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Abstract
A frequently used method of clustering is a technique called k-
means clustering. The k-means algorithm consists of two steps: A
map step, which is simple to execute on a GPU, and a reduce step,
which is more problematic. Previous researchers have used a hybrid
approach in which the map step is computed on the GPU and the
reduce step is performed on the CPU. In this work, we present a
new algorithm for irregular reductions and apply it to k-means such
that the GPU executes both the map and reduce steps. We provide
experimental comparisons using OpenCL. Our results show that
our scheme is 3.2 times faster than the hybrid scheme for k = 10,
an average 1.5 times faster when the number of clusters, k = 100
and on average equal for k = 400, on an ATI Radeon® HD 5870
(best speedup was 3.5 times) compared to the hybrid approach. In
addition, we compare the GPU code with the standard OpenMP
benchmark, MineBench. In that implementation, both the map and
reduce steps are computed on the CPU. For large data sizes, the
new GPU scheme shows great promise, with performance up to 35
times faster than MineBench on a four core Intel i7 CPU.

1. Introduction
A common method used to explore large data sets is clustering
analysis. Clustering problems arise in many different applications,
including data mining and knowledge discovery [8], data compres-
sion and vector quantization [9], pattern recognition and pattern
classification [4], and gene clustering [2, 5].

A frequently used method of clustering is a technique called k-
means clustering [11]. A k-means clustering problem starts with
a set of n data points in a real d-dimensional space, <d, and an
integer k. It then determines a set of k points in<d, called centroids
such that the mean squared distance from each data point to its
nearest centroid is minimized (a centroid of a cluster is the average
of all the points belonging to that cluster). K-means is widely used
because of its simplicity and quick convergence. However, k-means
may find non-optimal local-minimal centroids [13]. The run-time
performance of k-means is a concern with large data sets. The
main reason for this concern is that we often can find the correct
parameter of k only by performing several runs of K-means with
different numbers of clusters and different starting points.

On many existing GPU accelerated implementations of k-
means, the map step of k-means is performed on the GPU and
the reduce step is computed on the CPU. As a result, the entire out-
put of the map step has to be transferred from the GPU to the CPU
through the PCIe bus. This approach may work for smaller data
sets. But, when we have a larger data set or when we want to use
multiple GPUs instead of a single GPU, this approach of transfer-
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ring huge amounts of data back and forth between the CPU and the
GPU is not scalable. This scalability issue is the main motivation
for our work on k-means. We propose a new irregular reduction
algorithm in which both the map and reduce steps of k-means can
be computed on the GPU with minimal data transfer between the
CPU and the GPU.

The contributions of this paper include:

1. A new algorithm for floating-point irregular reductions and his-
tograms on the GPU. This approach is fast and easily imple-
mentable on modern GPUs.

2. Experimental comparisons of implementations of k-means us-
ing both the new scheme and a traditional hybrid implementa-
tion using a combination of Intel TBB and OpenCL. Our results
show a 66% speedup on an ATI Radeon HD 5870 [1] (average
speedup is 16%).

3. Additional experimental comparisons with CPU implementa-
tions of k-means written using TBB [17] and OpenMP. For
large data sizes, the GPU version shows great promise, with
performance up to 30 times faster than a four-core Intel i7 CPU.

We used MineBench [14] as the baseline for all our performance
comparisons. The MineBench benchmark is often used for GPU ex-
periments on k-means. This OpenMP, multi-core CPU benchmark
has been used in several other related previous works [3, 15, 19].

The rest of the paper is organized as follows. Section 2 intro-
duces k-means clustering. Sections 3 and 4 provide the background
related to the architecture of ATI Radeon HD 5870 and OpenCL.
Section 5 deals with the various types of reduction problems and
existing solutions. Section 6 describes our proposed irregular re-
duction algorithm. Section 7 deals with the implementation of k-
means clustering using the proposed irregular reduction algorithm,
and section 8 discusses the experimental results. Sections 9 and 10
deal with the related work and conclusions.

