



37

extensions which include aperiodic and sporadic tasks, as well as non-independent task

relationships.

Rate monotonic scheduling theory in essence ensures that as long as the processor

utilization of all tasks lies below a certain bound and appropriate scheduling algorithms are

used, all tasks will meet their deadlines without the system designer knowing exactly when

any given task will be running. Given a set of independent, preemptable periodic tasks, the

rate monotonic scheduling algorithm gives each task a fixed priority by assigning higher

priorities to tasks with shorter periods. All tasks are preemptable in that whenever there is

a request for a task that is of higher priority than the one currently being executed, the

running task is immediately interrupted and the newly requested task is started. A task set

is said to be schedulable if all its deadlines are met (i.e., all periodic tasks finish execution

before the end of their periods).

Any independent periodic task set may be subjected to a test to determine if that task

set is schedulable regardless of when each individual task is started. Let Ci be the execution

time for task τi, Ti be the period for task τi and n be the cardinality of the task set. For a

statically assigned priority algorithm (the rate-monotonic algorithm, where priority is

defined as the inverse of the task period), the following must be true for the task set T to be

feasible:

Eq 3.1

If the utilization (computation time over period) of all of the tasks is below the bound

prescribed, then the tasks are guaranteed to be schedulable if they are scheduled according

to the rate monotonic algorithm. This bound converges to ln 2, or about 70% utilization of

processor capacity, as the number of tasks goes to infinity. This algorithm is shown to be

C1

T1
…

Cn

Tn
+ + n 21 n⁄ 1−( )≤



38

optimal among all fixed priority scheduling algorithms with respect to meeting deadlines

of periodic task sets.

Liu and Layland also show that a variation on this, the deadline driven scheduling

algorithm, can provide 100% processor utilization on task sets where the priority can be

assigned dynamically. This variation is also optimal with respect to meeting deadlines

among all algorithms where priority assignment may be made during the run of the system.

In the deadline driven scheduling algorithm, the priorities are assigned according to which

task’s deadline is nearest rather than by period length.

In [SHA90], Sha and Goodenough discuss the use of rate monotonic theory for real-

time scheduling in the Ada tasking model. However, there are certain drawbacks to the

unabridged rate monotonic scheduling policy, namely that (1) a task’s period is not

inherently related to how critical the task is to the system, (2) synchronization of a lower

priority task can indefinitely delay a higher priority task when tasks share data or

communications, and (3) there is no clear way to treat aperiodic tasks in this policy

designed for periodic task sets. Period transformation, priority inheritance and priority

ceiling protocols, and the deferrable server protocol address each of these issues

respectively.

3.1.1. Period Transformation

One major problem with rate monotonic scheduling is that the priorities are

assigned according to the period of the task rather than according to its criticality to the

system. When all tasks can be scheduled without fear of some task exceeding its execution

time, then no criticality measure need be placed on the tasks. However, execution times are

necessarily stochastic, and scheduling is usually done with worst-case estimates which may

be significantly longer than the average execution time. When tasks exceed their estimated



39

execution times, a transient overload occurs which may cause some tasks to miss their

deadlines. Yet if tasks are prioritized according to their periods, some critical tasks may

miss their deadlines if their periods are too long.

The period transformation technique [SHA86] is used to ensure that highly critical

tasks are treated with higher priorities even if they have longer periods. The priority of a

critical task can be raised by treating it like a task with a shorter period. The technique is to

divide both the period and the worst-case execution time by some constant. Now the task

looks like its period is shorter, but the total utilization is not affected. The task’s execution

is suspended after each execution time until its next “period” arrives.

This technique is designed, therefore, to decouple the criticality of a task from its

period, while maintaining the benefits of the rate monotonic algorithm. If the tasks can be

partitioned into critical and non-critical task sets, where the critical tasks are defined to be

those which must receive service during a transient overload condition, then a period

transformation can be applied to the critical tasks with the longest periods. Without period

transformation, the longest period tasks would be subject to missed deadlines since they

have low priority. The set of critical tasks, therefore, are period transformed until the

longest period of the critical set is shorter than the shortest period of the non-critical set.

Now all non-critical tasks will miss their deadlines before the first critical task will.

3.1.2. Priority Inheritance and Priority Ceiling Protocols

Priority inversion is defined as the phenomena of a task of higher priority being

forced to wait on the completion of a task of lower priority. In certain cases the priority

inversion can be unbounded. The priority inheritance protocol attempts to limit the amount

of priority inversion by allowing a server task to inherit the priority of its highest priority

client [SHA87]. A central theorem in priority inheritance specifies a sufficient worst-case



40

condition that characterizes the rate-monotonic schedulability of a given set of periodic

tasks. The priority ceiling protocol minimizes the blocking of high priority tasks by

guaranteeing that such a task will be blocked by at most one critical region of any lower

priority task [GOOD88, LOCK88].

The priority ceiling of a critical region is defined to be the highest priority of all the

tasks that may lock on that region. When a new task attempts to secure that region, it will

be suspended unless its priority is higher than the priority ceilings of all regions currently

locked by tasks other than this one. If the task is suspended, then the task that holds the lock

on the region with the highest priority ceiling is said to be blocking this task, and hence

inherits the priority of this task.

3.1.3. Deferrable Server

Current systems with hard real-time periodic tasks handle aperiodic tasks either by

servicing them in background or by polling periodically for aperiodic tasks. If an aperiodic

task is serviced in the background, it must wait until all periodic tasks have been serviced.

If an aperiodic task arrives just after the polling time, the task must wait until the next

polling time. In both of these cases the response time for aperiodic tasks suffers

unnecessarily due to naive treatment of the task set.

The Deferrable Server algorithm [LEHO87, SPRU88] is designed to provide

aperiodic tasks with a low response time without jeopardizing the periodic tasks. A new

periodic task with highest priority is created to service the aperiodic tasks such that all

tasks, including this aperiodic server, are guaranteed to meet their deadlines by the rate

monotonic theory. Any aperiodic tasks are serviced at this highest priority as soon as they

arrive as long as there is computation time left for this aperiodic server. When there are no

aperiodic tasks, the computation time of the server is deferred until one arrives. The



41

computation time of this server is replenished each period. Thus, the response time for

aperiodic tasks is minimized while the schedulability of the hard real-time periodic tasks is

maintained.

3.2. Survey of Function-Based Scheduling Techniques

Bernstein and Sharp [BERN71] recognized that service given to a class of tasks

could be controlled using a function such that various service profiles could be effected as

the tasks grew older. Priority in this scheme is related to the difference between the

function’s projected service and the service actually attained. Ruschitzka and Fabry

[RUSC77] used functions to describe the priority of a task directly. Within this model,

various scheduling algorithms could be emulated by using an appropriate priority function.

Jensen et al. [JENS85] used a function to profile a task’s value to the system for completing

at that time. The value functions did not directly drive the scheduling decisions in Jensen’s

model; rather they were used mostly as a metric for comparing the performance of other

scheduling algorithms.

Below we survey these three techniques for using functions for making scheduling

decisions.

3.2.1. Policy Functions

Bernstein and Sharp, in [BERN71], theorized that a scheduling algorithm that keeps

track of the resource count of each task and orders the tasks according to how far a task is

from the expected resource count at that task’s age would provide the specified level of

service for each task. They defined a policy function as a function which characterizes a

class of tasks by specifying the amount of service those tasks should receive as a function

of time. Each class of tasks within a system is characterized by a function that specifies the

amount of service a task within a class should receive as a function of time. The shape of



42

the policy function controls the type of service received by that class of tasks. In this system

the notion of priority corresponds to the difference between the service promised to the task

by the policy function and the service actually received by the task. Consequently, the

priority of a task changes at a constant rate while awaiting service and at another rate

determined by the shape of the policy function while receiving service. The tasks which are

most delinquent are therefore the highest priority tasks.

Since the shape of the policy function ultimately determines a task’s priority,

different scheduling policies may be implemented using the same basic scheduling

algorithm by simply changing the policy functions of the tasks. Bernstein and Sharp

consider piecewise functions as the policy functions for various classes of tasks. One such

function proposed uses a curved portion in a region starting with the task’s activation to

give a task a limited amount of rapid service, followed by a linear portion for a more

constant rate of service.

Ruschitzka and Fabry [RUSC77] extend the notion using functions for scheduling

by introducing the universal scheduling system (USS) as a generalized scheduling

framework to support arbitrary scheduling algorithms. There are three parts to the

specification of a scheduling algorithm within the USS: the decision mode, the priority

function, and an arbitration rule. The decision mode specifies how often scheduling

decisions are made. The priority function is an arbitrary function of task and system

parameters that determine the task’s priority at the time of evaluation. The arbitration rule

is used to break ties between tasks of the same priority. Ruschitzka and Fabry suggest that

a scheduling algorithm can be emulated by appropriately specifying the decision mode,

priority function, and arbitration rule such that the USS will make exactly the same

scheduling decision at exactly the same time as would the algorithm.



43

Four decision modes are identified; each decision mode is progressively more

general than the last, and each previous mode is a proper subset of the next. The four modes

are nonpreemptive, quantum-oriented, preemptive, and processor sharing. The

nonpreemptive mode allows decisions only after the task currently being serviced is

complete or when an arriving task finds the server empty. The quantum-oriented decision

mode makes decisions every fixed quantum of time unless a task completes or a newly

arriving task finds the server empty before the time of the next decision. If the quantum is

infinitely long, then the quantum-oriented mode reverts to the nonpreemptive mode. If

decisions are also made when any new task arrives, regardless of whether the server is busy,

then the decision mode is preemptive. Allowing the quantum size to become zero, and

hence ensuring that decisions are made continuously, defines the decision mode called

processor sharing. Processor sharing is the most general decision mode, encompassing

each of the other decision modes—the instant one task becomes higher priority than a task

being serviced, the new higher priority task takes its place in the server. This mode is called

processor sharing since the group of highest priority tasks, while they all remain highest

priority, will effectively share the server (processor) even if there are more tasks to service

than the server can handle; each task is receiving service concurrently with all other equally

highest priority tasks.

The priority function is an arbitrary function of task and system parameters. The

priority of a given task is defined as the value of the priority function applied to the current

values of the parameters. Ruschitzka and Fabry suggest that these parameters may include

the memory requirements, the attained service time, the total service time, external

priorities, timeliness, and system load. A priority function is defined for a scheduling

algorithm such that, when the algorithm chooses a particular task for service, the priority

function applied to that task will return the highest priority among all tasks.



44

The arbitration rule specifies how to resolve conflicts among jobs with equal highest

priority. Ruschitzka and Fabry note that the advantage to specifying the arbitration rule, as

well as the decision mode, is that this specification simplifies the priority function. Neither

the decision mode nor arbitration rule is necessary since the priority function can be made

to implement the various decision modes and arbitration rules.

Ruschitzka and Fabry continue by noting that a large class of scheduling algorithms

can be defined by a priority function of only three arguments: the task’s attained processing

time, the current time, and the task’s processing time requirement. Furthermore, an

algorithm is called time-invariant if the difference between the priorities of any two tasks

does not change as long as neither task receives service. Included in this class of algorithms

is the policy-driven scheduling algorithms of [BERN71]. Ruschitzka and Fabry extend the

work of Bernstein and Sharp by noting that, in general, time-invariant priorities are

characterized by a policy function of an arbitrary number of arguments.

3.2.2. Time-Driven Scheduling

The primary notion in time-driven scheduling [JENS85, LOCK86, TOKU87,

WEND88] is that the distinguishing characteristic of a real-time system is the concept that

the value a task has to the system is dependent upon when that task completes. Each task

has associated with it a value function Vi(t) which returns the value to the system for

completing task i at time t. The optimal schedule, therefore, arranges the tasks such that

they complete at times which maximize the sum of their values to the system. Jensen et al.

use this value sum as a metric for comparing the effectiveness of conventional scheduling

algorithms.

It was observed in [JENS85] that task scheduling in real-time systems almost always

uses some simple algorithm, like fixed priority, first in first out, or round robin. Often the



45

time-criticalness of the tasks is represented by a point in time called a deadline. Attempting

to meet deadlines via fixed priority scheduling algorithms leads to rounds of testing and

adjustment of the priorities, and results in a particularly fragile system. Assigning higher

priorities to important tasks does not reflect the time-constrained characteristic of the tasks.

Assigning higher priorities to tasks with nearer deadlines does not reflect the differences in

importance among tasks.

The tasks with associated value functions do not employ the explicit use of a

deadline. Rather, the existence and importance of deadlines depend on the nature of the

value function. A critical time for a task is represented by a discontinuity in the task’s value

function. In this way the concept of hard and soft deadlines is replaced by a step function

whose shape reflects the urgency of completing before a certain time.

Jensen et al. create an environment in which various scheduling algorithms can be

evaluated through the use of a simulator. For tractability reasons the value functions are

limited to having two parts, one prior to and one after the critical time, each consisting of

the following five-constant form:

Eq 3.2

This form allows value functions which are constant, linear, quadratic, exponential, or a

linear combination of any of these.

Jensen et al. report the simulation of several classical algorithms on a task set using

various shapes for the value functions. These algorithms included shortest estimated

completion time first, earliest deadline first, least slack time first, first in first out, random

order, and a fixed priority where the priority was equal to the highest value that the value

function could attain. Two experimental algorithms were also evaluated. The first used a

value density (value at the projected completion time over the task length). The second

Vi t( ) K1 K2t K3t2− K4e
K5t−+ +=



46

algorithm used a nearest deadline first algorithm, shedding the tasks with the lowest value

densities during overload. Four shapes of value functions, shown in Figure 3.1, were used

in separate executions to compute the total value generated by each of the scheduling

algorithms. The results showed that the second experimental algorithm outperformed all

others tested; this algorithm, called the Best-Effort Heuristic, is the focus of Locke’s work

in [LOCK86].

The implementation issues of time-driven scheduling, especially using the best-

effort heuristic, are explored in [TOKU87] and [WEND88]. It was concluded that the high

computational overhead of best-effort time-driven scheduling made implementation

Exponential
Decay

Hard
Deadline

Parabolic
Decay

Window of
Opportunity

Figure 3.1 —Value Function Shapes

Deadline



47

impractical on a uniprocessor system. More reasonable performance could be gained by

using a dedicated processor for only scheduling decisions.



48

4 Importance Abstraction

The importance abstraction is a framework within which we can describe

scheduling policies by focusing on the importances of the tasks within a system. Every

system has a goal and the tasks within the system are processed with the intent of meeting

the system goal. A task within the system is viewed as “important” to the system vis-a-vis

how that task can contribute to accomplishing the system goal. As the system progresses

and its state changes, various tasks become more or less important to the system. The

importance abstraction is a framework for expressing those conditions under which tasks

within a system become important to the system.

The importance abstraction includes within its framework sets of importance

functions that describe the tasks within a system, and a scheduler that uses the importance

functions to determine which tasks should receive service. By using this abstraction to

consider scheduling problems, we shift the emphasis from the analysis of the scheduling

algorithm to the analysis of a set of functions.

4.1. System Model

We define a system as any entity with the following components: a set of inputs into

and a set of outputs from this entity, a processor, and a set of tasks to be processed, as shown

in Figure 4.1. The system “communicates” with the world outside of it through its inputs

and outputs. The system reacts to inputs by changing the system state. The outputs from the

system reflect these and other state changes, and are the means by which the system may

affect the outside world. Since a system is designed to accomplish some goal, it is only



49

through these outputs that the degree to which the goal is accomplished can be gauged by

an outside observer. The system makes choices about when and what tasks to process such

that the system can move toward accomplishing its goal.

A network interface unit (NIU) is an example of a system that is itself a component

within a larger system. The NIU attaches the host system to the local area network (LAN).

An NIU is typically a front-end processor that attaches to both the host’s backplane bus and

the physical media of the LAN, as shown in Figure 4.2. Note that the NIU alone forms a

system, taking inputs from both the backplane bus and the LAN, and placing outputs to

both as well. The entire network, including the NIU of each attached host, is also

considered a system. Within a distributed system, as shown in Figure 4.3, the hosts and the

network are each subsystems.

Inputs

Outputs

Processor

Task Set

System

Figure 4.1 — The System Model

NIU

LAN

Figure 4.2 — Network Interface Unit and Network “Systems”

B
U
S

Host



50

Since the system is designed to accomplish some goal, each task within the system

somehow contributes to accomplishing the system’s goal under system conditions and task

attributes which are specific to that task. As these particular conditions arise within the

system, the task becomes “important” to the system. At any particular point in time there

exists a ranking of the tasks according to how important each task is to accomplishing the

system goal. If, at that moment, a “most important” task exists, then the system could best

move toward accomplishing the goal by performing that task at that moment. As conditions

change, the importances of the tasks may change, and a new task may become “most

important.”

Just as the state of the system changes with time as work is performed on the tasks

and inputs are received, the composition of the task set also changes with time. At the

system start time, when the system begins at some initial state, there exists an initial task

set. As work is done on tasks within this set, the attributes of the tasks within the set

change—in particular, the “work remaining” attribute of the task currently receiving

service is decreasing. The membership of the task set also changes over time. Some tasks

complete and are removed from the task set. Other tasks may simply outlive their

usefulness and be removed from the task set. Still others arrive and join the task set.

NIU HostNIU

NIUNIUHost

Host

Host

Figure 4.3 — Communication “Subsystem” within a Distributed “System”

LAN



51

Consequently, we can think of a snapshot of the task set as being a “state,” and the act of

scheduling and servicing the tasks within the task set moves the task set from one state to

another.

4.2. Importance Functions

If the importance of a task could be quantified at every point in time, it could be

expressed as a function over time to profile a task’s importance to the system. Since the

importance of a task depends upon the conditions of the system and the attributes of that

task, these conditions and attributes must be the parameters to the function. If we can

identify each possible task in the system, and under what conditions that task will become

important to the system, we could associate with each task a function that reflects the task’s

importance.

Consider a task set where each task in the set has associated with it a function, called

an importance function, which includes all of the conditions and circumstances under

which the task is important to the system. Let the function return a value that ranks that task

among all other active tasks competing for a system resource according to how important

it is that the task be given that resource at that moment in time. The importance abstraction

uses sets of importance functions as a representation of the task set with respect to how the

tasks within the task set should be ordered for service in order to accomplish some system

goal.

