Function-Driven Scheduling: A General Framework
for Expression and Analysis of Scheduling

W. Timothy Strayer

Computer Science Report No. TR-92-12
May 14, 1992

This work is supported in part by the U. S. Naval Ocean Systems
Center and the Office of Naval Research under contract number
N00014-91-J-1514.

Function-Driven Scheduling: A General Framework

for Expression and Analysis of Scheduling

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Mrginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

W. Timothy Strayer

May 1992

Abstract

Scheduling theory maintains that there are fundamental similarities in problems of
sequence that transcend the characteristics of the particular tasks to be ordered or the
resources to be usedaditionally, scheduling policies are implemented using algorithms;
we study scheduling algorithms to discover the various properties of the schedules they
produce. © facilitate analysis the policies are typically limited to homogeneous task sets
(e.q., all periodic tasks) and consider only one or very few task attributes. In some cases the
results are so attractive that the task sets of systems are made to fit the algorithm rather than
using a policy more appropriate to the systene Werefore make the following
observation: if scheduling policies are driven by how well they can be expressed and

analyzed, then we need a more general framework for expressing scheduling policies.

We introduce thémportance Abstraction as a general scheduling framework. The
scheduling algorithm is invariant: choose the most important task at every point in time.
Each task is described by a function, callednaportance function, that profiles the task’
importance to the system over time. The importance abstraction can express not only the
traditional scheduling policies but a wide range of new policies based on how important
individual tasks are to the system. Since the scheduling policy is described using functions
rather than a single algorithm we can exploit the maturity of mathematical proof techniques
when analyzing the schedule produced by the pdiimyce this abstraction is applicable to
any system of tasks and processors, we examine the communication subsystem as an
example, and find that importance functions facilitate the expression of message
discrimination policies as well as help unify scheduling across the operating system/

communication subsystem domain boundary

Table of Contents

Chapter 1 INtroduUCLIONcocviiie e e 7
1.1. Function-Driven SChedulingccoooriirienesee e 8

O 1SS 1 = SRS 9

1.3. The Goal of thiSReSearchc.ccocevieieieiec e 11

IR0 Vo (V7 1 o o USRS 11

IS T @0 141 o111 o o SR 14

1.6. TRESIS OVEIVIEW ..ottt sttt 16

Chapter 2 Scheduling ThEOIYcoovi i 17
2.1. The Scheduling Problem ... 19

2.2. SYSLEM MOE ... e 20

N T =S S 21

2.2.1.1. Task AtLHIDULEScovveiicececeeeee e e 22

2.2.1.2. Task CONSITAINEScceeieeeiieiesieeieeee e 23

2.2.1.3. OPEIELIONScoueeueeieieriesiesieeieeee e ss e e 24

2.2.1.4. TASK SELS ..oiveeieeeeierie sttt e 25

2.2.1.5. TaSK AITIVAIS ..o e 25

RIS v = o U = S 27

2.2.2.1. When to Schedule ... 27

2.2.2.2. How Often to Schedulecccoiiiiieniieeeeeeee e 28

2.2.2.3. Complexity of SChedulingccccvinineninineceeeree 30

2.2.3. RESOUICESooiieeieeeieesiee ettt n e sneennneens 32

Chapter 3 Survey of Scheduling TeChNiQUESccccovceeviiieenie e 35
3.1. Rate MONOLONIC TREOTY ...ocuvieeeeecie e 35

3.1.1. Period Transformationccccoceeerreenenieneene e 37

3.1.2. Priority Inheritance and Priority Ceiling Protocolsc.ccccceu..... 38

3.1.3. Deferrable SEIVEr ... e 39

3.2. Survey of Function-Based Scheduling Techniquescccocceeeevieeenee. 40

3.2.1. POlICY FUNCLIONSc.ooiiiiiiriesicreeee e e 40

3.2.2. Time-Driven Schedulingcccovveiieve e 43

Chapter 4 Importance ADSEraction ... 47
4.1, SYSEEM MO ..o e 47

4.2. IMportance FUNCLIONSccooiiiiiieeee e 50

4.2.1. Sets of Importance FUNCLIONS ..o 50

4.2.2. The Defining Property of an Importance Function Set 51
4.3. The SChEAUIETooeeeeee e e 52
Chapter 5 Expressiveness of the Importance Abstraction 55
5.1. Emulation of Traditional Scheduling POlIiCIESccccoveiiniinienieeine 56
5.2. Families of Importance FUNCLIONScccceieiineneneneneeeeee e 61
5.3. Novel Policies using Importance FUNCLIONScccccceveeveecieccesieciee 62
Chapter 6 Analyzability of the Importance Abstractioncc......... 67
6.1. Policies with StaticS RaNKiNgScccovevieiieiieie e 68
6.1.1. Determining Completion TIMecccooiieenenienieree e 69
6.1.2. Meeting DeadliNeSccoeiiririeeeee s 71
6.1.3. Meeting Deadlines with Arbitrary Arrivalscccceeeveeceseennene, 74
6.1.4. Meeting Critical Deadlines, with Arbitrary Arrivalsc..c....... 76
6.1.5. Heterogeneous Task SELcoccvereeieeiieriese e 80
6.1.6. Heterogeneous Task Sets with Critical Deadlines
and Arbitrary Arrivals ... 82
6.2. PrOJECHIONSoviiiieiieesies ettt 84
Chapter 7 Implementing the Importance Abstraction Efficiently 87
7.1. Discrete Evaluation POINEScccccviiereeienieeneeeseese e see e seesseeneas 87
A2 A o) o () d 111 7= (] SRS 89
Chapter 8 The Communication SUbSystemcccocevieinniiennenncieee 91
8.1. Discrimination TEChNIQUEScc.ccueiieriieieceesece e 92
St I I 0 =SSR 92
8.1.2. LEVEISOf SEIVICE ...ocveeeecee et 95
8.2. The ISO Reference MOdelcccovviririeieiee e 97
8.2.1. Media Access Control Layercccooeeveneeneeieeee e 99
8.2.2. NEWOIK LAYEN ..o 101
8.2.3. TranNSPOIt LAYEN ...cceveeiieieeiiiesiee sttt s 104
8.2.4. SUMMANY Of ISSUESccueiiiiiieie ettt 105
8.3. Using IMportance FUNCLIONScocovieieiieierenie s 106
8.3.1. Messages and Importance FUNCLIONScccccevveeieccieceeceeee, 107
8.3.2. Packets and Importance FUNCLIONSccccoveeiininneeiienieseeee 109
8.3.3. Stations and Importance FUNCLIONSccoceveieneneneneneeeeens 111
8.3.4. DECISION POINLS ..ot 112
8.3.5. Other Uses for Importance FUNCLIONScccceevvnieieeiienieneeee, 112
8.3.6. Importance Functions and Levels of Servicecccoovevvvvevivenee. 114
B.3.7. ANAYSIS oot 115
Chapter 9 Extended EXample ... 121

0.1, TaSK DEfINITIONS ... e e e e e e 122

9.2. Task Level SChedulingcocvcoeeeeieeieseeseee e 126
9.3. Message Level SCheduling ..o 132
9.4. Packet Level SChedulingcooevevieieiieeereseee e 133
Chapter 10 CONCIUSIONScooiuiiiiieiie et s 137
10.1. SUMMArY OF WOTK ..o 138
10.2. CONIDULIONS ..ottt s 139

10.3. FULUTE RESEAICH ... ansnenensnnnnnsnnnnn 141

Vi

List of Figures

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

2

Figure 2.1 — General System Model..............ooooiiiiiiiiiiiee 20.
Figure 2.2 — General Model for Scheduling.............cccoviiiiiiininnnn. 22

3

Figure 3.1 —Value Function Shapes...........ccocccviiriiiiiiiiiiiieieeeeeeeeeee 45.
4

Figure 4.1 — The System Model..........cccccuviiiiiiiiiiiiiiiiieeenn A8
Figure 4.2 — Network Interface Unit and Network “Systems’.............. 48

Figure 4.3 — Communication “Subsystem” within a Distributed “Systet8”

5

Figure 5.1 — Importance Function Values for FCFS Policy.................. 57
Figure 5.2 — Importance Function for an Nearest Deadline Task....... 59
Figure 5.3 — Importance Function Values for Round Robin Policy......61
Figure 5.4 — Valve Configuration for a Process Control Example....... 63

8

Figure 8.1 — Taxonomy of Discrimination Techniques........................ Q3
Figure 8.2 — The OSI Reference Model..............ccooeiiiiiniiiiiecc 98
Figure 8.3 — Medium Access CONtrOL..........uvuieiiiiiiiieeeeeeeeeeeeeeviias 99.
Figure 8.4 — An Internetwork: Stations, Routers, and Network Segni€lgs
9

Figure 9.1 Thé il e_server Task Definition..........ccccccvvvvviiiiinnnnnn. 123
Figure 9.2 Thei deo_t ransf er Task Definition.............ccccoevvvnnnen. 124

Figure 9.3 Theend_al ar mTask Definition............cccceeeeeeeiiiiiiiiiinnns 125

Vii

1 introduction

Scheduling theory maintains that there are fundamental similarities in task
sequencing problems which transcend the characteristics of the particular tasks to be
ordered or the resources to be usextk$ arrive, require some amount of resources, and
depart. The act of choosing which of the tasks receive attention, and the amount of
resources granted, is callecheduling. Scheduling theory gives us a framework within
which questions may be asked about schedules, such as, “Can this task set be scheduled
such that some criteria is met?” and “Which tasks will be served under certain conditions,
such as overload?” The thesis of this work is to examine a new method to derive answers

to such questions.

A scheduler chooses which of the tasks currently contending for service will be
granted service, yet the scheduler must be told how to make this decision, and how often.
The scheduler has two primary sources of information: the attributes of and constraints on
the tasks, and the characteristics of the system within which the tasks and the resources
reside. The set of rules which instruct the scheduhen to make a decision arew to

rank the tasks for the decision is callestlaeduling algorithm.

There are two notable observations common to the use of scheduling algorithms:
(1) scheduling algorithms tend to rely on one or a few specific task attributes or system
characteristics for establishing a ranking criteria, and (2) all tasks are ranked according to
this criteria. For example, the rate monotonic scheduling algorittw7 8] uses theeriod

of each task to determine the taskanking, whether or not this is appropriate for each

individual task or for the system as its behavior evolves over time. The result is that

schedules may not follow naturally from the task attributes and system characteristics.

1.1. Function-Driven Scheduling

Consider a model for scheduling tasks where each task is preemptable and has an
associated function that profiles the taskiportance over time. Assume that all of these
functions are normalized so that comparing the values of any two tasks’ functions at a
particular point in time would indicate which of the two tasks is more important to the
system. At any point in time the tasks in the system can be ranked according to the values
of their functions, and thus according to their importance to the system at that moment in

time.

If tasks were assigned functions that profiled how important they were to meeting
the system goal, and the system ensured that at every point in time the most important task
in the system was receiving service, then the resulting schedule of the tasks would be the
optimal schedule with respect to meeting the system goal. Stated alternatikielgystem
would always be doing the best it possibly could under the circumstances. Note that this
does not imply that the schedule will provide all of the work required by all of the tasks, or
that the schedule will necessarily meet the goal of the system; howeloss state that if
the goal can be met, this schedule will meet it. These functions associated with each task
we termimportance functions, and the scheduling model within which these functions

serve we term themportance abstraction.

There is a spectrum of forms of expressing scheduling policiaditibnally the
scheduling policies are expressed using algorithms. Function-driven scheduling using the
importance abstraction represents another point in this spectrum, where expressiveness

derives from using functions to describe particular scheduling policies. Importance

10

functions are particularly expressive since each task is described by a function tailored to
that task. These functions include as parameters those attributes and characteristics upon
which the task’s importance to the system is based. Consequently, schedules are produced
by considering what conditions make an individual task important rather than by trying to
find an algorithm that fits all criteriafor a given task set. Since the principle component of
the importance abstraction is a set of functions rather than an algorithm, the analysis of the

scheduling of tasks benefits from the maturity of the analysis of functions.

1.2. Issues

There are three issues to be addressed concerning the usefulness of the importance
abstraction: (1) how expressive the abstraction is, (2) how easily questions can be posed
and answered once the scheduling policy is expressed within the abstraction, and (3) can

policies expressed within the abstraction be implemented in an efficient manner.

The first issue considers the expressiveness of the importance abstraction. The
importance abstraction can emulate the “traditional” scheduling algorithms by creating
functions such that the schedule for agiven task set produced by the importance abstraction
is identical to that produced by the algorithm (see Section 5.1.). Consider the nearest
deadline first algorithm, for example. For any two tasks i and j active at time t, with

deadlines d; and dj, the importance functions|;(t) and I;(t) are constructed such that, for al t,

Since algorithms choose tasks according to specific conditions, we may, in general,
construct a set of importance functions for a given task set such that a task within that set
will become most important precisely when the algorithm would choose that task for

service.

11

The concept of profiling a task’s importance over time is intuitive, and using
functions to express this importance seems more “natura” than using equivalent
algorithms. By using functions we can easily encompass a wide range of scheduling
parameters, and we can easily tailor importance profiles to individual tasks. It may be
possible to express the same scheduling policy in an algorithmic domain, but designing an
algorithm to achieve this generality would prove more cumbersome than a function-based

approach.

The second issue considers the analyzability of the importance abstraction. By
expressing the scheduling problem in a functional domain rather than an algorithmic one
we gain the use of tools supplied by mathematics. We may invoke proof techniquesthat are
more extensive than those used in proving properties of algorithms. If we can phrase our
scheduling questionsin terms of functional mathematics, then we may apply the machinery
of the mathematics to help answer these questions. Very complex and subtle scheduling
problems can be expressed using importance functions and, since we are dealing with

functions, functional mathematics can be applied to help provide analysis.

The third issue considers the implementability of such a framework within areal
system. Clearly it isimpossible to evaluate each task’s function at every moment in timeto
ensure that the most important task is always identified. However, it is sufficient to ensure
that the most important task is known at every point in time; the importance functions
require evaluation only when a new most important task must be chosen. If it is possible to
identify when the eval uations must take place, it may be possible to implement this scheme
in a cost-efficient manner. It may be the case that some restrictions must be placed on the
functions so that the scheduling policy may be implemented efficiently. If thisis so, it is
essential to discover how such restrictions affect the expressiveness of the importance

abstraction.

12

1.3. The Goal of thisResearch

We start with a system model wherein there is an identifiable and enumerable set of
preemptable tasks. Initially these tasks are the “possible” tasks, but as the system runs,
these possible tasks will become forms for their instantiated counterparts, the “active”
tasks. Given a set of (possible) tasks, there exists an infinite number of sets of importance
functions; that is, there is aniverse of importance function sets that can profile the
importance of the task set. When the system goal is stated, this universe of sets is
partitioned into those that guarantee that the schedule they impose will meet the goal, and
those sets that cannot make that guarantee. The set of importance function sets which
guarantee to meet the system goal forms an equivalence class for that ssystem’
characteristics. Wseek the set of properties which uniquely defines this equivalence class
so that, given a set of importance functions, we can apply the properties to determine if the
set belongs in the equivalence class. The goal of this research is to set forth a method for
determining this set of properties, if not in the general case, then for several example
scheduling policies. Along the way we will

» describe and develop the importance abstraction as a model for expressing
scheduling policies, both traditional and novel

» develop the analysis for a traditional scheduling policy using the importance
abstraction

» describe a framework within which function-based scheduling fectafe and
efficient

* apply this abstraction to an application, namely a communication subsystem within
a distributed system

1.4. Motivation

There are many scheduling algorithms whose properties are studied for complexity
schedulability and solvability; three of the most common areority-driven, rate
monotonic, and deadline-driven. The highest-priority-next scheduling policy ensures a

gueueing discipline where the highest priority tasks enjoy first come, first served service

13

although no guarantees can be made regarding the remainder of the priority values. A
priority value is associated with a task when the task becomes active, and remainssthe task’
measure of importance throughout the lifetime of the task. Priority scheduling is
particularly prolific in communication subsystems where priority is often used to access the
common medium. In general, the schedules produced have only the property that the
highest priority task will eventually receive some service. Choosing a single priority value
to reflect the task’importance over its lifetime implies either that all of the taakltibutes

and system characteristics that could contribute to thestamgortance are reduced to a
single value, or that a task maintains the same ranking relative to all other tasks over that
tasks lifetime. Consequentlgtatic priority-driven scheduling policies cannot easily adapt

to changes in the system.

Rate monotonic theory provides a means of statically assigning priorities to tasks
while retaining certain properties of the schedule produced. If all tasks are periodic, ranking
tasks by the inverse of their periods will produce a schedule where no tasks will ever miss
a periodic deadline if the task set meets certain loading conditions. This has been a
landmark result, especially in real-time scheduling. Unfortunataly/theory applies only
to periodic tasks; aperiodic (sporadic) tasks must be “fit” into a periodic server so that all
tasks appear to the scheduler as periodic. The ranking of tasks by period works well when
loading conditions are met, but a task set is rarely static, and as tasks enter and depart the
system, transient overloads may ocdarrate monotonic theorghese overloads cause
tasks with the longest periods to be shed first, a consequence that has no relationship to how
critical the task may be to the system. Period transformation techniques hagecdetoer
superimpose a criticality ranking on the task set by artificially splitting the critical long-

period tasks into what appears to be many smaller periodic tasks. Such measures as a

14

gporadic task server and the period transformation techniques “bend” rate monotonic

theory to include these cases.

Deadline-driven scheduling, including most prominently the nearest deadline first
policy, uses the deadline of atask asthe soletask attribute in scheduling atask set. Nearest
deadlinefirst guaranteesthat all taskswill meet their deadlinesif the task set is schedul able.
Unlike rate monotonic theory, there is no requirement that the tasks be periodic. However,
the task set must be homogeneous in that all tasks must have a deadline, al tasks are
required to meet their deadline with equal necessity, and no other conditions or attributes
need be used to rank these tasks. Again, the criticality of atask istied to an attribute that

does not have anything to do with how critical the task is to the system.

Common problems with these and other well-known and traditional scheduling
algorithms are that they typically do not naturally include the attributes and system
characteristics which cause atask to be “important.” Scheduling decisions usually focus on
a small number of attributes, while in general the importance of atask is conditioned on
what is happening within the system at that particular time as well as the constraints of the
task. When a scheduling policy like nearest deadline first is modified to include even a

criticality ranking, the guarantees derived from analysis are no longer necessarily valid.

The analysis of scheduling algorithms is also a difficult problem. In highly
constrained systems, such as real-time systems, where lives and money depend on the
correct operation of the system, system designers typically attempt to analyze the system
statically, prior to turning on the system. Often thisisthe only time when the system can be
analyzed. Yet such systems are so complex that a complete static analysis, or proof of
correct operation, isimpossible. In scheduling theory, analyzing task sets quickly becomes

complex. Many of the interesting scheduling problems are NP-compl ete, and those that are

15

not suffer from oversimplification of the problem. As a consequence, scheduling

algorithms are typically chosen based on which can best be analyzed.

In accordance with our research goals, we seek a framework wherein the task’s
importance to the system is easily expressible, the questions regarding the schedules
produced can be analyzed in a straightforward manner, and the framework is
implementable in an efficient manner. A solution of this problem is the dissertation’s

contribution to the field.

1.5. Contribution

This dissertation contributes to the field of scheduling theory by

* the development of afunction-based scheduling framework, namely the importance
abstraction

* the exploration of several issues, in particular, the expressiveness of the importance
abstraction, the analyzability of scheduling policies within the importance
abstraction, and the efficient implementation of the importance abstraction

» the application of the importance abstraction to a real system, namely a
communication subsystem

This dissertation introduces the importance abstraction as a framework for
implementing scheduling policies. The importance abstraction is novel in that it uses a
function-driven approach for describing the scheduling policy. There have been previous
function-driven approaches, in particular those of [BERN71], [RuSC77], and [JENS85]; the
importance abstraction is unique in its use of functions to describe how important atask is
to the attainment of the system goal, and its use of these descriptionsto perform analysis of

the schedul es produced.

The scheduler within the importance abstraction is ssimple and universal. The
scheduler ensures that at every point in time the most important task, according to the
importance functions, is being serviced. Since the scheduler is universal, various

scheduling policies can be implemented within the abstraction ssmply by using different

16

sets of importance functions. Thus the importance abstraction isaframework within which

awide range of scheduling policies can be implemented and analyzed.

Thisdissertation exploresthree issues concerning the importance abstraction—how
expressive the abstraction is, how conducive to analysisit is, and how the abstraction can
be implemented efficiently. First, the use of a function to profile a task’s importance
emphasizes the conditions under which the task becomes important. Since a function is
associated with each task, these conditions can be individualized. By properly choosing the
set of importance functions for a system, traditional scheduling agorithms can be
emulated. Whereas algorithms generally consider atask set with homogeneous constraints
to determine which task to schedule, the importance abstraction allows scheduling policies

such that the conditions which make atask important are tailored to the task.

Second, since the importance abstraction shifts the description of the scheduling
policy to aset of functions rather than a single algorithm, we can use the rich techniques of

mathematics to examine scheduling policies rather than using a gorithmic techniques.

Third, this dissertation also examines issues concerning the efficient
implementation of the importance abstraction. In its general form, the importance
abstraction assumes that each importance function is evaluated at every point in time.
Practical systems cannot meet this assumption. We explore severa methods for relaxing

this assumption so that the abstraction can be implemented.

We show the application of the importance abstraction to a communication
subsystem. Scheduling theory revolves mainly around the task scheduling within the
operating system. The importance abstraction is a general framework, therefore the results

apply to any system, including a communications subsystem.

17

1.6. Thesis Overview
This dissertation is organized as follows.
Chapter 2 offers areview of fundamental scheduling theory.

Chapter 3 provides the background survey of scheduling theory results, specifically

those approaches which use functions to help perform scheduling.
Chapter 4 introduces the importance abstraction and the system model assumed.

Chapter 5 examines the expressiveness of the importance abstraction, providing
examples of how traditional scheduling algorithms can be emulated within the abstraction,

and showing how novel scheduling policies can be constructed.

Chapter 6 demonstrates the abstraction’s usefulness for performing analysis of

scheduling policies implemented within the importance abstraction.

Chapter 7 explores the issues involved in efficiently implementing the importance

abstraction.

Chapter 8 describes an application of the importance abstraction to a system,

namely a communication subsystem.

Chapter 9 is an extended example. This example includes tasks that employ a

communication subsystem.

Chapter 10 offers conclusions drawn from this research, and offers avenues for

future work.

2 Scheduling Theory

Scheduling is the act of sequencing tasks. It involves arranging, coordinating, and
planning the use of resources to achieve some goal. More simply, it relates to the ordering

of getting things done.

Scheduling theory maintains that there are fundamental similaritiesin problems of
sequence which transcend the characteristics of the particular tasks to be ordered or the
resources to be used. It is an abstraction of real-world tasks and resources into an
optimization problem of the following form: given a collection of tasks to be performed
within some system, where the tasks are subject to various constraints on when and how
they may be performed, find a viable sequence of these tasks such that this sequence meets

some objective better than any other sequence could.

Ordering everyday events to make more efficient use of the resources available or
the time available to do things is a common occurrence. Yet, it was not until the Industrial
Revolution of the 1900's that the first rudimentary scheduling techniques were employed
to aid production. During the First World War, Henry Gantt devel oped the most recognized
graphic representation of scheduling, the Gantt Chart, for organizing cargo on Allied ships.
Then in the Second World War the British government called upon its national scientific
trust to study the problem of allocating the country’s dwindling resources. In the post war
era, the United States’ industries began in earnest to use these more formal techniques to
make production more efficient. The science that grew out of the formalization of the
techniques for allocating scarce resources is called Scheduling Theory, a branch of

Operations Research.