2. k-means clustering
Initially, the k-means algorithm randomly chooses k data points as
the centroids for each cluster. In each iteration, k-means executes a
map step, which associates each data point with its nearest centroid
according to a distance metric. The result of the map step is a
membership vector indicating the new cluster for each data point.
After the map step, k-means executes a reduce step. This step
computes new centroids by taking the mean of all the data points
in each cluster. K-means repeats these two steps until no data point
changes its cluster.

The map step has to compute the distance from every data
element (n elements each with d attributes) to the centroid of every
cluster (k clusters). Mapping requires O(knd) operations. This
step is data-parallel and maps well on to the GPU.

The reduce step first needs to add O(dn) floating-point values,
forming k ∗ d sums. Next it has to count the number of elements
in each cluster (n adds). Finally, the reduce needs to form new
centroids by dividing each sum by the corresponding count.

The summations in the reduce are a special kind of reduction
called an irregular reduction or a histogram, in which the data



points that need to be added are randomly arranged. Irregular re-
ductions are sometimes difficult to parallelize effectively on a GPU.

One possible map-reduce implementation could use an inter-
mediate sort step to collect all objects with the same new centroid
assignment. This approach is examined in [10]. After the data is
sorted, the reduction would have a regular layout. While attractive
for its simplicity, we believe that the overhead required by a sort
makes this approach impractical.

3. The GPU Architecture
We describe an ATI Radeon HD 5870 as an example of a GPU
architecture. The HD 5870 contains 20 compute units (CUs), each
containing 16 processing elements. The processing elements are
five-way VLIW processors, resulting in a total of 20 ∗ 16 ∗ 5 =
1, 600 stream processors. Each compute unit is a single-instruction
multiple-data (SIMD) device. In each time step, each processing
element in a single compute unit executes the same instruction, but
on different data. In the same time step, each compute unit can
execute different instructions.

A processing element has access to five different types of mem-
ory:

1. Registers are fast, read/write memory, but are a limited re-
source and are not shared. Each compute unit has 256 sets of
vector registers. Each set contains 64 vector registers. Each vec-
tor register contains four 32-bit values.

2. Local memory is a second read/write memory, also limited in
size (32 KB). Local memory is shared among the processing
elements on a compute unit, but is not shared across compute
units.

3. Constant memory is a larger read-only memory that can be
accessed through a special high-speed cache.

4. Image memory can be either read-only or write-only, and is
also accessed through a special high-speed cache.

5. Global memory is read/write memory shared across all threads.
Compared to the other memory types, global memory has a rel-
atively long access latency of 100-600 cycles. Global memory
is larger (ATI Radeon HD 5870 has 1 GB) compared to local
memory, but may be small compared to the CPU memory (often
4-8 GB).

GPU memory is connected to the CPU via a slow connection
called the PCIe bus. Common transfer rates are 10 GB/sec for CPU
to main memory, 153 GB/sec for GPU to global memory, and less
than 6 GB/sec for PCIe traffic.

4. OpenCL
Graphics processors (GPUs) were originally designed strictly to
accelerate the graphics pipeline. Recognizing the potentially huge
performance gains from GPUs, many efforts have been made to
use them to perform general-purpose computing by mapping appli-
cations onto graphics APIs. This has been known as the General
Purpose GPU (GPGPU) approach. However, expressing a general
problem in existing graphics APIs proved to be difficult. One of the
most important advances in GPU computing has been the develop-
ment of high-level C-like languages like CUDA and OpenCL for
data-parallel programming on the GPU.

CUDA is a proprietary programming language that has allowed
many researchers to use GPUs to accelerate their applications,
and many of resultant papers have reported respectable speedup
compared to CPU-only implementations. Recently, a new industry
standard-language called OpenCL has appeared. Since OpenCL is
supported by multiple vendors, it allows researchers to accelerate

Figure 1. OpenCL thread hierarchy

applications on a wide range of hardware platforms. To a developer,
OpenCL is an extended ANSI C programming language and an
associated library. Programs consist of a host section, which runs
on the CPU, and a kernel section, which runs on the GPU. The
host code takes care of transferring data to and from the GPU, and
also takes care of initiating the kernel code. In OpenCL, the GPU is
regarded as a co-processor capable of executing a large number of
work items in parallel. A single source program includes the host
code that runs on the CPU and the kernel code that runs on the
GPU.