4.2.1. Sets of Importance Functions

Assume that, for a given system, there is an importance function associated with

each task in the task set. Let IT be a set of importance functions for the task set T. The set IT

embodies those attributes and constraints of the tasks in T and system parameters

considered important to accomplish a particular goal; therefore, we can consider the set of



52

importance functions as representatives of the tasks, and use these functions when asking

questions regarding scheduling.

We can consider a universe of all sets of importance functions for the task set T,

U = {IT}, where each member of the universe imposes a schedule that will meet some

particular system goal. Not every member of the universe of importance function sets will

meet the same system goal; rather, it is the system goal that partitions the universe into two

sets: those sets of importance functions which impose schedules which meet the system

goal, and those importance function sets for which the system goal cannot be guaranteed.

Thus, given a goal G, the universe U can be partitioned into UG = {IT ∋ G is satisfied} and

UG = {IT ∋ G is not satisfied}.

4.2.2. The Defining Property of an Importance Function Set

Given a task set T within a particular system, and a goal G for that system, we seek

the property PG which defines the set UG. We call this property a defining property. Since

the goal G partitions the universe of importance function sets U into UG and UG, the

defining property PG reflects those qualities of the sets of UG that (1) make each set a

member of UG, and (2) distinguishes each set from sets in UG.

Since each importance function set in UG imposes a schedule that meets the goal G,

the schedules are termed equivalent. The importance function sets that impose these

schedules are therefore members of an equivalence class. By discovering the defining

property of an importance function set which causes that set to belong to UG, we can

determine if a given importance function set is a member of this equivalence class.

If the defining property holds for every member of the equivalence class and no

others, that defining property represents the necessary and sufficient conditions on the set

of importance functions for inclusion in the equivalence class. If a property holds for a



53

subset of the equivalence class and no others, then the property is a sufficient condition for

inclusion in the equivalence class, but not a necessary condition.

4.3. The Scheduler

When a set of importance functions has been associated with a task set, the tasks

within that task set are scheduled according to the values of the importance functions. By

definition, the optimal schedule is achieved when the scheduler chooses the most important

task (task with the highest valued importance function) at every point in time. Thus, at

every point in time the scheduler must evaluate the function, M:IT → T, which takes the set

of importance functions and returns a task. Without loss of generality assume that the tasks

in T are indexed, in no particular order, so that a task is identified by its index. The function

M evaluates each importance function in the set IT and returns the task i ∈ T whose

importance function has the maximum value at that point in time. If, at some point in time,

the scheduler finds that two or more tasks are most important simultaneously, the scheduler

will arbitrarily choose one of those tasks as the task to receive service, and will continue to

allow that task to receive service until some other task becomes most important.

We can express the actions of the scheduler with some mathematical constructs.

The boolean relation (M(IT) = i) returns the value 1 if the most important task at the time of

evaluation is the task i, and the value 0 otherwise.1 By using this boolean relation as a

function of time, we can ask how long a specific task has been most important over a certain

period. Let the value  represent the amount of work applied to the task i from time t1

to time t2 (Appendix A describes in detail the properties of this construct). The equation

1. The convention of using a boolean expression within a set of parentheses to denote a function that
returns 1 if the boolean expression is true and 0 if it is false is used in Graham, Knuth, and Patash-
nik’s book Concrete Mathematics, Addison-Wesley, Reading, MA (1988); they attribute the con-
vention to Iverson in the programming language APL.

wi t1

t2



54

Eq 4.1

shows the relationship between the importance functions and the amount of work done to

a particular task. This equation states that the amount of work received by task i over the

period from t1 to t2 is equal to the amount of time that the task i has been most important

from time t1 to t2. Note that if there are two or more tasks with equal importance at time t,

the function M chooses one of these tasks arbitrarily.

wi t1

t2 M IT( ) i=( ) tdt1

t2∫=



55



56

5 Expressiveness of the
Importance Abstraction

The importance abstraction is a novel framework for expressing scheduling

policies. The actual scheduling algorithm is simple and universal: the scheduler chooses the

most important task at every point in time. The most important task is found by evaluating

the set of importance functions that profile the importance of each task. By using a function

to profile the task importance, the scheduler considers the conditions under which an

individual task becomes important without the scheduler or the scheduling algorithm

maintaining the state of these conditions for each task. This shifts the description of the

conditions for scheduling from the scheduler to the agents for the tasks. Consequently,

complex scheduling policies (e.g., those with many conditions for determining which task

is to be scheduled at any particular time) are easily expressed in the importance abstraction

while the same policies may prove difficult and cumbersome to express as algorithms.

Traditional scheduling policies are typically based on one or only a few task

attributes. Consequently, the algorithms that implement these policies use these attributes

when determining the schedule. For example, the nearest deadline first scheduling policy

considers only task deadlines; the algorithm dictates that the task with the nearest deadline

is always scheduled for service. These scheduling policies can be also be implemented

within the importance abstraction by devising importance functions based on the task

attributed considered by the algorithms. The importance functions emulate the algorithm if

a task becomes most important exactly when the task would be scheduled by the algorithm.

In this chapter we give several examples of traditional scheduling policies and show



57

importance function sets that implement the policies by emulating the algorithms

associated with the policies.

In addition to its ability to emulate the traditional scheduling algorithms, the

importance abstraction provides the framework for implementing novel scheduling policies

not intuitive when using algorithms. We offer an example of such a novel scheduling policy,

and show how the policy can be expressed easily with importance functions.

5.1. Emulation of Traditional Scheduling Policies

An interesting and important aspect of the importance abstraction is the ability to

emulate traditional scheduling policies within its framework. The importance abstraction is

said to emulate an arbitrary scheduling policy in that it makes exactly the same scheduling

decisions at exactly the same time.1 In the importance abstraction the act of scheduling

always remains the same: choose the most important task to perform at each decision point;

the various scheduling policies are actually implemented by defining appropriate

importance functions. The importance functions must be defined in such a way that a task

becomes most important at precisely the same instant as the conventional scheduling policy

would have chosen it.

First Come, First Served

In the First Come, First Served (FCFS) scheduling policy, the scheduler chooses the

oldest of the active tasks to serve. That is, it finds the min(ai), where ai is the arrival time

for the task i. To emulate this policy, we define importance functions for each task such that

the task’s importance is monotonically increasing with its age. There is an infinite class of

importance functions for which this is true; we offer the most obvious:

1. The concept of creating a framework within which to emulate other scheduling policies was first
presented by Ruschitzka and Fabry in [RUSC77] with the Universal Scheduling System.



58

Eq 5.1

Consider four tasks with arrival times as follows:

Eq 5.2

Let each task be associated with an importance function as defined above. Assume that each

task requires 3 time units to finish. Figure 5.1 shows the graph of importance value versus

time as each task gets older. Notice at time 5 there are 3 active tasks. The scheduler will

always choose M(IT) which, for time 5, is M(I2(5)=3, I3(5)=2, I4(5)=1) = 2, so task 2 is

chosen.

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

�
t ai,�if t ai≥( )−




=

task�1 �:� a1 0=

task�2 �:� a2 2=

task�3 �:� a3 3=

task�4 �:� a4 4=

Figure 5.1 — Importance Function Values for FCFS Policy



59

Nearest Deadline First

Nearest Deadline First (NDF) is quite similar to FCFS in that we need a

monotonically increasing function based on the nearness of a point in time; while FCFS

uses arrival times, NDF uses deadlines as the basis for the importance functions. If the

scheduler could chose the minimum of some set of values rather than the maximum, we

could use the quantity di − t, where di is the task’s deadline. Since the scheduler always

chooses the most important, then we need a function which is monotonically increasing:

the reciprocal of di − t is one such function.

Consider the following importance function definition for each task:

Eq 5.3

Further, consider a task that arrives at time 3 and has a deadline of time 10. Figure 5.2

shows the graph of the importance values over time for this task. Notice that there are two

discontinuities, one at the moment that the task becomes active and one at the moment it

misses its deadline. Also notice that the task becomes infinitely important just as the

deadline is reached.

Priority Driven

Tasks ranked by static priority are easily emulated by the importance abstraction by

defining the importance functions as constant functions reflecting the relative ranking of the

tasks. Any constant values will work as long as, for any two tasks i and j with priorities pi

and pj, priorities equal to or greater than 0, the following always holds:

Eq 5.4

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

di t−( ) 1− ,�if di t ai≥>( )
0,�if di t≤( )




=

pi pj> Ii t( ) Ij t( )>⇒



60

An example of such a function is:

Eq 5.5

Rate Monotonic

Rate monotonic theory applies to those tasks which are periodic in nature; that is,

an instantiation of the task is activated exactly once per time period. The priority of a task

is statically assigned to be the inverse of that task’s period, ρi. An importance function set

that emulates this is:

Eq 5.6

Figure 5.2 — Importance Function for an Nearest Deadline Task

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

�
pi,�if t ai≥( )




=

i T∈( ) ,∀ Ii t( )
1
ρi

,�if ai t ai ρi+≤ ≤( )
�

0,�otherwise






=



61

Least Slack Time

The least slack time policy chooses the task that has the least difference between its

projected finish time and its deadline. Previously we have considered a deadline as the time

by which the task must start. Here the deadline is the time by which the task must finish.

Slack time for task i is defined as slack = di − li − t, where li is the task length. The

importance functions are easily given by replacing the di quantity in the deadline driven

functions by the quantity di − li, thus:

Eq 5.7

Round Robin

In round robin scheduling each of the n tasks is given an equal share of the processor

in turn until all n tasks have received a share. Although the order of service is arbitrary, once

established, the order is maintained for subsequent cycles through the task set until one or

more tasks complete or one or more tasks join. In general the share of the processor, or time

slice, may either be fixed, and hence the period of the cycle varies with the size of the task

set, or the period itself is fixed, and hence the time slices vary according to the set size.

Consider a set of importance functions which take the form

Eq 5.8

where b determines the period, ci is the offset for task i, and d, if greater than 1, shifts the

function so that all values are positive. Let d = 1 and, for n tasks numbered 0 through n−1,

let ci = (2πi)/n. Figure 5.3 shows graphs of importance functions for four tasks. It is easily

seen that each task is “most important” for precisely 1/nth of the period, and that the order

of service remains fixed.

i T∈( ) ,∀ Ii t( )

0,�if t ai<( )

di li− t−( ) 1− ,�if di li− t ai≥>( )
0,�if di li− t≤( )




=

Ii t( ) bt ci+( )sin d+=



62

5.2. Families of Importance Functions

Often it is instructive to show a function in its general form, as with lines (given by

y = mx+b) and circles (given by x2+y2 = b2). Since the importance abstraction is based on

sets of functions, certain classes of functions, or families, can be expressed in general

parametric forms where specific values are assigned according to the application. Jensen,

in [JENS85], used a six parameter function to describe “value functions.” It is claimed that

the “value” of most interesting tasks can be profiled by

Eq 5.9

where appropriate assignments of the constants Ki could produce value functions which are

constant, linear, quadratic, exponential, or a linear combination of any of these.

Figure 5.3 — Importance Function Values for Round Robin Policy

Vi K1 K2t K3t2− K4e
K5t−+ +=



63

The importance abstraction allows task importance to be profiled using functions of

many forms. We have seen already how sets of functions can be used to emulate traditional

scheduling policies. Yet, for most of these examples, we have given specific forms of the

functions where the parameters are attributes of the task, like the task’s deadline. By

examining the general forms of some of these functions, the families of functions available

expand the expressiveness of the function form. For example, the nearest deadline first

policy may be expressed as shown in Eq 5.3; more generally, however, the form of the

function could be given as

Eq 5.10

where αi and βi are constants specific to task i. A set of importance functions based on this

family may not necessarily provide nearest deadline first service, but rather exhibit

additional properties, such as giving preference to meeting the deadlines of the most critical

tasks.

5.3. Novel Policies using Importance Functions

The so-called traditional scheduling policies, and the algorithms that are used to

express them, often arise from the requirements of the scheduling mechanisms. Many

aspects of tasks and task sets, which should logically be expressed as scheduling

parameters, are ignored or simplified so that traditional scheduling mechanisms can be

used. One of the most popular scheduling policies is priority ordering, where all aspects of

the task are condensed into a single value. Another popular policy, rate monotonic, permits

us to make static guarantees about the schedulability of a task set, but the task set must be

expressed as a set of periodic tasks, even if this is inappropriate to do so. The importance

abstraction, in addition to emulating traditional scheduling policies, allows us to focus on

Ii t( )
αi

βi di t−( )=



64

attributes, conditions, or other events that are not traditionally parameters of scheduling

algorithms.

An example of parameters that are difficult to consider in traditional scheduling

models is continuously updated variables, as may be found in process control applications.

Values from sensors, for example, may affect the choice of tasks to process. For example,

a sensor may monitor the pressure on a pump such that when the pressure at the pump

deviates significantly from a normal value, the task controlling the pump becomes

important.

Let V be such a continuously updated variable such that the value of V at time t is

given by V(t). We can include this variable within a task’s importance function by

composition:

Eq 5.11

Consider a process control application where a single processor maintains two

pumps and a shut-down switch in a configuration shown in Figure 5.4. Pump 1 must

Ii t( ) fi V t( )( )=

Figure 5.4 — Valve Configuration for a Process Control Example

Pump 1

Pump 2Y

-y

+y

Tank

Flow Sensor

Volume
Sensor

Shut-Off
Switch



65

maintain a flow of X ± x units per second into the tank. Some other liquid is entering the

tank at a constant rate. Pump 2 must ensure that the volume in the tank is maintained at

Y ± y cubic units to ensure a proper mixture is produced. The Shut-Off Switch is used to

turn off Pump 1 and close a valve on the other pipe in case there is either too much or too

little volume in the tank, or if Pump 1 cannot maintain the proper flow. Assume that each

pump and the switch is controlled by a separate task. The flow maintained by Pump 1 is

given by F(t), and the volume within the tank is given by V(t).

We can define the importance functions for the three tasks that maintain these

devices such that the task controlling a pump or the switch will become important whenever

that device needs attention. Pump 1 needs attention when the flow deviates from the ideal

value X by x; Pump 2 needs attention when the volume in the tank deviates from Y by y.

The Shut-Off Switch needs attention when one of three events occur: (1) the volume in the

tank exceeds Y + y, in which case the tank is in danger of overflow, (2) the volume in the

tank is less than Y − y, in which case the tank is in danger of being empty and Pump 2 may

be damaged, or (3) the flow through Pump 1 cannot be maintained at X ± x, in which case

the mixture is spoiled and any more work is useless. The importance functions below are

designed to ensure that these tasks are invoked at the proper times.

Eq 5.12

Eq 5.13

Eq 5.14

Define: ∆1 t( ) F t( ) X−=

∆2 t( ) V t( ) Y−=

I1 t( )
∆1 t( )y �if� ∆1 t( ) x≤,

�
xy �otherwise,




=

I2 t( )
∆2 t( )x �if� ∆2 t( ) y≤,

�
xy �otherwise,




=



66

Eq 5.15

The values ∆1(t) and ∆2(t) represent the deviations from the ideal values for the respective

continuously updated variables.

Note that the design of the importance functions is based on the safety limits of the

system so that the safety of the system is directly related to the behavior of the functions.

Consequently, it is possible to know exactly which task will be most important under any

set of circumstances. In this example, the pumps are serviced according to which metric is

proportionally closer to its limit of deviation. These tasks attempt to correct the deviation.

If the volume in a tank exceeds its limit, something is wrong that cannot be corrected by

invoking the pump control tasks; the importance value becomes constant so that it will not

compete with the task servicing the Shut-Off Switch. The switch is guaranteed to be

serviced if the safety conditions are violated. Also, the functions are designed to allow a

task to become important as a limit is approached rather than after a fault has occurred.

Consider conventional methods for servicing tasks in process control systems.

Polling loops are often used to “visit” each task in a round robin manner. At each visit, the

task may find that corrections are required. A limit may be placed on how long a task is

serviced so as not to starve other tasks. Polling creates a lag time between the occurrence

of the problem and the servicing of the control task. The scheduler has no notion of the state

of the devices controlled by the tasks; rather, it is up to the tasks to investigate the status of

only the device for which it is the controller, and take action accordingly. Consequently, it

is much more difficult to assure safety to such a system since the safety depends upon the

worst case poll time. The poll time itself depends on the worst case time spent servicing

each of the other tasks. This service time should be long enough to allow the proper

I3 t( )
xy 1 �if� ∆1 t( ) x>( ) �or� ∆2 t( ) y>( ),+

�
0 �otherwise,




=



67

corrections to be made (or satisfactorily started) but short enough to allow service to be

given to other tasks whose devices also have problems.

Some other methods are not appropriate. Static priority-based scheduling policies

cannot cope with the dynamics of the system. There are no deadlines in this system, so

deadline-driven policies are inappropriate. Since these tasks are not naturally periodic, rate

monotonic theory does not apply. Importance functions are a natural way to express the

conditions under which the control tasks must take corrective action.



68

6 Analyzability of the
Importance Abstraction

In Chapter 5 we offered sets of importance functions that could emulate several

traditional scheduling algorithms. In particular we have shown that priority-driven, nearest

deadline first, and rate monotonic algorithms are easily expressed in terms of functions. It

is interesting to note that all three of these policies have the property that tasks are ranked

according to some criteria (priority, period, or deadline) and, once ranked, remain in this

ranking relative to all other active tasks until some task leaves or some task arrives. We term

this property a static ranking. In this section we examine these three scheduling policies to

determine the defining property and prove that the importance function sets given as

candidate sets for emulating these policies do in fact meet the defining property. Since these

policies all present a static ranking, the proof that the candidate importance function set

meets the defining property is similar for each policy.