18

19

Operations Research (OR) applications attempt to get the best practical result for a
problem posed under certain constraints. It is a scientific method for providing a
guantitative basis for decision making. The techniques of OR give alogical and systematic
way of formulating a problem so that the tools of mathematics can be applied to find a

solution. Linear programming is one such formulation.

In the 1950’s computers were used to implement the logic of formal allocation and
scheduling techniques. Although the computer was a powerful tool for finding solutionsto
linear programming problems, the allocation of the processing service within the computer
was gtill done by humans. Today, a large segment of research within Operations Research

studies the problem of task scheduling within computers for better utilization.

Computers were also used to monitor and control processes externa to the
computers themselves. Sensors placed within the external environment, such as within a
chemical reaction chamber, relay the changes within that environment to the computer. The
computer analyzes these changes and correspondingly modifies the process. Since the
activity of the computer happens concurrently with the dynamics of the environment, the
computer is said to be acting in real-time. Real-time systems are characterized by time-
constrained processing. Much of the recent work in scheduling has focused on the
utilization of processors such that the most important activities are accomplished within

their time constraints.

This chapter isabrief introduction to the theory of scheduling to lay the foundation
for exploring previous work in scheduling. It introduces scheduling and scheduling
problems. It offers a model of an abstract system in which scheduling occurs to match
resources with requests for service. The problem is also viewed from both the perspective
of algorithms and queueing theory. The algorithmic interest is in the inherent complexity

of scheduling problems and how they relate to other complex problems. Queueing theory

20

looks to derive closed forms models of systems where things are caused to wait. Finally it
is suggested that, although related to both of these areas, scheduling theory is motivated by
adifferent objective, and scheduling theory offersinsights in addition to those possible by

either algorithms or queueing theory.

2.1. The Scheduling Problem

The general problem of scheduling isto determine for a given set of tasks whether
asequence existsfor performing the tasks such that the constraints on the tasks are met, and
to produce the optimal sequence if one exists. There are really three problems. a decision

problem, a construction problem, and an optimization problem.

It is first a decision problem in the algorithmic sense, requiring some machine to
take as inputs the set of tasks and their constraints, and answer yes or no to the question,
“Doesthere exist asequence such that all tasks are satisfied and their constraints met?’ The
second problem is closely related: if a sequence exists, produce it. If the sequence does
exigt, then the answer to the first problem is yes since the second problem produced the
proof by construction. Although there exist simple agorithms which can find solutions to
scheduling problems with certain restricted constraints, in general the interesting problems

have no such efficient algorithms.

When a scheduling algorithm can meet the constraints of every task, then the
schedule produced is optimal with respect to the constraints of the tasks. However, the
scheduler may use some obj ective when choosing tasks so that the tasks that are chosen will
help meet the objective. An optimal schedule is one which meets the objective (optimizes
an objective function) better than any other schedule, even if not all of the constraints of the
tasks are met. An optimal scheduling algorithm is a machine which will always produce

such an optimal schedule with respect to the objective function. If we can find such a

21

machine, then we can aways find the third part of the scheduling problem: the optimal

solution.

If finding the optimal schedule requires more time and effort than isjustified by the
particular application at hand, and it often does, then approximate schedul es can be found
by constructing machines which sacrifice the exactness of the solution for more efficiency
in finding some close solution. These approximation algorithms still seek to optimize the
objective; the difference is that they use less comprehensive methods to do so.
Conseguently, the optimization part of the scheduling problem is still avalid pursuit even

when the scheduler is almost certain of not finding the optimal solution.

2.2. System Model

Given a specific scheduling problem instance we can apply formal or even ad hoc
techniques to find a solution that best meets the problem requirements. However, in order
to generalize the scheduling problem and the techniques used to find solutions, we must
define a model which embodies essential characteristics without being specific to any
particular instance of the problem. In this section we offer a general system model, shown

pictorially in Figure 2.1.

System

inputs Tasks

outputs <——
Resources |

Figure 2.1 — General System Model

22

A system is a finite state automata which progresses from state to state by
“processing” operations contained within a set of tasks. A system has an identifiable goal
which drives each state transition. The set of tasks within the system representsthe division
of the system goal into many subgoals, where each task is responsible for accomplishing
some part of the system goal. External events are communicated to the system viainputs,
and external events are affected by the system via outputs. There is a set of internal
resources for which tasks may compete and with which tasks may be processed. When the

system is processing its tasks the system is said to be running.

In order to accomplish the system goal there must be some mapping, or schedule,
of tasks onto resources over the time that the system is running. There are three required
entities for scheduling: a set of tasks, a set of resources being requested to perform or aid
in performing the tasks, and the scheduler. Figure 2.2 shows the relationship between the
three entities. The tasks are kept in atask set keep of unspecified order until the scheduler
isinvoked, at which time some subset of the tasks is chosen according to task constraints
and the state of the environment at that moment in time. The set of tasks currently being
serviced at the set of resourcesisexchanged for the set of new taskswhich will gain service.
Some tasks may belong to both sets, some may have completed service and thus may leave
the system, and some may be partially complete and must return to the keep for

consideration in subsequent invocations of the scheduler.

2.2.1. Tasks

In practicewe usually identify atask by what must be done. When performed, atask
accomplishes some minor goal en route to some much larger goal. In scheduling, however,
we use the term task as a shell to hold various attributes and conditions about what work
must be done without necessarily identifying the work specifically. In thismanner atask in

scheduling is an abstraction for the specification of requested work.

23

Environment

Task Set Resourcs Completed
Partially
Completed
Tasks

Figure 2.2 — General Model for Scheduling

2.2.1.1. Task Attributes

A task has twonherent attributes: the amount of time this work will take, and the
earliest time that this work can commence. The amount of work required by the task is
called the taskength. It is not always possible to know exactly what length a task will have
since the work that must be done by the task may vary with the conditions within the
system. It is possible that the task may never finish. If a task is expected to finish, but there
is variability in the finish time of the task, the length may be given as the worst-case for
performing that task. Furthermore, there may befardifit length (if it is possible to know
it) for each diferent capacity within a set of processors. Howewésisk must always have

a length, even if the length is unbounded, unknown, or indeterminate.

The earliest starting time is called tieady time of the task. This time is also known
as arelease time or anarrival time. It represents unambiguously the earliest time that the
task may be performed. It is independent of, but may reflect, what other tasks have been
performed and what resources or processors are available. Every task has this attribute,

although it may not be known until the task actually is ready

24

A task may have other attributes, such as a period, but these attributes do not

necessarily apply to all tasks in the task set.

2.2.1.2. Task Constraints

Task constraints are conditions under which the task is to be performed. These
conditions may include such constraints as timeliness constraints (when the work must be
completed), precedence constraints (what work must precede this work), processing
constraints (where thiswork isto be done), and resource constraints (what set of resources

will be required for this work), or any combination of these.

Timeliness constraints specify the period of time during which the task is valid.
When atask becomes ready it remains ready until atimeliness constraint specifiesthat it is
no longer valid to perform this task. When this time of invalidity can be identified as a
singleinstantintime, it isreferred to asadeadline. Timeliness constraints also include such
information as an optimal target completion time, which differs from the deadlinein that a
task may remain valid after this point in time. The most general specification of timeliness
constraints is given by providing a function which specifies the value or criticality of the

task as afunction of time.

Precedence constraints establish a partial ordering on the set of tasks in away that
specifies that one or more tasks must be completed before a particular task can be started.
These conditions can be represented by a directed acyclic graph where the nodes are the

tasks and the arcs are the precedence relations.

The processor is the resource which can actually perform the task. Processor
constraints dictate which processor or processors (commonly, but not necessarily, a central
processing unit of a computer) must perform the task. If there is only one processor in the

system then the constraint is trivial. The task may specify that one of several identical

25

processors may perform it, in which case the constraint is the specification of which group
is appropriate. Dissimilarities in the processors may further constrain where a task can be
performed. Such dissimilarities include but are not limited to processor capacity or speed,

location, connectivityor processing functionality

Resource constraints dictate which of the various resources within the resource set
are required by the tasks, and when they are required. These resources may be required by
the task so that the task may be performed, afer dibm the processors in that they are
passive as far as performing the task is concerned. A task may have a list of resources which
must be secured before or during the processing of the task. Resource constraints are trivial
if no two tasks will ever require the same resource at the same time. Examples of resources

within a computer include bigr space, disk access, and the communications subsystem.

Members of the task set are not required to have a common set of constraints. In
general, a scheduler must weigh all of the constraints and all of the environment parameters

when making scheduling decisions.

2.2.1.3. Operations

A task is comprised of the concatenation of one or more atomic units of action
called operations [CONW67]. Since flow of control, which normally proceeds from one
operation to the next concatenated operation, may be altered with conditional branching,
there may be a lge number of possible orderings of the operations. The actual ordering of
the operations mayn general, not be known until runtime; hence the length of the task,
which depends on the number and length of the operations within the task, may not be
known until runtime as well. Thus the length of a task, although an inherent attribute of the

task, may remain unknown until the task is actually completed.

26

An operation isindivisible but it may be arbitrarily small. Preemption, if allowed,
cannot occur during the middie of an operation; rather it must wait until the operation is
complete. Preemption can be instantaneous only in the theoretical sense that would imply

that the length of an operation must approach arbitrarily close to zero.

2.2.1.4. Task Sets

A system has afinite set of tasks which belong to the set of possible tasks within the
system. This set of possible tasks may be derived by inspection of the system. A member
of this set of possible tasks may become instantiated, which isto say that an instance of the
task isgiven an arrival time. When apossible task isinstantiated, but before it arrives, that
task is termed inactive, and belongs to the set of inactive tasks. Since a possible task may
have an infinite number of instantiations (e.g., if the possible task is a periodic task) the
inactive task set may have an infinite number of members. When the inactive task arrives,
it becomes active, and joins the set of active tasks. At any point in time during the running

of the system there is afinite number of tasksin the active task set.

2.2.15. Task Arrivals

There are three classifications of task arrivals. deterministic arrivals, stochastic
arrivals, and random arrivals. The deterministic arrival class is a proper subset of

stochastic arrival class, which is a proper subset of random arrival class.

Deterministic arrivals have several subclasses. The first is when all tasks
simultaneously arrive prior to the start of the system. Scheduling problems of thistype have
afinite number of tasks, al with arrival time 0. Schedulers can statically consider and serve
all tasks until no task remains to be served. Although this subclass is the most restrictive
with regard to arrivals, and perhaps the most unrealistic, still there are relatively few

problem specifications for which there are known efficient algorithms,

27

Another subclass of the deterministic arrival class represents tasks whose arrival
times are knova priori but are not necessarily all simultaneously started at time 0. If some
subset of the task set is related by the fact that each task arrival is separated by a constant
interval, then that subset is callpetiodic and the member tasks are calped odic tasks.

A periodic task subset has a period, a start time, and possibly an ending time. If there is no

ending time, the periodic task subset, and consequently the entire task set, is an infinite set.

The stochastic arrival class also describes infinite task sets, but the arrival of an
individual task cannot be known exactRather it is only known when the task actually
arrives. Howeverthe collection of arrivals of a subset of tasks may be related by a
probability that there is some fixed amount of time between the arrivals. This is called the

interarrival time distribution, and is given by
A(t) = Prob[interarrival time < t] (Eq 2.1)
wheret is some fixed time interval.

Stochastic arrivals are most useful when considering the system as a flow system
where tasks enter and leave and queues are formed at the server set. Queueing theory
analyzes such stochastic flow systems and seeks mathematical expressions for several
measures of interest. Such analysis includes answering questions like: (1) how long may a
task expect to wait before being served, (2) how many tasks will be serviced before a newly
arrived task is served, (3) what fraction of some time interval will the server set be busy or

idle, and (4) how long will the intervals of continual busy work extend([K5].

Random arrivals are not classified by identifying a period or an interarrival time,
although it is possible that some tasks could have such a relationship. Whereas
deterministic arrivals are required for static scheduling, in general the arrival of a task is not

known until the task actually arrives. Scheduling such a task set requires on-the-fly

28

decisions since the composition of the active task set is dynamic. The scheduler must
therefore make decisions in concert with the operation of the system, and the cost of such
decisions is incorporated into the overhead of running the system. Whereas in static
scheduling time and energy are not as critical when computing a solution to the problem at
hand, the efficiency of the scheduling algorithm is the key to dynamic scheduling. It isin
precisely this situation that optimal solutions may need to be abandoned for more efficient

heuristics to reduce the impact of scheduling overhead.

2.2.2. Scheduler

The scheduler is responsible for surveying the set of active tasks and choosing
certain of those tasks to receive service from the processor such that the constraints within
the task are met and some objective function is optimized. The scheduler follows rules
when making a scheduling decision; the collection of these rules is called a scheduling
algorithm. How often the scheduler isinvoked to all ocate service isafunction of how often
the requests are generated, the nature of the constraints within the requests, the physical
characteristics of the scheduler, and the nature of the resources. Theoretically, only a
scheduler which can consider all requests at every moment in time and has no
computational overhead when choosing the requests to receive service can provide an

optimal schedule under al circumstances.

2.2.2.1. When to Schedule

A scheduler may be implemented to make all of the decisions prior to the actual
running of the system. This is called static scheduling. It requires that the schedule have
complete and prior knowledge of the task set, and that the scheduler makes assumptions
about the environment, either dismissing as negligible or compensating for any changes

which may occur during the run of the system. The result isalist of (time, task, duration)

29

triples for each resource which completely determines when and for how long a task may
be serviced. If al of the tasks can be known a priori, and the assumption on the
environment can be made with confidence, then static scheduling provides a scheduling
solution with very low run-time costs and a high degree of predictability. Thisis especially
attractive for hard real-time systems where variability in scheduling overhead can cause

tasks to miss timing constraints.

Dynamic schedulers examine the task set and the state of the system while the
system isrunning. At each decision time the scheduler can more accurately account for the
changes occurring within the environment, and can consequently make the decisions based
on more available information. In particular, the scheduler does not need to know the entire
task set prior to run-time; transient load conditions are more easily handled than in the static
scheduler. However, the overhead incurred for the calculation of the schedule at run-time
becomes an important component of the service time for the tasks. As the scheduling
algorithm becomes more complicated, the time it takes to make the scheduling decision
increases. For example, choosing atask from atask set on afirst come, first served basisis
a trivial scheduling algorithm, and thus requires very little overhead to implement.
Choosing tasks from atask set such that all of the taskswill meet their individual deadlines,
however, is computationally more difficult. It is a grave error to have a scheduling
algorithm which requires an excessive amount of computation to schedule tasks with time
constraints. Consequently, many scheduling algorithms use a set of ssimple heuristics to
approximate optimal scheduling algorithms in an effort to lower run-time scheduling

overhead.

2.2.2.2. How Often to Schedule

Another aspect of scheduling ishow often to invoke the scheduler so that the current

set of tasks being serviced may change. The period of time during which adecision ismade

30

and a set of tasks is processed is called a decision epoch. The duration of decision epochs
is independent of the scheduling algorithm; however, certain scheduling algorithms may
imply certain decision frequencies. For example, scheduling by first come, first served
would imply that decisions are most appropriately made only when the current task has
been completely serviced or when anewly arriving task finds the server empty. A scheduler
implementing afirst come, first served algorithm may make decisions continuously, but this

would be unnecessary.

Ruschitzka and Fabry [Rusc77] identify four decision modes which characterize
when anew decision may be made. Each decision modeis progressively more general than
the last, and each previous mode is a proper subset of the next. The four modes are

nonpreemptive, quantum-oriented, preemptive, and processor sharing.

The nonpreemptive mode allows decisions only after the task currently being
serviced is complete or when an arriving task findsthe server empty. It isinteresting to note
that the scheduling algorithm may do its best to provide service to the highest priority task
when the decision epoch arrives, but there is nothing that the algorithm can do to provide
service to a newly arriving higher priority task if the server is currently busy until the
current task has completed. (Priority inversion [GOOD88] is the term used to describe a
system which allows high priority tasks to wait while lower priority tasks are being

serviced.)

The quantum-oriented decision mode makes decisions every fixed quantum of time
unless a task completes or a newly arriving task finds the server empty before the next
decision epoch. If the quantum isinfinitely long, then the quantum-oriented mode reverts

to the nonpreemptive mode.

If decisions are also made when any new task arrives, regardless of whether the

server isbusy, then the decision modeis preemptive. If therelative priority of the tasks does

31

not change over time, then this decision mode avoids priority inversion. However, if tasks
priorities can change at different rates, then priority inversion is still possible since the

change of priority does not itself invoke the scheduler.

Allowing the quantum size to become zero, and hence ensure that decisions are
made continuously, defines the decision mode called processor sharing. Processor sharing
is the most general decision mode, encompassing each of the other decision modes. The
instant one task becomes higher priority than atask being serviced, the new higher priority
task takes its place in the server. This mode is called processor sharing since the group of
highest priority tasks, whilethey all remain highest priority, will effectively sharethe server
(processor) even if there are more tasks to service than the server can handle; each task is

receiving service concurrently with all other equally highest priority tasks.

2.2.2.3. Complexity of Scheduling

When a problem is stated and some solution to the problem is sought, the step-by-
step procedure to solving the problem is called an agorithm. There are perhaps infinitely
many algorithms for any one problem specification; what ranks the algorithms is their
relative efficiency. Yet, not all problems have known a gorithms which are efficient, and it
isavery famous open problem if an efficient algorithm will ever befound for acertain class
of problems. The theory of NP-completeness provides a straightforward technique for
proving that finding an efficient algorithm for one problem is essentially equivalent to
finding an efficient algorithm for a very large set of problems widely recognized to be

difficult.

Efficiency islargely dependent on the situation at hand, but in the theory of problem
complexity an efficient algorithm is onein which the running time or the space required can

be bounded by a polynomial on the input size. Inefficient algorithms have solutions which

32

are bounded by an exponential on the input size, and are merely variations on exhaustive
search. Polynomial time algorithms, on the other hand, are made possible only through
some deeper insight into the structure of the problem [GARE79]. Undecidable problems are
ones for which no algorithm will ever exist, even an exponentia one. NP-complete
problems are problems for which no polynomial time algorithm yet exists, and for which
the discovery of one would imply that many other similarly difficult problems also have

polynomial time algorithms.

Almost every interesting problem in scheduling theory is NP-complete. A few
famous examples, like the rate monotonic algorithm, are exceptions. Usually a scheduling
problem must be so restricted in order to find an efficient algorithm that its solution is
virtually useless in areal-world sense. The following basic scheduling problem illustrates

this point.

The Sequencing on One Processor problem [GARE79] is posed as aset T of tasks
where each task in T has the following characteristics. a length, an arrival time, and a
deadline. Recall that the length and the arrival time are inherent attributes of atask, and that
the specification of a point in time like a deadline is a constraint. The question is whether
there is a schedule that meets all of the deadlines. Thisis a decision problem; if it can be
solved in polynomial time then the construction problem is guaranteed to be solvable in
polynomial timeaswell. Unfortunately there is no such known algorithm, and this problem
isNP-complete. In fact, the problem instance must berestricted in at |east one of threeways
to solveit in polynomial time: either al tasks have length of one unit, or the tasks may be
preempted during service, or al tasks arrive at the same time, namely time 0. This problem
is perhaps the ssimplest of the scheduling problems in the sense that all tasks are known a

priori and there is no ordering placed on the tasks based on which are more important.

33

2.2.3. Resources

A resource is an identifiable entity needed for the accomplishment of some task.
Certainly such an entity needed isthe processor or set of processors which will perform the
task. The resource set, however, includes anything required such that the task, or any task
in the task set, may be performed.

Thetask of sweeping out the basement as part of the goal of spring cleaning requires
three resources: the broom, the dustpan, and the person. The person isthe “processor” since
it isthe resource that actually performsthe task. The broom and the dustpan are required to

do the work, but they do not perform the work.

Several more points may be made by continuing thisanalogy. There may be a set of
two or more processors rather than just one. More than one person may sweep out the
basement in parallel, or one may work until noon and another take over. In the division of
household labor, each member of the family may have specific jobs, the sweeping out of
the basement being assigned to one member in particular. In amore enlighted view, any one
of the family may do this task, and the choice of who does it is simply a matter of who is
available. The point is that the processor set may be specialized or general, and tasks may
have the property that they may be done in parallel by multiple processors or serially by a

set of processors.

Two or more tasks may require the same resources at the same time. One task is
chosen over the others to be performed by supplying that task with all of the resources it
needs until it is done. Then the other tasks may vie for the resources. If both the basement
and the garage need sweeping, but there is only one person, one broom and one dustpan,
then one area is chosen to be swept first while the other waits. Perhaps only one of the

resources is required by two contending tasks. If the resource is sharable up to a certain

capacity, then there is no contention until the capacity is exceeded. If the capacity is one,

then the resource cannot be shared; only one person can use the broom at atime.

Onetask may claim all of the resourcesit requires and not relinguish them until the
task is completed. However, if resource constraints are examined to determine how the
resources are needed, and when they are required, then the resource set can be “ scheduled”
onto the tasks requiring them. Certainly someone else can use the dustpan until the

basement dust isin neat piles ready for collection.

35

3 Survey of Scheduling Techniques

Rate monotonic theory provides rich analytical results for scheduling algorithms
designed to meet deadline for a periodic task set. Included in these results are simple tests
for feasibility of atask set based on its aggregate utilization of the processor. Much work
in real-time scheduling centers around this algorithm, both in exploiting the results and in
seeking solutions to the various deficiencies to the basic algorithm. We present a brief
overview, first because rate monotonic theory is pervasive within scheduling theory, and

second because we revisit some of these resultsin our analysis section.

Theimportance abstraction has a function-based scheduling framework. We survey
seminal work in using functions to aid in scheduling decisions. Typicaly the functions
return a value which represents some aspect of the task’s worth, such as priority and value
(the importance functions return values which represent importance of atask). Functions
provide flexibility in expressing this task’s worth over the time that the task is active. The
importance abstraction extends this work by also using the functional representation of the

task’s importance to perform analysis on the nature of the schedules produced.

3.1. Rate Monotonic Theory

In 1973, Liu and Layland introduced rate monotonic scheduling theory [LIU73] as
amethod for scheduling many periodic tasks on a single processor such that the scheduling
algorithm used to do this was optimal. Dhall and Liu extended this work into the
multiprocessor environment in [DHAL78]. The following discussion is drawn largely from

Sha and Goodenough [SHA90], who present an excellent overview of the theory and recent

36

37

extensions which include aperiodic and sporadic tasks, as well as non-independent task

relationships.

Rate monotonic scheduling theory in essence ensures that as long as the processor
utilization of all tasks lies below a certain bound and appropriate scheduling algorithms are
used, all taskswill meet their deadlines without the system designer knowing exactly when
any given task will be running. Given a set of independent, preemptable periodic tasks, the
rate monotonic scheduling algorithm gives each task a fixed priority by assigning higher
priorities to tasks with shorter periods. All tasks are preemptable in that whenever thereis
a request for a task that is of higher priority than the one currently being executed, the
running task isimmediately interrupted and the newly requested task is started. A task set
issaid to be schedulableif all its deadlines are met (i.e., al periodic tasks finish execution

before the end of their periods).

Any independent periodic task set may be subjected to atest to determineif that task
set is schedul able regardless of when each individual task is started. Let C; be the execution
time for task T, T; be the period for task t; and n be the cardinality of the task set. For a
statically assigned priority algorithm (the rate-monotonic algorithm, where priority is
defined asthe inverse of the task period), the following must be true for the task set T to be

feasible:

C1 Cn Vn
= +..+—< - :
T, T n(2 1) Eq3.1

If the utilization (computation time over period) of all of the tasks is below the bound
prescribed, then the tasks are guaranteed to be schedulable if they are scheduled according
to the rate monotonic algorithm. This bound convergesto In 2, or about 70% utilization of

processor capacity, as the number of tasks goes to infinity. This algorithm is shown to be

38

optimal among all fixed priority scheduling algorithms with respect to meeting deadlines
of periodic task sets.

