
COMPACT O-COMPLETE TREES: A NEW
METHOD FOR SEARCHING LARGE FILES

Ratko Orlandic
John L. Pfaltz

IPC-TR-88-001
January 26, 1988

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by JPL under contract
#957721.

COMPACT 0-COMPLETE TREES:
A NEW METHOD FOR SEARCHING LARGE FILES

Ratko Orlandic
John L. Pfaltz

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract:
In this report, a novel approach to ordered retrieval in very large files is developed. The method
employs a B-tree like search algorithm that is independent of key type or key length because all
keys in index blocks are encoded by a 1 byte surrogate. The replacement of actual key sequences
by the 1 byte surrogate ensures a maximal possible fan out and greately reduces the storage
overhead of maintaining access indices.

Initially, retrieval in a binary trie structure is developed. With the aid of a fairly complex
recurrence relation, the rather scraggly binary trie is transformed into a compact multi-way
search tree. Then the recurrence relation itself is replaced by an unusually simple search
algorithm. Then implementation details and empirical performance results are presented.

Reduction of index size by 50%-75% opens up the possibility of replicating system-wide indices
for parallel access in distributed databases.

This work was supported in part by JPL Contract #957721

2

1. Introduction and Background

There are four generally accepted ways of directly accessing large files of records. They are

(1) B-tree, (2) extensible hashing, (3) binary tree, and (4) trie retrieval. If the data file need not be

stored in any kind of sort order, e.g. for range searching or sequential processing, and if only

exact match retrieval is to be supported then extensible hashing [Fae79] or any of several variants

[LiL87, Lom83, RLT83] are appropriate. The great appeal of extensible hashing methods is that

normally no more than 2 disk reads are required to access any record of the file. But hashing

methods will not support range searching, and is of limited value for secondary key retrieval.

An n-ary tree retrieval structure with sufficiently large fan out will generate broad search

trees of minimal depth. The unique ability to ensure a minimal bound on the fan out in B-tree

search guarantees retrieval performance of no more than 4 disk accesses for all but the largest

files. Indeed, B-trees have so many desirable properties [Com79, ScO82]. that they are com-

monly regarded as the file access method of choice whenever range searching is desired. The

major drawback of B-tree access is that the retrieval keys themselves must be stored in the index

blocks. This leads to high storage overhead and makes both the access software and the degree of

fan out dependent on key length.

Binary tree access is commonly ignored in practice. Access paths of length greater than 14

in files exceeding 30K records is intolerable. However, one can attain large fan out n-ary trees in

"tries", which label the edges with search key substrings [Bur76, Fla81]. Finding an effective set

of edge labels (it must be a reasonably large disjoint set of key subsegments that appear in most

keys) that is appropriate in a variety of applications is difficult. Consequently, "trie" retrieval

tends to be reserved for special purpose applications.

The access method described in this paper actually draws on elements of all four of these

access methods. Its conceptual underpinnings come from that of binary "tries". These are

represented by a compact index structure which is very similar to extensible hashing algorithms;

3

that is the data blocks are split and recombined in a similar fashion. But the keys are not hashed.

Items may be accessed in sort order of their keys using a variant of the B-tree search algorithm.

Consequently, range searching is supported. But unlike B-tree search, at most one byte will be

used to represent the entire key value in the index blocks, regardless of key length.

The presentation of our access method is some what unusual. It begins, in this section, by

describing access using a special 0-complete paginated binary "trie". In section 2, we will care-

fully define search algorithms and item insertion algorithms (complete with block splitting). But

we will never really use a 0-complete paginated binary "trie" as the access structure itself.

Access in a 2-way "trie" is far inferior to even regular binary tree search. These search trees are

only conceptual, as are the attendant search and tree maintenance procedures. What we will then

show, in section 3, is how to very efficiently emulate the access method defined for 0-complete

paginated binary "trie"s with a compact B-tree like index structure that, for files of < 10M

records, will bound exact match search with a maximum of 3 disk accesses.

Section 4 addresses the issue of item deletion, while in section 5 we present empirical

storage utilization results for large files with uniformly distributed key values and for non-

uniformly distributed key values.

1.1. Basic Terminology

A fundamental concept in this paper is that of a key. For our purposes a key will simply

denote a string of binary digits, 0’s and 1’s, with arbitrary but fixed length m. We assume that the

highest order key bit is at the first position from left. Keys may be lexicographically ordered so

that we can compare any two of them for the properties of being greater, equal or less than. A key

prefix of length l consists of the l leading bits of the key. If a prefix of two keys Ki and Kj is the

same, we say that Ki and Kj have a common prefix.

Keys are always integral parts of records, and can be used to differentiate between them.

For the purposes of this paper we assume key uniqueness, but it is not required by the method

4

itself. In practice, keys may be integers, reals, or characters, etc. In order to satisfy our definition

we only expect that the bit string representation preserve the original ordering of the key domain

(as is usually the case). For the search method we assume that records, along with their keys, are

kept in fixed size units called data pages, or blocks, whose capacity B (blocking factor) is the

maximal number of records each of them can contain. These data pages are the basic units of

transfer between memory and secondary storage.

A tree is a full binary tree if every node either is a leaf or has exactly two nonempty des-

cendants. Every arc in a binary tree can be labeled with either a 0 or a 1, making it a trie. A node

(interior or leaf) is called a 0-node (0-leaf) if its entering arc is labeled 0. Similarly, we define

a 1-node (1-leaf) to be a node whose entering arc is labeled 1. Every node can be uniquely

identified by its path which we define recursively. Let u be any node and w its parent. Then

path (u) =

��
� �

� path (w)1

path (w)0

ε

if u is 1−node

if u is 0−node

if u is a root

where ε denotes an empty string. The length of path (u) is the depth of the node u.

The discriminator, Du , of a node u is a binary string of fixed length m (maximal key

length) whose high order l bits are path (u) of length l and all other bits are 0’s. Thus a node

discriminator has an integer value x .2(m −l) , where x is the integer equivalent of path (u) of length

l. Consequently, if the key length is 8 bits, a node u with path (u) = 0101, has discriminator

01010000. Its integer equivalent is 8010 . A node y with path (y) = 0010 has discriminator

00100000 = 3210 . A binary node discriminator,D, can be used to denote both a binary string and

its integer equivalent. In this paper we use juxtaposition, e.g. xy, to denote string concatenation

and use the . or / operators to denote integer multiplication/division.

A binary tree with N leaves is said to be 0-complete if (a) every 0-leaf has a sibling and (b)

there are exactly (N −1) 1-nodes in the tree.

5

Proposition 1.1: Every full binary tree is a 0-complete binary tree.

Proof: Let T be a full binary tree with N leaves and (N-1) interior nodes. Every node (including
0-leaves) has its sibling, and since T is full, N/2 of the leaves are 1 nodes and (N-2)/2 =
N/2 - 1 of the internal nodes are 1 nodes. (The root is neither.) Hence there are N/2 + N/2
- 1 = N-1 1-nodes. �

For the reader’s convenience we give an informal meaning of the definition. Begin with any full

binary tree (as in figure 1-a). By proposition 1.1, it is 0-complete. Arbitrarily delete 1-leaves

whose 0-siblings are not leaves, e.g. the 1-leaves E and G in figure 1(a) to obtain figure 1(b). It is

still a 0-complete tree. Note that deletion of any 0-leaf from a full tree will violate invariant (b)

that requires N-l 1-nodes with N leaves.

The nodes of any tree can be totally ordered by a traversal of the tree. Since we are restrict-

ing our attention to 0-complete binary trees, we can give a slightly different definition of the fam-

iliar pre-order tree traversal. The pre-order traversal of a 0-complete tree starts at the root of

the tree and iterates the following two steps until the last node has been accessed:

(a) if the current node ui is an internal node then the next node ui +1 in the order will be its 0-

son (by 0-completeness every interior node must have its 0-son);

(b) if the current node ui is a leaf then the next node in the pre-order will be the 1-son of the

node w whose 0-subtree contains ui and whose depth is maximal.

One can easily verify that this sequence just described is the usual "pre-order traversal" by estab-

lishing that (1) every node is accessed, and (2) if node p precedes node q on any path from the

root, then p is accessed before q. The pre-order traversal of figure 1-b is the sequence

���

(a) (b)
Figure 1.

0-complete binary trees.
���

6

a b d H I c f J k L M

where the leaf symbols have been capitalized for emphasis. Later, we will see that their order in

the traversal is of special significance.

It is important to see how paths and node discriminators change during the pre-order traver-

sal of a 0-complete tree. From our definition of the pre-order traversal it follows that

Proposition 1.2:

(a) If a node ui is an internal node with path (ui) = x of length l and discriminator
Di = x .2(m −l) , then the path to the next node, ui +1 , in the pre-order is x0 and its discrim-
inator is Di +1 = 2.x .2m −(l +1) = x .2(m −l) .