Threads executing in OpenCL are organized into a three-level
hierarchy. At the bottom, a single parallel execution of a kernel
(a thread) is called a work item. Each work item executes on a
processing element. The work item is assigned to the same compute
unit for the duration of its execution. The middle level of the
hierarchy is the work group. Logically, work items execute in
work groups. The work items within a group can communicate and
synchronize. An entire work group executes on a single compute
unit. On the ATI Radeon HD 5870, work groups can contain up to
256 work items. At the top level, multiple work groups execute in
a grid or index space of computation. Work items are scheduled
by hardware onto the CU’s in groups, called wavefronts. Each
wavefront contains at most 64 work items. Figure 1 illustrates the
thread hierarchy in OpenCL.

5. Reductions
Given a set of points, reduction combines them into a single point
or a smaller set of points. We have assumed that the results of the
reductions are independent of the order of floating-point operations.
Reductions can be classified into two types: regular reductions and
irregular reductions.

5.1 Regular Reductions
A regular reduction is a reduction in which all the data items
that need to be reduced are located consecutive to each other. As
a result, regular reductions can be easily computed on a GPU.
Regular reductions can be implemented on the GPU by assigning
one work item per value. Work item i can combine elements at i and
i + s where s is a power of two, s=1,2,4,8 etc. and the reduction
can easily be done in log2(n) time. Listing 1 shows the pseudo-
code for a regular reduction kernel on the GPU. For this pseudo
code we assume that the size of the work-group is a power of two.
Figure 2 depicts a step-wise regular reduction.

In the first iteration in Figure 2, work item 0 combines values[0]
and values[0 + 4] (i.e values[0 + 22]), work item 1 combines



Listing 1. Pseudo-code for regular reduction kernel

/ / Le t v a l u e s [ ] be t h e s h a r e d a r r a y t h a t needs t o be
r e d u c e d

/ / Le t r e d u c e a r r a y s i z e be t h e number o f e l e m e n t s t h a t
need t o be r e d u c e d

/ / Le t w o r k i t e m c o u n t be t h e number o f work i t e m s

/ / Le t w o r k i t e m i d be t h e ID of t h e c u r r e n t work i t em

f o r ( i n t i = w o r k i t e m c o u n t / 2 ; i >0; i = i / 2 )
{

i f ( w o r k i t e m i d < ( r e d u c e a r r a y s i z e / 2 ) )
{

r e d u c e a r r a y s i z e = c e i l ( r e d u c e a r r a y s i z e / 2 ) ;
v a l [ w o r k i t e m i d ] += v a l [ w o r k i t e m i d +

r e d u c e a r r a y s i z e ] ;
}
b a r r i e r (CLK LOCAL MEM FENCE) ;

}

Figure 2. Stepwise illustration of regular reduction

values[1] with values[1 + 4], and so on. In the second iteration,
values[0] is combined with values[0+2], and values[1] is combined
with values[1+2]. In the third iteration, values[0] is combined with
values[1], and we have the final result.

5.2 Irregular Reductions
In the case of irregular reductions, the elements that need to be
reduced are not located in consecutive order; instead, they are ar-
ranged in random order. Irregular reduction (sometimes called his-
togram) has been difficult and inefficient on the GPU. This often
means that GPU-based implementations of algorithms that require
histogram calculation transfer large blocks of data between the
GPU and the CPU. This can be a significant bottleneck. We there-
fore sought an efficient way to calculate the reduction completely
on the GPU.