Liu and Layland also show that a variation on this, the deadline driven scheduling
algorithm, can provide 100% processor utilization on task sets where the priority can be
assigned dynamically. This variation is also optimal with respect to meeting deadlines
among all algorithmswhere priority assignment may be made during the run of the system.
In the deadline driven scheduling algorithm, the priorities are assigned according to which

task’s deadline is nearest rather than by period length.

In [SHA90], Shaand Goodenough discuss the use of rate monotonic theory for real-
time scheduling in the Ada tasking model. However, there are certain drawbacks to the
unabridged rate monotonic scheduling policy, namely that (1) a task’s period is not
inherently related to how critical the task is to the system, (2) synchronization of a lower
priority task can indefinitely delay a higher priority task when tasks share data or
communications, and (3) there is no clear way to treat aperiodic tasks in this policy
designed for periodic task sets. Period transformation, priority inheritance and priority
ceiling protocols, and the deferrable server protocol address each of these issues

respectively.

3.1.1. Period Transfor mation

One major problem with rate monotonic scheduling is that the priorities are
assigned according to the period of the task rather than according to its criticality to the
system. When all tasks can be scheduled without fear of some task exceeding its execution
time, then no criticality measure need be placed on the tasks. However, execution times are
necessarily stochastic, and scheduling is usually done with worst-case estimates which may

be significantly longer than the average execution time. When tasks exceed their estimated

39

execution times, a transient overload occurs which may cause some tasks to miss their
deadlines. Yet if tasks are prioritized according to their periods, some critical tasks may

miss their deadlines if their periods are too long.

The period transformation technique [SHA86] is used to ensure that highly critical
tasks are treated with higher priorities even if they have longer periods. The priority of a
critical task can be raised by treating it like atask with a shorter period. The techniqueisto
divide both the period and the worst-case execution time by some constant. Now the task
looks like its period is shorter, but the total utilization is not affected. The task’s execution

is suspended after each execution time until its next “period” arrives.

This technique is designed, therefore, to decouple the criticality of atask from its
period, while maintaining the benefits of the rate monotonic algorithm. If the tasks can be
partitioned into critical and non-critical task sets, where the critical tasks are defined to be
those which must receive service during a transient overload condition, then a period
transformation can be applied to the critical tasks with the longest periods. Without period
transformation, the longest period tasks would be subject to missed deadlines since they
have low priority. The set of critical tasks, therefore, are period transformed until the
longest period of the critical set is shorter than the shortest period of the non-critical set.

Now all non-critical tasks will miss their deadlines before the first critical task will.

3.1.2. Priority Inheritance and Priority Ceiling Protocols

Priority inversion is defined as the phenomena of a task of higher priority being
forced to wait on the completion of atask of lower priority. In certain cases the priority
inversion can be unbounded. The priority inheritance protocol attemptsto limit the amount
of priority inversion by allowing a server task to inherit the priority of its highest priority

client [SHA87]. A central theorem in priority inheritance specifies a sufficient worst-case

40

condition that characterizes the rate-monotonic schedulability of a given set of periodic
tasks. The priority ceiling protocol minimizes the blocking of high priority tasks by
guaranteeing that such atask will be blocked by at most one critical region of any lower
priority task [GOOD88, LOCK88].

Thepriority ceiling of acritical region is defined to be the highest priority of al the
tasks that may lock on that region. When a new task attempts to secure that region, it will
be suspended unless its priority is higher than the priority ceilings of all regions currently
locked by tasks other than thisone. If thetask is suspended, then the task that holdsthe lock
on the region with the highest priority ceiling is said to be blocking this task, and hence

inherits the priority of thistask.

3.1.3. Deferrable Server

Current systems with hard real-time periodic tasks handle aperiodic tasks either by
servicing them in background or by polling periodically for aperiodic tasks. If an aperiodic
task is serviced in the background, it must wait until all periodic tasks have been serviced.
If an aperiodic task arrives just after the polling time, the task must wait until the next
polling time. In both of these cases the response time for aperiodic tasks suffers

unnecessarily due to naive treatment of the task set.

The Deferrable Server algorithm [LEHO87, SPRU88] is designed to provide
aperiodic tasks with a low response time without jeopardizing the periodic tasks. A new
periodic task with highest priority is created to service the aperiodic tasks such that all
tasks, including this aperiodic server, are guaranteed to meet their deadlines by the rate
monotonic theory. Any aperiodic tasks are serviced at this highest priority as soon as they
arrive as long as there is computation time left for this aperiodic server. When there are no

aperiodic tasks, the computation time of the server is deferred until one arrives. The

41

computation time of this server is replenished each period. Thus, the response time for
aperiodic tasks is minimized while the schedul ability of the hard real-time periodic tasksis

maintai ned.

3.2. Survey of Function-Based Scheduling Techniques

Bernstein and Sharp [BERN71] recognized that service given to a class of tasks
could be controlled using a function such that various service profiles could be effected as
the tasks grew older. Priority in this scheme is related to the difference between the
function’s projected service and the service actually attained. Ruschitzka and Fabry
[Rusc77] used functions to describe the priority of a task directly. Within this model,
various scheduling algorithms could be emulated by using an appropriate priority function.
Jensen et al. [JENSB5] used afunction to profile atask’s value to the system for completing
at that time. The value functions did not directly drive the scheduling decisionsin Jensen’s
model; rather they were used mostly as a metric for comparing the performance of other

scheduling algorithms,

Below we survey these three techniques for using functions for making scheduling

decisions.

3.2.1. Policy Functions

Bernstein and Sharp, in [BERN71], theorized that a scheduling algorithm that keeps
track of the resource count of each task and orders the tasks according to how far atask is
from the expected resource count at that task’s age would provide the specified level of
service for each task. They defined a policy function as a function which characterizes a
class of tasks by specifying the amount of service those tasks should receive as a function
of time. Each class of tasks within asystem is characterized by afunction that specifiesthe

amount of service atask within a class should receive as a function of time. The shape of

42

the policy function controlsthe type of servicereceived by that class of tasks. In thissystem
the notion of priority correspondsto the difference between the service promised to the task
by the policy function and the service actualy received by the task. Consequently, the
priority of a task changes at a constant rate while awaiting service and at another rate
determined by the shape of the policy function while receiving service. The taskswhich are

most delinquent are therefore the highest priority tasks.

Since the shape of the policy function ultimately determines a task’s priority,
different scheduling policies may be implemented using the same basic scheduling
algorithm by simply changing the policy functions of the tasks. Bernstein and Sharp
consider piecewise functions as the policy functions for various classes of tasks. One such
function proposed uses a curved portion in a region starting with the task’s activation to
give a task a limited amount of rapid service, followed by a linear portion for a more

constant rate of service.

Ruschitzka and Fabry [Rusc77] extend the notion using functions for scheduling
by introducing the universal scheduling system (USS) as a generalized scheduling
framework to support arbitrary scheduling algorithms. There are three parts to the
specification of a scheduling algorithm within the USS: the decision mode, the priority
function, and an arbitration rule. The decision mode specifies how often scheduling
decisions are made. The priority function is an arbitrary function of task and system
parameters that determine the task’s priority at the time of evaluation. The arbitration rule
is used to break ties between tasks of the same priority. Ruschitzka and Fabry suggest that
a scheduling algorithm can be emulated by appropriately specifying the decision mode,
priority function, and arbitration rule such that the USS will make exactly the same

scheduling decision at exactly the same time as would the algorithm.

Four decision modes are identified; each decison mode is progressively more
general than thelast, and each previous modeisaproper subset of the next. The four modes
are nonpreemptive, quantum-oriented, preemptive, and processor sharing. The
nonpreemptive mode allows decisions only after the task currently being serviced is
complete or when an arriving task finds the server empty. The quantum-oriented decision
mode makes decisions every fixed quantum of time unless a task completes or a newly
arriving task finds the server empty before the time of the next decision. If the quantum is
infinitely long, then the quantum-oriented mode reverts to the nonpreemptive mode. If
decisions are also made when any new task arrives, regardless of whether the server isbusy,
then the decision mode is preemptive. Allowing the guantum size to become zero, and
hence ensuring that decisions are made continuously, defines the decision mode called
processor sharing. Processor sharing is the most general decision mode, encompassing
each of the other decision modes—the instant one task becomes higher priority than atask
being serviced, the new higher priority task takesits placein the server. Thismodeiscalled
processor sharing since the group of highest priority tasks, while they all remain highest
priority, will effectively share the server (processor) even if there are more tasksto service
than the server can handle; each task isreceiving service concurrently with all other equally

highest priority tasks.

The priority function is an arbitrary function of task and system parameters. The
priority of agiven task is defined as the value of the priority function applied to the current
values of the parameters. Ruschitzka and Fabry suggest that these parameters may include
the memory requirements, the attained service time, the total service time, external
priorities, timeliness, and system load. A priority function is defined for a scheduling
algorithm such that, when the algorithm chooses a particular task for service, the priority

function applied to that task will return the highest priority among all tasks.

Thearbitration rule specifies how to resolve conflicts among jobswith equal highest
priority. Ruschitzka and Fabry note that the advantage to specifying the arbitration rule, as
well as the decision mode, isthat this specification simplifies the priority function. Neither
the decision mode nor arbitration rule is necessary since the priority function can be made

to implement the various decision modes and arbitration rules.

Ruschitzka and Fabry continue by noting that alarge class of scheduling algorithms
can be defined by apriority function of only three arguments: the task’s attained processing
time, the current time, and the task’s processing time requirement. Furthermore, an
algorithm is called time-invariant if the difference between the priorities of any two tasks
does not change aslong as neither task receives service. Included in this class of agorithms
is the policy-driven scheduling algorithms of [BERN71]. Ruschitzka and Fabry extend the
work of Bernstein and Sharp by noting that, in general, time-invariant priorities are

characterized by a policy function of an arbitrary number of arguments.

3.2.2. Time-Driven Scheduling

The primary notion in time-driven scheduling [JENS85, LOCK86, TOKU87,
WENDS8S8] is that the distinguishing characteristic of a real-time system is the concept that
the value a task has to the system is dependent upon when that task completes. Each task
has associated with it a value function V,(t) which returns the value to the system for
completing task i at time t. The optimal schedule, therefore, arranges the tasks such that
they complete at times which maximize the sum of their values to the system. Jensen et al.
use this value sum as a metric for comparing the effectiveness of conventional scheduling

algorithms.

It was observed in [JENS85] that task scheduling in real-time systems almost always

uses some simple algorithm, like fixed priority, first in first out, or round robin. Often the

45

time-criticalness of the tasksis represented by a point in time called adeadline. Attempting
to meet deadlines via fixed priority scheduling algorithms leads to rounds of testing and
adjustment of the priorities, and results in a particularly fragile system. Assigning higher
prioritiesto important tasks does not reflect the time-constrained characteristic of the tasks.
Assigning higher prioritiesto tasks with nearer deadlines does not reflect the differencesin

importance among tasks.

The tasks with associated value functions do not employ the explicit use of a
deadline. Rather, the existence and importance of deadlines depend on the nature of the
valuefunction. A critical timefor atask isrepresented by adiscontinuity in the task’svalue
function. In this way the concept of hard and soft deadlines is replaced by a step function

whose shape reflects the urgency of completing before a certain time.

Jensen et al. create an environment in which various scheduling algorithms can be
evaluated through the use of a simulator. For tractability reasons the value functions are
limited to having two parts, one prior to and one after the critical time, each consisting of

the following five-constant form:

Vi(t) = Ky + Kt - K2+ K, e Eq3.2

This form allows value functions which are constant, linear, quadratic, exponential, or a

linear combination of any of these.

Jensen et al. report the simulation of several classical agorithmson atask set using
various shapes for the value functions. These algorithms included shortest estimated
completion time first, earliest deadline first, least dlack time firgt, first in first out, random
order, and a fixed priority where the priority was equal to the highest value that the value
function could attain. Two experimental algorithms were also evaluated. The first used a

value density (value at the projected completion time over the task length). The second

46

Exponential
\ Decay

Hard
\ Deadline

Parabolic

Window of
Opportunity

Deadline

Figure 3.1 —Value Function Shapes

algorithm used a nearest deadline first algorithm, shedding the tasks with the lowest value
densities during overload. Four shapes of value functions, shown in Figure 3.1, were used
in separate executions to compute the total value generated by each of the scheduling
algorithms. The results showed that the second experimental algorithm outperformed all
others tested; this algorithm, called the Best-Effort Heuristic, isthe focus of Locke's work
in [Lock86].

The implementation issues of time-driven scheduling, especialy using the best-
effort heuristic, are explored in [TokU87] and [WEND88]. It was concluded that the high

computational overhead of best-effort time-driven scheduling made implementation

47

impractical on a uniprocessor system. More reasonable performance could be gained by

using a dedicated processor for only scheduling decisions.

4 | mportance Abstraction

The importance abstraction is a framework within which we can describe
scheduling policies by focusing on the importances of the tasks within a system. Every
system has a goal and the tasks within the system are processed with the intent of meeting
the system goal. A task within the system is viewed as “important” to the system vis-a-vis
how that task can contribute to accomplishing the system goal. As the system progresses
and its state changes, various tasks become more or less important to the system. The
importance abstraction is a framework for expressing those conditions under which tasks

within a system become important to the system.

The importance abstraction includes within its framework sets of importance
functions that describe the tasks within a system, and a scheduler that uses the importance
functions to determine which tasks should receive service. By using this abstraction to
consider scheduling problems, we shift the emphasis from the analysis of the scheduling

algorithm to the analysis of a set of functions.

4.1. System Model

We define a system as any entity with the following components: a set of inputsinto
and a set of outputs from this entity, aprocessor, and a set of tasksto be processed, as shown
in Figure 4.1. The system “communicates’ with the world outside of it through its inputs
and outputs. The system reactsto inputs by changing the system state. The outputs from the
system reflect these and other state changes, and are the means by which the system may

affect the outside world. Since a system is designed to accomplish some godl, it is only

48

49

Inputs ——=

Outputs<——

Processor

Task Set

System

Figure 4.1 — The System Model

through these outputs that the degree to which the goal is accomplished can be gauged by

an outside observer. The system makes choices about when and what tasks to process such

that the system can move toward accomplishing its goal.

A network interface unit (NIU) is an example of a system that isitself acomponent
within alarger system. The NIU attaches the host system to the local area network (LAN).
AnNIU istypically afront-end processor that attaches to both the host’s backplane bus and
the physical media of the LAN, as shown in Figure 4.2. Note that the NIU alone forms a
system, taking inputs from both the backplane bus and the LAN, and placing outputs to
both as well. The entire network, including the NIU of each attached host, is aso

considered a system. Within a distributed system, as shown in Figure 4.3, the hosts and the

network are each subsystems.

/

Host NIU

Sh
B
u
S

_

LAN

Figure 4.2 — Network Interface Unit and Network “ Systems”

50

O

Host NIU NIU Host
LAN
Host NIU NIU Host

-/

Figure 4.3 — Communication “ Subsystem” within a Distributed “ System”

Since the system is designed to accomplish some goal, each task within the system
somehow contributes to accomplishing the system’s goal under system conditions and task
attributes which are specific to that task. As these particular conditions arise within the
system, the task becomes “important” to the system. At any particular point in time there
exists aranking of the tasks according to how important each task is to accomplishing the
system goal. If, at that moment, a“ most important” task exists, then the system could best
move toward accomplishing the goal by performing that task at that moment. As conditions
change, the importances of the tasks may change, and a new task may become “most

important.”

Just as the state of the system changes with time as work is performed on the tasks
and inputs are received, the composition of the task set also changes with time. At the
system start time, when the system begins at some initial state, there exists an initial task
set. As work is done on tasks within this set, the attributes of the tasks within the set
change—in particular, the “work remaining” attribute of the task currently receiving
service is decreasing. The membership of the task set also changes over time. Some tasks
complete and are removed from the task set. Other tasks may simply outlive their

usefulness and be removed from the task set. Still others arrive and join the task set.

51

Conseguently, we can think of a snapshot of the task set as being a “state,” and the act of
scheduling and servicing the tasks within the task set moves the task set from one state to

another.

4.2. Importance Functions

If the importance of a task could be quantified at every point in time, it could be
expressed as a function over time to profile a task’s importance to the system. Since the
importance of atask depends upon the conditions of the system and the attributes of that
task, these conditions and attributes must be the parameters to the function. If we can
identify each possible task in the system, and under what conditions that task will become
important to the system, we could associate with each task afunction that reflectsthetask’s

importance.

Consider atask set where each task in the set has associated with it afunction, called
an importance function, which includes all of the conditions and circumstances under
which thetask isimportant to the system. Let the function return avalue that ranks that task
among all other active tasks competing for a system resource according to how important
it isthat the task be given that resource at that moment in time. The importance abstraction
uses sets of importance functions as a representation of the task set with respect to how the
tasks within the task set should be ordered for service in order to accomplish some system

goal.

4.2.1. Setsof Importance Functions

Assume that, for a given system, there is an importance function associated with
each task inthetask set. Let I+ be aset of importance functionsfor thetask set T. The set |
embodies those attributes and constraints of the tasks in T and system parameters

considered important to accomplish a particular goal; therefore, we can consider the set of

52

importance functions as representatives of the tasks, and use these functions when asking

guestions regarding scheduling.

We can consider a universeof all sets of importance functions for the task set T,
U ={l;}, where each member of the universe imposes a schedule that will meet some
particular system goal. Not every member of the universe of importance function sets will
meet the same system goal; rather, it isthe system goal that partitions the universe into two
sets: those sets of importance functions which impose schedules which meet the system
goal, and those importance function sets for which the system goal cannot be guaranteed.
Thus, given agoa G, the universe U can be partitioned into Ug = {I; UG is satisfied} and
Ug ={I;0G isnot satisfied} .

4.2.2. The Defining Poperty of an Importance Function Set

Given atask set T within aparticular system, and agoal G for that system, we seek
the property Pg which defines the set Ug. We call this property a defining poperty Since
the goal G partitions the universe of importance function sets U into Ug and Ug, the
defining property Pg reflects those qualities of the sets of Ug that (1) make each set a

member of Ug, and (2) distinguishes each set from setsin Ug.

Since each importance function set in Ug imposes a schedul e that meetsthe goal G,
the schedules are termed equivalent The importance function sets that impose these
schedules are therefore members of an equivalence class. By discovering the defining
property of an importance function set which causes that set to belong to Ug, we can

determine if a given importance function set is a member of this equivalence class.

If the defining property holds for every member of the equivalence class and no
others, that defining property represents the necessargnd sufficientconditions on the set

of importance functions for inclusion in the equivalence class. If a property holds for a

53

subset of the equivalence class and no others, then the property is a sufficient condition for

inclusion in the equivalence class, but not a necessary condition.

4.3. The Scheduler

When a set of importance functions has been associated with a task set, the tasks
within that task set are scheduled according to the values of the importance functions. By
definition, the optimal scheduleis achieved when the scheduler chooses the most important
task (task with the highest valued importance function) at every point in time. Thus, at
every point in time the scheduler must evaluate the function, M:I; — T, which takes the set
of importance functions and returns atask. Without loss of generality assume that the tasks
in T areindexed, in no particular order, so that atask isidentified by itsindex. The function
M evaluates each importance function in the set 1+ and returns the task i 0 T whose
importance function has the maximum value at that point in time. If, at some point in time,
the scheduler finds that two or more tasks are most important simultaneously, the scheduler
will arbitrarily choose one of those tasks as the task to receive service, and will continue to

allow that task to receive service until some other task becomes most important.

We can express the actions of the scheduler with some mathematical constructs.
The boolean relation (M(I1) =1) returnsthe value 1 if the most important task at the time of
evaluation is the task i, and the value 0 otherwise.! By using this boolean relation as a
function of time, we can ask how long a specific task has been most important over acertain
period. Let the value w; ‘Ii represent the amount of work applied to the task i from timet;

totimet, (Appendix A describes in detail the properties of this construct). The equation

L The convention of usi ng a boolean expression within a set of parentheses to denote a function that
returns 1 if the boolean expression istrue and O if it isfalseis used in Graham, Knuth, and Patash-
nik’s book Concrete M athematics, Addison-Wesley, Reading, MA (1988); they attribute the con-
vention to lverson in the programming language APL.

t, .
Wi‘:i = [(M) =)t Eq4.1

shows the relationship between the importance functions and the amount of work done to
a particular task. This equation states that the amount of work received by task i over the
period from t; to t, is equal to the amount of time that the task i has been most important
from timet,; to t,. Note that if there are two or more tasks with equal importance at timet,

the function M chooses one of these tasks arbitrarily.

55

5 EXxpressiveness of the
| mportance Abstraction

The importance abstraction is a novel framework for expressing scheduling
policies. The actual scheduling algorithmissimple and universal: the scheduler choosesthe
most important task at every point in time. The most important task is found by evaluating
the set of importance functions that profile the importance of each task. By using afunction
to profile the task importance, the scheduler considers the conditions under which an
individual task becomes important without the scheduler or the scheduling algorithm
maintaining the state of these conditions for each task. This shifts the description of the
conditions for scheduling from the scheduler to the agents for the tasks. Consequently,
complex scheduling policies (e.g., those with many conditions for determining which task
isto be scheduled at any particular time) are easily expressed in the importance abstraction

while the same policies may prove difficult and cumbersome to express as algorithms.

Traditional scheduling policies are typically based on one or only a few task
attributes. Consequently, the algorithms that implement these policies use these attributes
when determining the schedule. For example, the nearest deadline first scheduling policy
considers only task deadlines; the algorithm dictates that the task with the nearest deadline
is always scheduled for service. These scheduling policies can be aso be implemented
within the importance abstraction by devising importance functions based on the task
attributed considered by the algorithms. The importance functions emulate the algorithm if
atask becomes most important exactly when the task would be schedul ed by the algorithm.

In this chapter we give several examples of traditional scheduling policies and show

56

57

importance function sets that implement the policies by emulating the agorithms

associated with the policies.

In addition to its ability to emulate the traditional scheduling algorithms, the
importance abstraction providesthe framework for implementing novel scheduling policies
not intuitive when using algorithms. We offer an example of such anovel scheduling policy,

and show how the policy can be expressed easily with importance functions.

5.1. Emulation of Traditional Scheduling Policies

An interesting and important aspect of the importance abstraction is the ability to
emulate traditional scheduling policieswithinitsframework. Theimportance abstractionis
said to emulate an arbitrary scheduling policy in that it makes exactly the same scheduling
decisions at exactly the same ti mel In the importance abstraction the act of scheduling
alwaysremainsthe same: choose the most important task to perform at each decision point;
the various scheduling policies are actually implemented by defining appropriate
importance functions. The importance functions must be defined in such away that atask
becomes most important at precisely the sameinstant as the conventional scheduling policy

would have chosen it.

First Come, First Served

Inthe First Come, First Served (FCFS) scheduling policy, the scheduler choosesthe
oldest of the active tasks to serve. That is, it finds the min(g,), where a, is the arrival time
for thetask i. To emulate this policy, we define importance functions for each task such that
the task’s importance is monotonically increasing with its age. There is an infinite class of

importance functions for which thisis true; we offer the most obvious:

L The concept of creating a framework within which to emulate other scheduling policies was first
presented by Ruschitzka and Fabry in [Rusc77] with the Universal Scheduling System.