(b) Let ui be a leaf and let ui +1 be its successor in the pre-order traversal. Let w be the
parent of ui +1 with path (w) = y of length l −1. Then path (ui) is either yz 0 or yz 1, where
length(z) > 0 if ui is 1-leaf or length(z) = 0 if ui is 0-leaf, and path (ui +1) is y 1. Thus, the
discriminator of ui +1 is (2.y + 1).2(m −l) .

Proof: Follows virtually as a corollary of the definitions of pre-order traversal in a 0-complete
tree and discriminator. �

The sequence of nodes in the traversal of figure 1-b, together with their corresponding

discriminators of length 8 are shown in figure 2. Let Li −1 and Li be two consecutive leaves

encountered in the pre-order traversal, such as leaves I and J in the figure 2. Then Li −1 is prede-

cessor of Li and Li is successor of Li −1 .

1.2. Paginated Binary Trees

A binary tree is said to be a paginated binary tree (PB-tree) if only leaves are data pages.

Figure 3 illustrates a paginated binary tree with five leaves. Notice that, in general, a PB-tree

need not be a full binary tree, nor a 0-complete tree. Figure 3 is neither.

Almost all computer representations of the PB-trees are based on pointers that explicitly

convey the hierarchical relationship. Thus, each internal node of such a binary tree consists of

two pointers. One of them points to its 0-subtree and the other one to the 1-subtree of the node.

Either of them, but not both, can be set to NIL denoting an empty subtree. Access to a leaf in a

paginated binary tree is based on the bitwise comparison of the given key, navigating through the

7

���

a 00000000
b 00000000
d 00000000
H 00000000
I 00010000
c 10000000
f 10000000
J 10000000
k 10100000
L 10100000
M 10110000

Figure 2.
Discriminators of nodes in Figure 1-b

in pre-order sequence
���

� ���

L 00

L 01

L 11

L 1010

L 1011

0
1

0

1
0

1

1 0
1

Figure 3.
Example of a paginated binary tree.

���

tree from the root node down. If at a traversed node the corresponding bit of the key is 0 then fol-

low the zero pointer; if not, then follow the one pointer. The process is repeated until either a leaf

page or a NIL pointer is encountered. In the later case (NIL pointer) the search is unsuccessful. If

a leaf is found then the sequential examination of the keys stored in the leaf will reveal whether

the desired record is actually present or not. This is a standard trie search, in which the search is

controlled by the successive edge labels [Fre60, Knu73].

8

The key observation is that every leaf can be labeled by its path from the root. The traversed

arc labels correspond to the prefix of all keys stored in the leaf. Thus, in the figure 3 the leaf L 1010

contains all keys whose prefix is 1010, for example the keys 10100100 and 10101100. This com-

mon prefix of all keys stored in a leaf P of a PB-tree we call leaf prefix (page prefix) of P.

1.3. 0-complete Paginated Binary Trees

Since we are using paginated binary trees as a retrieval structure, our interest is in 0-

complete PB-trees. As noted before, the PB-tree of the figure 3 is not 0-complete; it lacks a 0-

leaf. To assure 0-completion, we must allow the addition of "empty" leaves, or pages, as needed.

For example, to make the tree of fig. 3 0-complete we would have to add an empty leaf L 100 ,

even though no item with key prefix 100 has been entered. We will say that such an empty 0-leaf

conceptually exists. We actually allocate a data page only for leaves that are not empty. How-

ever, when growing a 0-complete PB-tree we will have to denote all of the empty 0-leaves in

their appropriate positions in the tree. This will not be the case with empty 1-leaves.

From the implementation point of view there will be nontrivial difference between empty

0-leaves and empty 1-leaves. Entry of an item with a key which should be stored in an empty 0-

leaf will force the insertion algorithm to allocate space for its page and link it at its place in the

structure. The 0-leaf will "actually exist" now. Unfortunately, use of an entire page to store a sin-

gle item is wasteful. With the empty 1-leaves we can be a bit more cavalier. The insertion algo-

rithm will employ the following rule: items with keys whose prefix is the same as the path to an

empty 1-leaf will be stored in the immediately preceding leaf page according to the pre-order

traversal. In figure 4, curved arcs indicate where the items of empty 1-leaves would be located.

Notice that an item with key 0100 0110 has been entered into the leaf L 001 in this figure.

The bounding node of a leaf L in a 0-complete PB-tree is its successor node in the pre-

order traversal of the tree.

9

���

0000 1000
0001 0111

0010 0101
0100 0110

1000 0001
1001 0100

1010 1010
1010 1101

1011 0010

L 000

L 001

L 100

L 1010

L 1011

0

1

0

0

0

1

0

1
0

1

Figure 4.
A 0-complete PB tree with sample keys entered into the leaves

���

In the figure 4, bounding nodes are those which are circled. Since they are defined in terms

of the pre-order traversal it follows that in a 0-complete tree each leaf, except the last one, has its

own unique bounding node. Moreover, we have the following theorem:

Theorem 1.3: A node in a 0-complete tree is bounding if and only if it is a 1-node.

Proof: Every bounding node is a 1-node follows directly from part (b) in the definition of the
pre-order traversal.

To see that every 1-node is bounding, observe that in a 0-complete tree there can be no
1-node which follows an interior node in the pre-order traversal (part (a) of the
definition). Therefore, every 1-node must follow a leaf and thus is bounding.

�

With the concept of bounding node we can now formally define what keys should be allo-

cated to a particular leaf page. A leaf L in a 0-complete PB-tree contains precisely those keys

which are greater or equal than the leaf’s discriminator and less than the discriminator of its

bounding node. Thus, the bounding node discriminator is the upper bound of the key interval

10

covering the leaf corresponding to that bounding node. This is precisely why we call them

"bounding" nodes. The exception is again the last leaf in the pre-order traversal. The upper

bound of its interval is always known in advance and consists of all 1 bits: 11...1 = 2m−1.

11

2. Growth of a 0-complete Paginated Binary Tree

In this section we define the following primitive operations on 0-complete PB-trees:

search(K, t): find item with key K in the tree t.
insert(K, i, t): insert item i with key K in the tree t.
partition(t): partition t into three 0-complete trees t 0 , t 1 and t 2 .

Deletions will be discussed latter. Our primary interest in this section will be to develop funda-

mental principles underlying the final structure.

2.1. Search (K, t)

Our search procedure is slightly different from the usual search in a PB-tree. As before, it

uses the prefix of the given key to generate a search path through the tree until one of the follow-

ing three conditions is satisfied:

(1) An existing leaf has been accessed, or
(2) An "empty" 0-leaf is encountered, or
(3) An "empty" 1-leaf is encountered.

In the first case of a leaf with data records, a sequential examination of each record in the

leaf page will reveal whether any items actually satisfy the complete search key. In the second

case, the search is immediately known to be unsuccessful. Finally, in the third case the search

procedure examines the leaf page immediately preceding the empty 1-leaf in the pre-order traver-

sal. With the following insertion algorithm some items that should have been stored in 1-leaves

may be out of place!

2.2. Insertion (K, i, t)

The insertion algorithm starts with the search procedure to find the appropriate leaf page, L,

for the given item with key K. Once the search for the leaf has been completed four cases can

occur:

(1) the leaf is an empty 0-leaf;

12

(2) the leaf is an empty 1-leaf;
(3) the leaf is partially full; or
(4) the leaf is full.

The effect of the first two options have been generally described above. If the item belongs

in an empty 0-leaf, a page must be allocated for L, attached to the tree, and the item is inserted. If

the item belongs in an empty 1-leaf, it is inserted into the leaf page L ′ immediately preceding L in

the ordering. L ′ must satisfy either of cases (3) or (4). In the third case the item is simply

inserted into the leaf page L (or L ′).

In the fourth case the overfilled leaf must be split. There are two distinct ways of splitting

which we call growth in width and growth in height. Before we explain these splitting options

in more detail, notice that the structure may have become somewhat degenerate due to way that

records which belong to empty 1-leaves are inserted. We can not assert, as in the case of PB-trees,

that a common prefix of all keys stored in a leaf is exactly the path to the leaf. Thus, in the figure

4 the leaf L 001 may contain keys with the prefix 01, such as 0100 0110. Those keys of a leaf L

whose prefix of length l is not the same as the path (L) are called intruder keys. Those keys

whose prefix is the same as path (L) are called proper keys. In a sort (ordering) of the keys of a

leaf page, all proper keys must precede all intruder keys (if any). Either there exist items with

intruder keys in the full leaf page, or not.