6. GPU Irregular Reduction Algorithm
One way of performing the irregular reduction on the GPU would
be to assign one work item per value, and then sort the work items
based on their cluster IDs and compute the log2(n) reduction.
However, log2(n) reduction does not require a complete sort. The
only requirement is that all the work items belonging to the same
cluster must be consecutive to each other. Within a cluster, the work
items can be arranged in any order, and the clusters themselves can
also be arranged in any order. So, instead of performing a complete
sort, our proposed algorithm imposes a partial order on the work
items such that all the work items belonging to the same cluster
have consecutive IDs.

To use a log2(n) reduction, our method assigns each work item
a new ID, new workitem ID, and establishes an index array, index,
such that a work item with a new id, i, can combine elements
at indexes, index[i] and index[i + s] where s is a power of 2
(s = 1, 2, 4, etc). The index array contains a list of work items
ordered such that all work items assigned to the same cluster are
consecutive to each other.

The first step in our algorithm is to initialize the index array
to zero. Then, each work item atomically increments index[c] by
1, where c is the corresponding cluster ID of that work item. The
atomic add returns the previous value of index[c] to the work item.
Thus, by doing an atomic add of 1 to index[c], each work item
allocates a unique position for itself within its cluster. This position
is called id within cluster. After all work items have performed this
step, index[c] contains the total number of work items belonging to
cluster c. Thus, all the work items have received a unique id within
their cluster, id within cluster, and they also know the number of
work items belonging to their cluster, reduce array size.

To assign global unique IDs to each of these work items, we
need to find an offset for each of the clusters based on the number
of work items belonging to that cluster. We use a global variable
global offset, for this purpose.

Work item 0 initializes global offset to zero. Each work item
whose id within cluster is 0 atomically adds its reduce array size
to global offset, thus allocating a unique offset for its clusters. All
of the work items have their ID within cluster and their cluster
offset and, hence, their unique global ID, new workitem ID, can
be computed by adding their id within cluster with the offset.
Thus, we have assigned new IDs to each of the work items such that
work items belonging to the same cluster have consecutive IDs.

Now, we update the index array, index with old work item ID
such that:

index[new workitem ID] = work item ID.
The next step is to perform the irregular reduction, similar

to the regular reduction, with one slight modification. Instead of
accessing the values[] array directly, we index it using the index[]
array so the correct elements get reduced. Listing 2 shows the
pseudo-code for irregular reduce, and Figures 3 and 4 depict a step-
wise irregular reduction.

In Figures 3 and 4, we considered an example with a work group
of size 8 (the actual work groups used in this study was 256 work
items). In Figure 3, array values[] represent the values that need to
be reduced, and cluster c represents the corresponding cluster IDs.
Let’s focus on work items 0, 1, and 3. The first step is to determine
the id within cluster. Each work item atomically adds 1 to index[c].
Work item 0 receives an id within cluster of 0 (since there is only
one work item belonging to cluster 0). Work items 1 and 3 receive
id within cluster of 0 and 1. The next step is to find the offset. Work
item 0 adds the number of work items in cluster 0 (which is 1) to
global offset. Work item 0 receives an offset of 0. So, the new ID
of work item 0,new workitem ID is 0 (the sum of id within cluster
and offset). Work item 1 adds the number of work items in cluster
2 (which is 2) to global offset. It receives an offset of 1 (since work



Figure 3. Step-wise illustration of the irregular reduction algo-
rithm. This figure illustrates the assignment of new IDs to the work
items such that all the work items belonging to the same cluster
have consecutive IDs.

Figure 4. Step-wise illustration of the irregular reduction algo-
rithm (Continued). This figure illustrates step-wise irregular reduc-
tion after new IDs have been assigned to the work items.