58

_ 0 0,if (t<a)
gaoT), L) = %—&,if (t=a) Eq5.1

Consider four tasks with arrival times as follows;

task1l:a,=0
task2: a, =2
task 3:a;=3 Fas2
task4:a,=4

L et each task be associated with an importance function as defined above. Assumethat each
task requires 3 time unitsto finish. Figure 5.1 shows the graph of importance value versus
time as each task gets older. Notice at time 5 there are 3 active tasks. The scheduler will
always choose M(I1) which, for time 5, is M(1,(5)=3, 15(5)=2, 1,(5)=1) =2, so task 2 is

chosen.

task 3
task 4

Importance Values

task 1 task 2

time

Figure 5.1 — Importance Function Values for FCFS Policy

59

Nearest Deadline Fir st

Nearest Deadline First (NDF) is quite similar to FCFS in that we need a
monotonically increasing function based on the nearness of a point in time; while FCFS
uses arrival times, NDF uses deadlines as the basis for the importance functions. If the
scheduler could chose the minimum of some set of values rather than the maximum, we
could use the quantity d; —t, where d; is the task’s deadline. Since the scheduler aways
chooses the most important, then we need a function which is monotonically increasing:

the reciprocal of d; — t is one such function.

Consider the following importance function definition for each task:

- 0,if (t<a)
OG0T, 4O = od-n7if (d>t2a) Hq53
0 0, if (d;<t)

Further, consider a task that arrives at time 3 and has a deadline of time 10. Figure 5.2
shows the graph of the importance values over time for this task. Notice that there are two
discontinuities, one at the moment that the task becomes active and one at the moment it
misses its deadline. Also notice that the task becomes infinitely important just as the

deadlineis reached.

Priority Driven

Tasksranked by static priority are easily emulated by the importance abstraction by
defining the importance functions as constant functions refl ecting the rel ative ranking of the
tasks. Any constant values will work aslong as, for any two tasksi and j with priorities p;

and p;, priorities equal to or greater than 0, the following always holds:

pi>p 0 L® >0 Eq5.4

60

Importance Value

aulpoap

arrival

time

Figure 5.2 — Importance Function for an Nearest Deadline Task

An example of such afunctionis:

_ 0o, if (t<ay)
oGoT), L = EP f (2 a) Eq5.5

Rate M onotonic

Rate monotonic theory applies to those tasks which are periodic in nature; that is,
an instantiation of the task is activated exactly once per time period. The priority of atask
is statically assigned to be the inverse of that task’s period, p;. An importance function set

that emulatesthisis:

U
_ Di,if (yst<a +p)
oGoT), I (1) = OP; Eq5.6

O 0, otherwise
O

61

Least Slack Time

Theleast slack time policy chooses the task that has the |east difference between its
projected finish time and its deadline. Previously we have considered a deadline asthetime
by which the task must start. Here the deadline is the time by which the task must finish.
Slack time for task i is defined as dack=d, — I, —t, where |, is the task length. The
importance functions are easily given by replacing the d; quantity in the deadline driven

functions by the quantity d, - [;, thus:

- 0,if (t<a)
03G0T), LM = o(d -1, -0 7%if (d -1, >t= 4 Eq5.7
O 0,if (d -1, <t)

Round Robin

In round robin scheduling each of the n tasksisgiven an equal share of the processor
inturnuntil all ntaskshavereceived ashare. Although the order of serviceisarbitrary, once
established, the order is maintained for subsequent cycles through the task set until one or
more tasks complete or one or more tasksjoin. In general the share of the processor, or time
dlice, may either be fixed, and hence the period of the cycle varies with the size of the task

set, or the period itself isfixed, and hence the time slices vary according to the set size.
Consider a set of importance functions which take the form
l;(t) = sin(bt+c;) +d Eq5.8

where b determines the period, ¢; is the offset for task i, and d, if greater than 1, shifts the
function so that all values are positive. Let d = 1 and, for n tasks numbered O through n—1,
let ¢, = (2ru)/n. Figure 5.3 shows graphs of importance functions for four tasks. It is easily
seen that each task is “most important” for precisely 1/nt of the period, and that the order

of service remains fixed.

62

-

a

0

=~
APUWN =

Figure 5.3 — Importance Function Values for Round Robin Policy

5.2. Families of Importance Functions

Oftenitisinstructive to show afunction in its general form, as with lines (given by
y = mx+b) and circles (given by x>+y? = b?). Since the importance abstraction is based on
sets of functions, certain classes of functions, or families, can be expressed in general
parametric forms where specific values are assigned according to the application. Jensen,
in [JENS85], used a six parameter function to describe “value functions.” It is claimed that

the “value” of most interesting tasks can be profiled by

st

— 2 K

where appropriate assignments of the constants K; could produce value functionswhich are

constant, linear, quadratic, exponential, or alinear combination of any of these.

63

Theimportance abstraction allows task importance to be profiled using functions of
many forms. We have seen already how sets of functions can be used to emulate traditional
scheduling policies. Yet, for most of these examples, we have given specific forms of the
functions where the parameters are attributes of the task, like the task’s deadline. By
examining the general forms of some of these functions, the families of functions available
expand the expressiveness of the function form. For example, the nearest deadline first
policy may be expressed as shown in Eq 5.3; more generaly, however, the form of the

function could be given as

_ 9
LM = 57— Eq 5.10

B,(d; - 1)

where a; and 3; are constants specific to task i. A set of importance functions based on this
family may not necessarily provide nearest deadline first service, but rather exhibit
additional properties, such asgiving preference to meeting the deadlines of the most critical

tasks.

5.3. Novel Palicies using Importance Functions

The so-called traditional scheduling policies, and the algorithms that are used to
express them, often arise from the requirements of the scheduling mechanisms. Many
aspects of tasks and task sets, which should logically be expressed as scheduling
parameters, are ignored or simplified so that traditional scheduling mechanisms can be
used. One of the most popular scheduling policiesis priority ordering, where all aspects of
the task are condensed into asingle value. Another popular policy, rate monotonic, permits
us to make static guarantees about the schedulability of atask set, but the task set must be
expressed as a set of periodic tasks, even if thisis inappropriate to do so. The importance

abstraction, in addition to emulating traditional scheduling policies, alows us to focus on

Flow Sensor \ /
O
H Shut-Off
28 Switch
Pump 1 — —
Volume
N /Sensor
y
Y @ ol Pump 2

Y Tank 82

Figure 5.4 — Valve Configuration for a Process Control Example

attributes, conditions, or other events that are not traditionally parameters of scheduling

algorithms.

An example of parameters that are difficult to consider in traditional scheduling
modelsis continuously updated variables, as may be found in process control applications.
Values from sensors, for example, may affect the choice of tasks to process. For example,
a sensor may monitor the pressure on a pump such that when the pressure at the pump
deviates significantly from a normal value, the task controlling the pump becomes

important.

Let V be such a continuously updated variable such that the value of V at timet is
given by V(t). We can include this variable within a task’'s importance function by

composition:
(1) =f(V(D) Eq5.11

Consider a process control application where a single processor maintains two

pumps and a shut-down switch in a configuration shown in Figure 5.4. Pump 1 must

65

maintain a flow of X + x units per second into the tank. Some other liquid is entering the
tank at a constant rate. Pump 2 must ensure that the volume in the tank is maintained at
Y £y cubic units to ensure a proper mixture is produced. The Shut-Off Switch is used to
turn off Pump 1 and close avalve on the other pipe in case there is either too much or too
little volume in the tank, or if Pump 1 cannot maintain the proper flow. Assume that each
pump and the switch is controlled by a separate task. The flow maintained by Pump 1 is
given by F(t), and the volume within the tank is given by V(t).

We can define the importance functions for the three tasks that maintain these
devices such that the task controlling apump or the switch will becomeimportant whenever
that device needs attention. Pump 1 needs attention when the flow deviates from the ideal
value X by x; Pump 2 needs attention when the volume in the tank deviates from Y by .
The Shut-Off Switch needs attention when one of three events occur: (1) the volumein the
tank exceeds Y + Y, in which case the tank is in danger of overflow, (2) the volume in the
tank islessthan Y -y, in which case the tank isin danger of being empty and Pump 2 may
be damaged, or (3) the flow through Pump 1 cannot be maintained at X + x, in which case
the mixture is spoiled and any more work is useless. The importance functions below are

designed to ensure that these tasks are invoked at the proper times.

Define: A(t) = [F(t) - X

Eq5.12
A1) = V(D) - Y !
A (Y)y, if A (t) <X
L) = O 10y i)_ Eq5.13
0 Xy, otherwise
CA (D)X, if A(t) <
L) = O A A=y Eq5.14

0 Xy, otherwise

66

0 - Eb(y+ 1, if (A,()>X) or (8,0 >Y) bosie

0 0, otherwise
The values A (t) and A,(t) represent the deviations from the ideal values for the respective

continuously updated variables.

Note that the design of the importance functionsis based on the safety limits of the
system so that the safety of the system is directly related to the behavior of the functions.
Consequently, it is possible to know exactly which task will be most important under any
set of circumstances. In this example, the pumps are serviced according to which metricis
proportionally closer to its limit of deviation. These tasks attempt to correct the deviation.
If the volume in a tank exceeds its limit, something is wrong that cannot be corrected by
invoking the pump control tasks; the importance value becomes constant so that it will not
compete with the task servicing the Shut-Off Switch. The switch is guaranteed to be
serviced if the safety conditions are violated. Also, the functions are designed to alow a

task to become important as alimit is approached rather than after afault has occurred.

Consider conventional methods for servicing tasks in process control systems.
Polling loops are often used to “visit” each task in around robin manner. At each visit, the
task may find that corrections are required. A limit may be placed on how long atask is
serviced so as not to starve other tasks. Polling creates a lag time between the occurrence
of the problem and the servicing of the control task. The scheduler has no notion of the state
of the devices controlled by the tasks; rather, it is up to the tasks to investigate the status of
only the device for which it is the controller, and take action accordingly. Consequently, it
is much more difficult to assure safety to such a system since the safety depends upon the
worst case poll time. The poll time itself depends on the worst case time spent servicing

each of the other tasks. This service time should be long enough to allow the proper

67

corrections to be made (or satisfactorily started) but short enough to allow service to be

given to other tasks whose devices also have problems.

Some other methods are not appropriate. Static priority-based scheduling policies
cannot cope with the dynamics of the system. There are no deadlines in this system, so
deadline-driven policies are inappropriate. Since these tasks are not naturally periodic, rate
monotonic theory does not apply. Importance functions are a natural way to express the

conditions under which the control tasks must take corrective action.

6 Analyzability of the
| mportance Abstraction

In Chapter 5 we offered sets of importance functions that could emulate severa
traditional scheduling algorithms. In particular we have shown that priority-driven, nearest
deadline first, and rate monotonic algorithms are easily expressed in terms of functions. It
isinteresting to note that all three of these policies have the property that tasks are ranked
according to some criteria (priority, period, or deadline) and, once ranked, remain in this
ranking relativeto all other activetasksuntil sometask leavesor sometask arrives. Weterm
this property a static ranking. In this section we examine these three scheduling policiesto
determine the defining property and prove that the importance function sets given as
candidate setsfor emulating these policiesdo in fact meet the defining property. Sincethese
policies all present a static ranking, the proof that the candidate importance function set

meets the defining property is similar for each policy.

We continue by examining the nearest deadline first policy in particular. We prove
results about nearest deadlinefirst that are commonly accepted, namely that, for afixed size
task set and a priori task arrival knowledge, nearest deadline first will meet all deadlinesif
any policy can meet all deadlines. We then examine variations of thispolicy that are not so
restrictive: arbitrary arrivals, arbitrary arrivals with a second level of ranking,
heterogeneous task sets, and heterogenous task sets with arbitrary arrivals and critical

deadlines.

We conclude this chapter with a discussion of how the relationship between

importance functions, the system state, and which task is the most important. By

68

69

considering the set of system states, we can predict under what circumstances a give task

will be most important.

6.1. Policieswith Statics Rankings

Assume that a given system requires that, to meet the system goal, all tasks active
in the system must be ranked according to some criteria known at task activation. Further
assume that this ranking, once established within an active task set, does not change until
the composition of the task set changes. We term rankings that have this property static
rankings. Several well-known traditional scheduling policies (e.g., priority-driven, nearest

deadlinefirst, and rate monotonic) have this property of static ranking.

Therank r for atask is based on the ranking criteria; for a priority-driven system
this criteria is the priority, for rate monotonic it is the period of the task, and for nearest
deadlinefirst it is the deadline. Importance functions emulating these algorithms must use
thisranking criteriaas aparameter; moreover, at every point in time, the rank imposed must

be maintained by the importance functions. Thus, for all timet,

>0 () > 15 (1) O@,j 0T attime t) Eq6.1
Thisisthe defining property for all scheduling policies based on static ranking.

The proof that a particular importance function set meets this defining property is
trivial. For apriority-driven policy, the set of importance functions as given in Eq 5.4 meet

this property since, for all timet,
pi>p O Ii(t)>|j(t) O, OT attime t) Eq6.2
For rate monotonic, the priority is the inverse of the period, so the property holds in this

case aswell. For the nearest deadlinefirst policy, the ranking is determined by the nearness

of the deadline. Hence, for all timet,

70

1 1

>

0L >1() O@,jOTatmet) Eq6.3

o

Notice that this defining property does not state that all deadlines are met. The fact that, if
all deadlines can be met, the nearest deadline first policy will meet them, is a consequence
of the ranking and not in itself a defining property; the nearest deadline first policy isonly

asingle element in the set of policies that guarantee that all deadlines are met.

6.1.1. Deter mining Completion Time

For policies that have this static ranking property, it is more interesting to ask
guestions about the schedules imposed by the sets of importance functions. For example,
we can ask when a particular task will complete, or under what set of conditions will atask
miss its deadline. In general completion time is a difficult aspect to predict; for this
discussion we assume knowledge of the complete task set and the attributes of the tasks

within.

Assume that atask set T has cardinality n, and that the tasks within T have known
arrival times. Let g be the arrival time for task i. Without loss of generality we can order
the tasksin T such that the tasks are numbered from highest to lowest ranking. Hence, task
I has ranking greater than or equal to task j if i >j. Tasks with equal rank are ordered by
arrival; otherwise, arrival times have nothing to do with the ordering of the tasks in T.
Assume the importance function set for task set T is given by

0o, if (t<a;)

D(I DT), ll(t) i Erh if (tzai) Eq6.5

foralr,=0.

71

For agiven task j we seek the completion time ¢;. There may be sometasks of higher
importance that have arrived (become active) before a, and there may be tasks that arrive
after a; that are more important than task j. We can identify these more important tasks as
those having indices less than j. Those active tasks that are more important than task j at

time a will complete before task j can begin. Let p;; be the earliest time task j can start

given that no tasks arrive after a;:
max
Pi,1 = 1sisj—1(ci\ (g =ay) U(c<a+w)) Eq 6.6

This states that task j can start no sooner than the greatest completion time of the more

important active tasks.

But some tasks may arrive between a and p;; plus the amount of work left to
complete task j. During this period task j is subject to preemption by some higher ranking
tasks, thus possibly delaying the completion time of task j. We call this a “vulnerable
period.” Since we must consider this, let p; , be defined as follows:

max ‘oo)

P2 = 1<icj—10C (@=asp +w

i1

Eq6.7

This states that task j can finish no sooner than the greatest completion time of any tasks

arriving within the vulnerable period. We use the term Wj‘: (as defined in Appendix A)
j, 1

since this value reflects the amount of work left to do on task j after the time p; ;. By
considering the vulnerable period above, a new vulnerable period is created. To consider

this new vulnerable period as well, define p; ; as follows:

— max 00
Ps = 1<icj-1C (G=a=sp Wl)) Eq 6.8

i, 2

Continuing this chain of logic through iteration k:

72

_ max o0
Pik=1<i<j- (G (=g < pj,k—1+Wj‘pj'k_l)) Eq 6.9

Since there are n tasks in the set T, there can be at most n periods of vulnerability. Hence:

Mmax ‘oo))

Pin = 1<icj— 10 (g=a=p 1+ W, Eq 6.10

pj,n—l

Note that once p; = p; x+1 for some k we do not need to cal culate any more periods
of vulnerability, thus we can make the assignment p; , = p; . Task j will complete at timec;,

where ¢ is given by

Eq6.11

6.1.2. Meeting Deadlines

Since nearest deadline first is a static ranking, the result given in Eq 6.11 also
applies for schedules imposed using importance functions emulating the nearest deadline
first algorithm. Such a set of importance functions is given in Eq 5.3. We know from
[LIu73] that, if deadlines can be met for agiven task set, they will be met using the nearest
deadline first policy. However, Liu and Layland show this for a set of periodic tasks by
proving that nearest deadline first will schedule tasks to meet deadlines if the utilization
factor (the sum over all tasks of the ratios of work required to length of period) for the task
setis1or less. Unfortunately, the utilization factor proof in[L1U73] only holdsfor periodic
task (a counterexample: task 1 has arrival time a; =5, work required w; = 10, deadline
d, = 15, and task 2 has a, = 15, w,, = 10, d, = 25; the utilization factor is 2, yet the task set

isfeasible).

To show that the nearest deadline first algorithm will meet al deadlines for an
aperiodic task set if there exists any schedule which can meet all deadlines, we must show

that the completion timefrom Eq 6.11 for each task isalways|essthan or equal to thetask’s

73

deadline; that is, for each task i with deadlined;, ¢; < d.. We prove thiswithin theimportance
abstraction by using the property, given by Eq 6.4, for the importance function set used to
emulate the nearest deadline first algorithm. We also need the condition under which any
schedule will meet all deadlines. For a schedule to meet every deadline in the task set the

schedule must ensure that the following is true for all pointsin time:

AND
n

j
o 0
1<j< Z Wi‘t < max (d; - t, O)D Eq6.12
<j< &

-0

Thisis actually a set of conditions, all of which must be true. Consider t = 0. For
] =1, the amount of work done on task 1 over all time must not exceed its deadline. For
] = 2, the amount of work done on task 2 in addition to the work done on task 1 must not
exceed the deadlined,. For j = n, wheren = |T|, theamount of work done on all n tasks must
not exceed the deadline of task n.

Theorem 1

Given atask sat T for which there exists some schedule that meets all deadlines,
then a schedule imposed by the nearest deadline first algorithm will also meet all
deadlines.

Pr oof

Assume the tasks of task set T are scheduled by a set of importance functions for
which Eq 6.4 isaproperty. Let T be ordered suchthat d; < d, < ... <d,. Let task k
be the lowest indexed task for which ¢, > d,, where ¢, isthe completion time and d,
isthe deadline for task k.

There are two cases. First, if there is no idle time between time 0 and time ¢, then
the sum of all of the work done on all tasks over that interval is the length of the
interval and equals ¢,. Therefore:

n

Wil = o Eq6.13
i=1
Since the property given in Eq 6.4 holds for this task set, only the tasks whose
deadlines are d, or prior are serviced over the interval O to ¢,; we may rewrite Eq
6.13 as:

74

k
Cy _
1

Also, these tasks are run to compl etion before task k is completed, so we can replace
w, ‘ % with Wi:
0

z W, = C, Eq6.15

But the kI condition of Eq6.12, fort =0, states:

k
> wi| < max (d,=0,0) = d, Eq6.16
i=1

Since Wi\°0° equals all of the work required by the task, this expression in Eq 6.16

can be replace by the value wi:

k
> wi<d, Eq6.17
i=1

By substitution of Eq 6.15 into Eq 6.17, we arrive at ¢, < d,, a contradiction of our
initial assumption that ¢, > d,.

For the second casg, if thereis at |east one gap of idle time between time 0 and time
Cy, |t ty be the time when the last gap ends so that on the interval t, to ¢, thereisno
idletime. The work done over that interval must sum to the length of the interval:

n

C _ _
Zwi\t = ¢t Eq6.18
i=1 °

Since Eq 6.4 holds, no tasks of index greater than k will be serviced during this
interval, so we can change the upper limit of the summation. Also, since each task
with index k or less will finish before time c,, we can replace the expression w; \fk
with w;| ”: °
9
k
w|® = ¢ —t Eq6.19
i21 l‘tg © !

The KM condition of Eq6.12, fort =t,, yields:

75

k
> wi\:” < max (dy — ty, 0) Eq 6.20
i=1 ¢

By substitution of Eq 6.19 into Eq 6.20, we arrive at:

c.—t. <d -t
k k

9 9 Eq 6.21
C, < dy

Again, we find the contradiction.

Therefore, if there exists a schedule which can meet all deadlinesin atask set, then
the schedule imposed by the importance functions which emulate the nearest
deadlinefirst algorithm will also meet all deadlines. Since the importance functions
and the algorithm impose the same schedule, then the result holds for the nearest
deadline first algorithm as well.

For rate monotonic, each task is instantiated exactly once during the task’s period.
This instantiation must complete before its period expires and the new instantiation is
created. We can therefore think of each instantiation of atask as a separate task, and the end
of the period as that task’s deadline. In this sense rate monotonic is similar to the nearest
deadline first algorithm where the deadline d; is given by d; = & + T;, for T; the period for
task i.

6.1.3. Meeting Deadlineswith Arbitrary Arrivals

Theorem 1 assumes that the task set T has a constant cardinality n and is known a
priori. In asystem wherethetask set T cannot be known a priori, and where the cardinality
is not known to be a constant (i.e., there may be arbitrary future arrivals), we cannot prove
that all deadlineswill be met. We can, however, create atest which will identify as early as

possible when atask will missits deadline.

76

L et tasks be requested at arbitrary times such that the request time for task i isless
than or equal to the arrival timefor task i; that is, reg; < a;. Index the tasks such that, for all
tasksi,jOT

i>j0 (reg; <req) O ((req =req;) U (a<a)) Eq 6.22
Thus the tasks are indexed by when they are requested.

We need to define afew functions for convenience. Let D:T — N be afunction that
takes atask and returns a natural number representing the task’s current order with respect
to deadline nearness. If task i has the ji nearest deadline, then D(i) =j. Let D':N — T be
theinverse function which, given anatural number j, returns the task index whose deadline
is currently thejth nearest. Let n(t) be a function which returns the cardinality of theset T

at timet. The condition for meeting all deadlinesfor thetask set T at timet is:

D ()
AND [o 0
1<jsn() g2 Mool M@0 Eq6.23
1 =

This condition is similar to the condition given in Eq 6.12. This condition states
that, at sometimet and for all tasksj from 1 to the current cardinality of the task set T, the
sum of the work required by all tasks whose deadlines are priori to task | must be less than
or equal to the amount of time between the current time and task j’s deadline. We define the
term overload to be the state of the task set at time t such that Eq 6.23 is not true.

Theorem 2

Let T be an arbitrarily large task set containing tasks with arbitrary request times.
The nearest deadline first algorithm will meet al deadlines if any algorithm can
meet all deadlines.

Pr oof

Assume that a system requests work on tasks at arbitrary time such that the size of
the task set is not known a priori. Assume that task k is requested at time reqy, and
at that time an overload occurs such that some task m cannot meet its deadline using
the nearest deadline first algorithm. At time reg, we can construct atask set T, that

77

includes all tasks requested from time O to time reqy. Let these tasks be indexed
according to the nearness of their deadlinessuchthati <j Ul d;j < d. By application
of Theorem 1 we know that no agorithm can meet al deadlines if the nearest
deadline first algorithm cannot meet all deadlines.