We continue by examining the nearest deadline first policy in particular. We prove

results about nearest deadline first that are commonly accepted, namely that, for a fixed size

task set and a priori task arrival knowledge, nearest deadline first will meet all deadlines if

any policy can meet all deadlines. We then examine variations of this policy that are not so

restrictive: arbitrary arrivals, arbitrary arrivals with a second level of ranking,

heterogeneous task sets, and heterogenous task sets with arbitrary arrivals and critical

deadlines.

We conclude this chapter with a discussion of how the relationship between

importance functions, the system state, and which task is the most important. By



69

considering the set of system states, we can predict under what circumstances a give task

will be most important.

6.1. Policies with Statics Rankings

Assume that a given system requires that, to meet the system goal, all tasks active

in the system must be ranked according to some criteria known at task activation. Further

assume that this ranking, once established within an active task set, does not change until

the composition of the task set changes. We term rankings that have this property static

rankings. Several well-known traditional scheduling policies (e.g., priority-driven, nearest

deadline first, and rate monotonic) have this property of static ranking.

The rank r for a task is based on the ranking criteria; for a priority-driven system

this criteria is the priority, for rate monotonic it is the period of the task, and for nearest

deadline first it is the deadline. Importance functions emulating these algorithms must use

this ranking criteria as a parameter; moreover, at every point in time, the rank imposed must

be maintained by the importance functions. Thus, for all time t,

Eq 6.1

This is the defining property for all scheduling policies based on static ranking.

The proof that a particular importance function set meets this defining property is

trivial. For a priority-driven policy, the set of importance functions as given in Eq 5.4 meet

this property since, for all time t,

Eq 6.2

For rate monotonic, the priority is the inverse of the period, so the property holds in this

case as well. For the nearest deadline first policy, the ranking is determined by the nearness

of the deadline. Hence, for all time t,

ri rj> Ii t( ) Ij t( )>⇒ i j, T�at�time� t∈( )∀

pi pj> Ii t( ) Ij t( )>⇒ i j, T�at�time� t∈( )∀



70

Eq 6.3

Eq 6.4

Notice that this defining property does not state that all deadlines are met. The fact that, if

all deadlines can be met, the nearest deadline first policy will meet them, is a consequence

of the ranking and not in itself a defining property; the nearest deadline first policy is only

a single element in the set of policies that guarantee that all deadlines are met.

6.1.1. Determining Completion Time

For policies that have this static ranking property, it is more interesting to ask

questions about the schedules imposed by the sets of importance functions. For example,

we can ask when a particular task will complete, or under what set of conditions will a task

miss its deadline. In general completion time is a difficult aspect to predict; for this

discussion we assume knowledge of the complete task set and the attributes of the tasks

within.

Assume that a task set T has cardinality n, and that the tasks within T have known

arrival times. Let ai be the arrival time for task i. Without loss of generality we can order

the tasks in T such that the tasks are numbered from highest to lowest ranking. Hence, task

i has ranking greater than or equal to task j if i > j. Tasks with equal rank are ordered by

arrival; otherwise, arrival times have nothing to do with the ordering of the tasks in T.

Assume the importance function set for task set T is given by

Eq 6.5

for all ri ≥ 0.

1
di t−

1
dj t−> Ii t( ) Ij t( )>⇒ i j, T�at�time� t∈( )∀

di dj< Ii t( ) Ij t( )>⇒ i j, T�at�time� t∈( )∀

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

�
ri,�if t ai≥( )




=



71

For a given task j we seek the completion time cj. There may be some tasks of higher

importance that have arrived (become active) before aj, and there may be tasks that arrive

after aj that are more important than task j. We can identify these more important tasks as

those having indices less than j. Those active tasks that are more important than task j at

time aj will complete before task j can begin. Let pj,1 be the earliest time task j can start

given that no tasks arrive after aj:

Eq 6.6

This states that task j can start no sooner than the greatest completion time of the more

important active tasks.

But some tasks may arrive between aj and pj,1 plus the amount of work left to

complete task j. During this period task j is subject to preemption by some higher ranking

tasks, thus possibly delaying the completion time of task j. We call this a “vulnerable

period.” Since we must consider this, let pj,2 be defined as follows:

Eq 6.7

This states that task j can finish no sooner than the greatest completion time of any tasks

arriving within the vulnerable period. We use the term  (as defined in Appendix A)

since this value reflects the amount of work left to do on task j after the time pj,1. By

considering the vulnerable period above, a new vulnerable period is created. To consider

this new vulnerable period as well, define pj,3 as follows:

Eq 6.8

Continuing this chain of logic through iteration k:

pj 1,
max

1 i j 1−≤ ≤ ci ai aj≤( ) ci aj wj+<( )∧( )=

pj 2,
max

1 i j 1−≤ ≤ ci aj ai pj 1, wj pj 1,

∞+≤ ≤( )( )=

wj pj 1,

∞

pj 3,
max

1 i j 1−≤ ≤ ci aj ai pj 2, wj pj 2,

∞+≤ ≤( )( )=



72

Eq 6.9

Since there are n tasks in the set T, there can be at most n periods of vulnerability. Hence:

Eq 6.10

Note that once pj,k = pj,k+1 for some k we do not need to calculate any more periods

of vulnerability, thus we can make the assignment pj,n = pj,k. Task j will complete at time cj,

where cj is given by

Eq 6.11

6.1.2. Meeting Deadlines

Since nearest deadline first is a static ranking, the result given in Eq 6.11 also

applies for schedules imposed using importance functions emulating the nearest deadline

first algorithm. Such a set of importance functions is given in Eq 5.3. We know from

[LIU73] that, if deadlines can be met for a given task set, they will be met using the nearest

deadline first policy. However, Liu and Layland show this for a set of periodic tasks by

proving that nearest deadline first will schedule tasks to meet deadlines if the utilization

factor (the sum over all tasks of the ratios of work required to length of period) for the task

set is 1 or less. Unfortunately, the utilization factor proof in [LIU73] only holds for periodic

task (a counterexample: task 1 has arrival time a1 = 5, work required w1 = 10, deadline

d1 = 15, and task 2 has a2 = 15, w2 = 10, d2 = 25; the utilization factor is 2, yet the task set

is feasible).

To show that the nearest deadline first algorithm will meet all deadlines for an

aperiodic task set if there exists any schedule which can meet all deadlines, we must show

that the completion time from Eq 6.11 for each task is always less than or equal to the task’s

pj k,
max

1 i j 1−≤ ≤ ci aj ai pj k, 1− wj pj k 1−,

∞+≤ ≤( )( )=

pj n,
max

1 i j 1−≤ ≤ ci aj ai pj n 1−, wj pj n 1−,

∞+≤ ≤( )( )=

cj pj n, wj pj n,

∞+=



73

deadline; that is, for each task i with deadline di, ci ≤ di. We prove this within the importance

abstraction by using the property, given by Eq 6.4, for the importance function set used to

emulate the nearest deadline first algorithm. We also need the condition under which any

schedule will meet all deadlines. For a schedule to meet every deadline in the task set the

schedule must ensure that the following is true for all points in time:

Eq 6.12

This is actually a set of conditions, all of which must be true. Consider t = 0. For

j = 1, the amount of work done on task 1 over all time must not exceed its deadline. For

j = 2, the amount of work done on task 2 in addition to the work done on task 1 must not

exceed the deadline d2. For j = n, where n = |T|, the amount of work done on all n tasks must

not exceed the deadline of task n.

Theorem 1

Given a task set T for which there exists some schedule that meets all deadlines,
then a schedule imposed by the nearest deadline first algorithm will also meet all
deadlines.

Proof

Assume the tasks of task set T are scheduled by a set of importance functions for
which Eq 6.4 is a property. Let T be ordered such that d1 ≤ d2 ≤ … ≤ dn. Let task k
be the lowest indexed task for which ck > dk, where ck is the completion time and dk

is the deadline for task k.

There are two cases. First, if there is no idle time between time 0 and time ck, then
the sum of all of the work done on all tasks over that interval is the length of the
interval and equals ck. Therefore:

Eq 6.13

Since the property given in Eq 6.4 holds for this task set, only the tasks whose
deadlines are dk or prior are serviced over the interval 0 to ck; we may rewrite Eq
6.13 as:

AND

1 j n≤ ≤
wi t

∞

i 1=

j

∑ max dj t− 0,( )≤
 
 

wi 0

ck

i 1=

n

∑ ck=



74

Eq 6.14

Also, these tasks are run to completion before task k is completed, so we can replace

 with wi:

Eq 6.15

But the kth condition of Eq 6.12, for t = 0, states:

Eq 6.16

Since  equals all of the work required by the task, this expression in Eq 6.16

can be replace by the value wi:

Eq 6.17

By substitution of Eq 6.15 into Eq 6.17, we arrive at ck ≤ dk, a contradiction of our
initial assumption that ck > dk.

For the second case, if there is at least one gap of idle time between time 0 and time
ck, let tg be the time when the last gap ends so that on the interval tg to ck there is no
idle time. The work done over that interval must sum to the length of the interval:

Eq 6.18

Since Eq 6.4 holds, no tasks of index greater than k will be serviced during this
interval, so we can change the upper limit of the summation. Also, since each task
with index k or less will finish before time ck, we can replace the expression
with :

Eq 6.19

The kth condition of Eq 6.12, for t = tg, yields:

wi 0

ck

i 1=

k

∑ ck=

wi 0

ck

wi
i 1=

k

∑ ck=

wi 0

∞

i 1=

k

∑ max dk 0− 0,( )≤ dk=

wi 0

∞

wi
i 1=

k

∑ dk≤

wi tg

ck

i 1=

n

∑ ck tg−=

wi tg

ck

wi tg

∞

wi tg

∞

i 1=

k

∑ ck tg−=



75

Eq 6.20

By substitution of Eq 6.19 into Eq 6.20, we arrive at:

Eq 6.21

Again, we find the contradiction.

Therefore, if there exists a schedule which can meet all deadlines in a task set, then
the schedule imposed by the importance functions which emulate the nearest
deadline first algorithm will also meet all deadlines. Since the importance functions
and the algorithm impose the same schedule, then the result holds for the nearest
deadline first algorithm as well.

❚

For rate monotonic, each task is instantiated exactly once during the task’s period.

This instantiation must complete before its period expires and the new instantiation is

created. We can therefore think of each instantiation of a task as a separate task, and the end

of the period as that task’s deadline. In this sense rate monotonic is similar to the nearest

deadline first algorithm where the deadline di is given by di = ai + Ti, for Ti the period for

task i.

6.1.3. Meeting Deadlines with Arbitrary Arrivals

Theorem 1 assumes that the task set T has a constant cardinality n and is known a

priori. In a system where the task set T cannot be known a priori, and where the cardinality

is not known to be a constant (i.e., there may be arbitrary future arrivals), we cannot prove

that all deadlines will be met. We can, however, create a test which will identify as early as

possible when a task will miss its deadline.

wi tg

∞

i 1=

k

∑ max dk tg− 0,( )≤

ck tg− dk tg−≤

ck dk≤



76

Let tasks be requested at arbitrary times such that the request time for task i is less

than or equal to the arrival time for task i; that is, reqi ≤ ai. Index the tasks such that, for all

tasks i, j ∈ T

Eq 6.22

Thus the tasks are indexed by when they are requested.

We need to define a few functions for convenience. Let D:T → N be a function that

takes a task and returns a natural number representing the task’s current order with respect

to deadline nearness. If task i has the jth nearest deadline, then D(i) = j. Let D′:N → T be

the inverse function which, given a natural number j, returns the task index whose deadline

is currently the jth nearest. Let n(t) be a function which returns the cardinality of the set T

at time t. The condition for meeting all deadlines for the task set T at time t is:

Eq 6.23

This condition is similar to the condition given in Eq 6.12. This condition states

that, at some time t and for all tasks j from 1 to the current cardinality of the task set T, the

sum of the work required by all tasks whose deadlines are priori to task j must be less than

or equal to the amount of time between the current time and task j’s deadline. We define the

term overload to be the state of the task set at time t such that Eq 6.23 is not true.

Theorem 2

Let T be an arbitrarily large task set containing tasks with arbitrary request times.
The nearest deadline first algorithm will meet all deadlines if any algorithm can
meet all deadlines.

Proof

Assume that a system requests work on tasks at arbitrary time such that the size of
the task set is not known a priori. Assume that task k is requested at time reqk, and
at that time an overload occurs such that some task m cannot meet its deadline using
the nearest deadline first algorithm. At time reqk we can construct a task set Tk that

i j> reqi reqj<( )⇒ reqi reqj=( ) ai aj<( )∧( )∨

AND
1 j n t( )≤ ≤ wD ' i( ) t

∞

i 1=

D j( )

∑ max dj t− 0,( )≤
 
 



77

includes all tasks requested from time 0 to time reqk. Let these tasks be indexed
according to the nearness of their deadlines such that i < j ⇒ di < dj. By application
of Theorem 1 we know that no algorithm can meet all deadlines if the nearest
deadline first algorithm cannot meet all deadlines.

❚

6.1.4. Meeting Critical Deadlines, with Arbitrary Arrivals

One of the problems with a pure nearest deadline first algorithm is that the tasks are

not otherwise ranked in the presence of missed deadlines such that the most critical tasks

are given preference at the expense of the least critical. The importance abstraction can

easily express this bilevel ranking, where the nearest deadline first policy is augmented by

considering a criticality measure associated with each task. Let us call this new for of

nearest deadline first the nearest critical deadline first (NCDF). From the representation of

the NCDF policy within the importance abstraction we seek the conditions under which a

given task k will meet its deadline, and from that prove that NCDF maximizes a quantity

based on the criticality of the tasks serviced.

Let each task i have two attributes: the deadline di and a criticality pi. Assume that

the criticality pi is an element of L, where L is the set of natural numbers in the range

MINCRIT to MAXCRIT. To construct a set of importance functions which will implement

the NCDF policy we first define a few auxiliary functions for convenience. Define the

function Over:{T}×time → Boolean as:

Eq 6.24

The function Over returns one if the task set T will not meet all deadlines at time t, zero

otherwise. Note that this is a functional representation of the conditions from Eq 6.23.

Define Crit:L → ℘(T) as a function that takes the criticality level from the set L and returns

Over T t,( ) AND
1 j T≤ ≤ wD ' i( ) t

∞

i 1=

D j( )

∑ max dj t− 0,( )>
 
 =



78

the subset of T that share this criticality level. Finally, we define a function

InMostCrit:T×time → Boolean that takes a task and a time and returns one if the task is in

the set of tasks whose deadlines will be met because they are among the most critical at that

time, and returns zero otherwise. The function body is:

InMostCrit(i, t) {
T′ = Ø
for k = MAXCRIT downto MINCRIT do

for each j ∈ Crit(k) do
if not Over(T′ ∪ {j}, t)
then

T′ = T′ ∪ {j}
endif

endfor
endfor
return (i ∈ T′)

}

Now for the importance functions:

Eq 6.25

Given a task k with an importance function defined as above, we seek the conditions

under which this task k will meet its deadline. Since we are now considering a task set with

arbitrary future arrivals, we cannot predict a priori that task k will meet its deadline; rather,

we can show the conditions necessary at certain points in time for task k to meet its

deadline. At time reqk, task k is schedulable if the following is true:

Eq 6.26

We must check this condition not at time reqk but every time a request for service is made,

hence:

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

di t−( ) 1− ,�if di t ai≥>( ) InMostCrit i t,( )∧( )
0,�otherwise




=

wD ' i( ) reqk

∞( ) pD ' i( ) pk≥( )
i 1=

D k( )

∑ 
 

dk reqk−≤



79

Eq 6.27

This expression states that, for each time t that a new task arrives between the request of

task k and task k’s deadline, the following must be true: the sum of the work remaining for

tasks whose deadlines are nearer than task k’s and whose criticality is at least as great as

task k’s must be less than or equal to the difference between task k’s deadline and the time

we are considering.

Biyabani et al explore this kind of bilevel ranking in [BIYA88]. They offer a new

sematic for the term guarantee that reflects the uncertainty of the future task set

composition. They state that at request time a task is guaranteed to meet its deadline if (1)

it is among the most critical tasks in the current task set, and (2) the arrivals of subsequent

tasks do not cause this task to leave the set of the most critical tasks. The system guarantees

that the most critical tasks will meet their deadlines; however, we cannot predict which

tasks will be in the set of most critical tasks.

We constructed the importance functions so that only the most critical tasks are

serviced to completion. When the system presents more tasks than can be serviced without

missing a deadline, some tasks must be pruned. The condition InMostCrit is used within

the importance functions of Eq 6.25 to do this pruning. We can quantify how well the goal

of meeting most critical deadlines is being met by summing the criticality values for all

tasks whose deadlines have been met by time t. Define the quantity CritCount(t) as:

Eq 6.28

When the work done on a task i is greater than or equal to the work required, the criticality

value of task i is added to the criticality count CritCount. Because the NCDF policy is

AND
t reqj reqk reqj dk≤ ≤( )= wD ' i( ) t

∞( ) pD ' i( ) pk≥( )
i 1=

D k( )

∑ 
 

dk t−( )≤
 
 

CritCount t( ) wi ai

di wi≥( ) pi
i 1=

n t( )

∑=



80

greedy, we expect the CritCount for the schedule produced to be optimal among all

policies. The following lemma supports a theorem that proves that NCDF is optimal with

respect to maximizing this quantity.

Lemma 1

Any task set that is schedulable by the nearest deadline first (NDF) policy is also
schedulable by the NCDF policy

Proof

Let T be a task set that is schedulable by NDF. Thus, by Eq 6.23 we know that, for
all time t, the following is true:

Eq 6.29

Since the only difference in NDF and NCDF is the presence of the condition
InMostCrit, as long as InMostCrit is true for some task i over all time t, then task i
will be scheduled by both algorithms at exactly the same time, for exactly the same
duration, and having exactly the same completion time. Let task k be a task
schedulable by NDF but not by NCDF. Thus, InMostCrit(k,t) must not be true for
some time t. This implies by Eq 6.24 that

Eq 6.30

But from Eq 6.29 we know that

Eq 6.31

This is a contradiction.

❚

Theorem 3

The NCDF policy maximizes the criticality count CritCount at time t among all
scheduling policies.