Listing 2. Pseudo-code for irregular reduction kernel
/ / Le t i n d e x [ ] be t h e a r r a y used t o compute u n iq ue

c o n s e c u t i v e IDs f o r work i t e m s

/ / A l l e l e m e n t s i n a r r a y i n d e x a r e i n i t i a l i z e d t o z e r o

/ / Le t c be t h e c l u s t e r t h e work i t em b e l o n g s t o

/ / Le t i d w i t h i n c l u s t e r be t h e ID of t h e work i t em w i t h i n
i t s c l u s t e r

i d w i t h i n c l u s t e r = a t om ic add ( 1 , i n d e x [ c ] )

/ * A f t e r a l l t h e work i t e m s e x e c u t e t h e p r e v i o u s s t a t e m e n t
, i n d e x [ c ] w i l l c o n t a i n t h e t o t a l number o f work i t e m s

b e l o n g i n g t o t h e c l u s t e r c which i s t h e number o f
e l e m e n t s t o be r e d u c e d i n t h a t c l u s t e r * /

r e d u c e a r r a y s i z e = i n d e x [ c ]

/ / Le t g l o b a l o f f s e t be t h e s h a r e d v a r i a b l e used t o f i n d
t h e o f f s e t o f t h e c l u s t e r s

/ / g l o b a l o f f s e t i s i n i t i a l i z e d t o z e r o .

i f ( w o r k i t e m i d == 0) g l o b a l o f f s e t = 0

i f ( i d w i t h i n c l u s t e r == 0)
{

i n d e x [ c ] = a t om ic add ( r e d u c e a r r a y s i z e , g l o b a l o f f s e t )
}

/ / Le t o f f s e t be t h e o f f s e t o f c l u s t e r c

o f f s e t = i n d e x [ c ]

/ / Le t new worki tem ID be t h e new ID

new worki tem ID = o f f s e t + i d w i t h i n c l u s t e r

/ / Le t us u p d a t e i n d e x [ ] w i th w o r k i t e m i d s such t h a t
c o n s e c u t i v e w o r k i t e m s i n t h e i n d e x a r r a y b e lo ng t o
t h e same c l u s t e r

i n d e x [ new worki tem ID ] = w o r k i t e m i d

/ / a c t u a l r e d u c t i o n

f o r ( i n t i = w o r k i t e m c o u n t / 2 ; i >0; i = i / 2 )
{

i f ( i d w i t h i n c l u s t e r < ( r e d u c e a r r a y s i z e / 2 ) )
{

r e d u c e a r r a y s i z e = c e i l ( r e d u c e a r r a y s i z e / 2 ) ;
v a l u e s [ i n d e x [ new worki tem ID ] ]+=
v a l u e s [ i n d e x [ new worki tem ID + r e d u c e a r r a y s i z e ] ] ;

}
b a r r i e r (CLK LOCAL MEM FENCE) ;

}

item 0 added a 1 previously). Thus, the new IDs of work items 1
and 3 are 1 and 2. Thus, we have assigned new IDs such that work
items belonging to the same cluster have consecutive IDs.

After assigning new IDs, we update the index array, index with
the old IDs. So, index[0] is updated with 0, index[1] with 1, and
index[2] with 3 (because work item 3 has been assigned a new ID
of 2). Using the index array, we perform the irregular reduction.
Work item 1 adds the value at its location with the value at the
index, index[1 + 20] (i.e., index[2], which is nothing but work item
3). Thus, though work items 1 and 3 are not consecutive to each
other, we have reduced them using the index array. All the other
reductions in Figure 4 follow the same pattern.

The proposed algorithm uses atomic operations in two state-
ments, one while finding the id within cluster and the other while
finding the offset. If a collision occurs in any of these two state-
ments, the GPU hardware will take care of resolving the colli-



sions. The order in which the collisions would be resolved is non-
deterministic. The problem with these collisions is that they seri-
alize the execution. But, interestingly, the cost of collisions in our
algorithm is relatively low. If every work item is assigned to a dif-
ferent cluster, then there are no collisions in first statement and
|wavefront| collisions at the second one. On the other hand, if
every item is assigned to the same cluster there are |wavefront|
collisions at the first statement and none at the second one. So, the
worst case for the number of collisions is (|wavefront| + 1) per
reduction. If there are p clusters in a wavefront, the number of col-
lisions is given by the following equation:

NumberOfCollisions = WavefrontSize/p+ p (1)

Each such collision results in a serialized execution.