Notice that depth l of the leaf L is essential parameter used to recognize presence of intruder

keys in L. We require all leaves, L, to have at least one proper key. Since all proper keys precede

intruder keys, one can effectively identify the existence of intruder keys by just comparing the

first key, K 1 , and the last key, Kn in the leaf L. Let bitK(d) denote d th bit of key K. Let d denote

the first bit position from left where bitK 1
(d) = 0 and bitKn

(d) = 1. If d ≤ l then there exists at

least one intruder key in L. If d > l then all keys in L are proper keys.

If the full leaf page to be split, for example L 001 , contains intruder keys, such as 0100 0110,

it is natural to group all items with intruder keys together into a newly allocated leaf page L 01 .

13

(Note that all intruder keys must have this common prefix.) Items with proper keys of L 001 can

remain in the original leaf page.

The tree has only grown in width since the path to the newly allocated leaf page must be

shorter than that to the split leaf page. And readily, the 0-complete property has been preserved,

since by adding a new 1-leaf to an 0-complete PB-tree we maintain the invariant of N leaves and

N-1 1-nodes (see figure 5). But, we cannot assure an even splitting of leaves; there may be many,

or few, items with intruder keys in the leaf, L.

Now suppose that the leaf page to be split has only proper keys, such as L 1010 of the 0-

complete PB-tree in figure 5. The insertion procedure first finds the longest common prefix of all

keys in the leaf and then splits the page on the basis of the next bit. The common prefix will be

the path to the parent of the two newly created leaves. For example, assume L 1010 contains only

proper keys whose common prefix is 10101. Two new leaves L 101010 and L 101011 would be

���

0000 1000
0001 0111
0010 0101
0011 0010

0100 0110

1000 0001
1001 0100

1010 1010
1010 1101
1011 0010

L 000

L 001

L 100

L 1010

L 1011

0

1

0

1

0

0
1

0

1
0
1

Figure 5.
Leaf L 001 of figure 4 is split
so that the tree grows in width

���

14

created. The paths to the resultant pair of split nodes are always longer than the path to L. The

tree has grown in height.

After splitting the tree would appear as in figure 6. However, the resulting tree is not 0-

complete; there is a missing 0-leaf. To be 0-complete the empty 0-leaf must "conceptually

exist". We can simply include it in the drawing of the tree as a NIL pointer, as has been done in

figure 6. This can happen whenever the longest common prefix of all keys in the leaf to be split

is longer than the path to the leaf. Formally, let d be the first bit position where some keys in a

leaf L have 0 and some have 1. Let l be the depth of the leaf L. Since all keys in L are proper,

d > l. Then, when splitting of the leaf occurs, for every 1-bit position b (if any) such that

l < b < d we include a conceptually existing 0-leaf in the appropriate position at depth b. At

depth d two new leaves will be created in the 0-complete tree. Notice, any conceptually existing

���

0000 1000
0001 0111
0010 0101
0011 0010

1000 0001
1001 0100

0100 0110

1010 1010

1010 1100
1010 1101

1011 0010

L 000

L 001

L 01

L 100

L 101010

L 101011

L 1011

0

1

0

1

0

0
1

0

1
0

1

0

1 0
1

Figure 6.

Leaf L 1010 of figure 5 is split
so that the tree grows in height.

���

15

0-leaf created by growth in height precedes the two newly created leaves in the pre-order traver-

sal.

2.3. The Minimal Partition of 0-complete Trees

A minimal bounding node, is the bounding node, or 1-node, with the minimal depth.

Proposition 2.1: Given any 0-complete tree t with more than one leaf, there exists a unique
minimal bounding node.

Proof: Suppose there exists a bounding node w, other than the minimal bounding node u min , with
the same depth d min . By theorem 1.3, both w and u min are 1-nodes with minimal depth
d min . Since u min and w are distinct nodes path (u min) and path (w) are also distinct, so
that there must exist a bit position where path (u min) has 0 and path (w) has 1, or vice
versa. This means that there must be a 1-node on the path from the root to either u min or
w with depth less than d min , which violates the minimality assumption.

�

Proposition 2.2: In a 0-complete tree, there can be no 1-node on the path from the root to
the minimal bounding node u min .

Proof: Follows directly from the proof of the preceding proposition.
�

A partition of a 0-complete tree t into t 0 , t 1 and t 2 is said to be the minimal partition of t

if

(a) t 1 is the subtree of t rooted at the minimal bounding node u min of t;
(b) t 0 is the subtree of t rooted at the 0-sibling of u min .
(c) t 2 is the subtree produced from t by homomorphically contracting the subtrees

t 0 and t 1 (see figure 7(b)).

Proposition 2.3: Trees t 0 , t 1 and t 2 induced by the minimal partition of a 0-complete tree t
are 0-compete trees.

Proof: From proposition 2.2 and the definition of the minimal partition it follows that t 2 has two
leaves and just one 1-node (the leaf corresponding to t 1). Thus, it is 0-complete.

Let us suppose that either t 0 or t 1 is not 0-complete. By definition of 0-completeness it
means that the tree has either a missing 0-leaf or a missing 1-leaf. This would, however,
imply that the original tree t also has missing leaf, which contradicts our assumption.

�

Note that the contracted tree t 2 , together with t 0 and t 1 , permit the unique reconstruction of

t in the sense of [Pfa72, Pfa83].

16

���

0000 1000
0001 0111
0010 0101
0100 0110

1000 0001
1001 0100

1010 1010
1010 1101
1011 0010

L 000

L 001

L 100

L 1010

L 1011

t 2

t 0

t 1t 2

t 0

t 1

0

1

0

0

0
1

0

1
0
1

0

1

(a) (b)
Figure 7.

Minimal partitions of 0-complete PB-trees.
���

2.4. Key Discrimination in 0-complete PB-trees

We turn our attention to the unambiguous identification of key intervals. This discussion

will allow us to transform 0-complete trees into a much more compact representation.

In the figure 8(a) the key intervals of the 0-complete PB-tree from the figure 4 are listed in

lexicographic order. We assume, as before, that the key length is 8 bits. Notice that the inclusive

lower bound of a key interval is the upper bound of its preceding interval, which is, in turn, the

bounding node discriminator of the preceding leaf. The fact that the discriminators of these 1-

nodes (which by theorem 1.3 follow every leaf) bound the interval of keys represented in the leaf

is precisely the reason they were given this name.

Given any key, to identify the interval it belongs to, it is sufficient to scan the bounding

discriminators sequenced in the order they appear in the pre-order traversal of the tree. As soon as

a discriminator greater than the given key is encountered it is known to be the upper bound so

17

���

00000000 - 00100000 00100000 - 3
00100000 - 10000000 10000000 - 1
10000000 - 10100000 10100000 - 3
10100000 - 10110000 10110000 - 4
10110000 - 11111111 11111111 - 0

(a) (b)

Figure 8. The key intervals of leaves in a 0-complete tree.
���

that the key must belong to the leaf.

Figure 8(b) contains the bounding discriminators listed in order. Along with each item there

is a number denoting the depth of the bounding node with that discriminator. For the last entry,

which has no bounding node, we have chosen an imaginary depth 0. Henceforth we will assume

that the last leaf in the order has a bounding node with depth 0.

Notice the regularity in the relationship between the discriminators and the depths of the set

of bounding nodes. If the depth of a bounding node is d then the d th bit of the corresponding

discriminator is set to 1. We use this to develop a correspondence between the entire upper bound

discriminator and the depth of its associated bounding node.

We begin with an informal description of the algorithm. Let Di denote the discriminator of

the i th bounding node in the pre-order traversal. Let the key length be m, let an initial dummy

discriminator D0 be 0 and let the depths of the bounding nodes be the ordered set L = [di], i = 1,

N-1, where N denotes the number of leaves in the tree. Then Di can be obtained from Di −1 by:

(1) setting the di
th bit in Di −1 to 1; and

(2) setting all subsequent (lower order) bits to 0.

The algorithm can be more precisely expressed with a recurrence relation:

18

Di =

��
� �

�
2m − 1

(

�
� Di −1

.2(di−m)

�
� + 1).2(m−di)

0

if i = N

if 0 < i < N

if i = 0

where
�
x

�
denotes the floor of x. We must still prove the assertion expressed by the recurrence

relation. We begin with a lemma.

Lemma 2.4: If a leaf Li has discriminator Di and a bounding node u at depth d, then

Du = (

�
� Di /2(m −d)

�
� + 1).2(m −d) ,

where m is the key length.

Proof: Let l be the depth of Li . By lemma 1.2(b) we have

path (Li) = yz and path(u) = y 1

(1)Di = (y .2(l −d +1) + z).2(m −l)

(2)Du = (2.y + 1).2(m −d) .