6.1.4. Meeting Critical Deadlines, with Arbitrary Arrivals

One of the problems with apure nearest deadlinefirst algorithm isthat the tasks are
not otherwise ranked in the presence of missed deadlines such that the most critical tasks
are given preference at the expense of the least critical. The importance abstraction can
easily express this bilevel ranking, where the nearest deadline first policy is augmented by
considering a criticality measure associated with each task. Let us call this new for of
nearest deadline first the nearest critical deadline first (NCDF). From the representation of
the NCDF policy within the importance abstraction we seek the conditions under which a
given task k will meet its deadline, and from that prove that NCDF maximizes a quantity
based on the criticality of the tasks serviced.

Let each task i have two attributes: the deadline d, and a criticality p;. Assume that
the criticality p; is an element of L, where L is the set of natural numbers in the range
MINCRIT to MAXCRIT. To construct aset of importance functions which will implement
the NCDF policy we first define a few auxiliary functions for convenience. Define the

function Over:{ T} xtime — Boolean as:

D(j)
_ AND O oo N
Over (T,t) = 1<j< /T Dzle'(‘)t > max (d; - t, O)D Eq 6.24
| =

The function Over returns one if the task set T will not meet all deadlines at time t, zero
otherwise. Note that this is a functional representation of the conditions from Eq 6.23.

DefineCrit:L — [(T) asafunctionthat takesthecriticality level from the set L and returns

78

the subset of T that share this criticality level. Finaly, we define a function
InMostCrit: Txtime — Boolean that takes atask and atime and returns one if thetask isin
the set of taskswhose deadlines will be met because they are among the most critical at that

time, and returns zero otherwise. The function body is:

InMostCrit(i, t) {
T=0
for k= MAXCRIT downto MINCRIT do
for each j (I Crit(k) do
if not Over(T' O {j}, 1)
then
T=T0O{j}
endif
endfor
endfor
return (i 0 T')
}

Now for the importance functions:

0,if (t<a)
aoaoT), L, = o(d; —t)_l, if ((d;>t=a;) OInMostCrit(i,t)) Eq 6.25
O 0, otherwise

Given atask k with animportance function defined as above, we seek the conditions
under which thistask k will meet its deadline. Since we are now considering atask set with
arbitrary future arrivals, we cannot predict a priori that task k will meet its deadline; rather,
we can show the conditions necessary at certain points in time for task k to meet its

deadline. At time reqy, task k is schedulable if the following istrue:
D(k)

0 o0 U
=1

We must check this condition not at time req but every time arequest for serviceis made,

hence:

79

D (k)
AND (] o i W
t=reqj (reqy<req <d,) DDZ (Wp)|) (Pory 2P = (A=) 5 Eq6.27
1=1
This expression states that, for each timet that a new task arrives between the request of
task k and task k's deadline, the following must be true: the sum of the work remaining for
tasks whose deadlines are nearer than task k's and whose criticality is at least as great as
task k's must be less than or equal to the difference between task k's deadline and the time

we are considering.

Biyabani et al explore this kind of bilevel ranking in [BIYA88]. They offer a new
sematic for the term guarantee that reflects the uncertainty of the future task set
composition. They state that at request time atask is guaranteed to meet its deadlineif (1)
it isamong the most critical tasksin the current task set, and (2) the arrivals of subsequent
tasks do not cause thistask to leave the set of the most critical tasks. The system guarantees
that the most critical tasks will meet their deadlines; however, we cannot predict which

tasks will bein the set of most critical tasks.

We constructed the importance functions so that only the most critical tasks are
serviced to completion. When the system presents more tasks than can be serviced without
missing a deadline, some tasks must be pruned. The condition InMostCrit is used within
the importance functions of Eq 6.25 to do this pruning. We can quantify how well the goal
of meeting most critical deadlines is being met by summing the criticality values for all

tasks whose deadlines have been met by time t. Define the quantity CritCount(t) as:
n(t)
CritCount(t) = z (wi\: > W) p; Eq 6.28
i=1 '

When the work done on atask i is greater than or equal to the work required, the criticality
value of task i is added to the criticality count CritCount. Because the NCDF policy is

80

greedy, we expect the CritCount for the schedule produced to be optima among all

policies. The following lemma supports a theorem that proves that NCDF is optimal with

respect to maximizing this quantity.

Lemmal

Pr oof

O

Any task set that is schedulable by the nearest deadline first (NDF) policy is aso
schedulable by the NCDF policy

Let T be atask set that is schedulable by NDF. Thus, by Eq 6.23 we know that, for
al timet, the following is true:

D()
AND [o 0
1<jsn() p2 Mool <mx@ 0 Eq6.29
| =

Since the only difference in NDF and NCDF is the presence of the condition
InMostCrit, as long as InMostCrit is true for some task i over all timet, then task i
will be scheduled by both algorithms at exactly the same time, for exactly the same
duration, and having exactly the same completion time. Let task k be a task
schedulable by NDF but not by NCDF. Thus, InMostCrit(k,t) must not be true for
sometimet. Thisimplies by Eq 6.24 that

D(k)

izle.(i);” >d, -t Eq 6.30

But from Eq 6.29 we know that
D(K)
i=1

Thisis acontradiction.

Theorem 3

The NCDF policy maximizes the criticality count CritCount at time t among all
scheduling policies.

81

Pr oof

Assume that there exists some scheduling policy A that, at sometimet, produces a
schedule that has a higher value for CritCount than NCDF. Let T bethe set of tasks
scheduled by policy A by timet, and Tycpg be the set of tasks scheduled by NCDF.
If these tasks are equal then their CritCount values must also be equal and thus we
have a contradiction.

If the task sets are not equal, then the set of tasks chosen by policy A must contain
some tasks not chosen by NCDF. For the quantity CritCount of Tx to be higher than
that for Tycpp policy A either scheduled more tasks or instead scheduled tasks of
greater criticality. By Theorem 1 we know that the task set T can be scheduled by
NDF. By Lemma 1 we know that any task set schedulable by NDF is also
schedulable by NCDF. Therefore, policy A could not have scheduled more tasks
than NCDF; instead, to have a higher value for CritCount, policy A must have
scheduled different, more critical tasks.

Since, at every point in time, NCDF chooses the most critical task with the nearest
deadline, any more critical tasks chosen by policy A, and therefore schedulable by
both NDF and NCDF, would have a so been chosen by NCDF. Thus policy A could
not have scheduled more critical tasks than NCDF, and a contradiction results.

6.1.5. Heterogeneous Task Set

Consider atask set that contains some tasks that are only deadline-driven and some

tasks that are only priority-driven. Because the priority-driven tasks do not have a time

constraint, most policies schedule the deadline-driven tasks first and use any remaining

processor cycles to service the priority-driven tasks. Policies of this type are easily

constructed within the importance abstraction by using the following importance functions:

Let T, be the subset of T that are deadline-driven tasks and T, be the subset of T that are

priority-driven tasks. Let p be equal to MAXCRIT. Theimportance functionsfor both types

of tasks are given by:

(=97 +p,if (10Ty0a<t<d)

O@aoT) (M) =0 p, if (iI0T,0a<t) Eq6.32

. 0, otherwise

82

Since the importance of adeadline-driven task isaways higher than the importance
of any priority-driven task, Theorems 1 and 2 from the previous sections still hold. A
characteristic of schedules produced using this set of importance function is that priority-
driven tasks are always deferred until there are no deadline-driven tasks in the set to be
serviced. Thus, as a consequence of trying to meet the deadlines of the tasks of subset T,

the priority-driven tasks must wait until there are no active deadline-driven tasks.

Consider a system that must meet all deadlines as well as attempt to minimize the
average response time to the priority-driven tasks. If there is no stated benefit from
servicing the deadline-driven tasks sooner rather than later, as long as the deadline is met
if it can be met, then we want a schedule that defers deadline-driven tasks to the last
possible moment. Unfortunately, deferring deadline-driven tasks without a priori
knowledge of future task arrivals may indeed cause some deadlines to be missed where not
deferring the tasks (as with NDF and NCDF) would have met the deadlines. Consequently
there must be restrictions on the task set in order to explore a policy that uses
procrastination of deadline-driven tasks to reduce the response time for priority-driven

tasks.

Clearly, the most conservative restriction is to require a fixed size task set that is
known a priori. Let each of thentasksin T beindexed thus: tasks 1 through m are elements
of Tp and are ordered by increasing arrival times, and tasks m+1 through n are the elements
of Ty and are ordered by increasing deadlines. To keep the procrastination of deadline-
driven tasks from causing some task’s deadline to be missed, the latest possible starting
time for agiven task i such that it can still meet its deadline must be determined. Define s
to be thislatest possible starting time:

_ j
= min -
S = <i< rl(dJ |(Ziwk) Eq6.33

83

The restriction of a fixed size task set known a priori can be relaxed to alow
arbitrary arrivals with conditions placed on when the request for service for each task is
made. Assume that the tasks are now indexed by their request times such that
i <j O reqj <reqg;. The restriction must ensure that, if any two tasks deadlines are
sufficiently close together, then the tasks must be requested appropriately. Recall that D' (i)
returns the index of the task whose deadline isthe it nearest. If the difference between the
deadlines of tasks D'(i+1) and D'(i) is |ess than the quantity wpj+1), then it is possible for
task D'(i) to be deferred in such a way as to interfere with the meeting of task D'(i+1)’s
deadline. Both tasks can be taken into account if the task whose deadlineis later is known
about at the same time as or before the task whose deadline is nearer. Specifically, the
request times for tasks D'(i) and D'(i+1) must be ordered such that:

Rewriting Eq 6.33 to reflect indexing tasks by request time order, the latest starting
time for sometask i isgiven by:

. i
- min B
ST D (i) <] g‘Td‘(dD' (i) kZiWD'(k)) Eq 6.35

In either case, a set of importance functions for a procrastination policy is:

D(Oli-t)'1+p, if (i0Ty0s<t<d)
O@oT) (1) = O p, if (I0T,0a<t) Eq 6.36
- 0, otherwise

6.1.6. Heter ogeneous Task Setswith Critical Deadlinesand Arbitrary Arrivals
We can combine the conditions from the importance functions of Eq 6.25 and Eq

6.36 to form a set of importance functions that provide guaranteed service to the most

critical deadline-driven tasks while minimizing the average response time for tasksthat are

priority-driven. Assuming the restrictions on the request times for the task set as given in

Eq 6.34, the importance functions are:

0(d. =) 7hif (i0Ty)
O(sst<d)
OInMostCrit (i, t)

p, f(I0T,Ua<t)
0, otherwise

aaagm) I () = Eq 6.37

OoOooodod

In the nearest deadline first policy processor idle time occurs only after the
deadlines of all of the active tasks are met. With a heterogeneous task set, theidletimeis
used to service the priority-driven tasks. When the deadline-driven tasks are deferred until
the last possible moment, the priority-driven tasks are serviced sooner, thus moving theidle
time in between the servicing of tasks from T, and tasks from Ty. Thefinal variation on the
nearest deadlinefirst policy presented here observes that, although there may be no benefit
from servicing deadline-driven tasks earlier than later, there is no benefit from waiting to
serve them while idle time exists. We construct a set of importance functions that
implement a policy that (1) meets the deadlines for tasksin Ty, (2) prunesthe least critical
deadline-driven tasks when necessary, (3) reduces the response time for tasksin Ty, and (4)

eliminates processor idle time if any task is active.

Define the function Active:{ T} — Boolean to take a task set and return the value
oneif the set has any tasks which have arrived but for whom service is not completed, and

return value zero otherwise. The set of importance functionsis:

85

O -1 g /-
Od,—-t) ~if(i0Ty)
O(sst<d)
OInMostCrit (i, t)
Eq 6.38
p;, if (I0Ty0a <t<s, DﬂActive(Tp))
p;, if (i DTpDaist)
0, otherwise

oGEoT) 1t =

OoOoOoOogooO

Schedules produced using these importance functions will service deadline-driven
tasksin criticality order during what would have been idle time until either some priority-
driven task becomes active or the current time equals the latest possible start time for this

task.

Since servicing tasks from Ty during theidle time will affect the latest possible start

time, the term s; can be made into a continuous function s;(t):

.]
— min - ©
Sl(t) ™D (I) Sj < ‘Td‘ (dD) kZiWD' (k) ‘t) Eq 6.39

Replacing s; with s(t) in Eq 6.38 will constantly update the latest possible start time. As
thistime is made | ater, the priority-driven tasks are given longer service times before being
preempted for the deadline-driven tasks. Thisfurther reduces the average response time for
tasksin Tp,.

6.2. Projections

In Section 5.3. we constructed an example that showed that importance functions
could be used to express scheduling relationships based on continuously updated variables.
The design of the importance functions given in Eq 5.12 through Eq 5.15 was based on the

safety limits of the system. As a consequence the safety of the system is easily proven.

86

Given aset of importance functions and asystem state, system designers can proj ect
which task in the set will be most important by applying the parameters that make up the

system state to the importance functions. This suggests the following equation:

M (set of importance functions x system state) = the most importanttask ~ Eq 6.40

The system designer can also derive the conditions under which one of the tasks of
the task set will be the most important task. This requires determining the set of system
states for which the given task’s importance function evaluates to a greater value than the

importance functions of any other task in the task set.
Consider the importance functions given in Eq 5.12 through Eq 5.13:

Define: A(t) = [F(t) - X
Ay(t) = [V(t) - Y]

Eq6.41

CA,(Yy, if A (t) <X
L) = O 10y i)_ Eq6.42
] Xy, otherwise

CA (D)X, if A(t) <
LM = O A A)_ Y Eq 6.43
0 Xy, otherwise

() = Eb<y+ 1, if (A,(t)>x) or (A1) >y) Eq 644

0 0, otherwise
Here, the values of F(t) and V(t), expressed through A, (t) and A,(t), represent the system
state, and hence determine which of the tasks are most important. We can determine the
conditions under which each task will become most important by examining the
interactions of the various of the functions. When both Aq(t) < x and Ay(t) <, task 1

becomes most important if 1,(t) > I5(t):

87

A)y > A% Eq 6.45
X
A1) > Az(t)g, Eq 6.46
In terms of F(t):
F(t) - X > Az(t)§ Eq6.47
X X
X-= Az(t)g, >F(t)>X+ Az(t)y Eq 6.48

By similar derivation, task 2 is most important when V(t) is bounded as follows:
Y—A(t)¥>V(t)>Y+A(t)Y Eq 6.49
M x ™ x '

Task 3 is most important if either A,(t) >x or Ay(t) >y since these conditions
represent when the system is not operating safely. In this exampl e the system the conditions
for safe operation is precisely the conditions task 3 to become most important. In systems
where safety is essential, the importance functions offer an opportunity to use the

expression of the safety conditions directly in the scheduling process.

4 Implementing the Importance
Abstraction Efficiently

The scheduler within the importance abstraction logically consists of afunction M
that returns the most important task at the moment the function M is evaluated. In the
general case, importance functions can be arbitrarily complex. To ensure the service of the
most important task at every point in time, the function M must be evaluated at every point
in time. This assumption serves a purpose for the theoretical analysis of sets of importance
functions, but for real systems, an implementation of such a scheduler would be

impractical.

Although the importance abstraction places no restrictions on the complexity and
composition of the set of importance functions profiling the task set for a particular system,
it is clear that certain sets of importance functions may have properties which lead to an
efficient implementation of the scheduler. These properties form two main classes: those
sets of importance functions for which discrete evaluation points can be determined, and

those sets of importance functions for which discrete evaluation points must be assigned.

7.1. Discete Evaluation Points

There are two ways to determine discrete points in time for importance function
evaluation: (1) find the points of intersection of the importance functions, and (2) determine
when the parameters to theimportance function may change. Using theintersection method

may be more efficient in terms of reducing the number of evaluation points; keying on the

88

89

parameters may be easier to implement if the changesin the state or val ue of the parameters

can be signaled, as with an interrupt.

With theintersection method we begin with the highest-val ued function at this point
in time. By pairwise evaluation we can determine when the next intersection point will
occur, and as a consequence which function will be the next highest-valued function, since
after this point of intersection another task will become more important than the currently
most important task. The importance function of the new most important task is used in the
pairwise evaluation to determine the next point of intersection, and hence the next
scheduling point. Unfortunately, in the general model importance functions can be
arbitrarily complex, and finding intersection points can be quite difficult. In fact, for
functionsof degreefour or greater, itisimpossible, in general, to find theintersection points
of any two given functions. Even degree three is difficult, although there exists a closed

form expression for finding the roots.

The other method for determining evaluation points is to use changes in the
parameters to the functions to signal reevaluation of the functions. Many of the system
characteristics which may be used as parameters to the importance functions change at
discretetimes astheresult of an “event.” If these discrete times can be known a priori, then
these times can be built into the scheduler. If the events are signaled by the system, then the
scheduler can use this signal. An important example is the set of parameters whose values
are determined after asystem interrupt. If it can be shown that the importance functionswill
maintain a stable relative ranking until one of a set of identifiable events occurs, then the

scheduler can use that set of event signalsto determine the scheduling point.

It isworth noting that there is an efficient implementation for each of the examples
in Chapters 5 and 6. The scheduling algorithms for which static rankings exist are

particularly easy since the discrete events necessary to awake the scheduler are the arrival

90

and departure of tasks. The example in Section 5.3. uses continuously updated variables—
in the theoretical domain these variable are updated infinitely often. Since the sensor
devices take an analog input and convert it to a digital reading, the devices are actually
reporting readings at a discrete rate. Since the importance functions given for this example
use these sensor values, the scheduler need only be invoked when any one of the values

change.

7.2. Approximations

For some situations it may not be possible to discover simplifying aspects of the set
of importance functions. Consequently, in this case the scheduler must evaluate every
function in the set of importance functions as often asis possible. Unfortunately, it may be
impossible to assure that the most important task is being scheduled at every point in time,

and thusin this case the implementation only approximates the importance abstraction.

The value of the function at its time of evaluation approximates the value of the
function until the next time the function can be evaluated. Furthermore, if there are no
paralel evaluations, the values will be the result of evaluations of each function at a
different time. Fortunately, this is a common problem in real computing systems, so the

solutions are not esoteric.

The degree of imprecision tolerable by a specific system is system-dependent. By
system examination the worst-case time between evaluations can be determined. If the
system can tolerate the possibility of the wrong task being serviced for at most the worst-
case amount of time, then the approximations are adequate for the system. Returning to the
novel example of Section 5.3., we can consider invoking the scheduler only after any one
of the continuously updated variables changes by a set amount. The analysis of the system

suggested in Chapter 6 must take these approximations into account.

91

If the system cannot tolerate the degree of imprecision inherent, the importance
abstraction can be implemented in dedicated hardware. If a digital processor is used, the
approximations till exist but the worst-case time between evaluations may be reduced to a
tolerablelevel. An analog device may be used, eliminating the need for approximations, but
this introduces a problem with how often to sample. Again, some degree of precision will
be lost as the continuous functions are represented and evaluated by an inherently discrete

system.

8 The Communication Subsystem

Each task in a system has some inherent importance, and when atask endeavors to
communicate with another task, the communication between the two tasks also has an
importance. This importance is derived from how important it is for the sending task to

convey itsinformation and how important it is for the receiving task to receiveit.

We use the term communication to denote atransfer of data between two (or more)
physically separate tasks. This communication is initiated when a sending task issues a
request to the communication server. The request has as one of its parameters the datato be
transferred; this datais bundled into a message for use by the communication server. The
receiving task also issues a request; it asks the communication server to notify it when a
message arrives for it. It is what happens within the communication server, and the
relationships among the importance values of the tasks using the communications and how

the communi cations themselves are treated, that are the topics of this chapter.

One of the advantages to using a local area network for communication is the
economic impact of replacing point-to-point wiring with a common communication
medium. A disadvantage that follows directly is that the network becomes a shared
resource that must be managed and whose access must be arbitrated. Viewed separately, the
communication server isa*“system” as defined in Chapter 4, and the tasks are the requests
made to it by the users. Within the system, however, there are severa other distinct places
where the system model can again be applied: at the message level, where the messages
competefor buffersand processing; at theinternetwork level, where the constituent packets

of a message compete for route-related resources; and at the medium access control level,

92

93

where the stations compete for placing their packets onto the physical medium. In general
there can be arbitrarily many such points of contention, and at each of these some
discrimination policy must be in place to determine the order of processing. Although it
would seem that all of the discrimination policies within a communication subsystem

should work toward a common master policy, in practice thisis seldom the case.

In this chapter we present the common approaches currently employed to provide
some form of discrimination of important versus unimportant communication. We next
briefly review the standard communication architecture and provide more detail on several
of the layers implementing the data transfer services. We then consider how to apply the
concepts of using importance functions within the communication subsystem, and discuss

the issues raised and the advantages presented.

8.1. Discrimination Techniques

A discrimination technique is the method by which different levels of service can
be applied to communication requests. Message discrimination techniques can be divided
into two general approaches, as shown in the taxonomy given in Figure 8.1. These
approaches are priorities and levels of service. Priorities are values assigned to messages
for use in ordering the messages at decision points. The priority value may be static, that
is, fixed over a message’s entire lifetime, or it may be dynamic, and change with varying
conditions within the system. A level of service specifies the message's privileges, such as
the amount of time allotted to service messages of this level, permission to bypass flow

control constraints, or permission to preempt other messages.

8.1.1. Priorities

Prioritization isthe most popular method for discriminationin anetwork. A priority

is a mechanism by which a message has a relative value assigned to it for use during

94

Discrimination

Techniques
/\
priorities levels of service
/\ /\
static dynamic two-level multi-level
/\ /\
1 2 - 2 function function
of message of system

characteristics characteristics

Figure 8.1 — Taxonomy of Discrimination Techniques

competition for resources. This value, therefore, imposes some ranking on those messages
competing for service. The server chooses the highest priority message each time it can
make such a choice. Within a distributed computing environment, this satisfies, at least

nominally, the users' concerns that some communications are more urgent than others.

Several observations, however, pervade the use of priorities. First, if the
architecture is layered according to functionality, as has become the universal approach,
there is possibly a set of one or more queues at each interface between layers where each
layer may dictate its own priority scheme. For example, there may be a medium access
control servicewith eight prioritiesfor providing some ordering to all messages attempting
to access the medium, an internetworking service that has no priority structure, and a
reliable end-to-end service with asimple two-value priority for providing some ordering to
the protocol processing within the transport layer—yet there may not be a clear mapping

among these layers. Using the common token ring local area network as an example, the

95

two priority levels of this transport layer must somehow be mapped (through a
nondiscriminating network layer) into a specification of time values expressed in
milliseconds which limits the token rotation time around a physical ring. No such mapping
exists, yet the performance seen by each level of priority at the transport layer iscompletely
dependent on how this mapping is done. In general, the meanings of priority valuesremain

consistent only within each layer.

Second, locally generated priorities may affect the way in which the messages are
handled by nonlocal agents. Consequently, the priority scheme must be globally
administered to ensure that each priority level has the same meaning at each processing
point. Priorities can only be effective if every participant agrees with and adheres to the

meanings of the various priority levels.

Third, no communications protocol in common use completely avoids the problem
of priority inversion, where a message of lower priority prevents a message of higher
priority from being served. Consider a medium access control layer where no preemption
of messages is allowed while they access the medium. Once a message is granted access,
no other message, regardless of its priority, can be serviced until the current message
completes. If the second message is actually of higher priority than the first message, a
priority inversion occurs. (We examined the effect on priority inversion and performance
of having a preemptable MAC service in [STRA91].) In genera protocols trade some

priority inversion for reduced complexity, efficiency, and performance.

Fourth, priority schemesin most extant standards are static—that is, once assigned,
the priority value is unchangeable. In many implementations of medium access control
protocolsit is impossible to change the priority of a message once that message has been
enqueued for transmission. Yet static priority isnot responsive to the dynamic nature of the

environment, nor does it represent time constraints appropriately. Messages that spend a

96

significant portion of their transfer time in queues within stations may benefit from a
dynamic priority scheme. For example, Gaitonde et al., in [GAITI0], explored changing
priorities on certain messages as those messages aged in the communication subsystem,

and found this to improve service.