7. Implementation
We have implemented the k-means kernels using OpenCL. One
of the most powerful features of OpenCL is dynamic compilation.
Users of OpenCL are provided with the capability to compile the
kernels at run time. We have used this feature to specialize the k-
means kernels for the current instance of the problem. We have
performed loop unrolling based on the number of clusters and
attributes, and have used dynamic compilation to perform loop
unrolling specialized to each instance of the problem.

The first step in our implementation is to copy the data from
the CPU to the GPU. In the case of the CPU, a cache-friendly data
layout is row-based (i.e., all the attributes for a given data point are
kept together). However, on the GPU, a memory-friendly arrange-
ment would be column-based, (i.e., all values of a given attribute
are stored next to each other). Our implementation transfers data
from the CPU to the GPU and then uses a kernel to transpose the
data. The data set is transposed once and used for all iterations.

We placed the current centroid data into the GPU constant
memory. Farivar [7] reported an order of magnitude speedup using
the hybrid approach when he moved the centroid data from global
memory to constant memory.

The next step in our implementation is to find the cluster centers
and repeat the process. In a real system, we would iterate until
data points do not change their clusters. However, in order to
compare measurements, we forced the number of iterations to 50.
We validated the code by making sure that all the versions of k-
means produced the same answers. A given iteration consists of:

1. Initialize the part of global memory that stores the partial sums.

2. (a) Perform the map. We used kernels with work groups of size
256.

(b) Perform a partial reduce. We have used n/256 work groups,
where n is the number of points. Each of these work groups
generate (d + 1) ∗ k partial sums, where d is the number
of attributes and k is the number of clusters. The additional
attribute is used to store the number of points belonging to
that cluster in the partial sum. This kernel also generates the
number of points that have changed their cluster during the
current iteration in this partial sum.

3. A third kernel adds all the partial sums. In this kernel, we have
used work groups of size 256. We have used one work group
per cluster. Output of this kernel is the new cluster centroids
and the sum of the numbers of data points that have changed
their clusters.

4. At the end of the iteration, depending on the number of points
that have changed their clusters, the CPU decides on whether to
continue with the next iteration.

Each line is a different number of attributes
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Figure 5. Linear scaling of MineBench performance.

Since the kernel in step 2 is writing at most k ∗ (a+ 1) values,
we preallocate all the space required for all work-groups.

For the hybrid scheme we remove steps 2b and 3, and modified
step 2a to write a membership vector, one integer per element back
to the CPU.

8. Experimental Results
Experiments were performed on a four-core Intel i7 CPU sys-
tem with two graphics cards running 32-bit Microsoft® Win-
dows®Vista. The system consists of a four-core Intel Core i7 920
CPU with a clock speed of 2.67 GHz and 8 GB of RAM. We used
an ATI Radeon HD 5870 Graphics card. The software versions
used were ATI-Stream-v2.2 (302) and ATI Catalyst ™10.7.

We used randomly generated data sets for running our experi-
ments. The actual values were uniformly distributed and generated
by the Mersenne Twister method [12].

Since we had fixed the seed of our random number generator,
we were able to repeat the experiments. The number of k-means it-
erations is forced to 50 for all the experiments. The timing reported
is the total wall clock time for all iterations, including the time for
calculation and communication between the CPU and the GPU and
excluding the time taken for initializing the data sets.

8.1 MineBench performance
We begin with some preliminary measurements. First, figure 5
shows that the execution time is linear in the data size (the product
of the number of attributes and the number of objects). The x-axis
is the data set size, from 1 to 32 million floating-point words of
data, the y-axis is the total execution time in seconds. Each line
corresponds to a different number of attributes. Each panel provides
data for a different value of k. To make the linear slope clear we
used different y-axis scales.

This figure demonstrates that MineBench does not contain spe-
cial case code for some of the problem sizes in our study.