Equation (1) uses the fact that z has length d −l +1. We can write

2.y =

�
� 2.(y .2(l −d +1) + z).2(d −l −1)

�
�

which can be transformed into

(3)2.y =

�
� (y .2(l −d +1) + z).2(m −l) .2(d −m)

�
� =

�
� Di

.2(d −m)

�
�

Substituting (3) in (2) we obtain the lemma. �
Theorem 2.5: The discriminators, Di , of the bounding nodes of a 0-complete paginated

binary tree satisfy the following recurrence relation:

Di =

��
� �

�
2m − 1

(

�
� Di −1

.2(di−m)

�
� + 1).2(m−di)

0

if i = N

if 0 < i < N

if i = 0

where Di denotes the discriminator of the i th bounding node in the pre-order, di
denotes the depth of the bounding node, m the key length and N number of leaves in
the tree.

Proof: There are only three cases to consider.

Case 1. The node u 1 is the first bounding node in the pre-order traversal.

Because t is 0-complete, it cannot have a missing 0-leaf. Thus, the first leaf in the pre-

19

order will be the 0-leaf L 1 whose path x consists of all 0’s. The discriminator D′ of L 1 is
just 0, which is equal to D0 . By lemma 2.4, the discriminator of the bounding node b of
L 1 is

D1 = (
��
D0 /2(m−d 1)

�� + 1).2(m−d 1) .

Case 2. The bounding node ui −1 is an interior node.

Let path(ui −1) = x. Then its discriminator is Di −1 = x .2(m−di −1) . The next leaf w in the
pre-order traversal of the tree must be a 0-leaf whose depth di is greater than di −1 . On the
subpath from ui −1 to w there can be no 1-node, since by theorem 1.3 it would be a
bounding node and by definition of bounding node another leaf would be interposed
between ui −1 and w. This would violate the assumption that w is the next leaf encoun-
tered in the pre-order traversal after ui −1 . Thus, path (w) = xy where y is a string contain-
ing di − di −1 zeros. Then the discriminator of w is:

Dw = x .2(di−di −1) .2(m−di) = x .2(m−di −1) = Di −1 .

Since the bounding node of w is the next bounding node in the order after ui −1 we have:

Di = (
��
Di −1

.2(di−m)
�� + 1).2(m−di) .

Case3. The bounding node ui −1 is a leaf.

This case straightforwardly proceeds from the lemma 2.4. �
Notice that the only input information for an algorithm which implements the recursive

relation of theorem 2.5 is the set of depths of the bounding nodes in the given 0-complete tree.

This can be restated as

Corollary 2.6: The ordered sequence of depths of all bounding nodes in a 0-complete tree
provides sufficient information in order to access any leaf in the tree.

20

3. Compact Representation of 0-complete Trees

In multiway search techniques, of which B-tree search is the paradigm, each index block is

implemented as k pointers and (k-1) key values (k ≤ M, the maximum fan out of the tree). The

core of the search algorithm is the loop

i ← 0
while i ≤ k do

if search_key < value[i]
then follow pointer[i]
else i ← i+1

follow pointer[k]

Each key valuei in the index block is a (non-inclusive) upper bound of all keys that can possibly

be encountered by following pointeri . In this section we transform the 0-complete binary trie

into a multi-way structure in which we can use a search algorithm that is almost identical to B-

tree search—except that we use a densely coded surrogate for each of the bounding valuei . From

the surrogate the actual index key valuei , must be deducible. The surrogate that we use is the

depth (in the conceptual 0-complete PB tree) of the bounding node with discriminator equal to

valuei . Corollary 2.6 assures us that use of such a surrogate is possible.

In the new structure, which we call a compact representation, or C 0-tree, the depths of the

bounding nodes of each leaf page (not the depth of the leaf page itself) are stored in order along

with pointers to the leaf pages. These (depth, pointer) entries are kept in index blocks.

The depth field of an index entry denotes the length of a key prefix in bits. This depth cer-

tainly cannot exceed the length of the key field, which seldom exceeds 248 bits (= 31 bytes).

Therefore, the depth can be represented by a single byte (0 ≤ depth ≤ 28-1 = 255). Thus, for

rather large files (of up to 224 = 16.6M pages) the total length of an index entry (depth and

pointer) need not be longer than 4 bytes. A standard index page of 1K bytes will support a

branching factor of 256. Assuming 9 byte keys (e.g. social security numbers), a corresponding

B-tree implementation would have fan out of only 85.

21

���

L 000

L 001

L 100

L 1010

L 1011

3
1
3
4
0

Figure 9.

Compact representation of Figure 4.
���

Key compression obtained by replacing bounding search values with the depth of the

bounding node in a 0-complete tree yields significant efficiencies, both in terms of storage over-

head and total blocks accessed. But equally important is the resulting software simplification.

For all keys, for any key length, the layout of an index block and the search algorithm is fixed.

They are identical, no matter if the keys are character strings, dates, integers, or real values.

Common software is used for all access.

3.1. Access in C 0 - trees

The preceding paragraphs, together with the results of section 2, indicate that an effective

search procedure using depth directories is feasible. Given a sequence of depths, theorem 2.5

demonstrates how to reconstruct the discriminator that will be used as the bounding value in the

search algorithm. But the algorithm of theorem 2.5 is a "messy" one; it requires repeated divi-

sions and shifting. The remainder of this section will be devoted to showing how the method of

theorem 2.5 can be replaced with a very simple discriminator reconstruction algorithm.

22

We begin with five straightforward facts about 0-complete trees.

Proposition 3.1: If two bounding nodes ui and uj belong to the same path then the one with
the shortest depth will appear first in the pre-order traversal.

Proof: Follows directly from the definition of the pre-order traversal.
�

Proposition 3.2: If a bounding node ui is at depth di then no bounding node uj , appearing
before ui in the pre-order traversal with depth dj > di , can belong to the same path
with ui .

Proof: Follows from proposition 3.1.
�

Proposition 3.3: Let ui and uk, i < k be two consecutive bounding nodes on some path x.
Then all bounding nodes, uj , appearing between them in the pre-order traversal
must have the depth greater than the depths of either ui or uk (e.g. dj > di > dk).

Proof: Since on the path x there are no more bounding nodes between ui and uk the path from ui
to uk must have the form 000...01. Consequently, all the bounding nodes that appear in
the pre-order traversal after ui and before uk must be in the 0-subtree of the parent of uk.
The sibling wk of uk must be a 0-node and therefore, by theorem 1.3, it cannot be a
bounding node. All the other nodes in the subtree have depths greater than the depth of
wk and hence, all possible bounding nodes in the subtree rooted at wk must have depths
greater than the depth of uk. By the proposition 3.1, they also must be greater than the
depth of ui .

�

Proposition 3.4: If a bounding node uk is the first bounding node on a path x from the root
down, then all bounding nodes uj appearing before uk in the pre-order traversal
must have depths greater than the depth of u 1 .

Proof: Similar to the proof of the proposition 3.3 with the root playing the role of ui .
�

Proposition 3.5: Positions of 1-bits in a discriminator of a bounding node ui are the depths
of all bounding nodes on the path to the bounding node ui inclusively.

Proof: Follows directly from the definition of the node discriminator.
�

Let L be the sequence of depths di of the bounding nodes in a 0-complete tree sorted by the

pre-order traversal. In addition, let us have B = [bj | j ≥ 1] denote the sequence of 1-bit positions

of an arbitrary discriminator D. Then we can find the entry in the ordered set which corresponds

to the bounding node un whose discriminator Dn = D. We give here an informal description of

the algorithm.

23

Take the highest order 1-bit position b 1 of D1 to guide the search. By proposition 3.4,

starting from the first entry of the ordered set L and and skipping all entries i, if any, whose depth

di > b 1 , we will find an entry j, such that dj = b 1 . The first bounding node has been identified.

By the proposition 3.1, the bounding node with the depth dk = b 2 must appear after the j th entry.

So, we continue the procedure with b 2 determining the search. By the proposition 3.3, an entry k

with dk = b 2 will be found, after possibly skipping some more entries i with di > b 2 . The search

continues until every given 1-bit position has been recognized and stops on the entry correspond-

ing to the bounding node un whose discriminator is Dn = D.

The preceding informal algorithm assumed a priori knowledge of the target discriminator

D. This is unrealistic. But suppose a search key K has been specified. Recall that by the

definition of a key interval covering a leaf page in a 0-complete tree, its upper bound is the

discriminator of the bounding node of the leaf. Its inclusive lower bound is the discriminator of

the leaf. If the bounding node has the depth di then by the proposition 1.2, both of the interval

bounds have the same prefix of length di − 1 and they should differ in the di
th bit position.

Namely, we have the following proposition.

Proposition 3.6: If a key K falls in the interval bounded above by the discriminator Di of a
bounding node with the depth di then

(a) both K and Di have a common prefix of di − 1 bits length, and
(b) bitK(di) = 0 and bitD(di) = 1

where bits(di) denotes the di
th bit of the string s.