AND
1 j n t( )≤ ≤ wD ' i( ) t

∞

i 1=

D j( )

∑ max dj t− 0,( )≤
 
 

wD ' i( ) t

∞

i 1=

D k( )

∑ dk t−>

wD ' i( ) t

∞

i 1=

D k( )

∑ dk t−≤



81

Proof

Assume that there exists some scheduling policy A that, at some time t, produces a
schedule that has a higher value for CritCount than NCDF. Let TA be the set of tasks
scheduled by policy A by time t, and TNCDF be the set of tasks scheduled by NCDF.
If these tasks are equal then their CritCount values must also be equal and thus we
have a contradiction.

If the task sets are not equal, then the set of tasks chosen by policy A must contain
some tasks not chosen by NCDF. For the quantity CritCount of TA to be higher than
that for TNCDF, policy A either scheduled more tasks or instead scheduled tasks of
greater criticality. By Theorem 1 we know that the task set TA can be scheduled by
NDF. By Lemma 1 we know that any task set schedulable by NDF is also
schedulable by NCDF. Therefore, policy A could not have scheduled more tasks
than NCDF; instead, to have a higher value for CritCount, policy A must have
scheduled different, more critical tasks.

Since, at every point in time, NCDF chooses the most critical task with the nearest
deadline, any more critical tasks chosen by policy A, and therefore schedulable by
both NDF and NCDF, would have also been chosen by NCDF. Thus policy A could
not have scheduled more critical tasks than NCDF, and a contradiction results.

❚

6.1.5. Heterogeneous Task Set

Consider a task set that contains some tasks that are only deadline-driven and some

tasks that are only priority-driven. Because the priority-driven tasks do not have a time

constraint, most policies schedule the deadline-driven tasks first and use any remaining

processor cycles to service the priority-driven tasks. Policies of this type are easily

constructed within the importance abstraction by using the following importance functions:

Let Td be the subset of T that are deadline-driven tasks and Tp be the subset of T that are

priority-driven tasks. Let p be equal to MAXCRIT. The importance functions for both types

of tasks are given by:

Eq 6.32i T∈( )∀ Ii t( )
di t−( ) 1− p+ �if� i Td∈ ai t di<≤∧( ),

pi �if� i Tp∈ ai t≤∧( ),

0 �otherwise,



=



82

Since the importance of a deadline-driven task is always higher than the importance

of any priority-driven task, Theorems 1 and 2 from the previous sections still hold. A

characteristic of schedules produced using this set of importance function is that priority-

driven tasks are always deferred until there are no deadline-driven tasks in the set to be

serviced. Thus, as a consequence of trying to meet the deadlines of the tasks of subset Td

the priority-driven tasks must wait until there are no active deadline-driven tasks.

Consider a system that must meet all deadlines as well as attempt to minimize the

average response time to the priority-driven tasks. If there is no stated benefit from

servicing the deadline-driven tasks sooner rather than later, as long as the deadline is met

if it can be met, then we want a schedule that defers deadline-driven tasks to the last

possible moment. Unfortunately, deferring deadline-driven tasks without a priori

knowledge of future task arrivals may indeed cause some deadlines to be missed where not

deferring the tasks (as with NDF and NCDF) would have met the deadlines. Consequently

there must be restrictions on the task set in order to explore a policy that uses

procrastination of deadline-driven tasks to reduce the response time for priority-driven

tasks.

Clearly, the most conservative restriction is to require a fixed size task set that is

known a priori. Let each of the n tasks in T be indexed thus: tasks 1 through m are elements

of Tp and are ordered by increasing arrival times, and tasks m+1 through n are the elements

of Td and are ordered by increasing deadlines. To keep the procrastination of deadline-

driven tasks from causing some task’s deadline to be missed, the latest possible starting

time for a given task i such that it can still meet its deadline must be determined. Define si

to be this latest possible starting time:

Eq 6.33si
min

i j n≤ ≤
dj wk

k i=

j

∑−( )=



83

The restriction of a fixed size task set known a priori can be relaxed to allow

arbitrary arrivals with conditions placed on when the request for service for each task is

made. Assume that the tasks are now indexed by their request times such that

i < j ⇒ reqi < reqj. The restriction must ensure that, if any two tasks’ deadlines are

sufficiently close together, then the tasks must be requested appropriately. Recall that D′(i)

returns the index of the task whose deadline is the ith nearest. If the difference between the

deadlines of tasks D′(i+1) and D′(i) is less than the quantity wD′(i+1), then it is possible for

task D′(i) to be deferred in such a way as to interfere with the meeting of task D′(i+1)’s

deadline. Both tasks can be taken into account if the task whose deadline is later is known

about at the same time as or before the task whose deadline is nearer. Specifically, the

request times for tasks D′(i) and D′(i+1) must be ordered such that:

Eq 6.34

Rewriting Eq 6.33 to reflect indexing tasks by request time order, the latest starting

time for some task i is given by:

Eq 6.35

In either case, a set of importance functions for a procrastination policy is:

Eq 6.36

6.1.6. Heterogeneous Task Sets with Critical Deadlines and Arbitrary Arrivals

We can combine the conditions from the importance functions of Eq 6.25 and Eq

6.36 to form a set of importance functions that provide guaranteed service to the most

critical deadline-driven tasks while minimizing the average response time for tasks that are

dD ' i 1+( ) wD ' i 1+( )− dD ' i( )< reqD ' i 1+( ) reqD' i( )≤⇒

si
min

D i( ) j Td≤ ≤ dD ' j( ) wD ' k( )
k i=

j

∑−( )=

i T∈( )∀ Ii t( )
di t−( ) 1− p+ �if i Td∈ si t di<≤∧( ),

pi �if i Tp∈ ai t≤∧( ),

0 �otherwise,



=



84

priority-driven. Assuming the restrictions on the request times for the task set as given in

Eq 6.34, the importance functions are:

Eq 6.37

In the nearest deadline first policy processor idle time occurs only after the

deadlines of all of the active tasks are met. With a heterogeneous task set, the idle time is

used to service the priority-driven tasks. When the deadline-driven tasks are deferred until

the last possible moment, the priority-driven tasks are serviced sooner, thus moving the idle

time in between the servicing of tasks from Tp and tasks from Td. The final variation on the

nearest deadline first policy presented here observes that, although there may be no benefit

from servicing deadline-driven tasks earlier than later, there is no benefit from waiting to

serve them while idle time exists. We construct a set of importance functions that

implement a policy that (1) meets the deadlines for tasks in Td, (2) prunes the least critical

deadline-driven tasks when necessary, (3) reduces the response time for tasks in Tp, and (4)

eliminates processor idle time if any task is active.

Define the function Active:{T} → Boolean to take a task set and return the value

one if the set has any tasks which have arrived but for whom service is not completed, and

return value zero otherwise. The set of importance functions is:

i T∈( )∀ Ii t( )

di t−( ) 1− ,�if i Td∈( )
� si t di<≤( )∧
� InMostCrit i t,( )∧

pi �if i Tp∈ ai t≤∧( ),

0 �otherwise,







=



85

Eq 6.38

Schedules produced using these importance functions will service deadline-driven

tasks in criticality order during what would have been idle time until either some priority-

driven task becomes active or the current time equals the latest possible start time for this

task.

Since servicing tasks from Td during the idle time will affect the latest possible start

time, the term si can be made into a continuous function si(t):

Eq 6.39

Replacing si with si(t) in Eq 6.38 will constantly update the latest possible start time. As

this time is made later, the priority-driven tasks are given longer service times before being

preempted for the deadline-driven tasks. This further reduces the average response time for

tasks in Tp.

6.2. Projections

In Section 5.3. we constructed an example that showed that importance functions

could be used to express scheduling relationships based on continuously updated variables.

The design of the importance functions given in Eq 5.12 through Eq 5.15 was based on the

safety limits of the system. As a consequence the safety of the system is easily proven.

i T∈( )∀ Ii t( )

di t−( ) 1− ,�if i Td∈( )
� si t di<≤( )∧
� InMostCrit i t,( )∧

pi �if i Td∈ ai t≤ si Active Tp( )¬∧<∧( ),
pi �if i Tp∈ ai t≤∧( ),
0 �otherwise,










=

si t( ) min
D i( ) j Td≤ ≤ dD ' j( ) wD ' k( ) t

∞

k i=

j

∑−( )=



86

Given a set of importance functions and a system state, system designers can project

which task in the set will be most important by applying the parameters that make up the

system state to the importance functions. This suggests the following equation:

Eq 6.40

The system designer can also derive the conditions under which one of the tasks of

the task set will be the most important task. This requires determining the set of system

states for which the given task’s importance function evaluates to a greater value than the

importance functions of any other task in the task set.

Consider the importance functions given in Eq 5.12 through Eq 5.13:

Eq 6.41

Eq 6.42

Eq 6.43

Eq 6.44

Here, the values of F(t) and V(t), expressed through ∆1(t) and ∆2(t), represent the system

state, and hence determine which of the tasks are most important. We can determine the

conditions under which each task will become most important by examining the

interactions of the various of the functions. When both ∆1(t) ≤ x and ∆2(t) ≤ y, task 1

becomes most important if I1(t) > I2(t):

M set�of�importance�functions system�state×( ) the�most�important�task=

Define: ∆1 t( ) F t( ) X−=

∆2 t( ) V t( ) Y−=

I1 t( )
∆1 t( )y �if� ∆1 t( ) x≤,

�
xy �otherwise,




=

I2 t( )
∆2 t( )x �if� ∆2 t( ) y≤,

�
xy �otherwise,




=

I3 t( )
xy 1 �if� ∆1 t( ) x>( ) �or� ∆2 t( ) y>( ),+

�
0 �otherwise,




=



87

Eq 6.45

Eq 6.46

In terms of F(t):

Eq 6.47

Eq 6.48

By similar derivation, task 2 is most important when V(t) is bounded as follows:

Eq 6.49

Task 3 is most important if either ∆1(t) > x or ∆2(t) > y since these conditions

represent when the system is not operating safely. In this example the system the conditions

for safe operation is precisely the conditions task 3 to become most important. In systems

where safety is essential, the importance functions offer an opportunity to use the

expression of the safety conditions directly in the scheduling process.

∆1 t( )y ∆2 t( )x>

∆1 t( ) ∆2 t( ) x
y

>

F t( ) X− ∆2 t( ) x
y

>

X ∆2 t( ) x
y

− F t( ) X ∆2 t( ) x
y

+> >

Y ∆1 t( ) y
x

− V t( ) Y ∆1 t( ) y
x

+> >



88

7 Implementing the Importance
Abstraction Efficiently

The scheduler within the importance abstraction logically consists of a function M

that returns the most important task at the moment the function M is evaluated. In the

general case, importance functions can be arbitrarily complex. To ensure the service of the

most important task at every point in time, the function M must be evaluated at every point

in time. This assumption serves a purpose for the theoretical analysis of sets of importance

functions, but for real systems, an implementation of such a scheduler would be

impractical.

Although the importance abstraction places no restrictions on the complexity and

composition of the set of importance functions profiling the task set for a particular system,

it is clear that certain sets of importance functions may have properties which lead to an

efficient implementation of the scheduler. These properties form two main classes: those

sets of importance functions for which discrete evaluation points can be determined, and

those sets of importance functions for which discrete evaluation points must be assigned.

7.1. Discrete Evaluation Points

There are two ways to determine discrete points in time for importance function

evaluation: (1) find the points of intersection of the importance functions, and (2) determine

when the parameters to the importance function may change. Using the intersection method

may be more efficient in terms of reducing the number of evaluation points; keying on the



89

parameters may be easier to implement if the changes in the state or value of the parameters

can be signaled, as with an interrupt.

With the intersection method we begin with the highest-valued function at this point

in time. By pairwise evaluation we can determine when the next intersection point will

occur, and as a consequence which function will be the next highest-valued function, since

after this point of intersection another task will become more important than the currently

most important task. The importance function of the new most important task is used in the

pairwise evaluation to determine the next point of intersection, and hence the next

scheduling point. Unfortunately, in the general model importance functions can be

arbitrarily complex, and finding intersection points can be quite difficult. In fact, for

functions of degree four or greater, it is impossible, in general, to find the intersection points

of any two given functions. Even degree three is difficult, although there exists a closed

form expression for finding the roots.

The other method for determining evaluation points is to use changes in the

parameters to the functions to signal reevaluation of the functions. Many of the system

characteristics which may be used as parameters to the importance functions change at

discrete times as the result of an “event.” If these discrete times can be known a priori, then

these times can be built into the scheduler. If the events are signaled by the system, then the

scheduler can use this signal. An important example is the set of parameters whose values

are determined after a system interrupt. If it can be shown that the importance functions will

maintain a stable relative ranking until one of a set of identifiable events occurs, then the

scheduler can use that set of event signals to determine the scheduling point.

It is worth noting that there is an efficient implementation for each of the examples

in Chapters 5 and 6. The scheduling algorithms for which static rankings exist are

particularly easy since the discrete events necessary to awake the scheduler are the arrival



90

and departure of tasks. The example in Section 5.3. uses continuously updated variables—

in the theoretical domain these variable are updated infinitely often. Since the sensor

devices take an analog input and convert it to a digital reading, the devices are actually

reporting readings at a discrete rate. Since the importance functions given for this example

use these sensor values, the scheduler need only be invoked when any one of the values

change.

7.2. Approximations

For some situations it may not be possible to discover simplifying aspects of the set

of importance functions. Consequently, in this case the scheduler must evaluate every

function in the set of importance functions as often as is possible. Unfortunately, it may be

impossible to assure that the most important task is being scheduled at every point in time,

and thus in this case the implementation only approximates the importance abstraction.

The value of the function at its time of evaluation approximates the value of the

function until the next time the function can be evaluated. Furthermore, if there are no

parallel evaluations, the values will be the result of evaluations of each function at a

different time. Fortunately, this is a common problem in real computing systems, so the

solutions are not esoteric.

The degree of imprecision tolerable by a specific system is system-dependent. By

system examination the worst-case time between evaluations can be determined. If the

system can tolerate the possibility of the wrong task being serviced for at most the worst-

case amount of time, then the approximations are adequate for the system. Returning to the

novel example of Section 5.3., we can consider invoking the scheduler only after any one

of the continuously updated variables changes by a set amount. The analysis of the system

suggested in Chapter 6 must take these approximations into account.



91

If the system cannot tolerate the degree of imprecision inherent, the importance

abstraction can be implemented in dedicated hardware. If a digital processor is used, the

approximations still exist but the worst-case time between evaluations may be reduced to a

tolerable level. An analog device may be used, eliminating the need for approximations, but

this introduces a problem with how often to sample. Again, some degree of precision will

be lost as the continuous functions are represented and evaluated by an inherently discrete

system.



92

8 The Communication Subsystem

Each task in a system has some inherent importance, and when a task endeavors to

communicate with another task, the communication between the two tasks also has an

importance. This importance is derived from how important it is for the sending task to

convey its information and how important it is for the receiving task to receive it.

We use the term communication to denote a transfer of data between two (or more)

physically separate tasks. This communication is initiated when a sending task issues a

request to the communication server. The request has as one of its parameters the data to be

transferred; this data is bundled into a message for use by the communication server. The

receiving task also issues a request; it asks the communication server to notify it when a

message arrives for it. It is what happens within the communication server, and the

relationships among the importance values of the tasks using the communications and how

the communications themselves are treated, that are the topics of this chapter.

One of the advantages to using a local area network for communication is the

economic impact of replacing point-to-point wiring with a common communication

medium. A disadvantage that follows directly is that the network becomes a shared

resource that must be managed and whose access must be arbitrated. Viewed separately, the

communication server is a “system” as defined in Chapter 4, and the tasks are the requests

made to it by the users. Within the system, however, there are several other distinct places

where the system model can again be applied: at the message level, where the messages

compete for buffers and processing; at the internetwork level, where the constituent packets

of a message compete for route-related resources; and at the medium access control level,



93

where the stations compete for placing their packets onto the physical medium. In general

there can be arbitrarily many such points of contention, and at each of these some

discrimination policy must be in place to determine the order of processing. Although it

would seem that all of the discrimination policies within a communication subsystem

should work toward a common master policy, in practice this is seldom the case.

In this chapter we present the common approaches currently employed to provide

some form of discrimination of important versus unimportant communication. We next

briefly review the standard communication architecture and provide more detail on several

of the layers implementing the data transfer services. We then consider how to apply the

concepts of using importance functions within the communication subsystem, and discuss

the issues raised and the advantages presented.

8.1. Discrimination Techniques

A discrimination technique is the method by which different levels of service can

be applied to communication requests. Message discrimination techniques can be divided

into two general approaches, as shown in the taxonomy given in Figure 8.1. These

approaches are priorities and levels of service. Priorities are values assigned to messages

for use in ordering the messages at decision points. The priority value may be static, that

is, fixed over a message’s entire lifetime, or it may be dynamic, and change with varying

conditions within the system. A level of service specifies the message’s privileges, such as

the amount of time allotted to service messages of this level, permission to bypass flow

control constraints, or permission to preempt other messages.

8.1.1. Priorities

Prioritization is the most popular method for discrimination in a network. A priority

is a mechanism by which a message has a relative value assigned to it for use during



94

competition for resources. This value, therefore, imposes some ranking on those messages

competing for service. The server chooses the highest priority message each time it can

make such a choice. Within a distributed computing environment, this satisfies, at least

nominally, the users’ concerns that some communications are more urgent than others.

Several observations, however, pervade the use of priorities. First, if the

architecture is layered according to functionality, as has become the universal approach,

there is possibly a set of one or more queues at each interface between layers where each

layer may dictate its own priority scheme. For example, there may be a medium access

control service with eight priorities for providing some ordering to all messages attempting

to access the medium, an internetworking service that has no priority structure, and a

reliable end-to-end service with a simple two-value priority for providing some ordering to

the protocol processing within the transport layer—yet there may not be a clear mapping

among these layers. Using the common token ring local area network as an example, the

Discrimination
Techniques

priorities

static dynamic

1 2

levels of service

Figure 8.1 — Taxonomy of Discrimination Techniques

function
of message

characteristics

function
of system

characteristics

two-level multi-level

2n…



95

two priority levels of this transport layer must somehow be mapped (through a

nondiscriminating network layer) into a specification of time values expressed in

milliseconds which limits the token rotation time around a physical ring. No such mapping

exists, yet the performance seen by each level of priority at the transport layer is completely

dependent on how this mapping is done. In general, the meanings of priority values remain

consistent only within each layer.