Finally, the additional protocol processing required to use priorities may cause
significant overhead. Employing prioritization mechanisms often wastes bandwidth as the
stations on the network try to determine which among them has the highest priority
messages. Peden has shown that average delay increases and overall throughput decreases
when a priority scheme is implemented [PEDE88]. The need to order messages must

outweigh this drawback for priorities, or any discrimination technigue, to be effective.

Conseguently, in current practice there is no overall consistent end-to-end view of
priority. Protocol standards are developed by different groups than those who design and
develop the operating system and the task scheduling scheme. Even within the
communication subsystem the standards for each layer are developed by different groups
with different objectives. Yet clearly the service characteristics of the tasks using the
communication subsystem are directly affected by how each component of the
communication subsystem handles requested communications. The only way to make
statements about task service timesis to have a consistent approach to scheduling service

a al layers.

8.1.2. Levels of Service

Prioritization of messages represents one way to provide different levels of service
to various users: by affecting the ordering of messagesfor service some messageswill have
quicker response times (the delay between the request for the communication and the

acknowledgement that the request has been completed). In general, however, providing the

97

user with various levels of service encompasses more than just message ordering. Each
message must be processed by the service providers within the communication subsystem.
Certain constraints are placed on the processing of the messages, including the amount of
time alotted for processing these messages, the number of outstanding messages allowed

by the flow control procedures, or the rate at which messages may be transmitted.

Communication protocols endeavor through offered levels of service to guarantee
certain aspects of the message exchanges. Ferrari [FERR90] compares these guarantees to
a contract established between the service user and the service provider: if the user meets
certain conditions concerning its service requests, the communication subsystem will

provide the level of service required.

One approach to providing several levels of service in acommunication subsystem
startswith two basic levels: anormal service and an expedited service. In the Transmission
Control Protocol (TCP, [DARPA81a]) and the 1SO Transport Protocol Class 4 (TP4,
[1S08073]), the normal serviceisfor common communication, while the expedited service
bypasses flow control constraints as well as assuming a higher priority in processing. By
ignoring flow control constraints the expedited messages may overwrite normal messages
waiting in message buffers; however, no expedited message will be delayed while waiting
for buffersto become free. Along these lines we can consider adding anew level of service
called preemptive. This level allows a service that not only bypasses flow control but
preempts messages even asthey are being processed. By analogy, afiretruck is* expedited”
sinceit may ignoretraffic signals, whileafiretruck with aplow onthefront is“preemptive”

since, with the plow, it can also push cars out of the way.

Dempsey et al., in [DEMP92], explore the idea of allowing a user-specified degree
of reliability such as may be useful in time-constrained communications where progressis

more important than completeness. The user indicates what density of errors (the number

98

of lost packets per any set of n contiguous packets) is permissible without the transmission
loosing its meaning; such service is thought to be useful for audio and video data

transmission.

Time-divison multiplexing is another place where levels of service can be
established. An example of thisis the timed-token approach in the Fiber Distributed Data
Interface (FDDI) standard [ANSI86]. In FDDI, a certain class of messages, called the
synchronous class, requires at least some minimum amount of service each time period. A
second class of messages, called asynchronous, may utilize the timeleft over. For messages
that require service at precisely the same time each period, new enhancements to FDDI

provide a class of service called isochronous.

Asobserved with priorities, thereisno consistent end-to-end view of offering levels
of service. Between any two layers of the communication subsystem, including the tasks
that use the communi cation services, thereisno general rule for mapping one layer’slevels
of service into the levels of service of the other layer. Thisis compounded by the fact that
each layer has a set of functions specific to that layer, and these functions may be reflected
in what levels of service are offered. Again, a consistent approach is required before any

statement about the service can be made.

8.2. Thel SO Reference M odel

In 1984 the International Organization for Standardization (1SO) presented the
Open Systems Interconnect (OSI) Reference Model [1SO7498], shown in Figure 8.2), and
this model has since become the means by which the division of functionality and service
are described within a communication subsystem. From bottom to top, the physical layer
defines how bits are represented on the physical medium. The data link layer, of which the

medium access control (MAC) and the logical link control (LLC) are sublayers, governs

99

the framing of data bitsinto units called frames, or packets, and arbitrates station accessto
the physical medium. The network layer provides the mechanism for connecting several
network segments to form an internetwork such that the packets can be routed across
segment boundaries. Thetransport layer ensuresreliable, end-to-end delivery of arbitrarily
large messages; these messages are segmented into bounded-size packets which are error
controlled. The session layer uses synchronization points to provide dialogue control. The
presentation layer addresses disparity in data representations. The application layer offers
services to the communication user built upon the functionality of the six layers below and

that are specific to that user’s needs.

APPLICATION

APPLICATION

PRESENTATION PRESENTATION

TRANSPORT TRANSPORT

/ Router \

DATA LINK DATA LINK DATA LINK DATA LINK

PHYS CAL

PHYS CAL PHYS CAL - PHYS CAL

\J

Figure 8.2 — The OS| Reference Model

100

For this chapter we examine primarily the data delivery services of the transport
layer and below since this portion of the layered reference model represents the minimum
functionality that is required for a robust data delivery service over a general network
topology. In this section we discuss in more detail the functions of the MAC, network and
transport layers, especially the current approaches to providing a means for discrimination

of certain datain favor of certain other data.

8.2.1. Media Access Control Layer

The protocol imposed by the medium access control layer within a station governs
the access by that station to the shared physical medium. Stations are distributed about the
physical medium and are provided access to this medium by the MAC layer. The set of
MAC implementations around the physical medium work collectively to impose some
policy for access. Thereisaqueue of requests for access at each station, as shown in Figure
8.3; the MAC implementations in each station exchange queue information to determine

which station may next satisfy arequest.

Physical Medium

Figure 8.3 — Medium Access Control

101

Since each station’s MAC protocol must work in concert with all other MAC
protocols to provide an access policy, some mechanism independent of the data transfer
must allow these MAC protocolsto communicate. Ethernet [METC76], and its standardized
counterpart, IEEE 802.3 [IEEE85c], passively monitor the medium to determine when
access can be granted. Since this method can produce collisions, backoffs and retry
mechanisms are included within the protocol. Other protocols are more active in granting

access: | EEE 802.4 Token Bus[I EEE854], | EEE 802.5 Token Ring [|EEES5h], ANSI Fiber

Distributed Data Interface (FDDI [ANSI86]), and the SAE High Speed Ring Bus (HSRB
[SAES87]) all use special frame types called tokens to grant access permissions. The Dual
Queue Dual Bus (DQDB [IEEE89]) uses each of itstwo busses to carry access requestsfor
the other bus. Two other access methods include register insertion, where messages are
inserted onto the medium via buffers called registers, and dotting, where slots for

transmitting are assigned to stations.

Arbitrating access to the physicak medium is often augmented by some
discrimination scheme. Discrimination at the MAC layer generally requires (1) knowledge
of what packets are enqueued at this station, and (2) what priority level isthe highest among
al other stations. How this information is used distinguishes the various methods of

medium access.

Ethernet and IEEE 802.3 explicitly state that no priority mechanism is to be used
since each station is a passive participant. As long as no collisions (two or more stations
attempting to access the medium at the same time) take place, access is granted in FIFO
order; when collisions occur, the binary exponential backoff scheme perturbs the order of

access, possibly producing a LIFO order for some period of time.

Token-passing protocols use a special frame called a token as a “permit” for

transmission. Stations using token passing protocols are generally organized into alogical

102

ring, whether or not a physical ring topology is present. When a station sees the token and
meets certain requirements, that station may capture the token and commence transmission.
When required to cease transmission, the station passes the token to alogical neighbor that

then may captureit.

Token-passing protocols are divided into two major groups:. timed token and token
reservation. Timed token protocols, notable among them | EEE 802.4 Token Busand ANSI
FDDI, circulate atokenin logical ring order such that the each station is granted permission
to transmit packets for a bounded amount of time. Each level of service will be given a
target token rotation time which specifies that a token granting permission to transmit
packets at this level will arrive before this target rotation time has elapsed. Due to this

assertion timed token protocols are often termed “ deterministic.”

Token reservation protocols, such as |EEE 802.5 Token Ring and SAE HSRB, use
the token both for granting permission to transmit as well as for polling the stations to
determine which among them has the highest priority packet. When the token is captured,
it becomes the header for the packet being transmitted. The packet makes a compl ete tour
of the stations on the ring, during which each station may bid on the next priority level
based on the packets within that station. The token is reissued by its current captor at the
highest bid, which is the priority of the highest priority packet enqueued at all of the

stations. In this manner packets are (nearly) ordered by their priority.

8.2.2. Network Layer

The network layer has the responsibility of directing packets from one network
segment, through devices called routers, to their destination network segment and station.
This is accomplished by the cooperation of the network layer protocols in the stations

across the internetwork. A source station places an address in a network layer packet,

103

endowing it with enough information to direct its handlers (i.e., the routers) to deliver it to
the destination station in the destination network segment. Some addresses carry specific
routing information, while others depend on routing databases or routing algorithms to
guide the packetsthrough the internetwork. In general, however, the address pair consisting
of the destination station and network segment must uniquely identify the destination

station among all stationsin all networks.

Routers are the principle agents of the network layer. Typically a network segment
will consist of all of the stations attached to a single physical medium or a series of bridged
media. One or more of these stations may be routers physically attached to this segment as
well as to others, and participating in al of them, as seen in Figure 8.4. Traffic from one
segment destined for any other segment attached to the router can travel through that router.
Any MAC address trandation required (say, from Ethernet to FDDI) is performed by the

router.

Some network layer protocols provide a service that is connectionless while some
establish and maintain a connection between each endpoint and all of the routers along the
path. The Internet Protocol (IP[DARPA81a]) isan exampleof theformer; X.25[CCITT84]
is an example of the latter. An interesting new idea is presented in the Xpress Transfer
Protocol (XTP [PEI92]), where the network layer is combined with the transport layer into
a transfer layer. Here the network layer functionality exhibits behavior of both the
connectionless and connection-oriented approaches since, whilelogically separate, an X TP
connection and the path supporting the connection share the same packet-switched

mechanisms for their maintenance.

Depending on the approach used to provide the network layer functionality, several
issues emerge. The routers along the path represent potential points of congestion and

contention for the routers’ resources. Connection-oriented approaches focus on dedicating

104

buffer space up front so that contention for that space is eliminated. Connectionless
approaches instead depend on a roughly uniform demand on its buffers; higher layer
recovery techniques are assumed for buffer overruns. Yet neither approach directly
addresses packet processing or end-to-end bandwidth reservation as resources.

Interestingly, some solutions have come from transport layer research.

Flow control at the transport layer governs the use of buffers at the endpoints of a
connection. When congestion occurs anywhere along the path, and data is lost, the error

control procedures will detect it. The flow control procedure can use the error reports to

Network Segment A
Network Segment B
Routers
N
Sations =
\
Network Segment C
Network
Segment

Figure 8.4 — An Internetwork: Stations, Routers, and Network Segments

105

adjust the number of packets flowing from the sending endpoint. TCP takes this approach.
NETBLT [CLAR87] usesatechnique called rate-based flow contt, where two parameters,
burstand rate, regulate the flow of packets. a burst of packets is sent at a specified rate.
VMTP[CHERS88] aso uses rate-based flow control, but instead of burst and rate, it usesan
interpacket gapX TP applies rate control independently from flow control: the rate is not
deduced from the error reports at the endpoints; rather, it is derived via packet exchanges
where the maximum rate and burst values for the path are found. This maximum rate
represents the fastest speed at which packets can be injected onto this path according to the
processing capacity along the path. In this manner XTP addresses route control as a

network layer issue rather than an end-to-end transport layer issue.

Although not prohibited, most network layer services do not provide discrimination
even though route processing presents a point of contention. Since each router along the
path must employ a MAC protocol to provide access to the medium, packets are ordered
by the policies of the MAC layer. However, arouter may serve disparate network segments,
each using its own brand of MAC protocol. Priorities and levels of service may get lost in
the trandation. Typically no packet ordering or levels of service are distinguished at this
layer. XTP, however, is an exception. XTP's discrimination mechanism, the sort field, is
used to order packetswithin each router along the path due to the nature of the transfer layer

architecture.

8.2.3. Transport Layer

A transport protocol provides reliable, end-to-end delivery of arbitrarily large
messages by segmenting the message into one or more packets and employing the services
of the network layer, and through the network layer, the MAC layer. Upon acommunication
request, the transport server segments the message from the request into one or more

packets; these packets are enqueued for the network and MAC layer services. A robust

106

transport service provides end-to-end flow control to reduce buffer overruns, and error

control to ensure a complete and in-order delivery of the message.

Flow control isusually provided by using asliding window technique where at most
a set number of packets are outstanding at any time. The window represents a contiguous
set of packets; as the receipt of a packet is acknowledged, the window may advance. Error
control detects when packets have not been acknowledged, either through use of timers or
negative acknowledgements or both. Packets considered |ost are retransmitted. It isalso the
duty of the error control procedures to detect duplicate packets, as may happen if a packet

is retransmitted but was not really lost.

Often the transport layer service will alow the user to distinguish between the
urgency of itsdata. Both TCP and TP4 provide atwo-level discrimination scheme (normal
and push for TCP, normal and expedited for TP4) that uses alogically separate channel for
the pushed or expedited service. VM TP uses four levels of service: background, normal,
important, and urgent/emergency. XTP has a 32-bit sort field used for discrimination.
Packets are serviced in ascending sort value order. In this manner, deadlines placed in the
sort fields of the packets will cause the packets to be serviced in nearest deadline order,
although there is no provision for expired deadlines. To the author’s knowledge, this sort
field represents the largest priority space provided in any reasonably well-known transport

layer protocol to date.

8.2.4. Summary of Issues

As we have seen, the service time for a task is directly related to the processing
required within the task. When this processing requires requests to subsystems, a domain
boundary is met with regard to scheduling. It is essential that the importance of the request

to the task, as well as the importance of the task to the system, be conveyed in the request

107

for service from the subsystem. In this chapter we have been examining a communication

subsystem as a specific example of this general problem.

Typically, functionality within the communication subsystem is modularized into
layers, where each layer may provide some means of service discrimination. The challenge
isto provide a uniform and consistent mechanism for:

1. carrying discrimination information between domains and layers

2. mapping one layer’s mechanisms onto another’s

3. providing ameans for end-to-end analysis of the service time characteristics

4. maintaining the ability to provide layer-specific levels of service without using
adifferent paradigm for discrimination

Below we consider the importance abstraction as a possible approach to this

challenge.

8.3. Using Importance Functions

Importance functions provide a method for describing an ordering for a collection
of tasks for every point in time based on how important each task isto the system at each
point in time. The product is a schedul e for the set of tasks. When communication between
tasks takes place, the communication itself becomes a component of completing the task
requesting or receiving the communication. Therefore, the two communicants must
provide some importance information to the communication subsystem so that the

communication being processed may reflect how important it is.

Since the message is a manifestation of the communication, the importance of the
communication can be imposed onto the message by assigning the message some
discrimination value. When the message is segmented, each packet must also be endowed
with a discrimination value to alow it to compete for access to the medium and for
processing within routers. In this section we address some of the issues involved in using

importance functions in these places. We also look at some other uses for importance

108

functions within the communication subsystem. Since the subsystem is itself a processor,
and the protocol proceduresarereally tasksto that processor, then importance functions can
also be used to schedule the protocol processing. Also, importance functions can be used

to help avoid congestion by considering the paths through routers as schedulable entities.

8.3.1. Messages and I mportance Functions

When a task makes a request for communication it must provide, along with the
message, al of the addressing and service parameters required by the subsystem. Among
these parameters should be the information about how important this messageis. Since the
communication is a component of the processing of the task, the message’s importance
should be areflection of the task’simportance. One way to do thisisto make known to the
communication subsystem the task’s importance function so the message can be ranked in
the sameway asthetask. However, this approach may be overly simplistic since the aspects
of asystem that make a communication important may not necessarily be the same aspects

on which the task bases its importance.

The message’'s importance function must reflect not only what makes the task
important to the system but also what makes the message important to the task. A very
important task could have unimportant communication requests, or an unimportant task
could have a communication request that is very important to it. In both cases, the
importance of the message must reflect itsimportance to the accomplishment of the system
goal which, in this case, isaweighted function of how important the task is as well as how

important the communication is to the task.

Consider first a system where tasks have constant importance functions such as
those representing priority in Eq 5.5. Assume that each communication request is essential

to the task requesting the communication. In this case the importance function of each task

109

can be assigned directly to each message since each component of atask is processed at the
same importance value. Thus, for task i and message msg requested by task i, the
importance of the message msg is given by:

lmsg® = 1) = P, Eq8.1

If the communication requests within the tasks could themselves be assigned an
importance, then we can use a bi-level importance function, where the importance val ue of
the message is a function of the importance value of the task and the criticalness of the

communication:
Imsg(D) = TPy, Critygg) Eq8.2

For example, assume that there are n levels of criticalness of communication. The

importance function for each message would be:
Imsg() = Pin+crityg, Eq83

This importance function ensures that the most critical messages of the most important

tasks are served preferentially.

When a task has a deadline by which it must complete its processing or the task
becomes useless to the system (or even detrimental), a communication requested by the
task also has a deadline of at least that applicable to the task. If a message is outstanding
after the task’s hard deadline is missed, the message is no longer worth processing. The
communication may have a deadline prior to the task’s deadline to allow for additional
processing after the communication request is complete. Importance functions for
messages with deadlines are similar to those given in Section 6.1.2. More generally, the
importance function for the message could be a function of the importance of the task, the

message's deadline, and the message’s criticality:

110

lmsg® = F(15(8), Ay Critingy) Fq8.4

Of course, the importance function of a message may be based on any system parameter or
attribute that can be known by the communication subsystem, so Eq 8.4 could be afunction

of additional parameters.

Requests are ordered at the interface between the tasks using the communication
subsystem and the subsystem itself according to the importance functions of the requests.
Since this interface handles both send requests and receive requests, both sets of requests
are competing; the interface handles the most important request at each point in time. Once
the request is accepted, the message uses its importance function to contend for processing
time. Since we are assuming a transport-based subsystem, the processor segments the
message and prepares each constituent packet for the requests to the network layer. This
processor al so reassembl es received packets into the whol e message, so outgoing messages

compete with incoming messages here as well.

8.3.2. Packets and I mportance Functions

At the interface and within the transport processing the importance function has
been associated with the message without having to be placed into a structure designed for
transmission. Consequently, the importance function can be arbitrarily large and complex,
asallowed by the generalized tasks of earlier chapters. When the message is segmented into
packets, however, the discrimination information must be attached to each packet even
while the packet is being transmitted over the physical medium. Conventionally a
discrimination mechanism, such as a priority, is placed within a field within the packet
structure, usually the header. Importance functions in their general form do not lend
themselves to being placed into afixed-size field within a packet. One solution would be to

allow an arbitrary size discrimination mechanism within the packet structure so that the

111

whole importance function could be included within. Although this is certainly the most
general solution, most modern networks attempt to minimize variable length fields. Also,
recall that packets have a maximum size; it is possible that the importance function would
be so large that it would not fit within an entire packet. Consequently we must consider

some alternative strategies.

Instead of carrying both the function and its parameters, if every packet used the
same function then only the parameters to that function would be needed. Each packet
would carry the parameters, and at every decision point, the parameters would be applied
to the function for the packet's importance. This is what happens with conventional
priorities, where the function isactually animplicit identity function. The drawbacksto this
scheme are that there can only be one function and the number of parameters must be
limited. The first drawback can be remedied by making the single function a composite of
several different functions, one for each class of messages. As for the second, the number
of parameters is a restriction for the same reason that prevents carrying the whole
importance function in each packet: the space required for the parameters must be limited.
This solution is useful, therefore, if the number of parameters can be fixed and require a

reasonable amount of space.

Another approach makes the first parameter be a function pointer that specifies
which of severa functions to use. With the function specified, the parameters that follow
are specific to that function, and therefore take up less space than would the set of all
parameters to a composite function. Again, alimitation isthat only as many parameters as
can fit within the packet may be used for any given function. Also, the set of al functions
must be available at every decision point along the packet’s path, meaning that copies must
be kept at all routers and endpoints. However, this solution presents a high degree of

flexibility while conforming to the physical constraints of packet sizes.

112

8.3.3. Stations and I mportance Functions

Inlocal areanetworks each station on alocal network segment must vie for theright
to transmit on that shared medium. Aswe have seen, the protocol sfor arbitrating this access
are varied. Some medium access control protocols allow contention to be resolved through
a series of attempts and collisions. Other protocols, however, enforce stricter access
control, where the stations are ranked according to some scheme, and hence an ordering of

serviceis produced.

In some protocols access is granted to stations in a round robin manner, with each
station gaining some slot within which to transmit. Recalling Eq 5.8, and assuming that
there are m stations on the local network segment, then we can construct an importance

function for station s, 1 < s< m, that provides slotted service:
. 21S
() = sm(bt+ﬁ) +d Eq 8.5

Station s gets 1/m" of the period, which is 21vb time units long.

Often a station is granted access according to how important the most important
packet enqueued at that station is. Thus the importance function for the station is based on
the importance functions of the set of packets within that station. Let okt be the set of

importance functions for packets at station s, then the importance function for station sis:
(1) = f (kats) Eq 8.6

The function f is usually the maximum. Hence, each importance function is evaluated at

timet and the maximum of the values is then the importance of the station:

[(t) = max (kats\t) Eq 8.7

113

8.3.4. Decision Points

One of the tenets of the importance abstraction is that the most important task is
selected for processing at every point in time. In acommunication subsystem, the tasks are
the messages and their constituent packets. At each processing point the protocol processor
chooses the most important message to process, but these processing points, or decision
points, occur at discrete placesthroughout the path between the two communicants. At each
of those decision points the importance functions can be used to ensure that the most
important message is processed at the decision points. However, from the message's point
of view there are periods of time during the transfer when the messageis“in flight” and its
importance function is inaccessible. During these times of inaccessibility the processing
order established at the last decision point is maintained, even if another message becomes

most important.

Decision points are largely an artifact of the distributed nature of a communication
subsystem. Messages cannot be reordered while they are on the physica medium.
Furthermore, the use of the physical medium for sharing station state information, such as
which station has the highest priority message, implies that decisions are arrived at over a
period of time during which the decision may become incorrect. The importance functions,
like any discrimination mechanism, suffer from the fact that making decisions in a
communication subsystem happens at discrete times; the discussion from Chapter 7 on
relaxing the principle of the most important task being processed at every point in time

applies here as well.

8.3.5. Other Usesfor Importance Functions

M essages are the most common objects of discrimination, but there are other things

within the communication subsystem that can be viewed as a system. Consider the paths

114

between two communi cating endpoints. Each path has associated with it arate at which the
all of the protocol processors, i.e., routers and endpoints, along the path can process the
flow of messages. The maximum rate along a path is the rate of the slowest protocol
processor along the path. As arouter is used for more than one path, the rate afforded by
that router must be divided among all of the paths through that router. Consequently, a
router is said to be congested when the rate of processing available to any one of the paths

through that router becomes intolerably low.

XTP provides a mechanism by which a new path between two endpoints can be cut
when the old path between them is unusable, including when the path becomes overly
congested. Part of theinformation available to the endpointsisthe rate at which packets can
beforwarded on the path; thisrateinformation is derived through normal packet exchanges,
and serves to drive the rate control protocol procedure within XTP. We cite XTP here as
evidence that path information such as the processing rate can be known to endpoints of the

communication.