An immediate consequence of the proposition is that the key K contains some s ≤ di − 1

higher order 1-bits in the same positions as the bounding node discriminator Di and that the 1-bit

position di is less than the next 1-bit position bs +1 in the key K. It is the positions of 1-bits in the

key K and the depths di that are crucial. Moreover, we can base a search procedure on just these

positions, bs , of one bits in the key, K, and the depths, di , of bounding nodes. (To make sure that

bs +1 exists in the sequence of 1-bit positions of a given key we append some large value to the

sequence such as m + 1 where m is the key length.)

24

Needless to say, we know in advance neither the value of s nor di . Nevertheless, to identify

the entry with the bounding node discriminator Di , we actually do not need these values. Recall

that the search procedure of the depth structure is looking for the first entry whose corresponding

discriminator is greater than the given key. Proposition 3.2 tells us that as soon as we find an

entry j with depth dj , which is less than the depth bk we are looking for, we know that the bound-

ing nodes with depths dj and bk cannot belong to the same path and hence, we have exhausted all

s bounding nodes defining the 1-bits that are common to the key K and the discriminator Di .

Since bk turned out to be greater than dj the key K must be less than the bounding node discrimi-

nator corresponding to the entry j. The whole search algorithm can be rewritten very compactly

as in figure 10.

Notice, that we eventually must find the appropriate entry, since the last recorded depth is

0 < bi for all i. Essentially, the whole search procedure reduces to the comparison of short

integers, no matter what the key length is. This significantly reduces the computational time of

���

procedure search
given: A sequence B = b[j] of 1-bit positions in the search

key appended with the value m+1.
A sequence L = d[k] of depths of the bounding
nodes in a 0-complete PB-tree.

begin
j ← 1
k ← 1
while b[j] ≤ d[k] do

begin
if b[j] = d[k]

then j ← j+1
k ← k+1
end

return k
end

Figure 10.

Search algorithm.
���

25

the search procedure.

3.2. Growth of C 0 - trees

In the process of inserting new elements, the structure is allowed to grow gradually. The

only requirement to be obeyed is that the structure should always retain the properties of 0-

complete trees. Thus, at any instance of time we can find a 0-complete tree corresponding to the

current state of the given C 0-tree. In other words, the structure should simulate the growth of the

0-complete tree. For any new bounding node appearing in the 0-complete tree we include a new

entry in the index block in the proper position, so that the pre-order traversal is preserved.

Some bounding nodes in a 0-complete tree correspond to empty 0-leaves. No data page is

allocated for these leaves, so that their bounding node entries in the index of the C 0-tree will

have pointers set to NIL. Thus, these entries are dummies, but they still must be present in the

structure in order to assure the 0-completeness property. An empty 1-leaf and its non-empty

predecessor share the same bounding node and their proper keys are merged into one leaf. Thus,

just one entry in the index is sufficient for an existing leaf and its empty successor leaves (if any)

in the pre-order. Dummy entries are unnecessary in this case. Readily, this distinction between

empty 0-leaves and empty 1-leaves allows us to reduce the number of dummy NIL pointers by

approximately 50%.

In section 2 we used the parameter l, denoting the true depth of a leaf L, to identify intruder

keys in L. However, this information is not directly available in a C 0-tree. It must be established

in the process of accessing the leaf.

Lemma 3.7: Depth of any 0-leaf in a 0-complete tree is equal to the depth of its bounding
node.

Proof: The bounding node of any 0-leaf is its sibling.
�

26

Lemma 3.8: Depth of any 1-leaf in a 0-complete tree is equal to the depth of the bounding
node of its predecessor in the pre-order traversal.

Proof: By theorem 1.3 any 1-leaf Li is the bounding node of its predecessor leaf Li −1 . �

Lemma 3.9: Let ui −1 and ui be two consecutive bounding nodes encountered in pre-order
traversal of a 0-complete tree. Let di −1 and di be their depths, respectively. Then

(a) di > di −1 if and only if ui is the bounding node of a 0-leaf,
(b) di < di −1 if and only if ui is the bounding node of a 1-leaf.

Proof: Suppose ui −1 and ui belong to the same path. Then by the proof of the proposition 3.3,
sibling of ui is a 0-node w. If w were an interior node, then by 0-completeness it would
have at least one descending 0-leaf whose sibling uk would be its bounding node. By the
definition of the pre-order traversal, uk would appear after ui −1 and before ui , violating
the assumption that ui −1 and ui are two consecutive bounding nodes encountered in the
pre-order traversal. Thus, w has to be a 0-leaf and ui is its bounding node. At the same
time, since ui −1 and ui belong to the same path, by proposition 3.1, di > di −1 .

Suppose there is no path x such that both ui −1 and ui belong to the path. In that case, ui −1
is a leaf for the same reason above the node w could not be an interior node. By theorem
1.3, ui −1 must be a 1-leaf. By proposition 1.2(b), the next bounding node ui in the pre-
order traversal is a 1-node whose path is shorter than the path to ui −1 . Therefore, ui is a
bounding node of a 1-leaf, and di < di −1 . �

Theorem 3.10: Let I denote the index block of a C 0-tree. Let di −1 and di be depth fields of
two entries ei −1 and ei in I, which point to leaf pages Pi −1 and Pi corresponding to
leaves Li −1 and Li of the appropriate 0-complete tree. Let l denote the true depth of
Li .

(a) If ei is the first entry in I then Li is a 0-leaf and l = di .
(b) If di > di −1 then Li is a 0-leaf and l = di .
(c) If di < di −1 then Li is a 1-leaf and l = di −1 .

Proof: Part (a) follows from the 0-completeness property and the lemma 3.7. Parts (b) and (c)
follow directly from lemmas 3.7, 3.8 and 3.9. �

Theorem 3.10 provides a way to identify the true depth of a leaf L in a 0-complete tree

without explicitly storing it in the C 0-tree. Thus the same procedures given in section 2 to grow

a 0-complete PB tree can be used to split data pages in a C 0-tree.

Since an index block of a C 0-tree is of fixed size, the index itself can overfill. Splitting the

index corresponds to partitioning the 0-complete tree t into three subtrees t 0 , t 1 and t 2 . To find

the minimal partition it is sufficient to locate that entry in the index page which has minimal

depth (not counting the last entry with artificial depth 0). The index page is split immediately

27

following the minimal entry into two pages I 0 and I 1 . Thus I 0 corresponds to the t 0 subtree and

I 1 to t 1 . In addition, a new root block corresponding to the partition t 2 is allocated. Since t 2 has

only two leaves and one among them is a bounding node whose depth is the minimal depth d min

in the old index block, we allocate two entries in the root page; the first one with depth d min ,

pointing to the L 0 , and the second one with the depth 0, pointing to L 1 . Splitting of index pages

below the root requires just injection of a new entry in the upper level index page.

Let us illustrate the discussion with a more comprehensive example. We start with the C 0-

tree of figure 9 repeated (with sample key entries) as figure 11. We assume maximal number of

entries per index block to be 5, maximal number of entries per data block 2 and the key length 8.

The corresponding 0-complete tree is shown in figure 4.

Insertion of the key 0011 0010, whose set of 1-bit positions (augmented with 8+1 = 9) is B

= {3, 4, 7, 9}, starts with the search for the appropriate block. The first bit b 1 = 3 is matched by

the first entry in the index block. However, trying to match b 2 = 4 we encounter the second entry

whose depth d 2 = 1 is less than b 2 , so that the pointer of the entry leads us to the data block L 001

���

0000 1000
0001 0111
0010 0101
0100 0110
1000 0001
1001 0100
1010 1010
1010 1101
1011 0010

L 000

L 001

L 100

L 1010

L 1011

3
1
3
4
0

Figure 11.

A C 0-tree representing
the 0-complete tree of figure 4.

���

28

of the structure. Since the block is full it must split. Inclusion of a new entry into the index

block forces it to split and the new root page is created. Figure 12 reflects the new state of the

structure. It corresponds exactly to the 0-complete tree of figure 5 after the same leaf was split.

Now, insert the key 1010 1100, with B = {1, 3, 5, 6, 9}. We recognize b 1 = 1 at the root

page. The second index entry points to a lower level index block. We match b 2 = 3 on the first

entry of the index block, but trying to find b 3 = 5 we encounter the second entry in the block with

d 2 = 4 < b 3 , and the pointer of that entry leads us to the data block L 1010 of the structure. The

block splits and two new entries are inserted in the block: one is dummy entry, corresponding to

the fifth 1-bit common to all keys in the leaf L 101010 and the second one points to the newly

created block. Figure 13, which corresponds to the 0-complete tree of figure 7, shows the struc-

ture after the insertion.