Second, locally generated priorities may affect the way in which the messages are

handled by nonlocal agents. Consequently, the priority scheme must be globally

administered to ensure that each priority level has the same meaning at each processing

point. Priorities can only be effective if every participant agrees with and adheres to the

meanings of the various priority levels.

Third, no communications protocol in common use completely avoids the problem

of priority inversion, where a message of lower priority prevents a message of higher

priority from being served. Consider a medium access control layer where no preemption

of messages is allowed while they access the medium. Once a message is granted access,

no other message, regardless of its priority, can be serviced until the current message

completes. If the second message is actually of higher priority than the first message, a

priority inversion occurs. (We examined the effect on priority inversion and performance

of having a preemptable MAC service in [STRA91].) In general protocols trade some

priority inversion for reduced complexity, efficiency, and performance.

Fourth, priority schemes in most extant standards are static—that is, once assigned,

the priority value is unchangeable. In many implementations of medium access control

protocols it is impossible to change the priority of a message once that message has been

enqueued for transmission. Yet static priority is not responsive to the dynamic nature of the

environment, nor does it represent time constraints appropriately. Messages that spend a



96

significant portion of their transfer time in queues within stations may benefit from a

dynamic priority scheme. For example, Gaitonde et al., in [GAIT90], explored changing

priorities on certain messages as those messages aged in the communication subsystem,

and found this to improve service.

Finally, the additional protocol processing required to use priorities may cause

significant overhead. Employing prioritization mechanisms often wastes bandwidth as the

stations on the network try to determine which among them has the highest priority

messages. Peden has shown that average delay increases and overall throughput decreases

when a priority scheme is implemented [PEDE88]. The need to order messages must

outweigh this drawback for priorities, or any discrimination technique, to be effective.

Consequently, in current practice there is no overall consistent end-to-end view of

priority. Protocol standards are developed by different groups than those who design and

develop the operating system and the task scheduling scheme. Even within the

communication subsystem the standards for each layer are developed by different groups

with different objectives. Yet clearly the service characteristics of the tasks using the

communication subsystem are directly affected by how each component of the

communication subsystem handles requested communications. The only way to make

statements about task service times is to have a consistent approach to scheduling service

at all layers.

8.1.2. Levels of Service

Prioritization of messages represents one way to provide different levels of service

to various users: by affecting the ordering of messages for service some messages will have

quicker response times (the delay between the request for the communication and the

acknowledgement that the request has been completed). In general, however, providing the



97

user with various levels of service encompasses more than just message ordering. Each

message must be processed by the service providers within the communication subsystem.

Certain constraints are placed on the processing of the messages, including the amount of

time allotted for processing these messages, the number of outstanding messages allowed

by the flow control procedures, or the rate at which messages may be transmitted.

Communication protocols endeavor through offered levels of service to guarantee

certain aspects of the message exchanges. Ferrari [FERR90] compares these guarantees to

a contract established between the service user and the service provider: if the user meets

certain conditions concerning its service requests, the communication subsystem will

provide the level of service required.

One approach to providing several levels of service in a communication subsystem

starts with two basic levels: a normal service and an expedited service. In the Transmission

Control Protocol (TCP, [DARPA81a]) and the ISO Transport Protocol Class 4 (TP4,

[ISO8073]), the normal service is for common communication, while the expedited service

bypasses flow control constraints as well as assuming a higher priority in processing. By

ignoring flow control constraints the expedited messages may overwrite normal messages

waiting in message buffers; however, no expedited message will be delayed while waiting

for buffers to become free. Along these lines we can consider adding a new level of service

called preemptive. This level allows a service that not only bypasses flow control but

preempts messages even as they are being processed. By analogy, a fire truck is “expedited”

since it may ignore traffic signals, while a fire truck with a plow on the front is “preemptive”

since, with the plow, it can also push cars out of the way.

Dempsey et al., in [DEMP92], explore the idea of allowing a user-specified degree

of reliability such as may be useful in time-constrained communications where progress is

more important than completeness. The user indicates what density of errors (the number



98

of lost packets per any set of n contiguous packets) is permissible without the transmission

loosing its meaning; such service is thought to be useful for audio and video data

transmission.

Time-division multiplexing is another place where levels of service can be

established. An example of this is the timed-token approach in the Fiber Distributed Data

Interface (FDDI) standard [ANSI86]. In FDDI, a certain class of messages, called the

synchronous class, requires at least some minimum amount of service each time period. A

second class of messages, called asynchronous, may utilize the time left over. For messages

that require service at precisely the same time each period, new enhancements to FDDI

provide a class of service called isochronous.

As observed with priorities, there is no consistent end-to-end view of offering levels

of service. Between any two layers of the communication subsystem, including the tasks

that use the communication services, there is no general rule for mapping one layer’s levels

of service into the levels of service of the other layer. This is compounded by the fact that

each layer has a set of functions specific to that layer, and these functions may be reflected

in what levels of service are offered. Again, a consistent approach is required before any

statement about the service can be made.

8.2. The ISO Reference Model

In 1984 the International Organization for Standardization (ISO) presented the

Open Systems Interconnect (OSI) Reference Model [ISO7498], shown in Figure 8.2), and

this model has since become the means by which the division of functionality and service

are described within a communication subsystem. From bottom to top, the physical layer

defines how bits are represented on the physical medium. The data link layer, of which the

medium access control (MAC) and the logical link control (LLC) are sublayers, governs



99

the framing of data bits into units called frames, or packets, and arbitrates station access to

the physical medium. The network layer provides the mechanism for connecting several

network segments to form an internetwork such that the packets can be routed across

segment boundaries. The transport layer ensures reliable, end-to-end delivery of arbitrarily

large messages; these messages are segmented into bounded-size packets which are error

controlled. The session layer uses synchronization points to provide dialogue control. The

presentation layer addresses disparity in data representations. The application layer offers

services to the communication user built upon the functionality of the six layers below and

that are specific to that user’s needs.

Figure 8.2 — The OSI Reference Model

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

DATA LINK

PHYSICAL

Router

DATA LINK

PHYSICAL

NETWORK



100

For this chapter we examine primarily the data delivery services of the transport

layer and below since this portion of the layered reference model represents the minimum

functionality that is required for a robust data delivery service over a general network

topology. In this section we discuss in more detail the functions of the MAC, network and

transport layers, especially the current approaches to providing a means for discrimination

of certain data in favor of certain other data.

8.2.1. Media Access Control Layer

The protocol imposed by the medium access control layer within a station governs

the access by that station to the shared physical medium. Stations are distributed about the

physical medium and are provided access to this medium by the MAC layer. The set of

MAC implementations around the physical medium work collectively to impose some

policy for access. There is a queue of requests for access at each station, as shown in Figure

8.3; the MAC implementations in each station exchange queue information to determine

which station may next satisfy a request.

Figure 8.3 — Medium Access Control

MAC

Physical Medium

MAC MAC



101

Since each station’s MAC protocol must work in concert with all other MAC

protocols to provide an access policy, some mechanism independent of the data transfer

must allow these MAC protocols to communicate. Ethernet [METC76], and its standardized

counterpart, IEEE 802.3 [IEEE85c], passively monitor the medium to determine when

access can be granted. Since this method can produce collisions, backoffs and retry

mechanisms are included within the protocol. Other protocols are more active in granting

access: IEEE 802.4 Token Bus [IEEE85a], IEEE 802.5 Token Ring [IEEE85b], ANSI Fiber

Distributed Data Interface (FDDI [ANSI86]), and the SAE High Speed Ring Bus (HSRB

[SAE87]) all use special frame types called tokens to grant access permissions. The Dual

Queue Dual Bus (DQDB [IEEE89]) uses each of its two busses to carry access requests for

the other bus. Two other access methods include register insertion, where messages are

inserted onto the medium via buffers called registers, and slotting, where slots for

transmitting are assigned to stations.

Arbitrating access to the physical medium is often augmented by some

discrimination scheme. Discrimination at the MAC layer generally requires (1) knowledge

of what packets are enqueued at this station, and (2) what priority level is the highest among

all other stations. How this information is used distinguishes the various methods of

medium access.

Ethernet and IEEE 802.3 explicitly state that no priority mechanism is to be used

since each station is a passive participant. As long as no collisions (two or more stations

attempting to access the medium at the same time) take place, access is granted in FIFO

order; when collisions occur, the binary exponential backoff scheme perturbs the order of

access, possibly producing a LIFO order for some period of time.

Token-passing protocols use a special frame called a token as a “permit” for

transmission. Stations using token passing protocols are generally organized into a logical



102

ring, whether or not a physical ring topology is present. When a station sees the token and

meets certain requirements, that station may capture the token and commence transmission.

When required to cease transmission, the station passes the token to a logical neighbor that

then may capture it.

Token-passing protocols are divided into two major groups: timed token and token

reservation. Timed token protocols, notable among them IEEE 802.4 Token Bus and ANSI

FDDI, circulate a token in logical ring order such that the each station is granted permission

to transmit packets for a bounded amount of time. Each level of service will be given a

target token rotation time which specifies that a token granting permission to transmit

packets at this level will arrive before this target rotation time has elapsed. Due to this

assertion timed token protocols are often termed “deterministic.”

Token reservation protocols, such as IEEE 802.5 Token Ring and SAE HSRB, use

the token both for granting permission to transmit as well as for polling the stations to

determine which among them has the highest priority packet. When the token is captured,

it becomes the header for the packet being transmitted. The packet makes a complete tour

of the stations on the ring, during which each station may bid on the next priority level

based on the packets within that station. The token is reissued by its current captor at the

highest bid, which is the priority of the highest priority packet enqueued at all of the

stations. In this manner packets are (nearly) ordered by their priority.

8.2.2. Network Layer

The network layer has the responsibility of directing packets from one network

segment, through devices called routers, to their destination network segment and station.

This is accomplished by the cooperation of the network layer protocols in the stations

across the internetwork. A source station places an address in a network layer packet,



103

endowing it with enough information to direct its handlers (i.e., the routers) to deliver it to

the destination station in the destination network segment. Some addresses carry specific

routing information, while others depend on routing databases or routing algorithms to

guide the packets through the internetwork. In general, however, the address pair consisting

of the destination station and network segment must uniquely identify the destination

station among all stations in all networks.

Routers are the principle agents of the network layer. Typically a network segment

will consist of all of the stations attached to a single physical medium or a series of bridged

media. One or more of these stations may be routers physically attached to this segment as

well as to others, and participating in all of them, as seen in Figure 8.4. Traffic from one

segment destined for any other segment attached to the router can travel through that router.

Any MAC address translation required (say, from Ethernet to FDDI) is performed by the

router.

Some network layer protocols provide a service that is connectionless while some

establish and maintain a connection between each endpoint and all of the routers along the

path. The Internet Protocol (IP [DARPA81a]) is an example of the former; X.25 [CCITT84]

is an example of the latter. An interesting new idea is presented in the Xpress Transfer

Protocol (XTP [PEI92]), where the network layer is combined with the transport layer into

a transfer layer. Here the network layer functionality exhibits behavior of both the

connectionless and connection-oriented approaches since, while logically separate, an XTP

connection and the path supporting the connection share the same packet-switched

mechanisms for their maintenance.

Depending on the approach used to provide the network layer functionality, several

issues emerge. The routers along the path represent potential points of congestion and

contention for the routers’ resources. Connection-oriented approaches focus on dedicating



104

buffer space up front so that contention for that space is eliminated. Connectionless

approaches instead depend on a roughly uniform demand on its buffers; higher layer

recovery techniques are assumed for buffer overruns. Yet neither approach directly

addresses packet processing or end-to-end bandwidth reservation as resources.

Interestingly, some solutions have come from transport layer research.

Flow control at the transport layer governs the use of buffers at the endpoints of a

connection. When congestion occurs anywhere along the path, and data is lost, the error

control procedures will detect it. The flow control procedure can use the error reports to

Figure 8.4 — An Internetwork: Stations, Routers, and Network Segments

Stations

Network

Network Segment A

Network Segment B

Network Segment C

Segment

Routers



105

adjust the number of packets flowing from the sending endpoint. TCP takes this approach.

NETBLT [CLAR87] uses a technique called rate-based flow control, where two parameters,

burst and rate, regulate the flow of packets: a burst of packets is sent at a specified rate.

VMTP [CHER88] also uses rate-based flow control, but instead of burst and rate, it uses an

interpacket gap. XTP applies rate control independently from flow control: the rate is not

deduced from the error reports at the endpoints; rather, it is derived via packet exchanges

where the maximum rate and burst values for the path are found. This maximum rate

represents the fastest speed at which packets can be injected onto this path according to the

processing capacity along the path. In this manner XTP addresses route control as a

network layer issue rather than an end-to-end transport layer issue.

Although not prohibited, most network layer services do not provide discrimination

even though route processing presents a point of contention. Since each router along the

path must employ a MAC protocol to provide access to the medium, packets are ordered

by the policies of the MAC layer. However, a router may serve disparate network segments,

each using its own brand of MAC protocol. Priorities and levels of service may get lost in

the translation. Typically no packet ordering or levels of service are distinguished at this

layer. XTP, however, is an exception. XTP’s discrimination mechanism, the sort field, is

used to order packets within each router along the path due to the nature of the transfer layer

architecture.

8.2.3. Transport Layer

A transport protocol provides reliable, end-to-end delivery of arbitrarily large

messages by segmenting the message into one or more packets and employing the services

of the network layer, and through the network layer, the MAC layer. Upon a communication

request, the transport server segments the message from the request into one or more

packets; these packets are enqueued for the network and MAC layer services. A robust



106

transport service provides end-to-end flow control to reduce buffer overruns, and error

control to ensure a complete and in-order delivery of the message.

Flow control is usually provided by using a sliding window technique where at most

a set number of packets are outstanding at any time. The window represents a contiguous

set of packets; as the receipt of a packet is acknowledged, the window may advance. Error

control detects when packets have not been acknowledged, either through use of timers or

negative acknowledgements or both. Packets considered lost are retransmitted. It is also the

duty of the error control procedures to detect duplicate packets, as may happen if a packet

is retransmitted but was not really lost.

Often the transport layer service will allow the user to distinguish between the

urgency of its data. Both TCP and TP4 provide a two-level discrimination scheme (normal

and push for TCP, normal and expedited for TP4) that uses a logically separate channel for

the pushed or expedited service. VMTP uses four levels of service: background, normal,

important, and urgent/emergency. XTP has a 32-bit sort field used for discrimination.

Packets are serviced in ascending sort value order. In this manner, deadlines placed in the

sort fields of the packets will cause the packets to be serviced in nearest deadline order,

although there is no provision for expired deadlines. To the author’s knowledge, this sort

field represents the largest priority space provided in any reasonably well-known transport

layer protocol to date.

8.2.4. Summary of Issues

As we have seen, the service time for a task is directly related to the processing

required within the task. When this processing requires requests to subsystems, a domain

boundary is met with regard to scheduling. It is essential that the importance of the request

to the task, as well as the importance of the task to the system, be conveyed in the request



107

for service from the subsystem. In this chapter we have been examining a communication

subsystem as a specific example of this general problem.

Typically, functionality within the communication subsystem is modularized into

layers, where each layer may provide some means of service discrimination. The challenge

is to provide a uniform and consistent mechanism for:

1. carrying discrimination information between domains and layers
2. mapping one layer’s mechanisms onto another’s
3. providing a means for end-to-end analysis of the service time characteristics
4. maintaining the ability to provide layer-specific levels of service without using

a different paradigm for discrimination

Below we consider the importance abstraction as a possible approach to this

challenge.

8.3. Using Importance Functions

Importance functions provide a method for describing an ordering for a collection

of tasks for every point in time based on how important each task is to the system at each

point in time. The product is a schedule for the set of tasks. When communication between

tasks takes place, the communication itself becomes a component of completing the task

requesting or receiving the communication. Therefore, the two communicants must

provide some importance information to the communication subsystem so that the

communication being processed may reflect how important it is.

Since the message is a manifestation of the communication, the importance of the

communication can be imposed onto the message by assigning the message some

discrimination value. When the message is segmented, each packet must also be endowed

with a discrimination value to allow it to compete for access to the medium and for

processing within routers. In this section we address some of the issues involved in using

importance functions in these places. We also look at some other uses for importance



108

functions within the communication subsystem. Since the subsystem is itself a processor,

and the protocol procedures are really tasks to that processor, then importance functions can

also be used to schedule the protocol processing. Also, importance functions can be used

to help avoid congestion by considering the paths through routers as schedulable entities.

8.3.1. Messages and Importance Functions

When a task makes a request for communication it must provide, along with the

message, all of the addressing and service parameters required by the subsystem. Among

these parameters should be the information about how important this message is. Since the

communication is a component of the processing of the task, the message’s importance

should be a reflection of the task’s importance. One way to do this is to make known to the

communication subsystem the task’s importance function so the message can be ranked in

the same way as the task. However, this approach may be overly simplistic since the aspects

of a system that make a communication important may not necessarily be the same aspects

on which the task bases its importance.

The message’s importance function must reflect not only what makes the task

important to the system but also what makes the message important to the task. A very

important task could have unimportant communication requests, or an unimportant task

could have a communication request that is very important to it. In both cases, the

importance of the message must reflect its importance to the accomplishment of the system

goal which, in this case, is a weighted function of how important the task is as well as how

important the communication is to the task.

Consider first a system where tasks have constant importance functions such as

those representing priority in Eq 5.5. Assume that each communication request is essential

to the task requesting the communication. In this case the importance function of each task



109

can be assigned directly to each message since each component of a task is processed at the

same importance value. Thus, for task i and message msg requested by task i, the

importance of the message msg is given by:

Eq 8.1

If the communication requests within the tasks could themselves be assigned an

importance, then we can use a bi-level importance function, where the importance value of

the message is a function of the importance value of the task and the criticalness of the

communication:

Eq 8.2

For example, assume that there are n levels of criticalness of communication. The

importance function for each message would be:

Eq 8.3

This importance function ensures that the most critical messages of the most important

tasks are served preferentially.