Consider an internetwork where multiple paths between any two endpoints exist,
and the cost for switching pathsis negligible. A set of importance functions can be used to
rank the paths for use, where the most important path is the path that could offer the best
service, i.e., the highest processing rate. Assume the routers dole out fractions of their rates
as paths are created through them, and reclaim those fractions as paths through them are
released. The rate of any path, therefore, is a function of time, rate(t). A simple set of
importance functions to determine which path from Host A to Host B is the best to use at

any timeis:

I g(t) = rate, (1) Eq8.8

115

Another parameter that helps determine which path is best to use is the number of
buffers each router has available along the path. Assume that a router does not dedicate
buffersto aparticular path, but rather makes all buffersavailablein afirst come, first served
manner. A measure of buffer availability over the path can be derived by taking the
minimum of the ratios of buffers in the router to paths through the router for each router
along the path. Hence a path can be characterized by the router with the worst buffer-per-
path (bpp) ratio. Since this value may also change with time, we will use the value bpp(t).

Now the importance function can be some function of these two parameters:
I gt) = f(rate, g(t),bpps_ g(t)) Eq 8.9

Thefunction f isdetermined by how much each parameter should figureinto theimportance

of using the path.

8.3.6. Importance Functions and L evels of Service

Importance functions are ranking mechanisms, designed to allow what isimportant
to the system to by reflected in the order in which the tasks are serviced. Importance
functions, therefore, differentiate between the service given to the messages only by
changing the order of processing; they do not also provide for bypassing constraints as may
be allowed by various levels of service. Thereis no notion within the importance functions
themselvesfor aservicethat can ignore, for example, flow control; such distinctions are not
within the scope of the importance abstraction. The importance functions do, however,
provide amechanism for describing how important certain individual packetsin amessage

stream are, and through that levels of service can be established.

As cited previously, Dempsey et al. [DEMP92] describe a service where the error
recovery procedures are governed by the density of errorsallowable by the application. For

audio data, there can be several lost packets before a degradation of service is noticeable

116

by a human, so long as the errors are not too dense. Consider a set of importance functions
where the parameters are carried by the packets. Assume that among these parametersisan
error density measure reporting the number of known dropped packets out of the m packets
preceding thisone. (The value mis application-defined, reflecting the locality of the density
measure.) Since each router along the path knows how many packet it had to drop as well
as which packets did not arrive from the previous router, this density value is updated by
each router along the path. The importance of a particular packet increases as the density
of errors over the previous m packets approaches the threshold of acceptable packet loss.
Hence, the connection, as represented by the aggregate of all packets that successfully
traverse the network, is afforded a level of service based on the density of errors that can

be withstood.

Consider another example. Assume that there exists some passive network monitor
that broadcasts network statistics periodically. A communication subsystem can offer
levels of service according to how much bandwidth is guaranteed to the connection. A set
of importance functions associated not with packets or messages but with the connections
themselves can take as a parameter the network utilization statistic. As the utilization
approaches the sum of the promised bandwidths, the importance functions respond by

reducing the importance of, and hence the service given to, unguaranteed connections.

8.3.7. Analysis

Recall from Chapter 4 that the relationship between the importance functions and

the amount of work done to a particular task is given by:

t, _ .
Wi‘tj_ ti(l\/l(l-l-)—l)dt Eq 8.10

117

This equation holds for any tasks in any system—the amount of work done to the task is
directly related to the amount of time that task is the most important task in the system. If
we think of the communication subsystem as a system, then the relationship given in Eq

8.10 should apply to the tasks of the communication subsystem.

When a task within a station has a communication request to make to the
communication subsystem, that request carries with it the message that requires transfer.
We consider the message as a task of the communication subsystem and, by following the
task through its stages of processing, develop the relationship between the sets of
importance functions associated with the message and its constituent packets, and the work

done toward completing the communication request.

Assume that a communication request i is made to the communication subsystem.
Request i isfor the transfer of message msg; from this station to a remote station, possibly
employing some intermediate nodes for routing. The communication subsystem processes
therequest i by (1) buffering message msg;, (2) segmenting message msg; into n constituent
packets pkt;;, 1 <j < n, (3) employing a packet delivery service to access the medium and
deliver each of the packets to the next station along the path, (4) receiving

acknowledgements and, if necessary, retransmitting lost data, and (5) indicating success or

failure to the user.

Processing steps (1), (2), (4), and (5) above are performed on the message msg; at
the source station. From the point of view of the message msg; the work done on the
message in this station is the amount of time the message is the most important message in
the station. Assume that |, is the set of importance functions for all messages in this

station. The work done on msg; is given by:

Wmsgi‘go = IOOO (M(Imsg) - msgi) dt Eq8.11

118

Note that the lower bound of 0 can be replaced with the time that request i was issued, but
since message msg; does not exist in the communication subsystem before the time of the

request, the integral from 0 to the request time will be 0 anyway.

Although Eq 8.11 calculates the amount of work done on message msg; in the
source station, one cannot calcul ate precisely the total amount of work needed for any given
message due to the unpredictable nature of losses within the communication subsystem. A
message that requires retransmissions requires more total processing time. The upper
bound on theintegral therefore isinfinity, but since practical transport protocols have some
mechanism for bounding the length of time retransmissions are attempted, the upper bound

can be set to aworst case time.

Since the work done on an message includes segmenting the message into one or
more packets, and the delivery and acknowledgement of each packet, then we can examine
the work from the point of view of a packet. For this discussion, we assume an
internetworking topology as shownin Figure 8.4. In step (3) the message msg; is segmented
into n packets, pkt;;, for 1<j < n. The packet delivery service then transfers each of the
packets to the destination station. To transmit packet pkt;;, the source station must vie for
accessto the medium, and packet pkt; ; must be the most important of all packetsto transmit.
Assume that each station in the internetwork is granted permission to transmit based on the
importance values of the packets enqueued, as would be the case with token-passing

networks. The amount of time a station sis granted permission to transmit is given by:
ws\:; :J’g’(M(Inet) =s)dt Eq8.12

where |, isthe set of importance functions for each of the m stations on the local network

segment.

119

Assume that there are h stations along the path, including the two endpoints, and
each station is granted transmission access to the medium based on the importance of the
packets that station has enqueued. Two conditions must be met for packet pkt;; to be
transmitted: the packet must be the most important packet in station s, and station s must
have the most important packet enqueued among all stations. Thusthework done on packet

pkt; ; over al stations from 1 to his given by:

h
Wkt = S [ol (M (Igq) = pkt;) (M (1) = 9)]dt Eq 813
s=1

where | .. isset of all importance functions for packets within station s.

pktg
The above equation would be accurate if, at the precise moment one packet became
most important, the packet delivery service could immediately begin work on it. However,
thisis not the case with typical packet deliver servicesin real networks, since none to our
knowledge have the ability to preempt one packet for another. Consequently, thereisalag
between when a station has the most important packet in the local network segment, and

when the station can begin to transmit that packet.

Since constituent packets of a message are essentially pipelined through the
internetwork from the source station to the destination station, the work on each constituent
packet is done in a concurrent fashion. Consequently, the work done on request i is not the
sum of thework done on the message msg; and each of the packets pkt;;, 1 < j < n, but rather
it isthe sum of the time spend doing any work on the various parts of the request.

Assume there is no need for a retransmission and the only acknowledgement is a
packet called pkt,q. Also, let the source station be station 1 and the destination station be

station h. The amount of work done on request i is given by summing all of the time that at

least some processing of some component of the request was being performed.

120

Nreqi‘:)o = Z IO[(M (Imsg) = msgi)(S: 1)
1<5<h
1<j<n
0 (M(lpe) = Pkt) (M (1) =) Eq8.14

0 (M (Imsg) = msgi)(S: h)
0 (M (Ipg) = Pktgd (M (1g) = 9) et

Expression Eq 8.14 states that the amount of work required by the request req; is the sum
of the work done at each station on the message or a constituent packet. After the message
is segmented, there can be more than one station doing work toward delivering the
message, therefore the amount of time spent on the message is not the sum of the work done
at each station, but rather the sum of the work done at any station. Consequently, when any
one component is the most important, and thereby receives work, a boolean expression
indicating this will have the value of 1. By taking the “or” of all of these boolean
expressions the equation sums the amount of work when at least one component is being
worked on. Here, the expression is the sum over all stations, 1<s<h, and al packets,
1<j<n, of any work done at the station on this request. At the first station (s=1), the
message is processed if it isthe most important message; at the first station and al others,
the packet is processed if both the packet within the station is most important among all
packets in the station, and the station is most important among all stations on the local
network segment. At the destination station (s=h), the message is processed by
reassembling the constituent packets into the message. The work on the request concludes

as an acknowledgement packet is sent back to the sending station.

121

O Extended Example

In this chapter we offer an example of a distributed system as viewed from one
particular computer system. Communication services for the distributed system are
provided by a communication subsystem as described in the last chapter. We define three
types of tasks for the particular computer system of interest: a file server, a video server,
and an alarm message server. All three tasks are designed to take requests from clients and

send the clients the appropriate messages in response.

Once we describe the tasks and give their various definitions, we give a set of
system requirements on how the tasks must be ordered for service. We develop a set of
importance functions that ensure that the requirements are met. Once the tasks are
represented by their respective importance functions, we can ask questions about how the

system will perform under various conditions.

Next we describe the types of messages each task generates; since each task’s sole
purpose is message generation, the importance functions of the messages are incidentally
identical to the importance functions of the tasks. Within the communication subsystem,
however, the packets that comprise the messages have different constraints, and therefore
must have different importance functions for use in ordering them for service. We give this
set of importance functions. Finaly, we give an expression for the length of time that the

call used to send messages will take as a function of the type of message to be sent.

It is interesting to note that this set of tasks is heterogeneous with respect to the
attributes that are considered during task scheduling. Some of the tasks are priority driven,

some are periodic with real-time constraints, and some tasks must be serviced in order of

122

123

arrival. Although this example is contrived, the types of tasks are not unusual. However,
attempting to find a single traditional scheduling algorithm that can satisfy all of the
ordering requirements and task constraints is not intuitively obvious. Given that at least
some of the tasks are periodic, rate monotonic scheduling seems to be necessary, but this
policy does not adequately satisfy the needs of al of the other tasks. Furthermore, we pose
and answer guestions within the importance abstraction; these same questions would be

difficult to pose with a more traditional scheduling approach.

9.1. Task Definitions

We make the assumption that the interface to the communication subsystem
employsthetransport layer datatransfer mechanisms. Sincethetransport layer providesthe
mechanisms for areliable transfer, we assume that a send request will block, awaiting the
confirmation of the delivery of the message, according to the reliability semantics required

of the application making the send request.

The send request send(t o_whom type, nessage, | npPar ns) has four
parameters. The first is the address of the recipient of the message. The second is the type
of message, for use in determining the reliability semantics required. The third parameter
isthe messageitself (normally the messageis represented by a buffer descriptor but for this
examplewe will suspend such realism). Thelast parameter, | mpPar s, isused for passing

importance information to the communication subsystem.

The file server task f i | e_ser ver, shown in Figure 9.1, is instantiated when a
remote client system sends a message to this system requesting a file. A global flag
request _present signalsthat the communication subsystem has received a message
intended for thef i | e_ser ver task. When thisoccursthefi | e_server task issuesa

receive request to the communication subsystem and thereby collects the necessary

124

task f ile_server {

receive(&from_whom, &f ilename);
sent = false;

to_whom = from_whom;

size = get_buffer(f ilename, buffer);

ImpParms = null;
while (size > 0) {

send(to_whom, “f ile”, buffer, ImpParms);

size = get_buffer(f ilename, buffer);
send(to_whom, “f ile”, END, ImpParms);
sent = true;

Figure9.1 Thef ile_server Task Definition

information for the transfer. This information includes the requesting client’s address
(from_whom) and the name of thefile (f ilename). Note that the name of thefileisthe

entire message from the requesting client.

Thef ile_server task then retrievesthefileusing theget_buffer procedure
call. Each buffer of datais then used as the message parameter in a send request. Buffers
areretrieved and sent until the end of file isreached, at which time the ENDmessageis sent

to indicate that the transfer is complete.

The task used to transfer video data is the video_transfer task, shown in
Figure 9.2. Video data has an inherent timeliness wherein the datais useful until adeadline,
and thereafter the datais useless. In this example we make several assumptions about this
video transfer. First, we assume that video frames are being generated at a fixed rate of 30
per second. Second, we assume a data compression technique is used that takes six frames
of data and constructsa“bundle”’ of the six frames at the remote client. Half of this bundle
isthe basis information and the other half is the change information from that basis for the

six frames. Third, we assume that there is a 600 ms delay between the generation of aframe

125

bundle and the playback of the constituent frames. As a consequence, three bundles can be
in the pipeline between their generator and their playback device. Fourth, we assume a
transfer time estimate of 50 ms. This transfer time is used to help determine the deadline
for sending the bundle such that thereistime for the bundle to be delivered to the playback
device. Finally, we assume that the video bundles are not buffered deeper than one bundle,
so if another bundleis generated before the previous one has been retrieved from the buffer,

the bundle is overwritten.

Thetask vi deo_t r ansf er, shown in Figure 9.2, loops forever, getting abundle
and sending the bundle. A global flag called bundl e_pr esent indicateswhen abundie
has been generated. This bundle is timestamped with its generation time,
bundl e. gen_t i me. When the bundle is retrieved using the get _vi deo_bundl e
call, the variable bundl e_r ead is set to true and sent is set to false. These help keep

track of what has been done within this task.

task video_transfer {

transfer _tinme = 50;

del ay = 600;

do forever {
bundl e read = fal se;
get _vi deo_bundl e(bundl e);
bundl e_read = true;
sent = fal se;
d_send = bundle.gen_time + delay - transfer_tinmne;
gen = bundl e. gen_ti ne;
| mpParns = {gen, d_send};
if (time() <= d_send) {

send(to_whom *“video”, bundle, |npParnmns);

}

sent = true;

Figure9.2 Thevi deo_t r ansf er Task Definition

126

The variable d_send is the generation time plus the delay minus the assumed
transfer time. Thetimeind_send istherefore the deadline by which the send request must
be given to allow the bundle time to be transferred to the playback device. If the current
timeinti me() islessthan or equa to the deadline to send ind_send, then the bundle
is sent, otherwise the task drops this bundle for missing its sending deadline and gets
another bundle to work on. Note that a decision was made in the design of thistask to make
the task wait as long as possible to send a bundle even at the expense of not retrieving a

fresh bundle.

Thesend_al ar mtask, shown in Figure 9.3, isinvoked when an alarm condition
occurs within this computer system whose existence must be made known to a group of
other computer systems in the distributed system. In this system there are two alarm
conditions, alevel 1 alarm and alevel 2 alarm, where level 1 is more urgent than level 2.
When one of the alarm conditions occurs, the global flag al ar m pr esent signals that
notification of this alarm condition must be made: the send_al ar m task is thus
instantiated. The get _al ar mcall retrieves the information about the alarm condition,
namely the group to notify, the alarm message, and the level of the alarm condition. The

send request then is used to notify the group of recipients of the alarm condition.

task send_al arm {
get _al arm(&group_to_whom alarmnsg, |evel);
current _time = tinme();
sent = fal se;
| mpParns = {level, arrival tine};
send(group_to_whom “alarni, alarmnsg, |npParns);
sent = true;

Figure9.3 Thesend_al ar mTask Definition

127

We can use the task definitions given to estimate the amount of work required by
each task. Here we assume that system calls account for a substantial amount of the
processing time, so the length of these calls is used in determining the estimated work
requirements. We use leng s .4 to represent the amount of time required by the system call.
Since the amount of time required for asend system call depends on the error correction
semantics required by the type of message being sent, we use leng,4(type) to represent the

length of time required for sending this type of message.

Forthefi | e_t ransf er task, thework startswhen arequest for afileisreceived.
There are a number of get _buf f er system calls and send system calls, then one last
send system call to indicate the end of thefile. If buffersize is the size of the buffer used
in get _buf f er, and filesize is the size of the file, then the following shows the work

required by thefi | e_transf er task:

buffersize

W, = len
file ; -
! filesize

,eca.veﬂ w (lenge pter +1€Nnq(fil©)) +lengy(file) Eq9.1

Since the vi deo_t r ansf er task loops forever, the work required for it cannot
be measured. However, the work required from the generation of a bundle until the

generation of the next bundle can be calculated, as follows:

gen+200 _ len

Wy deol gen get_video_bundie t 1€Ngeng(Video) Eq9.2

Finally, the work required by thesend_al ar mtask is given by:

= len +lengq(alarm) Eq9.3

Walarm get_aarm

9.2. Task Level Scheduling
In determining the importance functions for each of these tasks, the system

specifications require that the following be met:

1. Sending alevel 1 alarm message is the most important task in the system.

128

Level 1 alarm messages must be ordered first come, first served.

A video bundle must be sent whileit isstill useful unlessalevel 1 alarm causes

this deadline to be missed.

All level 2 alarms are equally important.

Sending a level 2 alarm message is more important than sending a video bun-

dle as long as the video bundle has at least 225 ms before its deadline, other-

wise the video bundle is more important.

6. Retrieving avideo bundle isincreasingly important as the generation of a new
bundle approaches, but it is never more important than sending either alevel 1
or level 2 condition.

7. Serving thefile transfer request is strictly a background task.

wnN

o &

The following importance functions are designed to meet these requirements. For
the file transfer we define afunction that assigns the importance value of 1 to the task when
either there is a request for a file transfer present or the current request has not been

completely fulfilled, and O otherwise:

gl, if request _present or not sent

le., (1) =
fitel!) 0. otherwise

Eq9.4
Since file transfer is strictly background, the importance value 1 forms the basis to which

other importance function values will be compared.

The importance function for the vi deo_t ransf er task must represent the
timeliness of the video data, both while the data is awaiting retrieval and, after retrieval,
whileitiswaiting to be sent. Thevi deo_t r ansf er task must issue the send request for
a bundle while it is still possible for that bundle to meet its deadline. Consequently, the
deadline for sending the bundle, that is, d_send, takes into account the estimated transit
time, and the importance function uses thisto help order video transfers according to which
transfer more urgently needs service in order to meet its sending deadline. Also, when a
bundle is waiting to be retrieved, the importance function must express the urgency of
retrieving this bundle before the next bundle becomes avail able. The following importance

function meets these requirements:

129

2(t-
(D + (t-gen) , if bundl e_r ead and not sent
n d_send -gen
I geot) = t— Eq9.5
videol! B + (Zggn), if vi deo_present and not bundl e_r eadq
U .
0, otherwise

Sincetheremay bemorethanonevi deo_t r ansf er task activated, thetask with
the nearest deadline should be serviced first. Hence this importance function increases
monotonically in value from 2 to 4 asthe video transfer task awaits sending abundle. Once
the deadline d_send is missed, the task cannot base its importance function on sending
the bundle, and instead must concentrate on reading a fresh bundle. If the bundle has not
yet been retrieved, the function increases monotonically from 2 to 3 awaiting bundle
retrieval. Since bundles are generated every 200 ms, the effective deadline for the bundle
currently waiting to be read isits generation time plus 200 ms. Oncethisdeadlineis passed,
the task bases its importance on the age of the new bundle waiting to be retrieved. When
thereisnothing to do (the read bundle has been sent and no new bundl e has been generated)

the task has an importance value of 0.

The importance function for the send_al ar mtask must ensure that the sending
of alevel 1 alarm message is the most important task in the system, and that all of the
send_al ar mtasks sending level 1 messages are ordered according to alarm arrival. In
addition, the importance function for this task must also ensure that requirement 3 aboveis
satisfied; that is, sending alevel 2 alarm is more important than servicing a video bundie
unless the video bundle is within 225 ms of its deadline, in which case servicing the task
with the video bundle is more important. The importance function below offers one

solution to these requirements.

130

B+ v
I _ arrival tine
alarm(®) = B 3, if evel =2and not sent
0, otherwise

, if l evel =1and not sent

Eq9.6

Sending a level 1 aarm message will aways be the most important task in the
system, as per requirement (1). Multiple level 1 alarm messageswill be sent in afirst come,
first served manner since the importance function monotonically increases with the age of
the send_al ar mrequest. This fulfills requirement (2). Since al tasks sending level 2
alarms have the same importance value, no level 2 alarm message is ever more important
than another, as stated in requirement (4). Sending a video bundle is less important than
sending alevel 2 alarm message until the bundle’s age is within 225 ms of its deadline to
send, at which point the importance of sending the video bundle becomes greater than the
importance of sending alevel 2 alarm message. This satisfies requirement (5). Retrieving a
video bundle is never more important than sending alevel 1 or level 2 alarm message since
the maximum value of its importance function less than or equa to the minimum
importance valuefor either level alarm message, asrequired by (6). Requirement (7) is met
since the maximum importance value attainable by afile transfer task is strictly less than

the minimum importance val ue attainable by any other type of task.

At this point we can ask various questions about how the system will behave given
the importance functions for the various tasks. The following questions are just samples of
some of the things system designers may want to know; the point is that we can ask
questions regarding when certain tasks will receive service by examining the importance
functions for the tasks. Some answers we derive are in the form of the conditions that are
necessary for the situation described in the question to occur; others are limits or other

values associated with the system.

131

Since the vi deo_t r anf er task has rea-time constraints on the delivery of the
video data, a natural question is “Under what conditionswill avi deo_t r ansf er task
fail to retrieve a ready bundle?’ We know by examination that the vi deo_t r ansf er
task’s importance function will always have a value greater thanany fi | e_t ransf er
task. The question, then, becomes “Under what conditions is | ge(t) > lam(t)? By
examination it is obvious that |,;4e(t) < 1,am(t) aslong asthevi deo_t ransf er taskis
waiting to retrieve a ready bundle. The answer is that the vi deo_t r ansf er task will
miss abundleif there are n,,,, send_al ar mtasks over a 200 ms period, where N, IS

given by:

_[200- (len

get_video_bundle + Iensend(VideO))
alarm — len = =

Eq9.7
+lengq(alarm)

get_aarm

Similarly we can ask “Under what conditionswill avi deo_t r ansf er task miss
adeadline to send?’ The answer now must take into consideration the fact that |,;4e(t) iS
greater than I,,m(t) if the send_al arm task has a level 2 aarm and the
vi deo_t ransf er task hasabundleto send and has waited longer than 225 ms. In order
to make the deadline to send, thevi deo_t r ansf er task must start the send call within
550 ms of the bundle's generation. Consequently, there must be more than ngam
send_al ar m tasks handling any aarm message over the first 225 ms, and m,
send_al ar mtasks handling level 1 alarm messages over the second 225 ms. The values

of Ngam and my,,., are given below:

225 -len .
- et_video bundle
Ny = { get_video_ bu W £q9.8

leNget aarm + 1€Ngeng(@larm)

225 -1len

_ get_video_bundle
maI arm ~ len

+lengq(alarm)

(I evel = 1)} Eq 9.9
get_aarm

132

It may be useful to know the physical limitations on the number of
vi deo_t ransf er tasksthat can be simultaneously running. If no more important tasks
are running, the answer is the number of vi deo_t r ansf er tasksthat can be executed

within 200 ms;

_ 1 200- (len

n,: = get_video_bundle + Iensend(w deo))
video Ten

_ Eq9.10
+leng, 4(video)

get_video_bundle

To answer “Under what conditions will asend_al ar mtask servicing a level 2
alarm receive service? we look at each task’s importance function to determine what
conditions lead to | ,,+(1), | evel =2, having the highest value; since asend_al ar m
task processing a level 2 alarm always has an importance value of 3, we can say that the

send_al ar mtask j will be most important if, for the task set T at sometimet:
max(li(t)\t<3)(Di OT,i#j) Eq9.11
Thefi | e_transfer taskis, by inspection, alwayslessimportant than any other type of

task. For the vi deo_transfer task, however, there are two cases. First, if

bundl e_read and not sent are both true, then:
lvigeo(t) <3 Eq9.12

2(t—gen)
d _send —gen

Eq9.13

t<gen +225 Eq9.14

The second caseisif vi deo_present and not r ead are both true:

t-gen

2+ 500

<3 Eq9.16

133

t<gen + 200 Eq9.17

So the conditionsfor asend_al ar mtask processing alevel 2 alarm to be most important
inthe presence of either fi | e_transf er tasksor vi deo_t r ansf er tasksis:

((t<gen +225) Obundl e_present [Onot read)

Eq9.18
O((t<gen +225) [vi deo_present [Onot sent) a

If any level 1 alarms are present, the level 2 alarm will be preempted. If another
level 2 alarm is present, thereis no guarantee that thesend_al ar mtask j will be the one

to receive service since requirement (4) says al level 2 alarms are equally important.