Finally, entry of the key 1000 1100 will force splitting of the data block L 100 (in figure 13

and figure 6) and hence of the higher index block. A new item is included in the root page (see

���

0000 1000
0001 0111
0010 0101
0011 0010
0100 0110

1000 0001
1001 0100
1010 1010
1010 1101
1011 0010

L 000

L 001

L 01

L 100

L 1010

L 1011

3
2
1
-
- --

-

3
4
0
-
- --

-

1
0
-
-
- --

-
-

Figure 12.

The C 0-tree after insertion of key 0011 0010.
���

29

���

0000 1000
0001 0111
0010 0101
0011 0010
0100 0110

1000 0001
1001 0100
1010 1010

1010 1100
1010 1101
1011 0010

L 000

L 001

L 01

L 100

L 101010

L 101011

L 1011

3
2
1
-
- --

-

3
5
6
4
0 -

-

1
0
-
-
- --

-
-

Figure 13.

The C 0-tree after insertion of 1010 1100.
���

figure 14).

30

���

0000 1000
0001 0111
0010 0101
0011 0010
0100 0110

1000 0001
1000 1100
1001 0100

1010 1010

1010 1100
1010 1101
1011 0010

L 000

L 001

L 01

L 1000

l 1001

L 101010

L 101011

L 1011

3
2
1
-
- --

-

4
3
-
-
- --

-
-

5
6
4
0
- --

-

1
3
0
-
- --

-

Figure 14.

The C 0-tree after insertion of 1000 1100.
���

4. Deletion

The deletion procedure begins with the search for the item with the given key. Once the

item has been located it is, in general, simply removed from the leaf page. There are exceptions,

however. Recall that, in section 2, insertion required that every leaf page have at least one proper

key prior to its splitting. The reader can verify that this is essential by using the algorithm of sec-

tion 2.2 to insert 0100 1100 into L 001 of figure 15. In a 0-complete tree (or its compact represen-

tation) that only grows through splitting, every leaf must have at least one proper key. But if

deletions are allowed this need no longer be true.

31

���

0000 1000
0001 0111

0100 0110
0110 0000

1000 0001
1001 0100

1010 1010
1010 1101

1011 0010

L 000

L 001

L 100

L 1010

L 1011

0

1

0

0

0

1

0

1
0

1

Figure 15.

A 0-complete tree whose second leaf consists of only intruder keys.
���

4.1. Local Rotations

Ideally, we would like to detect the situation when only intruder keys are present in a leaf

page and than place the leaf in its proper position. In our example leaf L 001 would become L 01 .

This would, however, leave the leaf L 000 without its sibling, which would violate the definition of

the 0-complete trees. The hanging 0-leaf L 000 must be moved closer to the root in order to ensure

that it has its sibling (see figure 16). We call this movement a local rotation.

The same operation performed in C 0-trees is simpler. Just one entry in an index block

needs to be affected. Because all 0-leaves have siblings, only 1-leaves can have intruder keys. A

rotation of a 1-leaf Li must move it one or more levels closer to the root, linking it at the place of

a previously "non-existing" 1-leaf. The bounding node of Li will remain the same. On the other

hand, Li was also a bounding node for its predecessor Li −1 . Thus, moving L 001 means that the

bounding node of Li −1 has changed its depth. No other bounding node needs to be affected.

32

���

0000 1000
0001 0111

0100 0110

1000 0001
1001 0100

1010 1010
1010 1101

1011 0010

L 00

L 01

L 100

L 1010

L 1011

1

0

0

0

1

0

1
0

1

Figure 16.

The 0-complete tree after the local rotation.
���

Formally, let ei be an entry in an index block I, pointing to a data page Pi which has to be

rotated. Let ei −1 with the depth field di −1 be immediate predecessor of ei in the block I. (Notice

that ei −1 must be in the same block I, since (1) only 1-leaves force the rotation, and (2) by

Theorem 3.10 e 1 must denote a 0-leaf.) If the leaf Li of a 0-complete tree, corresponding to the

data page Pi in the C 0-tree, is rotated to the level l, di −1 will be set to l. Nothing else needs to be

changed. The ordered sequence of depths of all bounding nodes in the 0-complete tree of figure

15 is [3, 1, 3, 4, 0]. After the rotation it has become [2, 1, 3, 4, 0] corresponding to the depths of

the bounding nodes in the 0-complete tree of figure 16.

One problem remains to be resolved. How can we identify that a page in a C 0-tree has only

intruder keys. Observe two facts. First, a data page with such property can be created only by

deleting all proper keys from the page. None of the other operations can create a page consisting

of only intruder keys. Second, all intruder keys will reside after the proper keys, provided that

sequential order within the page is maintained. Consider the situation immediately before a data

page P has become occupied only by intruder keys. The page had exactly one proper key, resid-

33

ing in the first position, and all the subsequent ones were intruder keys. Deleting the proper key

from the leaf will leave only intruder keys present. Therefore, it is appropriate to perform a check

for remaining proper keys only when deleting the first record in the data block. In that case, if the

second key in the page is the intruder key then all the subsequent one’s are too. Let K 1 and K 2

be the first two keys in a data page P. Assume K 1 is to be deleted, and that the current true depth

of the page P is l. Let b be the first bit position such that bitK 1
= 0 and bitK 2

= 1. If b < l then the

key K 1 is a singleton proper key, and after it is deleted local rotation is performed (i.e. di −1 ,

defined above, is set to b). Only after deletion of a singleton proper key is local rotation ever

needed.

4.2. Merging Procedure

If many leaves are underfilled it may be possible to increase storage utilization by merging

two partially filled nodes in a manner that is nearly the inverse of node splitting. Let us first

analyze merging in 0-complete trees. To decide what leaves can be merged we have to keep in

mind the following:

(a) Only two adjacent leaves can be merged; otherwise the result will not be a
binary tree, and

(b) After merging two leaves the resulting tree must be 0-complete.

In operational access systems, whether B-tree or C 0-tree, one does not usually bother to merge

underfilled blocks; but it is possible, as we indicate in considerable detail below.

Let Li be a partially filled leaf eligible for merging. By (a), Li can be merged either with its

predecessor Li −1 or with its successor Li +1 . Let di , di −1 and di +1 be the depths of bounding nodes

of the leaves Li , Li −1 and Li +1 , respectively. Then at least one of the following situations will

occur (the reader should pay special attention to the discussion on depths di , di −1 and di +1).

[1] Both Li and Li −1 are 1-leaves. By theorem 1.3, leaf Li is also a bounding node of Li −1 .

By lemma 3.8 depth l of Li is equal to di −1 . By lemma 3.9 di < l. Therefore, di < di −1 .

34

[2] Li is 1-leaf and Li −1 a 0-leaf. By the definition of 0-completeness, Li and Li −1 are sibling

leaves. Li must be the bounding node of Li −1 . As before, by lemma 3.8 depth l of Li is

equal to di −1 and by lemma 3.9 di < l. Thus, again di < di −1 .

[3] Both Li and Li +1 are 1-leaves. This case is analogous to case 1. Therefore, di +1 < di .

[4] Li is 0-leaf and Li +1 is a 1-leaf. This case is analogous to case 2. Hence, di +1 < di .

[5] Both Li and Li −1 are 0-leaves. By lemma 3.9 di > di −1 .

[6] Li is 0-leaf and Li −1 is a 1-leaf. Let uk and ui be two consecutive bounding nodes encoun-

tered in the pre-order traversal. Let ui be the bounding node of Li . Hence, uk is the bound-

ing node of Li −1 . Since Li is a 0-leaf, by the proof of lemma 3.9 uk and ui must belong to a

common path from the root down and by proposition 3.1 we have that dk is less than di .

Since dk = di −1 we have that di > di −1 .

[7] Both Li and Li +1 are 0-leaves. This case is analogous to case 5. Therefore, di +1 > di .

[8] Li is 1-leaf and Li +1 a 0-leaf. This case is analogous to case 6. Hence, di +1 > di .

Notice that situations 5-8 cannot lead to merging since there is no way to ensure that all

records will reside in their proper intervals after the merging. Then, provided that careful merg-

ing has been conducted, only cases 1-4 need be considered. Observe that these cases can be

easily identified in a C 0-tree by considering only di , di −1 and di +1 . Namely, two adjacent

underfilled data pages Pi and Pi −1 or Pi and Pi +1 , can be merged only if one of the following con-

ditions holds: di < di −1 or di > di +1 , respectively. Otherwise, the configuration corresponds to

one of cases 5-8 and merging is impossible. The complete algorithm for merging is given in

figure 17. Notice, the algorithm assumes that it will be invoked after deleting a record from a

data page Pi which leaves the page with a number of records below some threshold.