When a task has a deadline by which it must complete its processing or the task

becomes useless to the system (or even detrimental), a communication requested by the

task also has a deadline of at least that applicable to the task. If a message is outstanding

after the task’s hard deadline is missed, the message is no longer worth processing. The

communication may have a deadline prior to the task’s deadline to allow for additional

processing after the communication request is complete. Importance functions for

messages with deadlines are similar to those given in Section 6.1.2. More generally, the

importance function for the message could be a function of the importance of the task, the

message’s deadline, and the message’s criticality:

Imsg t( ) Ii t( ) pi= =

Imsg t( ) f pi critmsg,( )=

Imsg t( ) pin critmsg+=



110

Eq 8.4

Of course, the importance function of a message may be based on any system parameter or

attribute that can be known by the communication subsystem, so Eq 8.4 could be a function

of additional parameters.

Requests are ordered at the interface between the tasks using the communication

subsystem and the subsystem itself according to the importance functions of the requests.

Since this interface handles both send requests and receive requests, both sets of requests

are competing; the interface handles the most important request at each point in time. Once

the request is accepted, the message uses its importance function to contend for processing

time. Since we are assuming a transport-based subsystem, the processor segments the

message and prepares each constituent packet for the requests to the network layer. This

processor also reassembles received packets into the whole message, so outgoing messages

compete with incoming messages here as well.

8.3.2. Packets and Importance Functions

At the interface and within the transport processing the importance function has

been associated with the message without having to be placed into a structure designed for

transmission. Consequently, the importance function can be arbitrarily large and complex,

as allowed by the generalized tasks of earlier chapters. When the message is segmented into

packets, however, the discrimination information must be attached to each packet even

while the packet is being transmitted over the physical medium. Conventionally a

discrimination mechanism, such as a priority, is placed within a field within the packet

structure, usually the header. Importance functions in their general form do not lend

themselves to being placed into a fixed-size field within a packet. One solution would be to

allow an arbitrary size discrimination mechanism within the packet structure so that the

Imsg t( ) f Ii t( ) dmsg critmsg, ,( )=



111

whole importance function could be included within. Although this is certainly the most

general solution, most modern networks attempt to minimize variable length fields. Also,

recall that packets have a maximum size; it is possible that the importance function would

be so large that it would not fit within an entire packet. Consequently we must consider

some alternative strategies.

Instead of carrying both the function and its parameters, if every packet used the

same function then only the parameters to that function would be needed. Each packet

would carry the parameters, and at every decision point, the parameters would be applied

to the function for the packet’s importance. This is what happens with conventional

priorities, where the function is actually an implicit identity function. The drawbacks to this

scheme are that there can only be one function and the number of parameters must be

limited. The first drawback can be remedied by making the single function a composite of

several different functions, one for each class of messages. As for the second, the number

of parameters is a restriction for the same reason that prevents carrying the whole

importance function in each packet: the space required for the parameters must be limited.

This solution is useful, therefore, if the number of parameters can be fixed and require a

reasonable amount of space.

Another approach makes the first parameter be a function pointer that specifies

which of several functions to use. With the function specified, the parameters that follow

are specific to that function, and therefore take up less space than would the set of all

parameters to a composite function. Again, a limitation is that only as many parameters as

can fit within the packet may be used for any given function. Also, the set of all functions

must be available at every decision point along the packet’s path, meaning that copies must

be kept at all routers and endpoints. However, this solution presents a high degree of

flexibility while conforming to the physical constraints of packet sizes.



112

8.3.3. Stations and Importance Functions

In local area networks each station on a local network segment must vie for the right

to transmit on that shared medium. As we have seen, the protocols for arbitrating this access

are varied. Some medium access control protocols allow contention to be resolved through

a series of attempts and collisions. Other protocols, however, enforce stricter access

control, where the stations are ranked according to some scheme, and hence an ordering of

service is produced.

In some protocols access is granted to stations in a round robin manner, with each

station gaining some slot within which to transmit. Recalling Eq 5.8, and assuming that

there are m stations on the local network segment, then we can construct an importance

function for station s, 1 ≤ s ≤ m, that provides slotted service:

Eq 8.5

Station s gets 1/mth of the period, which is 2π/b time units long.

Often a station is granted access according to how important the most important

packet enqueued at that station is. Thus the importance function for the station is based on

the importance functions of the set of packets within that station. Let  be the set of

importance functions for packets at station s, then the importance function for station s is:

Eq 8.6

The function f is usually the maximum. Hence, each importance function is evaluated at

time t and the maximum of the values is then the importance of the station:

Eq 8.7

Is t( ) bt
2πs
m

+( )sin d+=

Ipkts

Is t( ) f Ipkts
( )=

Is t( ) max Ipkts t
( )=



113

8.3.4. Decision Points

One of the tenets of the importance abstraction is that the most important task is

selected for processing at every point in time. In a communication subsystem, the tasks are

the messages and their constituent packets. At each processing point the protocol processor

chooses the most important message to process, but these processing points, or decision

points, occur at discrete places throughout the path between the two communicants. At each

of those decision points the importance functions can be used to ensure that the most

important message is processed at the decision points. However, from the message’s point

of view there are periods of time during the transfer when the message is “in flight” and its

importance function is inaccessible. During these times of inaccessibility the processing

order established at the last decision point is maintained, even if another message becomes

most important.

Decision points are largely an artifact of the distributed nature of a communication

subsystem. Messages cannot be reordered while they are on the physical medium.

Furthermore, the use of the physical medium for sharing station state information, such as

which station has the highest priority message, implies that decisions are arrived at over a

period of time during which the decision may become incorrect. The importance functions,

like any discrimination mechanism, suffer from the fact that making decisions in a

communication subsystem happens at discrete times; the discussion from Chapter 7 on

relaxing the principle of the most important task being processed at every point in time

applies here as well.

8.3.5. Other Uses for Importance Functions

Messages are the most common objects of discrimination, but there are other things

within the communication subsystem that can be viewed as a system. Consider the paths



114

between two communicating endpoints. Each path has associated with it a rate at which the

all of the protocol processors, i.e., routers and endpoints, along the path can process the

flow of messages. The maximum rate along a path is the rate of the slowest protocol

processor along the path. As a router is used for more than one path, the rate afforded by

that router must be divided among all of the paths through that router. Consequently, a

router is said to be congested when the rate of processing available to any one of the paths

through that router becomes intolerably low.

XTP provides a mechanism by which a new path between two endpoints can be cut

when the old path between them is unusable, including when the path becomes overly

congested. Part of the information available to the endpoints is the rate at which packets can

be forwarded on the path; this rate information is derived through normal packet exchanges,

and serves to drive the rate control protocol procedure within XTP. We cite XTP here as

evidence that path information such as the processing rate can be known to endpoints of the

communication.

Consider an internetwork where multiple paths between any two endpoints exist,

and the cost for switching paths is negligible. A set of importance functions can be used to

rank the paths for use, where the most important path is the path that could offer the best

service, i.e., the highest processing rate. Assume the routers dole out fractions of their rates

as paths are created through them, and reclaim those fractions as paths through them are

released. The rate of any path, therefore, is a function of time, rate(t). A simple set of

importance functions to determine which path from Host A to Host B is the best to use at

any time is:

Eq 8.8IA B→ t( ) rateA B→ t( )=



115

Another parameter that helps determine which path is best to use is the number of

buffers each router has available along the path. Assume that a router does not dedicate

buffers to a particular path, but rather makes all buffers available in a first come, first served

manner. A measure of buffer availability over the path can be derived by taking the

minimum of the ratios of buffers in the router to paths through the router for each router

along the path. Hence a path can be characterized by the router with the worst buffer-per-

path (bpp) ratio. Since this value may also change with time, we will use the value bpp(t).

Now the importance function can be some function of these two parameters:

Eq 8.9

The function f is determined by how much each parameter should figure into the importance

of using the path.

8.3.6. Importance Functions and Levels of Service

Importance functions are ranking mechanisms, designed to allow what is important

to the system to by reflected in the order in which the tasks are serviced. Importance

functions, therefore, differentiate between the service given to the messages only by

changing the order of processing; they do not also provide for bypassing constraints as may

be allowed by various levels of service. There is no notion within the importance functions

themselves for a service that can ignore, for example, flow control; such distinctions are not

within the scope of the importance abstraction. The importance functions do, however,

provide a mechanism for describing how important certain individual packets in a message

stream are, and through that levels of service can be established.

As cited previously, Dempsey et al. [DEMP92] describe a service where the error

recovery procedures are governed by the density of errors allowable by the application. For

audio data, there can be several lost packets before a degradation of service is noticeable

IA B→ t( ) f rateA B→ t( ) bppA B→ t( ),( )=



116

by a human, so long as the errors are not too dense. Consider a set of importance functions

where the parameters are carried by the packets. Assume that among these parameters is an

error density measure reporting the number of known dropped packets out of the m packets

preceding this one. (The value m is application-defined, reflecting the locality of the density

measure.) Since each router along the path knows how many packet it had to drop as well

as which packets did not arrive from the previous router, this density value is updated by

each router along the path. The importance of a particular packet increases as the density

of errors over the previous m packets approaches the threshold of acceptable packet loss.

Hence, the connection, as represented by the aggregate of all packets that successfully

traverse the network, is afforded a level of service based on the density of errors that can

be withstood.

Consider another example. Assume that there exists some passive network monitor

that broadcasts network statistics periodically. A communication subsystem can offer

levels of service according to how much bandwidth is guaranteed to the connection. A set

of importance functions associated not with packets or messages but with the connections

themselves can take as a parameter the network utilization statistic. As the utilization

approaches the sum of the promised bandwidths, the importance functions respond by

reducing the importance of, and hence the service given to, unguaranteed connections.

8.3.7. Analysis

Recall from Chapter 4 that the relationship between the importance functions and

the amount of work done to a particular task is given by:

Eq 8.10wi t1

t2 M IT( ) i=( ) tdt1

t2∫=



117

This equation holds for any tasks in any system—the amount of work done to the task is

directly related to the amount of time that task is the most important task in the system. If

we think of the communication subsystem as a system, then the relationship given in Eq

8.10 should apply to the tasks of the communication subsystem.

When a task within a station has a communication request to make to the

communication subsystem, that request carries with it the message that requires transfer.

We consider the message as a task of the communication subsystem and, by following the

task through its stages of processing, develop the relationship between the sets of

importance functions associated with the message and its constituent packets, and the work

done toward completing the communication request.

Assume that a communication request i is made to the communication subsystem.

Request i is for the transfer of message msgi from this station to a remote station, possibly

employing some intermediate nodes for routing. The communication subsystem processes

the request i by (1) buffering message msgi, (2) segmenting message msgi into n constituent

packets pkti,j, 1 ≤ j ≤ n, (3) employing a packet delivery service to access the medium and

deliver each of the packets to the next station along the path, (4) receiving

acknowledgements and, if necessary, retransmitting lost data, and (5) indicating success or

failure to the user.

Processing steps (1), (2), (4), and (5) above are performed on the message msgi at

the source station. From the point of view of the message msgi the work done on the

message in this station is the amount of time the message is the most important message in

the station. Assume that Imsg is the set of importance functions for all messages in this

station. The work done on msgi is given by:

Eq 8.11wmsgi 0

∞ M Imsg( ) msgi=( ) td0
∞∫=



118

Note that the lower bound of 0 can be replaced with the time that request i was issued, but

since message msgi does not exist in the communication subsystem before the time of the

request, the integral from 0 to the request time will be 0 anyway.

Although Eq 8.11 calculates the amount of work done on message msgi in the

source station, one cannot calculate precisely the total amount of work needed for any given

message due to the unpredictable nature of losses within the communication subsystem. A

message that requires retransmissions requires more total processing time. The upper

bound on the integral therefore is infinity, but since practical transport protocols have some

mechanism for bounding the length of time retransmissions are attempted, the upper bound

can be set to a worst case time.

Since the work done on an message includes segmenting the message into one or

more packets, and the delivery and acknowledgement of each packet, then we can examine

the work from the point of view of a packet. For this discussion, we assume an

internetworking topology as shown in Figure 8.4. In step (3) the message msgi is segmented

into n packets, pkti,j, for 1 ≤ j ≤ n. The packet delivery service then transfers each of the

packets to the destination station. To transmit packet pkti,j, the source station must vie for

access to the medium, and packet pkti,j must be the most important of all packets to transmit.

Assume that each station in the internetwork is granted permission to transmit based on the

importance values of the packets enqueued, as would be the case with token-passing

networks. The amount of time a station s is granted permission to transmit is given by:

Eq 8.12

where Inet is the set of importance functions for each of the m stations on the local network

segment.

ws 0

∞ M Inet( ) s=( ) dt0
∞∫=



119

 Assume that there are h stations along the path, including the two endpoints, and

each station is granted transmission access to the medium based on the importance of the

packets that station has enqueued. Two conditions must be met for packet pkti,j to be

transmitted: the packet must be the most important packet in station s, and station s must

have the most important packet enqueued among all stations. Thus the work done on packet

pkti,j over all stations from 1 to h is given by:

Eq 8.13

where  is set of all importance functions for packets within station s.

The above equation would be accurate if, at the precise moment one packet became

most important, the packet delivery service could immediately begin work on it. However,

this is not the case with typical packet deliver services in real networks, since none to our

knowledge have the ability to preempt one packet for another. Consequently, there is a lag

between when a station has the most important packet in the local network segment, and

when the station can begin to transmit that packet.

Since constituent packets of a message are essentially pipelined through the

internetwork from the source station to the destination station, the work on each constituent

packet is done in a concurrent fashion. Consequently, the work done on request i is not the

sum of the work done on the message msgi and each of the packets pkti,j, 1 ≤ j ≤ n, but rather

it is the sum of the time spend doing any work on the various parts of the request.

Assume there is no need for a retransmission and the only acknowledgement is a

packet called pktack. Also, let the source station be station 1 and the destination station be

station h. The amount of work done on request i is given by summing all of the time that at

least some processing of some component of the request was being performed.

wpkts 0

∞ [ M Ipkts
( ) pkti j,=( )0

∞∫
s 1=

h

∑= M Inet( ) s=( ) ] dt

Ipkts



120

Eq 8.14

Expression Eq 8.14 states that the amount of work required by the request reqi is the sum

of the work done at each station on the message or a constituent packet. After the message

is segmented, there can be more than one station doing work toward delivering the

message, therefore the amount of time spent on the message is not the sum of the work done

at each station, but rather the sum of the work done at any station. Consequently, when any

one component is the most important, and thereby receives work, a boolean expression

indicating this will have the value of 1. By taking the “or” of all of these boolean

expressions the equation sums the amount of work when at least one component is being

worked on. Here, the expression is the sum over all stations, 1 ≤ s ≤ h, and all packets,

1 ≤ j ≤ n, of any work done at the station on this request. At the first station (s = 1), the

message is processed if it is the most important message; at the first station and all others,

the packet is processed if both the packet within the station is most important among all

packets in the station, and the station is most important among all stations on the local

network segment. At the destination station (s = h), the message is processed by

reassembling the constituent packets into the message. The work on the request concludes

as an acknowledgement packet is sent back to the sending station.

wreqi 0

∞ [ M Imsg( ) msgi=( )0
∞∫

1 s h≤ ≤
1 j n≤ ≤

∑= s 1=( )

� �∨ M Ipkts
( ) pkti j,=( ) M Inet( ) s=( )

� �∨ M Imsg( ) msgi=( ) s h=( )

� �∨ M Ipkts
( ) pktack=( ) M Inet( ) s=( ) ]dt



121



122

9 Extended Example

In this chapter we offer an example of a distributed system as viewed from one

particular computer system. Communication services for the distributed system are

provided by a communication subsystem as described in the last chapter. We define three

types of tasks for the particular computer system of interest: a file server, a video server,

and an alarm message server. All three tasks are designed to take requests from clients and

send the clients the appropriate messages in response.

Once we describe the tasks and give their various definitions, we give a set of

system requirements on how the tasks must be ordered for service. We develop a set of

importance functions that ensure that the requirements are met. Once the tasks are

represented by their respective importance functions, we can ask questions about how the

system will perform under various conditions.

Next we describe the types of messages each task generates; since each task’s sole

purpose is message generation, the importance functions of the messages are incidentally

identical to the importance functions of the tasks. Within the communication subsystem,

however, the packets that comprise the messages have different constraints, and therefore

must have different importance functions for use in ordering them for service. We give this

set of importance functions. Finally, we give an expression for the length of time that the

call used to send messages will take as a function of the type of message to be sent.

It is interesting to note that this set of tasks is heterogeneous with respect to the

attributes that are considered during task scheduling. Some of the tasks are priority driven,

some are periodic with real-time constraints, and some tasks must be serviced in order of



123

arrival. Although this example is contrived, the types of tasks are not unusual. However,

attempting to find a single traditional scheduling algorithm that can satisfy all of the

ordering requirements and task constraints is not intuitively obvious. Given that at least

some of the tasks are periodic, rate monotonic scheduling seems to be necessary, but this

policy does not adequately satisfy the needs of all of the other tasks. Furthermore, we pose

and answer questions within the importance abstraction; these same questions would be

difficult to pose with a more traditional scheduling approach.

9.1. Task Definitions

We make the assumption that the interface to the communication subsystem

employs the transport layer data transfer mechanisms. Since the transport layer provides the

mechanisms for a reliable transfer, we assume that a send request will block, awaiting the

confirmation of the delivery of the message, according to the reliability semantics required

of the application making the send request.

The send request send(to_whom, type, message, ImpParms) has four

parameters. The first is the address of the recipient of the message. The second is the type

of message, for use in determining the reliability semantics required. The third parameter

is the message itself (normally the message is represented by a buffer descriptor but for this

example we will suspend such realism). The last parameter, ImpParms, is used for passing

importance information to the communication subsystem.