9.3. Message L evel Scheduling

Each task must supply some importance information with the message when it
makes a send request. As discussed in the previous chapter, the importance of the
communication request and its manifestation, the message, are largely dependent on the
importance of the task issuing the request: the importance of the message should be some
function of the importance of the task issuing the request to send the message. In general
the importance of the message a so depends on how important the communication isto the

task, not just how important the task is.

We have constructed tasks here whose sole purpose is to service various requests
for sending messages: the file server task responds to the file requests, the video server
supplies a stream of video frames, and the alarm server responds to alarm conditions. The
importance values of the messages generated, therefore, are directly related to how
important the tasks are. Because of how tightly the tasks are coupled to the sending of
messages, it follows that we can use the tasks' importance functions for the importance

functions of the messages generated by the tasks.

134

9.4. Packet Level Scheduling

The messages are given to the communication subsystem for processing. This
processing for each message includes segmentation of the message into packets, sending
the packets across the internetwork to the destination station, reassembling the packetsinto
the origina message, and acknowledging receipt if required. When the message is
segmented into packets, the packets are sent from the source station through various routers
along the path to the destination station. Each packet must contend with all other packets at
each station for both buffer space and processing time. The most important packets are
preferred; the least important packets are dropped if buffer space is unavailable. We must
therefore design a set of importance functions for the packets such that their importance

values reflect the importance of their contents.

In thisexample thefile transfer messages are segmented into as many packetsasare
required. In keeping with the notion that file transfer is strictly background, these packets
are given an importance function that returns the lowest value among importance functions
for packets with other types of contents. The video transfer bundle is segmented into two
packets, one holding the basisinformation for the six frames, and the other one holding the
change from the basis for the six frames. The content of the former packet is called the
basis, and the content of the latter packet is called the delta. The basis packet is more
important than the delta packet. Furthermore, it is necessary that the density of lost basis
packets be reduced. We include in the importance functions a parameter called dr opped

that holds the number of basis packets dropped over the last ten basis packets sent.

Each alarm message fits into a single packet. The level 1 alarm packet is the most
important packet in the system. Thelevel 2 alarm packet fitsin the middle of theimportance
space, as did the task that generated it.

Below we give theimportance function that meetsthe need for ordering the packets:

135

1, if type =file
2, if type = delta
3, if type = level 2 alarm
dropped _2(d-t)
10 200

I:II:IEI:II:II:II:I

Iy Eq9.19

+ if type = basis

6, if type = level 1 alarm

These data-bearing packets are not the only packets associated with the various
communications, however. According to the error control semantics for each type of
communication, there may be positive or negative acknowledgements. In this example, all
of the messages require a positive acknowledgement except the video bundle message;
reports about basis and delta packets comprising the bundle are generated only if the
packets are known to be missing. Since acknowledgement packets are as important as the
packets that they acknowledge, the importance functions associated with the
acknowledgement of each packet type arevirtually identical to theimportance functionsfor
the packets themselves, with a few minor exceptions. Below we give this importance

function:

B 1, if type = file
Lok = O 3, if type = level 2 alarm £q 920

Eg,, :th(;r:vi(; %) E' if type = basis

B 6, if type = level 1adarm

Now that we know the importance function for each packet, we caninvoke Eq 8.14
to give an expression for the length of time required for asend call according to the type

of message being sent:

136

o]

lengq(type) = Winsgype = Wimsgpe| Eq9.21

Giventhat histhe number of hopsin the path between the server and the client, s designates
the station, n is the number of packets comprising a message of thistype, |, is the set of
importance functions for the stations on a given network segment (here each station is as
important as its most important packet), and | pkt, isthe set of importance functions for the

set of packets present at station s, the work done on a message of a particular typeis given

by:
WmSgtype 0 = 1<Z< hIO [(M (Imsg) = msgtype)(S = 1)
1<j<n
O (M (Ip) = PKtype i) (M (Ine) =9) Eq9.22

D (M (Imsg) = msgtype)(s = h)
0 (M (kats) = pktacktype)(M (Inet) = S)]dt

This expression states that the amount of work required by a message of acertaintypeisa
sum of the boolean conditions. This expression, like Eq 8.14, takes into account the fact
that work on the message is really the sum of the work done on each constituent packet
anywhere in the system—the amount of work required for the message is the “or” of any

work done throughout the system on any of the constituent packets.

137

10 Conclusions

The importance abstraction is a general framework for expressing scheduling
polices. The framework is general in that the scheduling algorithm does not vary with the
policy—the scheduler chooses the most important task at every point in time. Each task has
associated with it afunction that profilesthat task’simportanceto the system over time. The
function, called an importance function, reflects the task’s importance by taking as
parameters all of the task attributes and system characteristics that may cause the task to
become more or less important to the system. As the system’s characteristics change over

time, the task that is most important to the system may change as well.

The importance abstraction is a new way to express scheduling problems. It places
the emphasis on individual tasks and what makes them important to the system, rather than
fitting atask set onto awell-known algorithm in order to useitsanalytical results. Since the
importance abstraction expresses the scheduling problem in terms of what tasks are most
important, a wide range of problems can be presented under a unified abstraction and

analyzed using similar tools.

Traditional scheduling algorithms are easily emulated within this abstraction by
creating importance functions that cause particular tasks to become most important at
precisely the same instant that the scheduling algorithm would have chosen that task for
service. In addition to these traditional scheduling policies, novel scheduling policies can
aso be easily expressed. These novel scheduling policies include scheduling
heterogeneous task sets and tasks that are dependent on continuously updated variables as

parameters.

138

139

Since the scheduling policies are expressed in terms of sets of functions, these sets
may be manipulated and analyzed using mathematical techniques. In addition to the
flexibility and intuitiveness of expressing scheduling requirements in terms of functions,
functional analysis can now be employed to help answer questions about the schedules and
how the system would respond under various circumstances. The scheduling problem is
therefore moved from the traditional algorithmic domain to the functional domain, and

mature analytical tools can be employed.

Even though the importance abstraction relies on evaluating every importance
function at every point in time, there are certain classes of importance function sets that
allow us to relax this requirement. Scheduling policies whose importance function
representations belong to these classes can be implemented in an efficient manner using

functions to drive the scheduling.

10.1. Summary of Work

The goal of this research was to set forth a method for describing scheduling
problems using a function-based technique. To gauge its usefulness we had to show that
this new method expressed both traditional and novel scheduling policies, that it was
conducive to analysis in that questions may be posed and answered about the schedules
produced, and that this method, with possible restrictions, could be implemented
efficiently. We have shown that the importance abstraction can express a representative
group of traditional scheduling policies. We have analyzed a set of policies called static
rankings which include nearest deadline first, and proved severa facts about nearest
deadline first. We continued by relaxing certain restrictions on the nearest deadline first
policy, hence creating new policies, and also proved or developed expressions for some of
their properties. We also explored the implementability of the importance abstraction,

suggesting restrictions that would aid in reducing the work for the scheduler.

140

We then examined an example system, the communication subsystem. The
importance abstraction was found to be useful in describing discrimination policies within
the subsystem. The importance abstraction can also aid in unifying the discrimination
policies across layer boundaries, and across the boundary between the user and the

communication subsystem.

We concluded this work with an extended example of a distributed system wherein
one computer system in particular had three types of message server tasks. We designed
importance functions for these tasks that were able to meet the system specifications and,
using these importance functions, posed and answered questions concerning the conditions
under which certain events would occur. We note that the set of tasks were heterogeneous

in nature, and scheduling with traditional policies would have been more difficult.

The importance abstraction represents an new approach to expressing scheduling
policies that isintuitive and conducive to analysis. Emphasis was placed on the individual
characteristics of each task, yet the scheduling algorithm remains constant. We have
demonstrated the usefulness of the importance abstraction through the analysis of a
traditional scheduling policy, through the examination of issues within the communication
subsystem, and through an extended example where tasks, messages, and packets are all

scheduled using the same approach.

10.2. Contributions

This dissertation makes six points of contribution. First, we have developed a
general framework for the expression and analysis of scheduling. Within our framework we
can express a wide range of scheduling policies. Since we cast the scheduling constraints
and conditionsinto a set of functions, we can emul ate traditional scheduling policiessimply

by constructing functions that take as parameters the same attributes that the traditional

141

scheduling policies use. Within the aegis of the importance abstraction we can express such
scheduling policies as rate monotonic and least slack time. Since each task is assigned an
importance function, heterogeneous task sets are scheduled using a consistent approach.
For example, minimizing response times for non real -time tasks while meeting deadline for
deadline-driven tasks requires special adaptations of the rate monotonic policy; within the
importance abstraction, no special mechanisms are employed to handle this heterogeneous

task set.

Second, the importance abstraction alows one to consider the problem of
scheduling tasks by focusing on what makes each task important to the system. By
answering the question “Under what conditions should thistask be the most important task
in the system?’ the construction of the importance functions is a more intuitive exercise
than discovering the algorithm that both fits the general need of the system and produces
the desire scheduling results. In thisrespect, non-traditional (novel) scheduling policiescan

be employed.

Third, once the scheduling problem is expressed in terms of a set of functions,
analysis of scheduling using mathematical tools and techniques follow. By expressing the
scheduling policy interms of functions, we move from an algorithmic analysisto functional
anaysis. In the functional domain we can decouple the actual problem from its

representation, and use the proof techniques of mathematics to attain scheduling results.

Fourth, we explore the issuesinvolved in using the importance abstraction as atool
for efficiently implementing scheduling policies. The framework is based on continuous
evaluation of each importance function, yet computer systems are by nature discrete
machines. Either there is inherent in the set of importance functions obvious discrete
evaluation times, or there will be adegree of imprecision introduced. The granularity of the

imprecision, if significant, must be accounted for within the analysis.

142

Fifth, we have applied this framework to an application: the communication
subsystem. In doing this we have shown that the importance abstraction is a general
approach to scheduling, even in applications where scheduling is not necessarily a

traditional concern.

Finally, we have shown by extended example that the importance abstraction
provides a consistent mechanism by which scheduling concerns can cross domain
boundaries. In this example we examine tasks within a system attached to a distributed
system. We pose and answer questions using the framework provided by the importance
abstraction, and show that end-to-end scheduling concerns can be addressed since al levels

of scheduling employ the same approach.

10.3. Future Research

Although we have shown the usefulness of the importance abstraction as outlined
above, there are aspects of the importance abstraction that require further research. Several

of these are enumerated here.

The defining property as described in Chapter 4 is the necessary and sufficient
conditions for a set of importance functions to impose a schedule that meets the system
goal. A defining property can be used to determine if any given set of importance functions
is amember of the equivalence class of sets of importance functions that meet the system
goal. We have not yet explored the issuesinvolved in producing the defining property from
a given system goal. We will seek to characterize the system goals for which defining
properties can be ascertained. In some cases the sufficient conditions will produce an

adequate test; we seek to characterize these instances as well.

We make the claim that the importance abstraction is general in that it can emulate

all traditional scheduling policies. We will try to prove coverage. It has been suggested that

143

this approach cannot handle the paging scheduling policies for which anomalies occur.

Whether the importance abstraction provides complete coverage is still an open question.

We have shown how to express the work done to a task even if there are severa
concurrent processors. We seek to apply the importance abstraction to multiprocessor and

multiple resource problems.

In the importance abstraction, the complexity of the scheduling problem is moved
from the algorithm into the functions. Although we only showed importance function
representations of polynomial-time scheduling problems, the importance functions can just
as well express non-polynomial-time scheduling problems. It would be interesting to

reprove results about NP-complete scheduling problems using this new framework.

We have examined only preemptable tasks here. With non-preemptable tasks, the
greedy solution is often a pitfall. Since the importance abstraction is at its heart a greedy
algorithm, we seek to explore how to schedule non-preemptive tasks within this

framework.

Bibliography

[ANSIS6]

[BERN71]

[BIYA8S]

[CCITT84]

[CHEN8S]

[CHER88]

[CLARST7]

[CONWG7]

[DARPAS814]

[DARPAS1b]

[DEMPO2]

American National Standards Institute, “FDDIKEn Ring Media Access
Control Standard,’Draft proposed Standard X3T9.5/83-16, Rev. 10,
February 1986.

Bernstein, A. J. and Sharp, J. C., “A Policy-Driven Scheduler foama-T
Sharing System,Communications of the ACM, Vol. 14, No. 2, pp. 74-78
(February 1971).

Biyabani, S. R., Stankovic, J. A. and Ramamritham, K., “The Integration of
Deadline and Criticalness in Hard Re&& Scheduling,’Proceedings of

the 1988 IEEE Real-Time Systems Symposium, Huntsville, Alabama, pp.
152-160 (December 6-8, 1988).

Comité Consultatif International de Télégraphique et Téléphonique, “The
X.25 Packet Layer Protocol,” 1984.

Cheng, S., Stankovic, J. A. and Ramamrithram, K., “Scheduling Algorithms
for Hard Real-Tme Systems — A Brief Survéyin Hard Real-Time
Systems, Stankovic, J. A. (ed.), IEEE Computer Society Press, August
1988.

Cheriton, D. R., “WVMTP: ¥rsatile Messageransaction Protocol, Protocol
Specification Preliminary &fsion 0.7,” Computer Science Department,
Stanford UniversityFebruary 22, 1988.

Clark, D. D., Lambert, M. L. and Zhang, L., “NETBLA Bulk Data
Transfer Protocol,” Network Information Center RFC 998, SRI
International, March 1987.

Conway R. W, Maxwell, W L. and Miller L. W., Theory of Scheduling,
Addison-Wesley Publishing Companinc., Reading, Massachusetts, 1967.

Postel, J., ed., “Internet Protocol - DARRnternet Program Protocol
Specification,” RFC 791, USC/Information Sciences Institute, September
1981.

Postel, J., ed., ‘TBnsmission Control Protocol - DARRNnternet Program
Protocol Specification,” RFC 793, USC/Information Sciences Institute,
September 1981.

DempseyB. J., StrayeW. T., and V¢aver A. C., ““Adaptive Error Control
for Multimedia Data Tansfers, Proceedings of the I nter national Workshop

144

145

[DHAL78]

[FERROQ]

[GAITIO0]

[GARET79]

[GOOoD88]

[|EEES54]

[|EEES5D]

[|EEE85(]

[|EEE89)]

[1S07498]

[1S08073]

[JENSB5]

on Advanced Communications and Applications for High Speed Networks,
Munich, Germany, March 16-19, 1992.

Dhall, S. K. and Liu, C. L., “On a Real-Time Scheduling Problem,”
Operations Research, Vol. 26, No. 1, pp. 127-140 (January-February 1978).

Ferrari, D., “Client Requirementsfor Real - Time Communication Services,”
|[EEE Communications Magazine, Vol. 28, No. 11, pp. 65-72 (November
1990).

Gaitonde, S. S., Jacobson, D. W. and Pohm, A. V., “Bounding Delay on a
Multifarious Token Ring Network,” Communications of the ACM, Vol. 33,
No. 1, pp. 20-28 (January 1990).

Garey, M. R. and Johnson, D. S., Computers and Intractability, A Guild
to the Theory of NP- Completeness, W. H. Freeman and Company, New
York, 1979.

Goodenough, J. B. and Sha, L., “The Priority Ceiling Protocol: A Method
for Minimizing the Blocking of High-Priority Ada Tasks,” Technical Report
CMU/SEI-88-SR-4, Carnegie-Mellon University Software Engineering
Institute, March 1988.

Institute of Electrical and Electronics Engineers, “IEEE Standard 802.4
Token-Passing Bus Access Method and Physical Layer Specifications,”
1985.

Institute of Electrical and Electronics Engineers, “IEEE Standard 802.5
Token Ring Access Method and Physical Layer Specifications,” 1985.

Institute of Electrical and Electronics Engineers, “IEEE Standard 802.3
Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications,” 1985.

Institute of Electrical and Electronics Engineers, “IEEE 802.6 Proposed
Standard: Distributed Queue Dua Bus Metropolitan Area Network,”
November 30, 1989.

International Organization for Standardization, “Information Processing
Systems - Open Systems Interconnection - Basic Reference Model,” Draft
International Standard 7498, October 1984.

International Organization for Standardization, “Information Processing
Systems - Open Systems Interconnection - Transport Protocol
Specification,” Draft International Standard 8073, July 1986.

Jensen, E. D., Locke, C. D. and Tokuda, H., “A Time- Driven Scheduling
Model for Real-Time Operating Systems,” Proceedings of the Real-Time
Systems Symposium, pp. 112-122 (December 3-6, 1985).

[KLEI75]

[LEHO87]

[LIU73]

[LOCK86]

[LOCK88]

[METC76]

[PEDESS]

[PEI92]

[RUSCT77]

[SAES7]

[SHASE]

[SHA8T7]

[SHAQ0]

146

Kleinrock, L., Queueing Systems-Volume 1: Theory, John Wiley & Sons,
New York, 1975.

Lehoczky, J. P, Sha, L. and Strosnider, J. K., “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” Proceedings of the
1987 |IEEE Real-Time Systems Symposium, San Jose, California, pp. 261-
270 (December 1-3, 1987).

Liuu C. L. and Layland, J W. *“Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” Journal of the
ACM, Vol. 20, No. 1, pp. 46-61 (January 1973).

Locke, C. D., “Best-Effort Decision Making for Real- Time Scheduling,”
Dissertation (Computer Science Report No. CMU-Computer Science-86-
134), Carnegie- Mellon University Department of Computer Science, May
1986.

Locke, C. D. and Goodenough, J. B., “ A Practical Application of the Ceiling
Protocol in a Real-Time System,” Technica Report CMU/SEI-88-SR-3,
Carnegie- Méellon University Software Engineering Institute, March 1988.

Metcalfe, R. M. and Boggs, D. R., “Ethernet: Distributed Packet Switching
for Local Computer Networks”, Communications of the ACM, Vol. 19, No.
7, pp. 395-404, (July 1976).

Peden, J. H. and Weaver, A. C., “ The Utilization of Priorities on Token Ring
Networks,” Proceedings of the 13th Conference on Local Computer
Networks, Minneapolis, Minnesota, pp. 472-478 (October 10-12, 1988).

Protocol Engines, Inc., “XTP Protocol Definition, Rev 3.6,” PEI 92-10,
January 1992.

Ruschitzka, M. and Fabry, R. S., “A Unifying Approach to Scheduling,”
Communications of the ACM, Vol. 20, No. 7, pp. 469-477 (July 1977).

Society of Automotive Engineers, “SAE AS4074.2 High Speed Ring Bus,
Final draft Standard,” June 1987.

Sha, L., Lehoczky, J. and Rajkumar, R., “Solutions for Some Practical
Problems in Prioritized Preemptive Scheduling,” Proceedings of the 1986
| EEE Real-Time Systems Symposium, New Orleans, Louisiana, pp. 181- 191
(December 2-4, 1986).

Sha, L., Ralkumar, R. and Lehoczky, J. P, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” Technical Report CMU-
Computer Science-87-181, Carnegie-Mellon University, Computer Science
Department, 1987.

Sha, L. and Goodenough, J. B., “Real-Time Scheduling Theory and Ada,”
|EEE Computer, Vol. 23, No. 4, pp. 53-62 (April 1990).

147

[SPRUSBS]|

[STRAOL]

[TOKU87]

[TOKU89]

[WENDSS]

Sprunt, B., Lehoczky, J. and Sha, L., “ Exploiting Unused Periodic Time For
Aperiodic Service Using The Extended Priority Exchange Algorithm,”
Proceedings of the 1988 |EEE Real-Time Systems Symposium, Huntsville,
Alabama (December 6-8, 1988).

Strayer, W. T., “A Study of Preemptable vs. Non-Preemptable Token
Reservation Access Protocols,” Computer Communication Review, Vol. 21,
No. 2, pp 71-80 (April 1991).

Tokuda, H., Wendorf, J. W. and Wang, H., “Implementation of a Time-
Driven Scheduler for Real- Time Operating Systems,” Proceedings of the
1987 IEEE Real-Time Systems Symposium, San Jose, California, pp. 271-
280 (December 1-3, 1987).

Tokuda, H., Mercer, C. W. and Ishikawa, Y., “The ARTS Distributed Real-
Time Kernel and its Toolset,” Report, 1989.

Wendorf, J. W., “Implementation and Evaluation of a Time-Driven
Scheduling Processor,” Proceedings of the 1988 |EEE Real-Time Systems
Symposium, Huntsville, Alabama, pp. 172-180 (December 6-8, 1988).

Appendix A

In Chapter 2 we discussed an inherent attribute of atask, called the task length. The
task length is the amount of time required for a processor to complete the task, including
securing any additional resources, scheduling this and all other active tasks, and other
associated latencies, such as context switching. Here we expand upon the discussion of the

task length by providing a notation and an algebra for task lengths.

Define w; asthe amount of processing time required by task i. For sometasksit may
be possible to calculate or estimate the amount of processing time required; for others it
may not be possible to know the processing time requirement until the task finally
completes. The quantity w; has a definite value; however, that value may not be known a
priori.

Define the amount of work done on task i over theinterval (a, b) as w; ‘ 2 . Since the

work on atask cannot exceed the time allotted for that work,

Wi‘Zsb—a for (b= a). EqA.l

For the degenerate case’ of b<a, w;|° = 0.

Assume that task 1 is processed until completion. Then, w; = w| °0°. Furthermore,
the sum of the work done to atask before some point in timet and the work done after that

point t is the total work done to the task:

— oo
W =

: = W[+ w | EqA2

1. The normal caseis assumed for the rest of this discussion.

148

149

When atask i has adeadline d;, then
w;|° < min(d;,b) - a Eq A3
Consider two tasks, i and j, receiving work over someinterval ato b,
w;|°+w°<b-a Eq A4
For some set of tasks T receiving work over the interval ato b,

w[°<b-a Eq A5
. a
it oT

For tasksi and j considered over the intervals a to b and a to d respectively,
w;[° +w;|9 < max(b,d) -a Eq A6
Considering these two tasks over the intervalsato b and c to b,
w; | +w;|°<b-min(a,c) Eq A7
For task i over the interval ato b and task j over theinterval c to d, the following is true:
wi‘2+wi‘gsmax(b,d) - min(a,c) EqAS

The quantity w; \2 iseither (1) known, (2) derived, (3) assigned, or (4) unknown. At
timet, w, \g is known since the amount of work done for task i at timet isknown at timet.

Also at timet, Wi\;” is derived as w; — w; g. If it is determined that from time ato time b

task i will get 3 time units of work (for b —a= 3) then Wi‘g = 3 isassigned. Otherwise,

b

w;|_ is unknown. If Wi‘; is known, derived, or assigned, then

Wi\g—wi‘; = Wi‘g for (b=c). EqA9