After some experimentation, we determined that the perfor-
mance of both MineBench and TBB is quite sensitive to specific
Microsoft Visual Studio compiler optimization settings.



n d k MineBench TBB

1000000 4 400 35.84 35.99
1000000 6 400 43.92 43.92
4000000 2 100 26.96 29.31
1000000 8 400 51.86 52.08
4000000 8 200 102.83 106.40

Figure 6. Comparisons of our TBB implementation of k-means
with MineBench’s k-means. The MineBench and TBB values are
the time taken in seconds.

The best setting we found was:
Option Meaning
/0x maximum optimization
/Ob2 maximum inline
/Oi Generate intrinsic functions
/Ot favor fast code
/GL Whole Program optimization
/Oy no frame pointers
/EHsc assume no extern c function

will throw an exception
/MT multi-threaded executable

The numbers presented are based on the above settings.

8.2 Comparison of our TBB implementation of k-means with
The OpenMP MineBench’s k-means

To compare the performance of the GPU only and hybrid k-means
implementations, we needed to ensure the TBB code used as the
CPU side of the hybrid k-means is implemented efficiently.

Figure 6 shows the performance in seconds for MineBench k-
means compared to our TBB version. The TBB numbers appear
to be almost the same as hand-tuned MineBench code. We did
find that, for small values of k, TBB appears to be faster than
MineBench because it has cache-aware memory allocators. Figure
6 shows that our CPU implementation of k-means is as efficient as
our baseline, MineBench’s k-means. Since our work is focused on
the GPU reduction, we did not explore the TBB/MineBench code
in detail.

8.3 GPU k-means compared to hybrid k-means
We have implemented both a hybrid k-means and a GPU-only k-
means. In the hybrid k-means, the map is computed on the GPU and
the reduce is done on the CPU. In the GPU-only implementation,
both the map and reduce steps are computed entirely on the GPU.
The CPU’s only task is controlling the number of iterations.

In the hybrid k-means, there is significant data transfer between
the CPU main memory and the GPU memory. After the map step,
the entire membership vector (4 bytes per data point) is transferred
from the GPU to the CPU, and after the reduce step, the new
clusters ((4 ∗ k ∗ d) bytes) are transferred from the CPU to the
GPU. In the case of GPU-only k-means, the only data that needs
to be transferred from the GPU to the CPU is a single 4-byte value
representing the number of points that have changed their clusters
in the current iteration.

Figure 7 shows the speedup of the GPU-only k-means compared
to the hybrid k-means.

The range of values in the figure are:

number of clusters minimum mean maximum
10 2.6 3.2 3.5

100 1.2 1.7 1.9
400 .9 1.0 1.1

Each line is a different number of attributes

Data Transfer size in integer words

S
pe

ed
up

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6 8 10 12

2

2 2

2
2 2

2 2 2 2 2 2
2

3

3 3 3
3

3 3 3
3 3

4

4

4 4
4 4 4 4

5

5

5
5 5 5

6
6

6 6 6

7

7 7
7

8

8 8 8

10

5 10 15

2
222222222222222

3333333333

44444444
555555

66666

7777
8888

100

2 4 6 8 10 12

2 2 2 2
2

2 2 2 2 2
2

2 2
3 3 3 3 3

3 3 3
3

3
4 4 4 4 4 4 4 4
5 5 5 5 5 56 6 6 6 6
7 7 7 78 8 8 8

400

Figure 7. Speedup of GPU-only k-means compared to hybrid k-
means.

As the number of clusters increases, the performance of the al-
gorithm declines. There are two reasons for this. First, as k ap-
proaches the work group size, fewer and fewer elements are added
within the work group. Most work items will simply execute a se-
ries of tests and then decide not to execute any useful work. Second,
with larger values of k, almost all work items will atomically update
the global count, causing collisions.

In this figure, we ordered the data by number of integer words
transferred from GPU to CPU per iteration. Since our algorithm
does not have the overhead of data transfer, performance should be
better towards the right.

8.4 GPU only k-means compared with MineBench k-means
Figure 8 shows the speedups of GPU-only and hybrid k-means
compared to MineBench on a four-core Intel i7 CPU. From the
figure we see the algorithm is more than 35 times faster than the
four-core CPU for k=100.