The file server task file_server, shown in Figure 9.1, is instantiated when a

remote client system sends a message to this system requesting a file. A global flag

request_present signals that the communication subsystem has received a message

intended for the file_server task. When this occurs the file_server task issues a

receive request to the communication subsystem and thereby collects the necessary



124

information for the transfer. This information includes the requesting client’s address

(from_whom ) and the name of the file (f ilename ). Note that the name of the file is the

entire message from the requesting client.

The f ile_server  task then retrieves the file using the get_buffer  procedure

call. Each buffer of data is then used as the message parameter in a send request. Buffers

are retrieved and sent until the end of file is reached, at which time the END message is sent

to indicate that the transfer is complete.

The task used to transfer video data is the video_transfer  task, shown in

Figure 9.2. Video data has an inherent timeliness wherein the data is useful until a deadline,

and thereafter the data is useless. In this example we make several assumptions about this

video transfer. First, we assume that video frames are being generated at a fixed rate of 30

per second. Second, we assume a data compression technique is used that takes six frames

of data and constructs a “bundle” of the six frames at the remote client. Half of this bundle

is the basis information and the other half is the change information from that basis for the

six frames. Third, we assume that there is a 600 ms delay between the generation of a frame

task f ile_server {
receive(&from_whom, &f ilename);
sent = false;
to_whom = from_whom;
size = get_buffer(f ilename, buffer);
ImpParms = null;
while (size > 0) {

send(to_whom, “f ile”, buffer, ImpParms);
size = get_buffer(f ilename, buffer);

}
send(to_whom, “f ile”, END, ImpParms);
sent = true;

}
Figure 9.1  The f ile_server  Task Definition



125

bundle and the playback of the constituent frames. As a consequence, three bundles can be

in the pipeline between their generator and their playback device. Fourth, we assume a

transfer time estimate of 50 ms. This transfer time is used to help determine the deadline

for sending the bundle such that there is time for the bundle to be delivered to the playback

device. Finally, we assume that the video bundles are not buffered deeper than one bundle,

so if another bundle is generated before the previous one has been retrieved from the buffer,

the bundle is overwritten.

The task video_transfer, shown in Figure 9.2, loops forever, getting a bundle

and sending the bundle. A global flag called bundle_present indicates when a bundle

has been generated. This bundle is timestamped with its generation time,

bundle.gen_time. When the bundle is retrieved using the get_video_bundle

call, the variable bundle_read is set to true and sent is set to false. These help keep

track of what has been done within this task.

task video_transfer {
transfer_time = 50;
delay = 600;
do forever {

bundle_read = false;
get_video_bundle(bundle);
bundle_read = true;
sent = false;
d_send = bundle.gen_time + delay - transfer_time;
gen = bundle.gen_time;
ImpParms = {gen, d_send};
if (time() <= d_send) {

send(to_whom, “video”, bundle, ImpParms);
}
sent = true;

}
}

Figure 9.2  The video_transfer Task Definition



126

The variable d_send is the generation time plus the delay minus the assumed

transfer time. The time in d_send is therefore the deadline by which the send request must

be given to allow the bundle time to be transferred to the playback device. If the current

time in time() is less than or equal to the deadline to send in d_send, then the bundle

is sent, otherwise the task drops this bundle for missing its sending deadline and gets

another bundle to work on. Note that a decision was made in the design of this task to make

the task wait as long as possible to send a bundle even at the expense of not retrieving a

fresh bundle.

The send_alarm task, shown in Figure 9.3, is invoked when an alarm condition

occurs within this computer system whose existence must be made known to a group of

other computer systems in the distributed system. In this system there are two alarm

conditions, a level 1 alarm and a level 2 alarm, where level 1 is more urgent than level 2.

When one of the alarm conditions occurs, the global flag alarm_present signals that

notification of this alarm condition must be made: the send_alarm task is thus

instantiated. The get_alarm call retrieves the information about the alarm condition,

namely the group to notify, the alarm message, and the level of the alarm condition. The

send request then is used to notify the group of recipients of the alarm condition.

task send_alarm {
get_alarm(&group_to_whom, alarm_msg, level);
current_time = time();
sent = false;
ImpParms = {level, arrival_time};
send(group_to_whom, “alarm”, alarm_msg, ImpParms);
sent = true;

}
Figure 9.3  The send_alarm Task Definition



127

We can use the task definitions given to estimate the amount of work required by

each task. Here we assume that system calls account for a substantial amount of the

processing time, so the length of these calls is used in determining the estimated work

requirements. We use lensys_call to represent the amount of time required by the system call.

Since the amount of time required for a send system call depends on the error correction

semantics required by the type of message being sent, we use lensend(type) to represent the

length of time required for sending this type of message.

For the file_transfer task, the work starts when a request for a file is received.

There are a number of get_buffer system calls and send system calls, then one last

send system call to indicate the end of the file. If buffersize is the size of the buffer used

in get_buffer, and filesize is the size of the file, then the following shows the work

required by the file_transfer task:

Eq 9.1

Since the video_transfer task loops forever, the work required for it cannot

be measured. However, the work required from the generation of a bundle until the

generation of the next bundle can be calculated, as follows:

Eq 9.2

Finally, the work required by the send_alarm task is given by:

Eq 9.3

9.2. Task Level Scheduling

In determining the importance functions for each of these tasks, the system

specifications require that the following be met:

1. Sending a level 1 alarm message is the most important task in the system.

wfile lenreceive
buffersize

filesize
lenget_buffer lensend file( )+( ) lensend file( )+ +=

wvideo gen
gen 200+ lenget_video_bundle lensend video( )+=

walarm lenget_alarm lensend alarm( )+=



128

2. Level 1 alarm messages must be ordered first come, first served.
3. A video bundle must be sent while it is still useful unless a level 1 alarm causes

this deadline to be missed.
4. All level 2 alarms are equally important.
5. Sending a level 2 alarm message is more important than sending a video bun-

dle as long as the video bundle has at least 225 ms before its deadline, other-
wise the video bundle is more important.

6. Retrieving a video bundle is increasingly important as the generation of a new
bundle approaches, but it is never more important than sending either a level 1
or level 2 condition.

7. Serving the file transfer request is strictly a background task.

The following importance functions are designed to meet these requirements. For

the file transfer we define a function that assigns the importance value of 1 to the task when

either there is a request for a file transfer present or the current request has not been

completely fulfilled, and 0 otherwise:

Eq 9.4

Since file transfer is strictly background, the importance value 1 forms the basis to which

other importance function values will be compared.

The importance function for the video_transfer task must represent the

timeliness of the video data, both while the data is awaiting retrieval and, after retrieval,

while it is waiting to be sent. The video_transfer task must issue the send request for

a bundle while it is still possible for that bundle to meet its deadline. Consequently, the

deadline for sending the bundle, that is, d_send, takes into account the estimated transit

time, and the importance function uses this to help order video transfers according to which

transfer more urgently needs service in order to meet its sending deadline. Also, when a

bundle is waiting to be retrieved, the importance function must express the urgency of

retrieving this bundle before the next bundle becomes available. The following importance

function meets these requirements:

Ifile t( ) 1 �if�request_present �or�not �sent,
0 �otherwise, �





=



129

Eq 9.5

Since there may be more than one video_transfer task activated, the task with

the nearest deadline should be serviced first. Hence this importance function increases

monotonically in value from 2 to 4 as the video transfer task awaits sending a bundle. Once

the deadline d_send is missed, the task cannot base its importance function on sending

the bundle, and instead must concentrate on reading a fresh bundle. If the bundle has not

yet been retrieved, the function increases monotonically from 2 to 3 awaiting bundle

retrieval. Since bundles are generated every 200 ms, the effective deadline for the bundle

currently waiting to be read is its generation time plus 200 ms. Once this deadline is passed,

the task bases its importance on the age of the new bundle waiting to be retrieved. When

there is nothing to do (the read bundle has been sent and no new bundle has been generated)

the task has an importance value of 0.

The importance function for the send_alarm task must ensure that the sending

of a level 1 alarm message is the most important task in the system, and that all of the

send_alarm tasks sending level 1 messages are ordered according to alarm arrival. In

addition, the importance function for this task must also ensure that requirement 3 above is

satisfied; that is, sending a level 2 alarm is more important than servicing a video bundle

unless the video bundle is within 225 ms of its deadline, in which case servicing the task

with the video bundle is more important. The importance function below offers one

solution to these requirements.

Ivideo t( )

2
2 t gen−( )

d_send gen−+ �if�bundle_read �and�not �sent,

2
t gen−( )

200
+ �if�video_present �and�not �bundle_read,

0 �otherwise,






=



130

Eq 9.6

Sending a level 1 alarm message will always be the most important task in the

system, as per requirement (1). Multiple level 1 alarm messages will be sent in a first come,

first served manner since the importance function monotonically increases with the age of

the send_alarm request. This fulfills requirement (2). Since all tasks sending level 2

alarms have the same importance value, no level 2 alarm message is ever more important

than another, as stated in requirement (4). Sending a video bundle is less important than

sending a level 2 alarm message until the bundle’s age is within 225 ms of its deadline to

send, at which point the importance of sending the video bundle becomes greater than the

importance of sending a level 2 alarm message. This satisfies requirement (5). Retrieving a

video bundle is never more important than sending a level 1 or level 2 alarm message since

the maximum value of its importance function less than or equal to the minimum

importance value for either level alarm message, as required by (6). Requirement (7) is met

since the maximum importance value attainable by a file transfer task is strictly less than

the minimum importance value attainable by any other type of task.

At this point we can ask various questions about how the system will behave given

the importance functions for the various tasks. The following questions are just samples of

some of the things system designers may want to know; the point is that we can ask

questions regarding when certain tasks will receive service by examining the importance

functions for the tasks. Some answers we derive are in the form of the conditions that are

necessary for the situation described in the question to occur; others are limits or other

values associated with the system.

Ialarm t( )
5

t
arrival_time

+ �if�level, 1�and�not �sent=

3 �if�level, 2�and�not �sent=
0 �otherwise,





=



131

Since the video_tranfer task has real-time constraints on the delivery of the

video data, a natural question is “Under what conditions will a video_transfer task

fail to retrieve a ready bundle?” We know by examination that the video_transfer

task’s importance function will always have a value greater than any file_transfer

task. The question, then, becomes “Under what conditions is Ivideo(t) > Ialarm(t)?” By

examination it is obvious that Ivideo(t) ≤ Ialarm(t) as long as the video_transfer task is

waiting to retrieve a ready bundle. The answer is that the video_transfer task will

miss a bundle if there are nalarm send_alarm tasks over a 200 ms period, where nalarm is

given by:

Eq 9.7

Similarly we can ask “Under what conditions will a video_transfer task miss

a deadline to send?” The answer now must take into consideration the fact that Ivideo(t) is

greater than Ialarm(t) if the send_alarm task has a level 2 alarm and the

video_transfer task has a bundle to send and has waited longer than 225 ms. In order

to make the deadline to send, the video_transfer task must start the send call within

550 ms of the bundle’s generation. Consequently, there must be more than nalarm

send_alarm tasks handling any alarm message over the first 225 ms, and malarm

send_alarm tasks handling level 1 alarm messages over the second 225 ms. The values

of nalarm and malarm are given below:

Eq 9.8

Eq 9.9

nalarm
200 lenget_video_bundle lensend video( )+( )−

lenget_alarm lensend alarm( )+
=

nalarm
225 lenget_video_bundle−

lenget_alarm lensend alarm( )+
=

malarm

225 lenget_video_bundle−
lenget_alarm lensend alarm( )+ level 1=( )=



132

It may be useful to know the physical limitations on the number of

video_transfer tasks that can be simultaneously running. If no more important tasks

are running, the answer is the number of video_transfer tasks that can be executed

within 200 ms:

Eq 9.10

To answer “Under what conditions will a send_alarm task servicing a level 2

alarm receive service?” we look at each task’s importance function to determine what

conditions lead to Ialarm(t), level = 2, having the highest value; since a send_alarm

task processing a level 2 alarm always has an importance value of 3, we can say that the

send_alarm task j will be most important if, for the task set T at some time t:

Eq 9.11

The file_transfer task is, by inspection, always less important than any other type of

task. For the video_transfer task, however, there are two cases. First, if

bundle_read and not sent are both true, then:

Eq 9.12

Eq 9.13

Eq 9.14

The second case is if video_present and not read are both true:

Eq 9.15

Eq 9.16

nvideo
200 lenget_video_bundle lensend video( )+( )−

lenget_video_bundle lensend video( )+
=

max Ii t( )
t

3<( ) i∀ T i j≠,∈( )

Ivideo t( ) 3<

2
2 t gen−( )

d_send gen−+ 3<

t gen 225+<

Ivideo t( ) 3<

2
t gen−

200
+ 3<



133

Eq 9.17

So the conditions for a send_alarm task processing a level 2 alarm to be most important

in the presence of either file_transfer tasks or video_transfer tasks is:

Eq 9.18

If any level 1 alarms are present, the level 2 alarm will be preempted. If another

level 2 alarm is present, there is no guarantee that the send_alarm task j will be the one

to receive service since requirement (4) says all level 2 alarms are equally important.

9.3. Message Level Scheduling

Each task must supply some importance information with the message when it

makes a send request. As discussed in the previous chapter, the importance of the

communication request and its manifestation, the message, are largely dependent on the

importance of the task issuing the request: the importance of the message should be some

function of the importance of the task issuing the request to send the message. In general

the importance of the message also depends on how important the communication is to the

task, not just how important the task is.

We have constructed tasks here whose sole purpose is to service various requests

for sending messages: the file server task responds to the file requests, the video server

supplies a stream of video frames, and the alarm server responds to alarm conditions. The

importance values of the messages generated, therefore, are directly related to how

important the tasks are. Because of how tightly the tasks are coupled to the sending of

messages, it follows that we can use the tasks’ importance functions for the importance

functions of the messages generated by the tasks.

t gen 200+<

t gen 225+<( ) bundle_present not �read∧ ∧( )
� t gen 225+<( ) video_present not �sent∧ ∧( )∨



134

9.4. Packet Level Scheduling

The messages are given to the communication subsystem for processing. This

processing for each message includes segmentation of the message into packets, sending

the packets across the internetwork to the destination station, reassembling the packets into

the original message, and acknowledging receipt if required. When the message is

segmented into packets, the packets are sent from the source station through various routers

along the path to the destination station. Each packet must contend with all other packets at

each station for both buffer space and processing time. The most important packets are

preferred; the least important packets are dropped if buffer space is unavailable. We must

therefore design a set of importance functions for the packets such that their importance

values reflect the importance of their contents.

In this example the file transfer messages are segmented into as many packets as are

required. In keeping with the notion that file transfer is strictly background, these packets

are given an importance function that returns the lowest value among importance functions

for packets with other types of contents. The video transfer bundle is segmented into two

packets, one holding the basis information for the six frames, and the other one holding the

change from the basis for the six frames. The content of the former packet is called the

basis, and the content of the latter packet is called the delta. The basis packet is more

important than the delta packet. Furthermore, it is necessary that the density of lost basis

packets be reduced. We include in the importance functions a parameter called dropped

that holds the number of basis packets dropped over the last ten basis packets sent.

Each alarm message fits into a single packet. The level 1 alarm packet is the most

important packet in the system. The level 2 alarm packet fits in the middle of the importance

space, as did the task that generated it.

Below we give the importance function that meets the need for ordering the packets:



135

Eq 9.19

These data-bearing packets are not the only packets associated with the various

communications, however. According to the error control semantics for each type of

communication, there may be positive or negative acknowledgements. In this example, all

of the messages require a positive acknowledgement except the video bundle message;

reports about basis and delta packets comprising the bundle are generated only if the

packets are known to be missing. Since acknowledgement packets are as important as the

packets that they acknowledge, the importance functions associated with the

acknowledgement of each packet type are virtually identical to the importance functions for

the packets themselves, with a few minor exceptions. Below we give this importance

function:

Eq 9.20

Now that we know the importance function for each packet, we can invoke Eq 8.14

to give an expression for the length of time required for a send call according to the type

of message being sent:

Ipkt t( )

1 �if� type, file=
2 �if� type, delta=
3 �if� type, level�2�alarm=

4
dropped

10
2 d t−( )

200
−+ �if� type, basis=

6 �if� type, level�1�alarm=







=

Ipkt t( )

1 �if� type, file=

2 if� t d 50−<( ),
�

0 otherwise, 



�if� type, delta=

3 �if� type, level�2�alarm=

4 if� t d 50−<( ),
�

0 otherwise, 



�if� type, basis=

6 �if� type, level�1�alarm=











=



136

Eq 9.21

Given that h is the number of hops in the path between the server and the client, s designates

the station, n is the number of packets comprising a message of this type,  is the set of

importance functions for the stations on a given network segment (here each station is as

important as its most important packet), and  is the set of importance functions for the

set of packets present at station s, the work done on a message of a particular type is given

by:

Eq 9.22

This expression states that the amount of work required by a message of a certain type is a

sum of the boolean conditions. This expression, like Eq 8.14, takes into account the fact

that work on the message is really the sum of the work done on each constituent packet

anywhere in the system—the amount of work required for the message is the “or” of any

work done throughout the system on any of the constituent packets.

lensend type( ) wmsgtype
wmsgtype 0

∞= =

Inet

Ipkts

wmsgtype 0

∞ [ M Imsg( ) msgtype=( )0
∞∫

1 s h≤ ≤
1 j n≤ ≤

∑= s 1=( )

� �∨ M Ipkts
( ) pkttype j,=( ) M Inet( ) s=( )

� �∨ M Imsg( ) msgtype=( ) s h=( )

� �∨ M Ipkts
( ) pktacktype

=( ) M Inet( ) s=( ) ]dt



137



138

10 Conclusions

The importance abstraction is a general framework for expressing scheduling

polices. The framework is general in that the scheduling algorithm does not vary with the

policy—the scheduler chooses the most important task at every point in time. Each task has

associated with it a function that profiles that task’s importance to the system over time. The

function, called an importance function, reflects the task’s importance by taking as

parameters all of the task attributes and system characteristics that may cause the task to

become more or less important to the system. As the system’s characteristics change over

time, the task that is most important to the system may change as well.