The check for a dummy entry corresponds to the case 2 when Li −1 is only a "conceptually

existing" leaf. If such a situation occurs, no merging is performed, but the index node entry ei −1

is just removed. A leaf can become empty, despite the above rules for merging. In that case we

35

���

flag ← false
if d[i-1] > d[i]

then begin
if not (p[i-1] = NIL)

then begin
if rec’s of P[i] and P[i-1] can be placed in one block

then begin
Replace all records from P[i] into P[i-1]
Release page P[i]
d[i-1] ← d[i]
Remove entry e[i] from index block
flag ← true
end

end
else remove entry e[i-1] from index block

end
if (d[i] > d[i+1]) and (flag = false)

then begin
if records of P[i] and P[i+1] can be placed in one block

then begin
Replace all records from P[i+1] into P[i]
Release page P[i+1]
d[i] ← d[i+1]
Remove entry e[i+1] from index block
end

end
else no merging is possible

Figure 17.
Merging Algorithm.

���

deallocate its page, but only in the case of an empty 0-leaf, satisfying none of the above condi-

tions, must we retain a NIL pointer to the "conceptually existing" page.

Merging two index blocks into one follows the pattern of the algorithm in the figure 17.

The only difference is that upper level index blocks (above those directly pointing to the data

pages) do not have NIL pointers. Thus, the procedure is simplified by not having to check for

existence of such pointers. If, as a consequence of merging index blocks, just one entry (with

pointer p 1) remains in the root page we deallocate the page and the new root becomes the page

whose address is p 1 . It is not hard to see that continuous merging can contract the whole

36

structure into its initial state, corresponding to the case when the structure contains just one data

block.

We must still show that the merging algorithm on C 0-trees preserves 0-completeness of the

appropriate 0-complete tree t. Let Pi be the data page of a C 0-tree whose underfilling forces the

merge procedure to be invoked. There are several cases to consider. First, let Pi be merged with

the page Pi −1 . Let Li and Li −1 be the leaves of the appropriate 0-complete tree t, corresponding

to Pi and Pi −1 , respectively. Then, just before merging, as we have seen above, either both leaves

Li and Li −1 were 1-leaves or Li was a 1-leaf and Li −1 was a 0-leaf.

(a) Both Li and Li −1 are 1-leaves.

Merging will destroy the leaf Li . Bounding node of Li becomes the bounding node of Li −1 .

Since Li was both a leaf and a bounding node, after its destruction the invariant of 0-complete

trees is preserved. Also, it is easy to see that the sibling of Li , prior to merge, was an interior

node. Otherwise, Li −1 would be the sibling of Li , but it is not. Thus, by destruction of Li no 0-

leaf is left without its sibling which proves the second part of the definition of 0-completeness.

(b) Li is a 1-leaf and Li −1 is a 0-leaf.

Merging again destroys Li and since it was both 1-leaf and a bounding node the invariant of

0-completeness is satisfied. However, we have to show that Li −1 was not left hanging. Notice,

after the destruction of Li its bounding node with depth di has become the bounding node of Li −1 .

By changing di −1 to di we have implicitly moved Li −1 closer to the root. Theorem 3.10 can tell

us what is the new depth of Li −1 . It can be either di or di −2 , where di −2 is the depth of the bound-

ing node of the Li −1’s predecessor Li −2 . If it is di then Li −1 has remained to be a 0-leaf, but now

its sibling is its new bounding node. If it is di −2 then Li −1 has become the sibling of Li −2 , thus a

1-leaf. In both cases, after the merging, Li −1 has its sibling. This proves the second part of the

definition of 0-completeness.

37

(c) Li is a 1-leaf and Li −1 is a conceptually existing 0-leaf.

Notice that after removing the entry ei −1 from an index page the resulting C 0-tree is the

same as if we were dealing with the case when Li −1 is a fully existing leaf. Thus, pretending that

all records from Li were borrowed to Li −1 and then moving Li −1 to its new position in the 0-

complete tree, we obtain analogous situation as in the case [b]. Therefore, the same proof applies

here.

Now, consider the situation when pages Pi and Pi +1 of a C 0-tree are merged. Then, either

both Li and Li +1 are 1-leaves or Li is a 0-leaf and Li +1 is a 1-leaf. These cases are analogous to

cases [a] and [b] in that now Li now plays the role of Li −1 and Li +1 stands for Li . Thus, proofs

[a] and [b] apply here as well. Notice that in both cases Li +1 is a 1-leaf, so that the situation when

Li +1 was a conceptually existing leaf cannot occur. Since there are no more cases to consider we

conclude the proof that merge algorithm indeed preserves 0-completeness.

���

0000 1000
0001 0111
0010 0101
0011 0010
0100 0110

1000 1100
1001 0100
1010 1010

1010 1100
1010 1101
1011 0010

L 000

L 001

L 01

L 100

L 101010

L 101011

L 1011

3
2
1
-
- --

-

3
5
6
4
0 -

-

1
0
-
-
- --

-
-

I 1

I 2

I 3

Figure 18.

C 0-tree of figure 14 after deletion of key 1000 0001.
���

38

Let us now continue our example from section 3. Suppose we delete key 1000 0001 from

the block L 1000 in figure 14. The block becomes candidate for merging since it is now half full.

We examine index block I 3 . The entry e 3,1 is the one pointing to the data block L 1000 . We

examine e 3,1 and e 3,2 and conclude that they can be merged since d 3,1 = 4 > d 3,2 = 3 and the

data block pointed to by the index entry e 3,2 is also half full. So, data blocks L 1000 and L 1001 are

collapsed and one index entry is removed from I 3 . Now index block I 3 becomes eligible for

merging, so we examine the root page. It appears that I 3 cannot be merged with I 2 since the

entries e 1,1 and e 1,2 in the root page pointing to the index blocks contain the depth values such

that d 1,1 = 1 < d 1,2 = 3. However, I 3 can be merged with I 4 since d 1,2 > d 1,3 . The resulting

tree is shown in the figure 18.

Now, deleting the key 1010 1010 from the block L 101010 will force blocks L 101010 and

L 101011 to merge and subsequently to discard an entry from the block I 3 . The resulting tree is

shown in figure 19. Deletion of the key 1010 1100 from block L 10101 in figure 19 will reveal that

���

0000 1000
0001 0111
0010 0101
0011 0010
0100 0110

1000 0001
1001 0100
1010 1100
1010 1101
1011 0010

L 000

L 001

L 01

L 100

L 10101

L 1011

3
2
1
-
- --

-

3
5
4
0
- -

-

1
0
-
-
- --

-
-

I 1

I 2

I 3

Figure 19.

The C 0-tree after deletion of key 1010 1010.
���

39

that we can simply remove the adjacent NIL entry from I 3 . The structure becomes the one of the

figure 20.

Finally, if we delete the key 0100 0110 from L 01 the blocks L 001 and L 01 are merged.

Removing one entry from the index block I 2 will force merging I 2 and I 3 in the figure 20. Sub-

sequently, removing one entry from the root I 1 will leave the root with just one entry. In this

case we deallocate the root page. The final structure is shown in figure 21.

���

0000 1000
0001 0111
0010 0101
0011 0010
0100 0110

1000 1100
1001 0100
1010 1101

1011 0010

L 000

L 001

L 01

L 100

L 1010

L 1011

3
2
1
-
- --

-

3
4
0
-
- --

-

1
0
-
-
- --

-
-

I 1

I 2

I 3

Figure 20.

The C 0-tree after deletion of key 1010 1100.
���

40

���

0000 1000
0001 0111
0010 0101
0011 0010
1000 1100
1001 0100
1010 1101

1011 0010

L 000

L 001

L 100

L 1010

L 1011

3
1
3
4
0

Figure 21.

The C 0-tree after deletion of key 0100 0101.
���

5. Analysis and Discussion

Using a derivation, similar to one in [Fae79], we can show that under a Poisson distribution

the expected number of data blocks B, in the structure with N records and the blocking factor per

data page M, tends asymptotically to

B (N,M) = N/(M .ln 2) .

The term ln 2 ∼∼ 0.693, can be regarded to as the average data page utilization. For the sake of a

rough estimation of expected path length let us assume that the same utilization can be expected

for index blocks. (This assumption, however, is not justifiable for the root index block.) Then

we can compute the expected depth of a C 0-tree to be

D (N,M,k) = 1 + logk.ln2

��
� M .ln2

N� ���������
� �
� ,

where k is maximal number of entries per index block. Accordingly, for a block size of 4K bytes,

with 4 byte index entries (1 byte depth surrogate, 3 byte pointers), and M = 100, we would have

k ∼∼ 1,000. Using the expression above, we can expect to retrieve any one of 30,000,000 records

41

C 0-tree in no more than 3 disk accesses.

5.1. Experimental Results

The algorithms outlined in the previous sections have been written in C and run on a VAX-

11/780 under 4.2BSD UNIX. The experiments were run for up to 20 000 records. The following

structure parameters were chosen. The block size was chosen to be 512 bytes, blocking factor per

data page was varied between 20 and 40, and the maximal number of entries per index page was

set to 125. Keys were coded as unsigned integers and character strings.