9. Related Work
There have been several publications that explored the use of GPUs
for clustering using the k-means method. Among them, three pieces
of work are closely related to ours [CHE08, WU09, FAN08wu ].

CHE08 et al. [3] conducted a series of research experiments
using GPUs to accelerate various general-purpose applications in-
cluding k-means. They focused on one of the most important prob-
lems in implementing k-means, which is determining the efficient
layout of k-means data in the GPU memory hierarchy. They chose
to place the data points in the GPU’s image memory. They used
constant memory to store the k centroids. Each work item is respon-
sible for finding the nearest centroids of one data point. Each work
group has 256 items. Each work item calculates the distance be-
tween one corresponding data point and every centroid, then finds
the minimum distance and associates the data point with the nearest
centroid. Next, each work group calculates a partial sum based on
the data points in the work group. A single work item is used to cal-
culate each dimension of the partial sum. Finally, the partial sums
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Figure 8. Speedup of GPU and hybrid scheme compared to CPU
k-means implementation.

are copied back to the CPU, which then serially calculates the new
centroid by adding the partial centroid sets. This work achieved
quite good speedups. An Nvidia GTX 260 showed 72x speedup
compared to a single CPU core and 35 times speedup compared to
MineBench on a dual-core CPU.

A team at HKUST and Microsoft Research Asia [6] has also
looked into parallel data mining on GPUs. The focus of that re-
search was an elegant bit-field algorithm that tracks the elements
assigned to each cluster. In this research, each work group con-
tains 128 work items. Each work item calculates the distance from
one data point to every centroid, and then updates a bit in a bit ar-
ray that stores the nearest centroid for each data point. In a second
pass, each work item is responsible for one centroid; it finds all the
corresponding data points from the bit array and takes the mean of
those data points as a new centroid.

Finally, a third team at HP labs [15, 19] focused on computing
k-means for very large data sets. In particular, they looked at ways
to stream data so they could process data sets that would not fit into
GPU memory. They reported speedups of around 100x compared to
a single-core CPU and about 15x compared to an eight-core CPU.
The HP team also used a hybrid approach. That is, they execute the
map on the GPU, transfer the resultant membership vector back to
the CPU, and compute the new centroids on the CPU.

In all the three research efforts, the map part of the computation
proved easy to parallelize on the GPU compared to the reduce part.
In our work, we concentrated on the reduce problem and found
a new promising algorithm to handle irregular reductions on the
GPU.

A complementary technique for hybrid k-means was proposed
by [16]. Rather than assign all map operations to the GPU and all
reduce operations to the CPU, this work splits the input data set
into sections. They then assign each section to a processor, either a
GPU or a CPU. Each processor computes both the map-reduce on
its assigned section, with the CPU combining final results.

For previous generation GPU’s, which do not have atomic op-
erations, computing histograms has proved difficult. Several ap-
proaches [18] considered using the traditional graphics pipeline,

while citeshams describes a way to simulate mutex locks by tag-
ging memory locations.

10. Conclusions and Future Work
The performance results for OpenCL are likely to improve in the fu-
ture. For this study, we used early releases of OpenCL tools (AMD
2.1). We expect later releases will show improved performances.

We have developed a general GPU-based irregular reduction al-
gorithm. It may be possible to use the same technique for many
other histogram-related problems. We have developed a very high
speed-implementation of k-means. Given that the CPU is doing
very little when both the map and reduce executes on the GPU,
one possible future research direction would be to use the CPU to
process part of the computation. Another possible area of future
work would be generic map reduce. In the case of k-means, the
number of keys (i.e., the number of clusters, k) is fixed and pre-
defined, but this is not the case with generic map reduce. It would
be interesting to adapt our irregular reduce algorithm for generic
map reduce. Another potential area of research is implementing k-
means on multiple GPUs. Since we have eliminated most of the
memory copy overhead, we should get almost linear performance
improvement as we increase the number of GPUs.
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