The importance abstraction is a new way to express scheduling problems. It places

the emphasis on individual tasks and what makes them important to the system, rather than

fitting a task set onto a well-known algorithm in order to use its analytical results. Since the

importance abstraction expresses the scheduling problem in terms of what tasks are most

important, a wide range of problems can be presented under a unified abstraction and

analyzed using similar tools.

Traditional scheduling algorithms are easily emulated within this abstraction by

creating importance functions that cause particular tasks to become most important at

precisely the same instant that the scheduling algorithm would have chosen that task for

service. In addition to these traditional scheduling policies, novel scheduling policies can

also be easily expressed. These novel scheduling policies include scheduling

heterogeneous task sets and tasks that are dependent on continuously updated variables as

parameters.



139

Since the scheduling policies are expressed in terms of sets of functions, these sets

may be manipulated and analyzed using mathematical techniques. In addition to the

flexibility and intuitiveness of expressing scheduling requirements in terms of functions,

functional analysis can now be employed to help answer questions about the schedules and

how the system would respond under various circumstances. The scheduling problem is

therefore moved from the traditional algorithmic domain to the functional domain, and

mature analytical tools can be employed.

Even though the importance abstraction relies on evaluating every importance

function at every point in time, there are certain classes of importance function sets that

allow us to relax this requirement. Scheduling policies whose importance function

representations belong to these classes can be implemented in an efficient manner using

functions to drive the scheduling.

10.1. Summary of Work

The goal of this research was to set forth a method for describing scheduling

problems using a function-based technique. To gauge its usefulness we had to show that

this new method expressed both traditional and novel scheduling policies, that it was

conducive to analysis in that questions may be posed and answered about the schedules

produced, and that this method, with possible restrictions, could be implemented

efficiently. We have shown that the importance abstraction can express a representative

group of traditional scheduling policies. We have analyzed a set of policies called static

rankings which include nearest deadline first, and proved several facts about nearest

deadline first. We continued by relaxing certain restrictions on the nearest deadline first

policy, hence creating new policies, and also proved or developed expressions for some of

their properties. We also explored the implementability of the importance abstraction,

suggesting restrictions that would aid in reducing the work for the scheduler.



140

We then examined an example system, the communication subsystem. The

importance abstraction was found to be useful in describing discrimination policies within

the subsystem. The importance abstraction can also aid in unifying the discrimination

policies across layer boundaries, and across the boundary between the user and the

communication subsystem.

We concluded this work with an extended example of a distributed system wherein

one computer system in particular had three types of message server tasks. We designed

importance functions for these tasks that were able to meet the system specifications and,

using these importance functions, posed and answered questions concerning the conditions

under which certain events would occur. We note that the set of tasks were heterogeneous

in nature, and scheduling with traditional policies would have been more difficult.

The importance abstraction represents an new approach to expressing scheduling

policies that is intuitive and conducive to analysis. Emphasis was placed on the individual

characteristics of each task, yet the scheduling algorithm remains constant. We have

demonstrated the usefulness of the importance abstraction through the analysis of a

traditional scheduling policy, through the examination of issues within the communication

subsystem, and through an extended example where tasks, messages, and packets are all

scheduled using the same approach.

10.2. Contributions

This dissertation makes six points of contribution. First, we have developed a

general framework for the expression and analysis of scheduling. Within our framework we

can express a wide range of scheduling policies. Since we cast the scheduling constraints

and conditions into a set of functions, we can emulate traditional scheduling policies simply

by constructing functions that take as parameters the same attributes that the traditional



141

scheduling policies use. Within the aegis of the importance abstraction we can express such

scheduling policies as rate monotonic and least slack time. Since each task is assigned an

importance function, heterogeneous task sets are scheduled using a consistent approach.

For example, minimizing response times for non real-time tasks while meeting deadline for

deadline-driven tasks requires special adaptations of the rate monotonic policy; within the

importance abstraction, no special mechanisms are employed to handle this heterogeneous

task set.

Second, the importance abstraction allows one to consider the problem of

scheduling tasks by focusing on what makes each task important to the system. By

answering the question “Under what conditions should this task be the most important task

in the system?” the construction of the importance functions is a more intuitive exercise

than discovering the algorithm that both fits the general need of the system and produces

the desire scheduling results. In this respect, non-traditional (novel) scheduling policies can

be employed.

Third, once the scheduling problem is expressed in terms of a set of functions,

analysis of scheduling using mathematical tools and techniques follow. By expressing the

scheduling policy in terms of functions, we move from an algorithmic analysis to functional

analysis. In the functional domain we can decouple the actual problem from its

representation, and use the proof techniques of mathematics to attain scheduling results.

Fourth, we explore the issues involved in using the importance abstraction as a tool

for efficiently implementing scheduling policies. The framework is based on continuous

evaluation of each importance function, yet computer systems are by nature discrete

machines. Either there is inherent in the set of importance functions obvious discrete

evaluation times, or there will be a degree of imprecision introduced. The granularity of the

imprecision, if significant, must be accounted for within the analysis.



142

Fifth, we have applied this framework to an application: the communication

subsystem. In doing this we have shown that the importance abstraction is a general

approach to scheduling, even in applications where scheduling is not necessarily a

traditional concern.

Finally, we have shown by extended example that the importance abstraction

provides a consistent mechanism by which scheduling concerns can cross domain

boundaries. In this example we examine tasks within a system attached to a distributed

system. We pose and answer questions using the framework provided by the importance

abstraction, and show that end-to-end scheduling concerns can be addressed since all levels

of scheduling employ the same approach.

10.3. Future Research

Although we have shown the usefulness of the importance abstraction as outlined

above, there are aspects of the importance abstraction that require further research. Several

of these are enumerated here.

The defining property as described in Chapter 4 is the necessary and sufficient

conditions for a set of importance functions to impose a schedule that meets the system

goal. A defining property can be used to determine if any given set of importance functions

is a member of the equivalence class of sets of importance functions that meet the system

goal. We have not yet explored the issues involved in producing the defining property from

a given system goal. We will seek to characterize the system goals for which defining

properties can be ascertained. In some cases the sufficient conditions will produce an

adequate test; we seek to characterize these instances as well.

We make the claim that the importance abstraction is general in that it can emulate

all traditional scheduling policies. We will try to prove coverage. It has been suggested that



143

this approach cannot handle the paging scheduling policies for which anomalies occur.

Whether the importance abstraction provides complete coverage is still an open question.

We have shown how to express the work done to a task even if there are several

concurrent processors. We seek to apply the importance abstraction to multiprocessor and

multiple resource problems.

In the importance abstraction, the complexity of the scheduling problem is moved

from the algorithm into the functions. Although we only showed importance function

representations of polynomial-time scheduling problems, the importance functions can just

as well express non-polynomial-time scheduling problems. It would be interesting to

reprove results about NP-complete scheduling problems using this new framework.

We have examined only preemptable tasks here. With non-preemptable tasks, the

greedy solution is often a pitfall. Since the importance abstraction is at its heart a greedy

algorithm, we seek to explore how to schedule non-preemptive tasks within this

framework.



144

Bibliography

[ANSI86] American National Standards Institute, “FDDI Token Ring Media Access
Control Standard,”Draft proposed Standard X3T9.5/83-16, Rev. 10,
February 1986.

[BERN71] Bernstein, A. J. and Sharp, J. C., “A Policy-Driven Scheduler for a Time-
Sharing System,”Communications of the ACM, Vol. 14, No. 2, pp. 74-78
(February 1971).

[BIYA88] Biyabani, S. R., Stankovic, J. A. and Ramamritham, K., “The Integration of
Deadline and Criticalness in Hard Real-Time Scheduling,”Proceedings of
the 1988 IEEE Real-Time Systems Symposium, Huntsville, Alabama, pp.
152-160 (December 6-8, 1988).

[CCITT84] Comité Consultatif International de Télégraphique et Téléphonique, “The
X.25 Packet Layer Protocol,” 1984.

[CHEN88] Cheng, S., Stankovic, J. A. and Ramamrithram, K., “Scheduling Algorithms
for Hard Real-Time Systems — A Brief Survey,” in Hard Real-Time
Systems, Stankovic, J. A. (ed.), IEEE Computer Society Press, August
1988.

[CHER88] Cheriton, D. R., “VMTP: Versatile Message Transaction Protocol, Protocol
Specification Preliminary Version 0.7,” Computer Science Department,
Stanford University, February 22, 1988.

[CLAR87] Clark, D. D., Lambert, M. L. and Zhang, L., “NETBLT: A Bulk Data
Transfer Protocol,” Network Information Center RFC 998, SRI
International, March 1987.

[CONW67] Conway, R. W., Maxwell, W. L. and Miller, L. W., Theory of Scheduling,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1967.

[DARPA81a] Postel, J., ed., “Internet Protocol - DARPA Internet Program Protocol
Specification,” RFC 791, USC/Information Sciences Institute, September
1981.

[DARPA81b] Postel, J., ed., “Transmission Control Protocol - DARPA Internet Program
Protocol Specification,” RFC 793, USC/Information Sciences Institute,
September 1981.

[DEMP92] Dempsey, B. J., Strayer, W. T., and Weaver, A. C., ““Adaptive Error Control
for Multimedia Data Transfers,”Proceedings of the International Workshop



145

on Advanced Communications and Applications for High Speed Networks,
Munich, Germany, March 16-19, 1992.

[DHAL78] Dhall, S. K. and Liu, C. L., “On a Real-Time Scheduling Problem,”
Operations Research, Vol. 26, No. 1, pp. 127-140 (January-February 1978).

[FERR90] Ferrari, D., “Client Requirements for Real-Time Communication Services,”
IEEE Communications Magazine, Vol. 28, No. 11, pp. 65-72 (November
1990).

[GAIT90] Gaitonde, S. S., Jacobson, D. W. and Pohm, A. V., “Bounding Delay on a
Multifarious Token Ring Network,” Communications of the ACM, Vol. 33,
No. 1, pp. 20-28 (January 1990).

[GARE79] Garey, M. R. and Johnson, D. S., Computers and Intractability, A Guild
to the Theory of NP- Completeness, W. H. Freeman and Company, New
York, 1979.

[GOOD88] Goodenough, J. B. and Sha, L., “The Priority Ceiling Protocol: A Method
for Minimizing the Blocking of High-Priority Ada Tasks,” Technical Report
CMU/SEI-88-SR-4, Carnegie-Mellon University Software Engineering
Institute, March 1988.

[IEEE85a] Institute of Electrical and Electronics Engineers, “IEEE Standard 802.4
Token-Passing Bus Access Method and Physical Layer Specifications,”
1985.

[IEEE85b] Institute of Electrical and Electronics Engineers, “IEEE Standard 802.5
Token Ring Access Method and Physical Layer Specifications,” 1985.

[IEEE85c] Institute of Electrical and Electronics Engineers, “IEEE Standard 802.3
Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications,” 1985.

[IEEE89] Institute of Electrical and Electronics Engineers, “IEEE 802.6 Proposed
Standard: Distributed Queue Dual Bus Metropolitan Area Network,”
November 30, 1989.

[ISO7498] International Organization for Standardization, “Information Processing
Systems - Open Systems Interconnection - Basic Reference Model,” Draft
International Standard 7498, October 1984.

[ISO8073] International Organization for Standardization, “Information Processing
Systems - Open Systems Interconnection - Transport Protocol
Specification,” Draft International Standard 8073, July 1986.

[JENS85] Jensen, E. D., Locke, C. D. and Tokuda, H., “A Time- Driven Scheduling
Model for Real-Time Operating Systems,” Proceedings of the Real-Time
Systems Symposium, pp. 112-122 (December 3-6, 1985).



146

[KLEI75] Kleinrock, L., Queueing Systems-Volume 1: Theory, John Wiley & Sons,
New York, 1975.

[LEHO87] Lehoczky, J. P., Sha, L. and Strosnider, J. K., “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” Proceedings of the
1987 IEEE Real-Time Systems Symposium, San Jose, California, pp. 261-
270 (December 1-3, 1987).

[LIU73] Liu, C. L. and Layland, J. W., “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” Journal of the
ACM, Vol. 20, No. 1, pp. 46-61 (January 1973).

[LOCK86] Locke, C. D., “Best-Effort Decision Making for Real- Time Scheduling,”
Dissertation (Computer Science Report No. CMU-Computer Science-86-
134), Carnegie- Mellon University Department of Computer Science, May
1986.

[LOCK88] Locke, C. D. and Goodenough, J. B., “A Practical Application of the Ceiling
Protocol in a Real-Time System,” Technical Report CMU/SEI-88-SR-3,
Carnegie- Mellon University Software Engineering Institute, March 1988.

[METC76] Metcalfe, R. M. and Boggs, D. R., “Ethernet: Distributed Packet Switching
for Local Computer Networks”, Communications of the ACM, Vol. 19, No.
7, pp. 395-404, (July 1976).

[PEDE88] Peden, J. H. and Weaver, A. C., “The Utilization of Priorities on Token Ring
Networks,” Proceedings of the 13th Conference on Local Computer
Networks, Minneapolis, Minnesota, pp. 472-478 (October 10-12, 1988).

[PEI92] Protocol Engines, Inc., “XTP Protocol Definition, Rev 3.6,” PEI 92-10,
January 1992.

[RUSC77] Ruschitzka, M. and Fabry, R. S., “A Unifying Approach to Scheduling,”
Communications of the ACM, Vol. 20, No. 7, pp. 469-477 (July 1977).

[SAE87] Society of Automotive Engineers, “SAE AS4074.2 High Speed Ring Bus,
Final draft Standard,” June 1987.

[SHA86] Sha, L., Lehoczky, J. and Rajkumar, R., “Solutions for Some Practical
Problems in Prioritized Preemptive Scheduling,” Proceedings of the 1986
IEEE Real-Time Systems Symposium, New Orleans, Louisiana, pp. 181- 191
(December 2-4, 1986).

[SHA87] Sha, L., Rajkumar, R. and Lehoczky, J. P., “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” Technical Report CMU-
Computer Science-87-181, Carnegie-Mellon University, Computer Science
Department, 1987.

[SHA90] Sha, L. and Goodenough, J. B., “Real-Time Scheduling Theory and Ada,”
IEEE Computer, Vol. 23, No. 4, pp. 53-62 (April 1990).



147

[SPRU88] Sprunt, B., Lehoczky, J. and Sha, L., “Exploiting Unused Periodic Time For
Aperiodic Service Using The Extended Priority Exchange Algorithm,”
Proceedings of the 1988 IEEE Real-Time Systems Symposium, Huntsville,
Alabama (December 6-8, 1988).

[STRA91] Strayer, W. T., “A Study of Preemptable vs. Non-Preemptable Token
Reservation Access Protocols,” Computer Communication Review, Vol. 21,
No. 2, pp 71-80 (April 1991).

[TOKU87] Tokuda, H., Wendorf, J. W. and Wang, H., “Implementation of a Time-
Driven Scheduler for Real- Time Operating Systems,” Proceedings of the
1987 IEEE Real-Time Systems Symposium, San Jose, California, pp. 271-
280 (December 1-3, 1987).

[TOKU89] Tokuda, H., Mercer, C. W. and Ishikawa, Y., “The ARTS Distributed Real-
Time Kernel and its Toolset,” Report, 1989.

[WEND88] Wendorf, J. W., “Implementation and Evaluation of a Time-Driven
Scheduling Processor,” Proceedings of the 1988 IEEE Real-Time Systems
Symposium, Huntsville, Alabama, pp. 172-180 (December 6-8, 1988).



148

Appendix A

In Chapter 2 we discussed an inherent attribute of a task, called the task length. The

task length is the amount of time required for a processor to complete the task, including

securing any additional resources, scheduling this and all other active tasks, and other

associated latencies, such as context switching. Here we expand upon the discussion of the

task length by providing a notation and an algebra for task lengths.

Define wi as the amount of processing time required by task i. For some tasks it may

be possible to calculate or estimate the amount of processing time required; for others it

may not be possible to know the processing time requirement until the task finally

completes. The quantity wi has a definite value; however, that value may not be known a

priori.

Define the amount of work done on task i over the interval (a, b) as . Since the

work on a task cannot exceed the time allotted for that work,

Eq A.1

For the degenerate case1 of b < a, .

Assume that task 1 is processed until completion. Then, . Furthermore,

the sum of the work done to a task before some point in time t and the work done after that

point t is the total work done to the task:

Eq A.2

1. The normal case is assumed for the rest of this discussion.

wi a
b

wi a
b b a−≤ for b a≥( ) .

wi a
b 0=

wi wi 0

∞=

wi wi 0

∞ wi 0
t wi t

∞+= =



149

When a task i has a deadline di, then

Eq A.3

Consider two tasks, i and j, receiving work over some interval a to b,

Eq A.4

For some set of tasks T receiving work over the interval a to b,

Eq A.5

For tasks i and j considered over the intervals a to b and a to d respectively,

Eq A.6

Considering these two tasks over the intervals a to b and c to b,

Eq A.7

For task i over the interval a to b and task j over the interval c to d, the following is true:

Eq A.8

The quantity  is either (1) known, (2) derived, (3) assigned, or (4) unknown. At

time t,  is known since the amount of work done for task i at time t is known at time t.

Also at time t,  is derived as . If it is determined that from time a to time b

task i will get 3 time units of work (for b − a ≥ 3) then  is assigned. Otherwise,

 is unknown. If  is known, derived, or assigned, then

Eq A.9

wi a
b min( di, b) a−≤

wi a
b wj a

b+ b a−≤

wi a
b

i: τi T∈
∑ b a−≤

wi a
b wi a

d+ max( b, d) a−≤

wi a
b wi c

b+ b min( a, c)−≤

wi a
b wi c

d+ max( b, d) min( a, c)−≤

wi a
b

wi 0
t

wi t

∞ wi wi 0
t−

wi a
b 3=

wi a
b wi a

c

wi a
b wi a

c− wi c
b= for b c≥( ) .