The measurements can be divided into two major groups. First, some experiments were

conducted to measure performance under the uniform distribution of keys. Second, we have

simulated nonuniform key distribution and measured the structure under these conditions. As

indicated before, access and storage performance of the structure heavily depend upon the aver-

age load factor of data blocks, which was the major criterion of our interest.

The results show that under the uniform key distribution the structure behaves as theoreti-

cally predicted. For M = 33, after 20,000 insertions of integer keys the number of data blocks

was 921 giving the average data block utilization of 0.66. Small variations of the value (0.65 -

0.73) were apparent throughout the experiment. The cumulative average storage utilization was

0.692. With the root page the number of index blocks were 9 at the end of the experiment. Thus,

average index block utilization, not counting the root page was almost 92%. Dummy entries did

not appear.

We have suspected that the performance could be significantly worse for nonuniform key

distribution, since no insurance against block underfilling is provided in the structure. In several

experiments we simulated a nonuniform distribution of keys based on the Central Limit Theorem.

In these experiments integer keys have a tendency of grouping on specific subranges of the key

space. We shall describe here the major experiment, which collects results and tendencies

observed in the sequence of similar experiments. The same parameters as above were used for

42

the measurement. Key distribution was approximately as shown in figure 22.

At the end of this experiment, average storage utilization was 0.690 and cumulative average

utilization had the value 0.678. The depth of the structure was 3, with 875 data blocks and 19

index blocks. No significant difference was observed at the end of the experiment with respect to

strage utilization, compared with the uniform distribution. However, average load factor of the

data blocks was very low, about 30%, at the beginning of the experiment when the number of

entries was small. As the structure grew, the storage utilization increased with small variation

K e y r a n g e

N
u
m
b
e
r

o
f

r
e
c
o
r
d
s

Key Distribution over the Key Range

Figure 22.

43

and quickly attained its theoretical behavior (see figure 23).

This result shows that large numbers have randomizing effect on the structure and that it

gradually adjusts, exercising theoretically predicted behavior.

4000 8000 12000 16000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N u m b e r o f r e c o r d s

A
v
e
r
a
g
e

u
t
i
l
i
z
a
t
i
o
n

Parameters:
Maximal number of records per data block - 33
Maximal number of entries per index block - 125
Block size - 512 bytes

Average Utilization for Nonuniform Distribution

Figure 23.

44

A significant difference was observed in the utilization of index blocks, which was about

0.39 at the end of the experiment. Some blocks were utilized only 2%, while some others over

80%. In addition, dummy entries have appeared, although their number was insignificant. Our

conjecture is that the storage overhead at each level of the index independently conforms to figure

23. Only an expected 950 level-1 index elements are needed with files of this size, and using

figure 23 one would predict a storage utilization of 0.40 to 0.45.

Other experiments were conducted with random values coded as 9 or 12 byte ASCII charac-

ter strings. There were no significant deviation with respect to the load factor of data pages.

However, the number of dummy entries in the index blocks was significant (about 10-15%), due

to the fact that four out of eight bits in an ASCII character (two of which are 1-bits) were not

utilized. This imposes a demand for a special care to be paid when coding character strings. In

general, the number of nonutilized 1-bits in the key values should be reduced or hopefully elim-

inated, since their immediate consquence is inclusion of dummy entries in the index blocks of the

structure. Further, a good implementation need not allow index blocks containing just one entry,

especially if it is a dummy. This requires a small modification of the algorithms outlined in the

previous sections.

Yet another improvement can increase utilization of index blocks, although it will not

prevent underfilling altogether. Without alterating the presented algorithms, an index block can

be split immediately after the entry ei , provided that depths of all preceding entries in the index

block are greater than the depth value of ei . If we chose the ei closest to the middle of the block

we can obtain much closer approximation of even splitting of index blocks.

5.2. C 0-trees Used for Secondary Indexing

So far, we have discussed C 0-trees assuming their purpose for primary retrieval. It is

equally important to see how the structure can be used for secondary indexing. Let us assume

that a database file contains data records with several attribute fields, stored in the order of their

45

insertion. Let us call this structure main file. For every attribute field of the particular record

type, we can build a secondary index pointing to the records in the main file. Obviously, it is

important to keep the size of secondary indices as low as possible, since their cumulative space

overhead can be significant.

A slight modification, which eliminates keys from data blocks of C 0-trees, makes the struc-

ture extremely suitable for this purpose. We here outline only the basic idea. Imagine a 0-

complete tree whose every leaf is either conceptually existing or has exactly one record. Then,

using corrolary 3.6 as the paradigm, we can access any record in a main file knowing only

ordered sequence of depths of all bounding nodes in the 0-complete tree. Every bounding node

of the tree stands for at most one record. We can, therefore, substitute every record in the data

blocks of a C 0-tree with a pair (d,p), where d is the depth of its bounding node in the appropriate

0-complete tree and p is the pointer to the record stored in the main file. What we see here is a

C 0-tree consisting of only densly coded surrogates, thus obtaining the same structure for both

lower and upper level blocks in the tree. Maintainance algorithms for the structure are further

simplified, since no separate provision for data blocks needs to be provided. We can also expect

significant storage savings in comparison to other schemes used for secondary indexing.

Due to limited space, discussion on some specifics of the algorithms for building, accessing

and mintaining the C 0-trees in the context of secondary retrieaval, as well as the provision for

handling large number of equal keys is left out here. We just point out that handling these

specifics presents no structural difficulty.

46

References

[Bur76] W. A. Burkhard, Hashing and Trie Algorithms for Partial Match Retrieval, Trans.
Database Systems 1,2 (June 1976), 175-187.

[Com79] D. Comer, The Ubiquitous B-Tree, Computing Surveys 11,2 (June 1979), 121-137.

[Fae79] R. Fagin and et.al., Extendible Hashing---A Fast Access Method for Dynamic Files,
Trans. Database Systems 4,3 (Sep. 1979), 315-344.

[Fla81] P. Flajolet, On the Performance Evaluation of Extendible Hashing and Trie
Searching, RJ3258, IBM, San Jose CA, Oct. 1981.

[Fre60] E. Fredkin, Many-way Information Retrieval, Comm. of the ACM 3(1960), 490-500.

[Knu73] D. E. Knuth, The Art of Computer Programming, Sorting and Searching, Addison
Wesley, Reading, MA, 1973. Vol. 3.

[LiL87] W. Litwin and D. B. Lomet, A New Method for Fast Data Searches with Keys, IEEE
Software, Mar. 1987, 16-24.

[Lom83] D. B. Lomet, Bounded Index Exponential Hashing, Trans. Database Systems 8,1
(Mar. 1983), 136-165.

[Pfa72] J. L. Pfaltz, Graph Structures, J. ACM 19,3 (July 1972), 411-422.

[Pfa83] J. L. Pfaltz, Transformations of Structures by Convex Homomorphisms, in Lecture
Notes in Computer Science, #153, H. Ehrig, M. Nagl and G. Rozenberg (editors),
Springer-Verlag, 1983, 297-313.

[RLT83] K. Ramamohanarao, J. W. Lloyd and J. A. Thom, Partial-match Retrieval using
Hashing and Descriptors, Trans. Database Systems 8,4 (Dec. 1983).

[ScO82] P. Scheurermann and M. Ouksel, Multidimensional B-Trees for Asssociative
Searching in Database Systems, Inform. Systems 7,2 (1982), 123-137.

47

Table of Contents
1. Introduction and Background ... 2

1.1. Basic Terminology ... 3
prefix .. 3
0-node, 1-node ... 4
depth ... 4
discriminator .. 4
0-complete ... 4
pre-order traversal .. 5
predecessor ... 6
successor .. 6

1.2. Paginated Binary Trees .. 6
leaf prefix ... 8

1.3. 0-complete Paginated Binary Trees ... 8
bounding node .. 8
key interval .. 10

2. Growth of a 0-complete Paginated Binary Tree ... 11
2.1. Search ... 11
2.2. Insertion ... 11

intruder keys .. 12
proper keys ... 12
growth in width .. 13
growth in height ... 14

2.3. The Minimal Partition of 0-complete Trees .. 15
minimal bounding node ... 15

2.4. Key Discrimination in 0-complete PB-trees .. 16
3. Compact Representation of 0-complete Trees .. 20

3.1. Access in C0-trees .. 21

search algorithm ... 24
3.2. Growth of C0-trees ... 25

4. Deletion ... 30
4.1. Local Rotations .. 31
4.2. Merging Procedure ... 33

5. Analysis and Discussion ... 40
5.1. Experimental Results ... 41
5.2. C0-trees Used for Secondary Indexing ... 44

